caamalg.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. * caam - Freescale FSL CAAM support for crypto API
  3. *
  4. * Copyright 2008-2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on talitos crypto API driver.
  7. *
  8. * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
  9. *
  10. * --------------- ---------------
  11. * | JobDesc #1 |-------------------->| ShareDesc |
  12. * | *(packet 1) | | (PDB) |
  13. * --------------- |------------->| (hashKey) |
  14. * . | | (cipherKey) |
  15. * . | |-------->| (operation) |
  16. * --------------- | | ---------------
  17. * | JobDesc #2 |------| |
  18. * | *(packet 2) | |
  19. * --------------- |
  20. * . |
  21. * . |
  22. * --------------- |
  23. * | JobDesc #3 |------------
  24. * | *(packet 3) |
  25. * ---------------
  26. *
  27. * The SharedDesc never changes for a connection unless rekeyed, but
  28. * each packet will likely be in a different place. So all we need
  29. * to know to process the packet is where the input is, where the
  30. * output goes, and what context we want to process with. Context is
  31. * in the SharedDesc, packet references in the JobDesc.
  32. *
  33. * So, a job desc looks like:
  34. *
  35. * ---------------------
  36. * | Header |
  37. * | ShareDesc Pointer |
  38. * | SEQ_OUT_PTR |
  39. * | (output buffer) |
  40. * | SEQ_IN_PTR |
  41. * | (input buffer) |
  42. * | LOAD (to DECO) |
  43. * ---------------------
  44. */
  45. #include "compat.h"
  46. #include "regs.h"
  47. #include "intern.h"
  48. #include "desc_constr.h"
  49. #include "jr.h"
  50. #include "error.h"
  51. /*
  52. * crypto alg
  53. */
  54. #define CAAM_CRA_PRIORITY 3000
  55. /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
  56. #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
  57. SHA512_DIGEST_SIZE * 2)
  58. /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
  59. #define CAAM_MAX_IV_LENGTH 16
  60. #ifdef DEBUG
  61. /* for print_hex_dumps with line references */
  62. #define xstr(s) str(s)
  63. #define str(s) #s
  64. #define debug(format, arg...) printk(format, arg)
  65. #else
  66. #define debug(format, arg...)
  67. #endif
  68. /*
  69. * per-session context
  70. */
  71. struct caam_ctx {
  72. struct device *jrdev;
  73. u32 *sh_desc;
  74. dma_addr_t shared_desc_phys;
  75. u32 class1_alg_type;
  76. u32 class2_alg_type;
  77. u32 alg_op;
  78. u8 *key;
  79. dma_addr_t key_phys;
  80. unsigned int keylen;
  81. unsigned int enckeylen;
  82. unsigned int authkeylen;
  83. unsigned int split_key_len;
  84. unsigned int split_key_pad_len;
  85. unsigned int authsize;
  86. };
  87. static int aead_authenc_setauthsize(struct crypto_aead *authenc,
  88. unsigned int authsize)
  89. {
  90. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  91. ctx->authsize = authsize;
  92. return 0;
  93. }
  94. struct split_key_result {
  95. struct completion completion;
  96. int err;
  97. };
  98. static void split_key_done(struct device *dev, u32 *desc, u32 err,
  99. void *context)
  100. {
  101. struct split_key_result *res = context;
  102. #ifdef DEBUG
  103. dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  104. #endif
  105. if (err) {
  106. char tmp[256];
  107. dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  108. }
  109. res->err = err;
  110. complete(&res->completion);
  111. }
  112. /*
  113. get a split ipad/opad key
  114. Split key generation-----------------------------------------------
  115. [00] 0xb0810008 jobdesc: stidx=1 share=never len=8
  116. [01] 0x04000014 key: class2->keyreg len=20
  117. @0xffe01000
  118. [03] 0x84410014 operation: cls2-op sha1 hmac init dec
  119. [04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
  120. [05] 0xa4000001 jump: class2 local all ->1 [06]
  121. [06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
  122. @0xffe04000
  123. */
  124. static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
  125. {
  126. struct device *jrdev = ctx->jrdev;
  127. u32 *desc;
  128. struct split_key_result result;
  129. dma_addr_t dma_addr_in, dma_addr_out;
  130. int ret = 0;
  131. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  132. init_job_desc(desc, 0);
  133. dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
  134. DMA_TO_DEVICE);
  135. if (dma_mapping_error(jrdev, dma_addr_in)) {
  136. dev_err(jrdev, "unable to map key input memory\n");
  137. kfree(desc);
  138. return -ENOMEM;
  139. }
  140. append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
  141. KEY_DEST_CLASS_REG);
  142. /* Sets MDHA up into an HMAC-INIT */
  143. append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
  144. OP_ALG_AS_INIT);
  145. /*
  146. * do a FIFO_LOAD of zero, this will trigger the internal key expansion
  147. into both pads inside MDHA
  148. */
  149. append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
  150. FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
  151. /*
  152. * FIFO_STORE with the explicit split-key content store
  153. * (0x26 output type)
  154. */
  155. dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  156. DMA_FROM_DEVICE);
  157. if (dma_mapping_error(jrdev, dma_addr_out)) {
  158. dev_err(jrdev, "unable to map key output memory\n");
  159. kfree(desc);
  160. return -ENOMEM;
  161. }
  162. append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
  163. LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
  164. #ifdef DEBUG
  165. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  166. DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
  167. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  168. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  169. #endif
  170. result.err = 0;
  171. init_completion(&result.completion);
  172. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  173. if (!ret) {
  174. /* in progress */
  175. wait_for_completion_interruptible(&result.completion);
  176. ret = result.err;
  177. #ifdef DEBUG
  178. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  179. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  180. ctx->split_key_pad_len, 1);
  181. #endif
  182. }
  183. dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
  184. DMA_FROM_DEVICE);
  185. dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
  186. kfree(desc);
  187. return ret;
  188. }
  189. static int build_sh_desc_ipsec(struct caam_ctx *ctx)
  190. {
  191. struct device *jrdev = ctx->jrdev;
  192. u32 *sh_desc;
  193. u32 *jump_cmd;
  194. /* build shared descriptor for this session */
  195. sh_desc = kmalloc(CAAM_CMD_SZ * 4 + ctx->split_key_pad_len +
  196. ctx->enckeylen, GFP_DMA | GFP_KERNEL);
  197. if (!sh_desc) {
  198. dev_err(jrdev, "could not allocate shared descriptor\n");
  199. return -ENOMEM;
  200. }
  201. init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);
  202. jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
  203. JUMP_COND_SHRD | JUMP_COND_SELF);
  204. /* process keys, starting with class 2/authentication */
  205. append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
  206. ctx->split_key_len,
  207. CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);
  208. append_key_as_imm(sh_desc, (void *)ctx->key + ctx->split_key_pad_len,
  209. ctx->enckeylen, ctx->enckeylen,
  210. CLASS_1 | KEY_DEST_CLASS_REG);
  211. /* update jump cmd now that we are at the jump target */
  212. set_jump_tgt_here(sh_desc, jump_cmd);
  213. ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
  214. desc_bytes(sh_desc),
  215. DMA_TO_DEVICE);
  216. if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
  217. dev_err(jrdev, "unable to map shared descriptor\n");
  218. kfree(sh_desc);
  219. return -ENOMEM;
  220. }
  221. ctx->sh_desc = sh_desc;
  222. return 0;
  223. }
  224. static int aead_authenc_setkey(struct crypto_aead *aead,
  225. const u8 *key, unsigned int keylen)
  226. {
  227. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  228. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  229. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  230. struct device *jrdev = ctx->jrdev;
  231. struct rtattr *rta = (void *)key;
  232. struct crypto_authenc_key_param *param;
  233. unsigned int authkeylen;
  234. unsigned int enckeylen;
  235. int ret = 0;
  236. param = RTA_DATA(rta);
  237. enckeylen = be32_to_cpu(param->enckeylen);
  238. key += RTA_ALIGN(rta->rta_len);
  239. keylen -= RTA_ALIGN(rta->rta_len);
  240. if (keylen < enckeylen)
  241. goto badkey;
  242. authkeylen = keylen - enckeylen;
  243. if (keylen > CAAM_MAX_KEY_SIZE)
  244. goto badkey;
  245. /* Pick class 2 key length from algorithm submask */
  246. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  247. OP_ALG_ALGSEL_SHIFT] * 2;
  248. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  249. #ifdef DEBUG
  250. printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
  251. keylen, enckeylen, authkeylen);
  252. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  253. ctx->split_key_len, ctx->split_key_pad_len);
  254. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  255. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  256. #endif
  257. ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
  258. GFP_KERNEL | GFP_DMA);
  259. if (!ctx->key) {
  260. dev_err(jrdev, "could not allocate key output memory\n");
  261. return -ENOMEM;
  262. }
  263. ret = gen_split_key(ctx, key, authkeylen);
  264. if (ret) {
  265. kfree(ctx->key);
  266. goto badkey;
  267. }
  268. /* postpend encryption key to auth split key */
  269. memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
  270. ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
  271. enckeylen, DMA_TO_DEVICE);
  272. if (dma_mapping_error(jrdev, ctx->key_phys)) {
  273. dev_err(jrdev, "unable to map key i/o memory\n");
  274. kfree(ctx->key);
  275. return -ENOMEM;
  276. }
  277. #ifdef DEBUG
  278. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  279. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  280. ctx->split_key_pad_len + enckeylen, 1);
  281. #endif
  282. ctx->keylen = keylen;
  283. ctx->enckeylen = enckeylen;
  284. ctx->authkeylen = authkeylen;
  285. ret = build_sh_desc_ipsec(ctx);
  286. if (ret) {
  287. dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
  288. enckeylen, DMA_TO_DEVICE);
  289. kfree(ctx->key);
  290. }
  291. return ret;
  292. badkey:
  293. crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
  294. return -EINVAL;
  295. }
  296. struct link_tbl_entry {
  297. u64 ptr;
  298. u32 len;
  299. u8 reserved;
  300. u8 buf_pool_id;
  301. u16 offset;
  302. };
  303. /*
  304. * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
  305. * @src_nents: number of segments in input scatterlist
  306. * @dst_nents: number of segments in output scatterlist
  307. * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
  308. * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
  309. * @link_tbl_bytes: length of dma mapped link_tbl space
  310. * @link_tbl_dma: bus physical mapped address of h/w link table
  311. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  312. */
  313. struct ipsec_esp_edesc {
  314. int assoc_nents;
  315. int src_nents;
  316. int dst_nents;
  317. int link_tbl_bytes;
  318. dma_addr_t link_tbl_dma;
  319. struct link_tbl_entry *link_tbl;
  320. u32 hw_desc[0];
  321. };
  322. static void ipsec_esp_unmap(struct device *dev,
  323. struct ipsec_esp_edesc *edesc,
  324. struct aead_request *areq)
  325. {
  326. dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
  327. if (unlikely(areq->dst != areq->src)) {
  328. dma_unmap_sg(dev, areq->src, edesc->src_nents,
  329. DMA_TO_DEVICE);
  330. dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
  331. DMA_FROM_DEVICE);
  332. } else {
  333. dma_unmap_sg(dev, areq->src, edesc->src_nents,
  334. DMA_BIDIRECTIONAL);
  335. }
  336. if (edesc->link_tbl_bytes)
  337. dma_unmap_single(dev, edesc->link_tbl_dma,
  338. edesc->link_tbl_bytes,
  339. DMA_TO_DEVICE);
  340. }
  341. /*
  342. * ipsec_esp descriptor callbacks
  343. */
  344. static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
  345. void *context)
  346. {
  347. struct aead_request *areq = context;
  348. struct ipsec_esp_edesc *edesc;
  349. #ifdef DEBUG
  350. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  351. int ivsize = crypto_aead_ivsize(aead);
  352. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  353. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  354. #endif
  355. edesc = (struct ipsec_esp_edesc *)((char *)desc -
  356. offsetof(struct ipsec_esp_edesc, hw_desc));
  357. if (err) {
  358. char tmp[256];
  359. dev_err(jrdev, "%s\n", caam_jr_strstatus(tmp, err));
  360. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  361. }
  362. ipsec_esp_unmap(jrdev, edesc, areq);
  363. #ifdef DEBUG
  364. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  365. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
  366. areq->assoclen , 1);
  367. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  368. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
  369. edesc->src_nents ? 100 : ivsize, 1);
  370. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  371. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
  372. edesc->src_nents ? 100 : areq->cryptlen +
  373. ctx->authsize + 4, 1);
  374. #endif
  375. kfree(edesc);
  376. aead_request_complete(areq, err);
  377. }
  378. static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
  379. void *context)
  380. {
  381. struct aead_request *areq = context;
  382. struct ipsec_esp_edesc *edesc;
  383. #ifdef DEBUG
  384. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  385. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  386. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  387. #endif
  388. edesc = (struct ipsec_esp_edesc *)((char *)desc -
  389. offsetof(struct ipsec_esp_edesc, hw_desc));
  390. if (err) {
  391. char tmp[256];
  392. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  393. }
  394. ipsec_esp_unmap(jrdev, edesc, areq);
  395. /*
  396. * verify hw auth check passed else return -EBADMSG
  397. */
  398. if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
  399. err = -EBADMSG;
  400. #ifdef DEBUG
  401. print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
  402. DUMP_PREFIX_ADDRESS, 16, 4,
  403. ((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
  404. sizeof(struct iphdr) + areq->assoclen +
  405. ((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
  406. ctx->authsize + 36, 1);
  407. if (!err && edesc->link_tbl_bytes) {
  408. struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
  409. print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
  410. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
  411. sg->length + ctx->authsize + 16, 1);
  412. }
  413. #endif
  414. kfree(edesc);
  415. aead_request_complete(areq, err);
  416. }
  417. /*
  418. * convert scatterlist to h/w link table format
  419. * scatterlist must have been previously dma mapped
  420. */
  421. static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
  422. struct link_tbl_entry *link_tbl_ptr, u32 offset)
  423. {
  424. while (sg_count) {
  425. link_tbl_ptr->ptr = sg_dma_address(sg);
  426. link_tbl_ptr->len = sg_dma_len(sg);
  427. link_tbl_ptr->reserved = 0;
  428. link_tbl_ptr->buf_pool_id = 0;
  429. link_tbl_ptr->offset = offset;
  430. link_tbl_ptr++;
  431. sg = sg_next(sg);
  432. sg_count--;
  433. }
  434. /* set Final bit (marks end of link table) */
  435. link_tbl_ptr--;
  436. link_tbl_ptr->len |= 0x40000000;
  437. }
  438. /*
  439. * fill in and submit ipsec_esp job descriptor
  440. */
  441. static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
  442. u32 encrypt,
  443. void (*callback) (struct device *dev, u32 *desc,
  444. u32 err, void *context))
  445. {
  446. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  447. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  448. struct device *jrdev = ctx->jrdev;
  449. u32 *desc = edesc->hw_desc, options;
  450. int ret, sg_count, assoc_sg_count;
  451. int ivsize = crypto_aead_ivsize(aead);
  452. int authsize = ctx->authsize;
  453. dma_addr_t ptr, dst_dma, src_dma;
  454. #ifdef DEBUG
  455. u32 *sh_desc = ctx->sh_desc;
  456. debug("assoclen %d cryptlen %d authsize %d\n",
  457. areq->assoclen, areq->cryptlen, authsize);
  458. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  459. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
  460. areq->assoclen , 1);
  461. print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
  462. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
  463. edesc->src_nents ? 100 : ivsize, 1);
  464. print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
  465. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
  466. edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
  467. print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
  468. DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
  469. desc_bytes(sh_desc), 1);
  470. #endif
  471. assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
  472. DMA_TO_DEVICE);
  473. if (areq->src == areq->dst)
  474. sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
  475. DMA_BIDIRECTIONAL);
  476. else
  477. sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
  478. DMA_TO_DEVICE);
  479. /* start auth operation */
  480. append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
  481. (encrypt ? : OP_ALG_ICV_ON));
  482. /* Load FIFO with data for Class 2 CHA */
  483. options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
  484. if (!edesc->assoc_nents) {
  485. ptr = sg_dma_address(areq->assoc);
  486. } else {
  487. sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
  488. edesc->link_tbl, 0);
  489. ptr = edesc->link_tbl_dma;
  490. options |= LDST_SGF;
  491. }
  492. append_fifo_load(desc, ptr, areq->assoclen, options);
  493. /* copy iv from cipher/class1 input context to class2 infifo */
  494. append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
  495. /* start class 1 (cipher) operation */
  496. append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL |
  497. encrypt);
  498. /* load payload & instruct to class2 to snoop class 1 if encrypting */
  499. options = 0;
  500. if (!edesc->src_nents) {
  501. src_dma = sg_dma_address(areq->src);
  502. } else {
  503. sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
  504. edesc->assoc_nents, 0);
  505. src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
  506. sizeof(struct link_tbl_entry);
  507. options |= LDST_SGF;
  508. }
  509. append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
  510. append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
  511. FIFOLD_TYPE_LASTBOTH |
  512. (encrypt ? FIFOLD_TYPE_MSG1OUT2
  513. : FIFOLD_TYPE_MSG));
  514. /* specify destination */
  515. if (areq->src == areq->dst) {
  516. dst_dma = src_dma;
  517. } else {
  518. sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
  519. DMA_FROM_DEVICE);
  520. if (!edesc->dst_nents) {
  521. dst_dma = sg_dma_address(areq->dst);
  522. options = 0;
  523. } else {
  524. sg_to_link_tbl(areq->dst, edesc->dst_nents,
  525. edesc->link_tbl + edesc->assoc_nents +
  526. edesc->src_nents, 0);
  527. dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
  528. edesc->src_nents) *
  529. sizeof(struct link_tbl_entry);
  530. options = LDST_SGF;
  531. }
  532. }
  533. append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
  534. append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);
  535. /* ICV */
  536. if (encrypt)
  537. append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
  538. LDST_SRCDST_BYTE_CONTEXT);
  539. else
  540. append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
  541. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
  542. #ifdef DEBUG
  543. debug("job_desc_len %d\n", desc_len(desc));
  544. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  545. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
  546. print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
  547. DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
  548. edesc->link_tbl_bytes, 1);
  549. #endif
  550. ret = caam_jr_enqueue(jrdev, desc, callback, areq);
  551. if (!ret)
  552. ret = -EINPROGRESS;
  553. else {
  554. ipsec_esp_unmap(jrdev, edesc, areq);
  555. kfree(edesc);
  556. }
  557. return ret;
  558. }
  559. /*
  560. * derive number of elements in scatterlist
  561. */
  562. static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
  563. {
  564. struct scatterlist *sg = sg_list;
  565. int sg_nents = 0;
  566. *chained = 0;
  567. while (nbytes > 0) {
  568. sg_nents++;
  569. nbytes -= sg->length;
  570. if (!sg_is_last(sg) && (sg + 1)->length == 0)
  571. *chained = 1;
  572. sg = scatterwalk_sg_next(sg);
  573. }
  574. return sg_nents;
  575. }
  576. /*
  577. * allocate and map the ipsec_esp extended descriptor
  578. */
  579. static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
  580. int desc_bytes)
  581. {
  582. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  583. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  584. struct device *jrdev = ctx->jrdev;
  585. gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
  586. GFP_ATOMIC;
  587. int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
  588. struct ipsec_esp_edesc *edesc;
  589. assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
  590. BUG_ON(chained);
  591. if (likely(assoc_nents == 1))
  592. assoc_nents = 0;
  593. src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
  594. &chained);
  595. BUG_ON(chained);
  596. if (src_nents == 1)
  597. src_nents = 0;
  598. if (unlikely(areq->dst != areq->src)) {
  599. dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
  600. &chained);
  601. BUG_ON(chained);
  602. if (dst_nents == 1)
  603. dst_nents = 0;
  604. }
  605. link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
  606. sizeof(struct link_tbl_entry);
  607. debug("link_tbl_bytes %d\n", link_tbl_bytes);
  608. /* allocate space for base edesc and hw desc commands, link tables */
  609. edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
  610. link_tbl_bytes, GFP_DMA | flags);
  611. if (!edesc) {
  612. dev_err(jrdev, "could not allocate extended descriptor\n");
  613. return ERR_PTR(-ENOMEM);
  614. }
  615. edesc->assoc_nents = assoc_nents;
  616. edesc->src_nents = src_nents;
  617. edesc->dst_nents = dst_nents;
  618. edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
  619. desc_bytes;
  620. edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
  621. link_tbl_bytes, DMA_TO_DEVICE);
  622. edesc->link_tbl_bytes = link_tbl_bytes;
  623. return edesc;
  624. }
  625. static int aead_authenc_encrypt(struct aead_request *areq)
  626. {
  627. struct ipsec_esp_edesc *edesc;
  628. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  629. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  630. struct device *jrdev = ctx->jrdev;
  631. int ivsize = crypto_aead_ivsize(aead);
  632. u32 *desc;
  633. dma_addr_t iv_dma;
  634. /* allocate extended descriptor */
  635. edesc = ipsec_esp_edesc_alloc(areq, 21 * sizeof(u32));
  636. if (IS_ERR(edesc))
  637. return PTR_ERR(edesc);
  638. desc = edesc->hw_desc;
  639. /* insert shared descriptor pointer */
  640. init_job_desc_shared(desc, ctx->shared_desc_phys,
  641. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  642. iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
  643. /* check dma error */
  644. append_load(desc, iv_dma, ivsize,
  645. LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
  646. return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
  647. }
  648. static int aead_authenc_decrypt(struct aead_request *req)
  649. {
  650. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  651. int ivsize = crypto_aead_ivsize(aead);
  652. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  653. struct device *jrdev = ctx->jrdev;
  654. struct ipsec_esp_edesc *edesc;
  655. u32 *desc;
  656. dma_addr_t iv_dma;
  657. req->cryptlen -= ctx->authsize;
  658. /* allocate extended descriptor */
  659. edesc = ipsec_esp_edesc_alloc(req, 21 * sizeof(u32));
  660. if (IS_ERR(edesc))
  661. return PTR_ERR(edesc);
  662. desc = edesc->hw_desc;
  663. /* insert shared descriptor pointer */
  664. init_job_desc_shared(desc, ctx->shared_desc_phys,
  665. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  666. iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
  667. /* check dma error */
  668. append_load(desc, iv_dma, ivsize,
  669. LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
  670. return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
  671. }
  672. static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
  673. {
  674. struct aead_request *areq = &req->areq;
  675. struct ipsec_esp_edesc *edesc;
  676. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  677. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  678. struct device *jrdev = ctx->jrdev;
  679. int ivsize = crypto_aead_ivsize(aead);
  680. dma_addr_t iv_dma;
  681. u32 *desc;
  682. iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);
  683. debug("%s: giv %p\n", __func__, req->giv);
  684. /* allocate extended descriptor */
  685. edesc = ipsec_esp_edesc_alloc(areq, 27 * sizeof(u32));
  686. if (IS_ERR(edesc))
  687. return PTR_ERR(edesc);
  688. desc = edesc->hw_desc;
  689. /* insert shared descriptor pointer */
  690. init_job_desc_shared(desc, ctx->shared_desc_phys,
  691. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  692. /*
  693. * LOAD IMM Info FIFO
  694. * to DECO, Last, Padding, Random, Message, 16 bytes
  695. */
  696. append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
  697. NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
  698. NFIFOENTRY_PTYPE_RND | ivsize,
  699. LDST_SRCDST_WORD_INFO_FIFO);
  700. /*
  701. * disable info fifo entries since the above serves as the entry
  702. * this way, the MOVE command won't generate an entry.
  703. * Note that this isn't required in more recent versions of
  704. * SEC as a MOVE that doesn't do info FIFO entries is available.
  705. */
  706. append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
  707. /* MOVE DECO Alignment -> C1 Context 16 bytes */
  708. append_move(desc, MOVE_WAITCOMP | MOVE_SRC_INFIFO |
  709. MOVE_DEST_CLASS1CTX | ivsize);
  710. /* re-enable info fifo entries */
  711. append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
  712. /* MOVE C1 Context -> OFIFO 16 bytes */
  713. append_move(desc, MOVE_WAITCOMP | MOVE_SRC_CLASS1CTX |
  714. MOVE_DEST_OUTFIFO | ivsize);
  715. append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);
  716. return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
  717. }
  718. struct caam_alg_template {
  719. char name[CRYPTO_MAX_ALG_NAME];
  720. char driver_name[CRYPTO_MAX_ALG_NAME];
  721. unsigned int blocksize;
  722. struct aead_alg aead;
  723. u32 class1_alg_type;
  724. u32 class2_alg_type;
  725. u32 alg_op;
  726. };
  727. static struct caam_alg_template driver_algs[] = {
  728. /* single-pass ipsec_esp descriptor */
  729. {
  730. .name = "authenc(hmac(sha1),cbc(aes))",
  731. .driver_name = "authenc-hmac-sha1-cbc-aes-caam",
  732. .blocksize = AES_BLOCK_SIZE,
  733. .aead = {
  734. .setkey = aead_authenc_setkey,
  735. .setauthsize = aead_authenc_setauthsize,
  736. .encrypt = aead_authenc_encrypt,
  737. .decrypt = aead_authenc_decrypt,
  738. .givencrypt = aead_authenc_givencrypt,
  739. .geniv = "<built-in>",
  740. .ivsize = AES_BLOCK_SIZE,
  741. .maxauthsize = SHA1_DIGEST_SIZE,
  742. },
  743. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  744. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  745. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  746. },
  747. {
  748. .name = "authenc(hmac(sha256),cbc(aes))",
  749. .driver_name = "authenc-hmac-sha256-cbc-aes-caam",
  750. .blocksize = AES_BLOCK_SIZE,
  751. .aead = {
  752. .setkey = aead_authenc_setkey,
  753. .setauthsize = aead_authenc_setauthsize,
  754. .encrypt = aead_authenc_encrypt,
  755. .decrypt = aead_authenc_decrypt,
  756. .givencrypt = aead_authenc_givencrypt,
  757. .geniv = "<built-in>",
  758. .ivsize = AES_BLOCK_SIZE,
  759. .maxauthsize = SHA256_DIGEST_SIZE,
  760. },
  761. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  762. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  763. OP_ALG_AAI_HMAC_PRECOMP,
  764. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  765. },
  766. {
  767. .name = "authenc(hmac(sha1),cbc(des3_ede))",
  768. .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
  769. .blocksize = DES3_EDE_BLOCK_SIZE,
  770. .aead = {
  771. .setkey = aead_authenc_setkey,
  772. .setauthsize = aead_authenc_setauthsize,
  773. .encrypt = aead_authenc_encrypt,
  774. .decrypt = aead_authenc_decrypt,
  775. .givencrypt = aead_authenc_givencrypt,
  776. .geniv = "<built-in>",
  777. .ivsize = DES3_EDE_BLOCK_SIZE,
  778. .maxauthsize = SHA1_DIGEST_SIZE,
  779. },
  780. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  781. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  782. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  783. },
  784. {
  785. .name = "authenc(hmac(sha256),cbc(des3_ede))",
  786. .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
  787. .blocksize = DES3_EDE_BLOCK_SIZE,
  788. .aead = {
  789. .setkey = aead_authenc_setkey,
  790. .setauthsize = aead_authenc_setauthsize,
  791. .encrypt = aead_authenc_encrypt,
  792. .decrypt = aead_authenc_decrypt,
  793. .givencrypt = aead_authenc_givencrypt,
  794. .geniv = "<built-in>",
  795. .ivsize = DES3_EDE_BLOCK_SIZE,
  796. .maxauthsize = SHA256_DIGEST_SIZE,
  797. },
  798. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  799. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  800. OP_ALG_AAI_HMAC_PRECOMP,
  801. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  802. },
  803. {
  804. .name = "authenc(hmac(sha1),cbc(des))",
  805. .driver_name = "authenc-hmac-sha1-cbc-des-caam",
  806. .blocksize = DES_BLOCK_SIZE,
  807. .aead = {
  808. .setkey = aead_authenc_setkey,
  809. .setauthsize = aead_authenc_setauthsize,
  810. .encrypt = aead_authenc_encrypt,
  811. .decrypt = aead_authenc_decrypt,
  812. .givencrypt = aead_authenc_givencrypt,
  813. .geniv = "<built-in>",
  814. .ivsize = DES_BLOCK_SIZE,
  815. .maxauthsize = SHA1_DIGEST_SIZE,
  816. },
  817. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  818. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  819. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  820. },
  821. {
  822. .name = "authenc(hmac(sha256),cbc(des))",
  823. .driver_name = "authenc-hmac-sha256-cbc-des-caam",
  824. .blocksize = DES_BLOCK_SIZE,
  825. .aead = {
  826. .setkey = aead_authenc_setkey,
  827. .setauthsize = aead_authenc_setauthsize,
  828. .encrypt = aead_authenc_encrypt,
  829. .decrypt = aead_authenc_decrypt,
  830. .givencrypt = aead_authenc_givencrypt,
  831. .geniv = "<built-in>",
  832. .ivsize = DES_BLOCK_SIZE,
  833. .maxauthsize = SHA256_DIGEST_SIZE,
  834. },
  835. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  836. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  837. OP_ALG_AAI_HMAC_PRECOMP,
  838. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  839. },
  840. };
  841. struct caam_crypto_alg {
  842. struct list_head entry;
  843. struct device *ctrldev;
  844. int class1_alg_type;
  845. int class2_alg_type;
  846. int alg_op;
  847. struct crypto_alg crypto_alg;
  848. };
  849. static int caam_cra_init(struct crypto_tfm *tfm)
  850. {
  851. struct crypto_alg *alg = tfm->__crt_alg;
  852. struct caam_crypto_alg *caam_alg =
  853. container_of(alg, struct caam_crypto_alg, crypto_alg);
  854. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  855. struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
  856. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  857. /*
  858. * distribute tfms across job rings to ensure in-order
  859. * crypto request processing per tfm
  860. */
  861. ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
  862. /* copy descriptor header template value */
  863. ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
  864. ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
  865. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
  866. return 0;
  867. }
  868. static void caam_cra_exit(struct crypto_tfm *tfm)
  869. {
  870. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  871. if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
  872. dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
  873. desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
  874. kfree(ctx->sh_desc);
  875. }
  876. static void __exit caam_algapi_exit(void)
  877. {
  878. struct device_node *dev_node;
  879. struct platform_device *pdev;
  880. struct device *ctrldev;
  881. struct caam_drv_private *priv;
  882. struct caam_crypto_alg *t_alg, *n;
  883. int i, err;
  884. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  885. if (!dev_node)
  886. return;
  887. pdev = of_find_device_by_node(dev_node);
  888. if (!pdev)
  889. return;
  890. ctrldev = &pdev->dev;
  891. of_node_put(dev_node);
  892. priv = dev_get_drvdata(ctrldev);
  893. if (!priv->alg_list.next)
  894. return;
  895. list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
  896. crypto_unregister_alg(&t_alg->crypto_alg);
  897. list_del(&t_alg->entry);
  898. kfree(t_alg);
  899. }
  900. for (i = 0; i < priv->total_jobrs; i++) {
  901. err = caam_jr_deregister(priv->algapi_jr[i]);
  902. if (err < 0)
  903. break;
  904. }
  905. kfree(priv->algapi_jr);
  906. }
  907. static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
  908. struct caam_alg_template
  909. *template)
  910. {
  911. struct caam_crypto_alg *t_alg;
  912. struct crypto_alg *alg;
  913. t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
  914. if (!t_alg) {
  915. dev_err(ctrldev, "failed to allocate t_alg\n");
  916. return ERR_PTR(-ENOMEM);
  917. }
  918. alg = &t_alg->crypto_alg;
  919. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
  920. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  921. template->driver_name);
  922. alg->cra_module = THIS_MODULE;
  923. alg->cra_init = caam_cra_init;
  924. alg->cra_exit = caam_cra_exit;
  925. alg->cra_priority = CAAM_CRA_PRIORITY;
  926. alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
  927. alg->cra_blocksize = template->blocksize;
  928. alg->cra_alignmask = 0;
  929. alg->cra_type = &crypto_aead_type;
  930. alg->cra_ctxsize = sizeof(struct caam_ctx);
  931. alg->cra_u.aead = template->aead;
  932. t_alg->class1_alg_type = template->class1_alg_type;
  933. t_alg->class2_alg_type = template->class2_alg_type;
  934. t_alg->alg_op = template->alg_op;
  935. t_alg->ctrldev = ctrldev;
  936. return t_alg;
  937. }
  938. static int __init caam_algapi_init(void)
  939. {
  940. struct device_node *dev_node;
  941. struct platform_device *pdev;
  942. struct device *ctrldev, **jrdev;
  943. struct caam_drv_private *priv;
  944. int i = 0, err = 0;
  945. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  946. if (!dev_node)
  947. return -ENODEV;
  948. pdev = of_find_device_by_node(dev_node);
  949. if (!pdev)
  950. return -ENODEV;
  951. ctrldev = &pdev->dev;
  952. priv = dev_get_drvdata(ctrldev);
  953. of_node_put(dev_node);
  954. INIT_LIST_HEAD(&priv->alg_list);
  955. jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
  956. if (!jrdev)
  957. return -ENOMEM;
  958. for (i = 0; i < priv->total_jobrs; i++) {
  959. err = caam_jr_register(ctrldev, &jrdev[i]);
  960. if (err < 0)
  961. break;
  962. }
  963. if (err < 0 && i == 0) {
  964. dev_err(ctrldev, "algapi error in job ring registration: %d\n",
  965. err);
  966. return err;
  967. }
  968. priv->num_jrs_for_algapi = i;
  969. priv->algapi_jr = jrdev;
  970. atomic_set(&priv->tfm_count, -1);
  971. /* register crypto algorithms the device supports */
  972. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  973. /* TODO: check if h/w supports alg */
  974. struct caam_crypto_alg *t_alg;
  975. t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
  976. if (IS_ERR(t_alg)) {
  977. err = PTR_ERR(t_alg);
  978. dev_warn(ctrldev, "%s alg allocation failed\n",
  979. t_alg->crypto_alg.cra_driver_name);
  980. continue;
  981. }
  982. err = crypto_register_alg(&t_alg->crypto_alg);
  983. if (err) {
  984. dev_warn(ctrldev, "%s alg registration failed\n",
  985. t_alg->crypto_alg.cra_driver_name);
  986. kfree(t_alg);
  987. } else {
  988. list_add_tail(&t_alg->entry, &priv->alg_list);
  989. dev_info(ctrldev, "%s\n",
  990. t_alg->crypto_alg.cra_driver_name);
  991. }
  992. }
  993. return err;
  994. }
  995. module_init(caam_algapi_init);
  996. module_exit(caam_algapi_exit);
  997. MODULE_LICENSE("GPL");
  998. MODULE_DESCRIPTION("FSL CAAM support for crypto API");
  999. MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");