vmx.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #include <asm/mce.h>
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. static int __read_mostly bypass_guest_pf = 1;
  37. module_param(bypass_guest_pf, bool, S_IRUGO);
  38. static int __read_mostly enable_vpid = 1;
  39. module_param_named(vpid, enable_vpid, bool, 0444);
  40. static int __read_mostly flexpriority_enabled = 1;
  41. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  42. static int __read_mostly enable_ept = 1;
  43. module_param_named(ept, enable_ept, bool, S_IRUGO);
  44. static int __read_mostly enable_unrestricted_guest = 1;
  45. module_param_named(unrestricted_guest,
  46. enable_unrestricted_guest, bool, S_IRUGO);
  47. static int __read_mostly emulate_invalid_guest_state = 0;
  48. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  49. struct vmcs {
  50. u32 revision_id;
  51. u32 abort;
  52. char data[0];
  53. };
  54. struct vcpu_vmx {
  55. struct kvm_vcpu vcpu;
  56. struct list_head local_vcpus_link;
  57. unsigned long host_rsp;
  58. int launched;
  59. u8 fail;
  60. u32 idt_vectoring_info;
  61. struct kvm_msr_entry *guest_msrs;
  62. struct kvm_msr_entry *host_msrs;
  63. int nmsrs;
  64. int save_nmsrs;
  65. int msr_offset_efer;
  66. #ifdef CONFIG_X86_64
  67. int msr_offset_kernel_gs_base;
  68. #endif
  69. struct vmcs *vmcs;
  70. struct {
  71. int loaded;
  72. u16 fs_sel, gs_sel, ldt_sel;
  73. int gs_ldt_reload_needed;
  74. int fs_reload_needed;
  75. int guest_efer_loaded;
  76. } host_state;
  77. struct {
  78. int vm86_active;
  79. u8 save_iopl;
  80. struct kvm_save_segment {
  81. u16 selector;
  82. unsigned long base;
  83. u32 limit;
  84. u32 ar;
  85. } tr, es, ds, fs, gs;
  86. struct {
  87. bool pending;
  88. u8 vector;
  89. unsigned rip;
  90. } irq;
  91. } rmode;
  92. int vpid;
  93. bool emulation_required;
  94. enum emulation_result invalid_state_emulation_result;
  95. /* Support for vnmi-less CPUs */
  96. int soft_vnmi_blocked;
  97. ktime_t entry_time;
  98. s64 vnmi_blocked_time;
  99. u32 exit_reason;
  100. };
  101. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  102. {
  103. return container_of(vcpu, struct vcpu_vmx, vcpu);
  104. }
  105. static int init_rmode(struct kvm *kvm);
  106. static u64 construct_eptp(unsigned long root_hpa);
  107. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  108. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  109. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  110. static unsigned long *vmx_io_bitmap_a;
  111. static unsigned long *vmx_io_bitmap_b;
  112. static unsigned long *vmx_msr_bitmap_legacy;
  113. static unsigned long *vmx_msr_bitmap_longmode;
  114. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  115. static DEFINE_SPINLOCK(vmx_vpid_lock);
  116. static struct vmcs_config {
  117. int size;
  118. int order;
  119. u32 revision_id;
  120. u32 pin_based_exec_ctrl;
  121. u32 cpu_based_exec_ctrl;
  122. u32 cpu_based_2nd_exec_ctrl;
  123. u32 vmexit_ctrl;
  124. u32 vmentry_ctrl;
  125. } vmcs_config;
  126. static struct vmx_capability {
  127. u32 ept;
  128. u32 vpid;
  129. } vmx_capability;
  130. #define VMX_SEGMENT_FIELD(seg) \
  131. [VCPU_SREG_##seg] = { \
  132. .selector = GUEST_##seg##_SELECTOR, \
  133. .base = GUEST_##seg##_BASE, \
  134. .limit = GUEST_##seg##_LIMIT, \
  135. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  136. }
  137. static struct kvm_vmx_segment_field {
  138. unsigned selector;
  139. unsigned base;
  140. unsigned limit;
  141. unsigned ar_bytes;
  142. } kvm_vmx_segment_fields[] = {
  143. VMX_SEGMENT_FIELD(CS),
  144. VMX_SEGMENT_FIELD(DS),
  145. VMX_SEGMENT_FIELD(ES),
  146. VMX_SEGMENT_FIELD(FS),
  147. VMX_SEGMENT_FIELD(GS),
  148. VMX_SEGMENT_FIELD(SS),
  149. VMX_SEGMENT_FIELD(TR),
  150. VMX_SEGMENT_FIELD(LDTR),
  151. };
  152. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  153. /*
  154. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  155. * away by decrementing the array size.
  156. */
  157. static const u32 vmx_msr_index[] = {
  158. #ifdef CONFIG_X86_64
  159. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  160. #endif
  161. MSR_EFER, MSR_K6_STAR,
  162. };
  163. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  164. static void load_msrs(struct kvm_msr_entry *e, int n)
  165. {
  166. int i;
  167. for (i = 0; i < n; ++i)
  168. wrmsrl(e[i].index, e[i].data);
  169. }
  170. static void save_msrs(struct kvm_msr_entry *e, int n)
  171. {
  172. int i;
  173. for (i = 0; i < n; ++i)
  174. rdmsrl(e[i].index, e[i].data);
  175. }
  176. static inline int is_page_fault(u32 intr_info)
  177. {
  178. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  179. INTR_INFO_VALID_MASK)) ==
  180. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  181. }
  182. static inline int is_no_device(u32 intr_info)
  183. {
  184. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  185. INTR_INFO_VALID_MASK)) ==
  186. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  187. }
  188. static inline int is_invalid_opcode(u32 intr_info)
  189. {
  190. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  191. INTR_INFO_VALID_MASK)) ==
  192. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  193. }
  194. static inline int is_external_interrupt(u32 intr_info)
  195. {
  196. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  197. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  198. }
  199. static inline int is_machine_check(u32 intr_info)
  200. {
  201. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  202. INTR_INFO_VALID_MASK)) ==
  203. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  204. }
  205. static inline int cpu_has_vmx_msr_bitmap(void)
  206. {
  207. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  208. }
  209. static inline int cpu_has_vmx_tpr_shadow(void)
  210. {
  211. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  212. }
  213. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  214. {
  215. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  216. }
  217. static inline int cpu_has_secondary_exec_ctrls(void)
  218. {
  219. return vmcs_config.cpu_based_exec_ctrl &
  220. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  221. }
  222. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  223. {
  224. return vmcs_config.cpu_based_2nd_exec_ctrl &
  225. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  226. }
  227. static inline bool cpu_has_vmx_flexpriority(void)
  228. {
  229. return cpu_has_vmx_tpr_shadow() &&
  230. cpu_has_vmx_virtualize_apic_accesses();
  231. }
  232. static inline bool cpu_has_vmx_ept_execute_only(void)
  233. {
  234. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  235. }
  236. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  237. {
  238. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  239. }
  240. static inline bool cpu_has_vmx_eptp_writeback(void)
  241. {
  242. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  243. }
  244. static inline bool cpu_has_vmx_ept_2m_page(void)
  245. {
  246. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  247. }
  248. static inline int cpu_has_vmx_invept_individual_addr(void)
  249. {
  250. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  251. }
  252. static inline int cpu_has_vmx_invept_context(void)
  253. {
  254. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  255. }
  256. static inline int cpu_has_vmx_invept_global(void)
  257. {
  258. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  259. }
  260. static inline int cpu_has_vmx_ept(void)
  261. {
  262. return vmcs_config.cpu_based_2nd_exec_ctrl &
  263. SECONDARY_EXEC_ENABLE_EPT;
  264. }
  265. static inline int cpu_has_vmx_unrestricted_guest(void)
  266. {
  267. return vmcs_config.cpu_based_2nd_exec_ctrl &
  268. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  269. }
  270. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  271. {
  272. return flexpriority_enabled &&
  273. (cpu_has_vmx_virtualize_apic_accesses()) &&
  274. (irqchip_in_kernel(kvm));
  275. }
  276. static inline int cpu_has_vmx_vpid(void)
  277. {
  278. return vmcs_config.cpu_based_2nd_exec_ctrl &
  279. SECONDARY_EXEC_ENABLE_VPID;
  280. }
  281. static inline int cpu_has_virtual_nmis(void)
  282. {
  283. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  284. }
  285. static inline bool report_flexpriority(void)
  286. {
  287. return flexpriority_enabled;
  288. }
  289. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  290. {
  291. int i;
  292. for (i = 0; i < vmx->nmsrs; ++i)
  293. if (vmx->guest_msrs[i].index == msr)
  294. return i;
  295. return -1;
  296. }
  297. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  298. {
  299. struct {
  300. u64 vpid : 16;
  301. u64 rsvd : 48;
  302. u64 gva;
  303. } operand = { vpid, 0, gva };
  304. asm volatile (__ex(ASM_VMX_INVVPID)
  305. /* CF==1 or ZF==1 --> rc = -1 */
  306. "; ja 1f ; ud2 ; 1:"
  307. : : "a"(&operand), "c"(ext) : "cc", "memory");
  308. }
  309. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  310. {
  311. struct {
  312. u64 eptp, gpa;
  313. } operand = {eptp, gpa};
  314. asm volatile (__ex(ASM_VMX_INVEPT)
  315. /* CF==1 or ZF==1 --> rc = -1 */
  316. "; ja 1f ; ud2 ; 1:\n"
  317. : : "a" (&operand), "c" (ext) : "cc", "memory");
  318. }
  319. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  320. {
  321. int i;
  322. i = __find_msr_index(vmx, msr);
  323. if (i >= 0)
  324. return &vmx->guest_msrs[i];
  325. return NULL;
  326. }
  327. static void vmcs_clear(struct vmcs *vmcs)
  328. {
  329. u64 phys_addr = __pa(vmcs);
  330. u8 error;
  331. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  332. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  333. : "cc", "memory");
  334. if (error)
  335. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  336. vmcs, phys_addr);
  337. }
  338. static void __vcpu_clear(void *arg)
  339. {
  340. struct vcpu_vmx *vmx = arg;
  341. int cpu = raw_smp_processor_id();
  342. if (vmx->vcpu.cpu == cpu)
  343. vmcs_clear(vmx->vmcs);
  344. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  345. per_cpu(current_vmcs, cpu) = NULL;
  346. rdtscll(vmx->vcpu.arch.host_tsc);
  347. list_del(&vmx->local_vcpus_link);
  348. vmx->vcpu.cpu = -1;
  349. vmx->launched = 0;
  350. }
  351. static void vcpu_clear(struct vcpu_vmx *vmx)
  352. {
  353. if (vmx->vcpu.cpu == -1)
  354. return;
  355. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  356. }
  357. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  358. {
  359. if (vmx->vpid == 0)
  360. return;
  361. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  362. }
  363. static inline void ept_sync_global(void)
  364. {
  365. if (cpu_has_vmx_invept_global())
  366. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  367. }
  368. static inline void ept_sync_context(u64 eptp)
  369. {
  370. if (enable_ept) {
  371. if (cpu_has_vmx_invept_context())
  372. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  373. else
  374. ept_sync_global();
  375. }
  376. }
  377. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  378. {
  379. if (enable_ept) {
  380. if (cpu_has_vmx_invept_individual_addr())
  381. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  382. eptp, gpa);
  383. else
  384. ept_sync_context(eptp);
  385. }
  386. }
  387. static unsigned long vmcs_readl(unsigned long field)
  388. {
  389. unsigned long value;
  390. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  391. : "=a"(value) : "d"(field) : "cc");
  392. return value;
  393. }
  394. static u16 vmcs_read16(unsigned long field)
  395. {
  396. return vmcs_readl(field);
  397. }
  398. static u32 vmcs_read32(unsigned long field)
  399. {
  400. return vmcs_readl(field);
  401. }
  402. static u64 vmcs_read64(unsigned long field)
  403. {
  404. #ifdef CONFIG_X86_64
  405. return vmcs_readl(field);
  406. #else
  407. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  408. #endif
  409. }
  410. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  411. {
  412. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  413. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  414. dump_stack();
  415. }
  416. static void vmcs_writel(unsigned long field, unsigned long value)
  417. {
  418. u8 error;
  419. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  420. : "=q"(error) : "a"(value), "d"(field) : "cc");
  421. if (unlikely(error))
  422. vmwrite_error(field, value);
  423. }
  424. static void vmcs_write16(unsigned long field, u16 value)
  425. {
  426. vmcs_writel(field, value);
  427. }
  428. static void vmcs_write32(unsigned long field, u32 value)
  429. {
  430. vmcs_writel(field, value);
  431. }
  432. static void vmcs_write64(unsigned long field, u64 value)
  433. {
  434. vmcs_writel(field, value);
  435. #ifndef CONFIG_X86_64
  436. asm volatile ("");
  437. vmcs_writel(field+1, value >> 32);
  438. #endif
  439. }
  440. static void vmcs_clear_bits(unsigned long field, u32 mask)
  441. {
  442. vmcs_writel(field, vmcs_readl(field) & ~mask);
  443. }
  444. static void vmcs_set_bits(unsigned long field, u32 mask)
  445. {
  446. vmcs_writel(field, vmcs_readl(field) | mask);
  447. }
  448. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  449. {
  450. u32 eb;
  451. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  452. if (!vcpu->fpu_active)
  453. eb |= 1u << NM_VECTOR;
  454. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  455. if (vcpu->guest_debug &
  456. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  457. eb |= 1u << DB_VECTOR;
  458. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  459. eb |= 1u << BP_VECTOR;
  460. }
  461. if (to_vmx(vcpu)->rmode.vm86_active)
  462. eb = ~0;
  463. if (enable_ept)
  464. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  465. vmcs_write32(EXCEPTION_BITMAP, eb);
  466. }
  467. static void reload_tss(void)
  468. {
  469. /*
  470. * VT restores TR but not its size. Useless.
  471. */
  472. struct descriptor_table gdt;
  473. struct desc_struct *descs;
  474. kvm_get_gdt(&gdt);
  475. descs = (void *)gdt.base;
  476. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  477. load_TR_desc();
  478. }
  479. static void load_transition_efer(struct vcpu_vmx *vmx)
  480. {
  481. int efer_offset = vmx->msr_offset_efer;
  482. u64 host_efer = vmx->host_msrs[efer_offset].data;
  483. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  484. u64 ignore_bits;
  485. if (efer_offset < 0)
  486. return;
  487. /*
  488. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  489. * outside long mode
  490. */
  491. ignore_bits = EFER_NX | EFER_SCE;
  492. #ifdef CONFIG_X86_64
  493. ignore_bits |= EFER_LMA | EFER_LME;
  494. /* SCE is meaningful only in long mode on Intel */
  495. if (guest_efer & EFER_LMA)
  496. ignore_bits &= ~(u64)EFER_SCE;
  497. #endif
  498. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  499. return;
  500. vmx->host_state.guest_efer_loaded = 1;
  501. guest_efer &= ~ignore_bits;
  502. guest_efer |= host_efer & ignore_bits;
  503. wrmsrl(MSR_EFER, guest_efer);
  504. vmx->vcpu.stat.efer_reload++;
  505. }
  506. static void reload_host_efer(struct vcpu_vmx *vmx)
  507. {
  508. if (vmx->host_state.guest_efer_loaded) {
  509. vmx->host_state.guest_efer_loaded = 0;
  510. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  511. }
  512. }
  513. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  514. {
  515. struct vcpu_vmx *vmx = to_vmx(vcpu);
  516. if (vmx->host_state.loaded)
  517. return;
  518. vmx->host_state.loaded = 1;
  519. /*
  520. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  521. * allow segment selectors with cpl > 0 or ti == 1.
  522. */
  523. vmx->host_state.ldt_sel = kvm_read_ldt();
  524. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  525. vmx->host_state.fs_sel = kvm_read_fs();
  526. if (!(vmx->host_state.fs_sel & 7)) {
  527. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  528. vmx->host_state.fs_reload_needed = 0;
  529. } else {
  530. vmcs_write16(HOST_FS_SELECTOR, 0);
  531. vmx->host_state.fs_reload_needed = 1;
  532. }
  533. vmx->host_state.gs_sel = kvm_read_gs();
  534. if (!(vmx->host_state.gs_sel & 7))
  535. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  536. else {
  537. vmcs_write16(HOST_GS_SELECTOR, 0);
  538. vmx->host_state.gs_ldt_reload_needed = 1;
  539. }
  540. #ifdef CONFIG_X86_64
  541. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  542. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  543. #else
  544. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  545. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  546. #endif
  547. #ifdef CONFIG_X86_64
  548. if (is_long_mode(&vmx->vcpu))
  549. save_msrs(vmx->host_msrs +
  550. vmx->msr_offset_kernel_gs_base, 1);
  551. #endif
  552. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  553. load_transition_efer(vmx);
  554. }
  555. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  556. {
  557. unsigned long flags;
  558. if (!vmx->host_state.loaded)
  559. return;
  560. ++vmx->vcpu.stat.host_state_reload;
  561. vmx->host_state.loaded = 0;
  562. if (vmx->host_state.fs_reload_needed)
  563. kvm_load_fs(vmx->host_state.fs_sel);
  564. if (vmx->host_state.gs_ldt_reload_needed) {
  565. kvm_load_ldt(vmx->host_state.ldt_sel);
  566. /*
  567. * If we have to reload gs, we must take care to
  568. * preserve our gs base.
  569. */
  570. local_irq_save(flags);
  571. kvm_load_gs(vmx->host_state.gs_sel);
  572. #ifdef CONFIG_X86_64
  573. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  574. #endif
  575. local_irq_restore(flags);
  576. }
  577. reload_tss();
  578. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  579. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  580. reload_host_efer(vmx);
  581. }
  582. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  583. {
  584. preempt_disable();
  585. __vmx_load_host_state(vmx);
  586. preempt_enable();
  587. }
  588. /*
  589. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  590. * vcpu mutex is already taken.
  591. */
  592. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  593. {
  594. struct vcpu_vmx *vmx = to_vmx(vcpu);
  595. u64 phys_addr = __pa(vmx->vmcs);
  596. u64 tsc_this, delta, new_offset;
  597. if (vcpu->cpu != cpu) {
  598. vcpu_clear(vmx);
  599. kvm_migrate_timers(vcpu);
  600. vpid_sync_vcpu_all(vmx);
  601. local_irq_disable();
  602. list_add(&vmx->local_vcpus_link,
  603. &per_cpu(vcpus_on_cpu, cpu));
  604. local_irq_enable();
  605. }
  606. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  607. u8 error;
  608. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  609. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  610. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  611. : "cc");
  612. if (error)
  613. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  614. vmx->vmcs, phys_addr);
  615. }
  616. if (vcpu->cpu != cpu) {
  617. struct descriptor_table dt;
  618. unsigned long sysenter_esp;
  619. vcpu->cpu = cpu;
  620. /*
  621. * Linux uses per-cpu TSS and GDT, so set these when switching
  622. * processors.
  623. */
  624. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  625. kvm_get_gdt(&dt);
  626. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  627. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  628. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  629. /*
  630. * Make sure the time stamp counter is monotonous.
  631. */
  632. rdtscll(tsc_this);
  633. if (tsc_this < vcpu->arch.host_tsc) {
  634. delta = vcpu->arch.host_tsc - tsc_this;
  635. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  636. vmcs_write64(TSC_OFFSET, new_offset);
  637. }
  638. }
  639. }
  640. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  641. {
  642. __vmx_load_host_state(to_vmx(vcpu));
  643. }
  644. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  645. {
  646. if (vcpu->fpu_active)
  647. return;
  648. vcpu->fpu_active = 1;
  649. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  650. if (vcpu->arch.cr0 & X86_CR0_TS)
  651. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  652. update_exception_bitmap(vcpu);
  653. }
  654. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  655. {
  656. if (!vcpu->fpu_active)
  657. return;
  658. vcpu->fpu_active = 0;
  659. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  660. update_exception_bitmap(vcpu);
  661. }
  662. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  663. {
  664. return vmcs_readl(GUEST_RFLAGS);
  665. }
  666. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  667. {
  668. if (to_vmx(vcpu)->rmode.vm86_active)
  669. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  670. vmcs_writel(GUEST_RFLAGS, rflags);
  671. }
  672. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  673. {
  674. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  675. int ret = 0;
  676. if (interruptibility & GUEST_INTR_STATE_STI)
  677. ret |= X86_SHADOW_INT_STI;
  678. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  679. ret |= X86_SHADOW_INT_MOV_SS;
  680. return ret & mask;
  681. }
  682. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  683. {
  684. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  685. u32 interruptibility = interruptibility_old;
  686. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  687. if (mask & X86_SHADOW_INT_MOV_SS)
  688. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  689. if (mask & X86_SHADOW_INT_STI)
  690. interruptibility |= GUEST_INTR_STATE_STI;
  691. if ((interruptibility != interruptibility_old))
  692. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  693. }
  694. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  695. {
  696. unsigned long rip;
  697. rip = kvm_rip_read(vcpu);
  698. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  699. kvm_rip_write(vcpu, rip);
  700. /* skipping an emulated instruction also counts */
  701. vmx_set_interrupt_shadow(vcpu, 0);
  702. }
  703. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  704. bool has_error_code, u32 error_code)
  705. {
  706. struct vcpu_vmx *vmx = to_vmx(vcpu);
  707. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  708. if (has_error_code) {
  709. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  710. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  711. }
  712. if (vmx->rmode.vm86_active) {
  713. vmx->rmode.irq.pending = true;
  714. vmx->rmode.irq.vector = nr;
  715. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  716. if (kvm_exception_is_soft(nr))
  717. vmx->rmode.irq.rip +=
  718. vmx->vcpu.arch.event_exit_inst_len;
  719. intr_info |= INTR_TYPE_SOFT_INTR;
  720. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  721. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  722. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  723. return;
  724. }
  725. if (kvm_exception_is_soft(nr)) {
  726. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  727. vmx->vcpu.arch.event_exit_inst_len);
  728. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  729. } else
  730. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  731. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  732. }
  733. /*
  734. * Swap MSR entry in host/guest MSR entry array.
  735. */
  736. #ifdef CONFIG_X86_64
  737. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  738. {
  739. struct kvm_msr_entry tmp;
  740. tmp = vmx->guest_msrs[to];
  741. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  742. vmx->guest_msrs[from] = tmp;
  743. tmp = vmx->host_msrs[to];
  744. vmx->host_msrs[to] = vmx->host_msrs[from];
  745. vmx->host_msrs[from] = tmp;
  746. }
  747. #endif
  748. /*
  749. * Set up the vmcs to automatically save and restore system
  750. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  751. * mode, as fiddling with msrs is very expensive.
  752. */
  753. static void setup_msrs(struct vcpu_vmx *vmx)
  754. {
  755. int save_nmsrs;
  756. unsigned long *msr_bitmap;
  757. vmx_load_host_state(vmx);
  758. save_nmsrs = 0;
  759. #ifdef CONFIG_X86_64
  760. if (is_long_mode(&vmx->vcpu)) {
  761. int index;
  762. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  763. if (index >= 0)
  764. move_msr_up(vmx, index, save_nmsrs++);
  765. index = __find_msr_index(vmx, MSR_LSTAR);
  766. if (index >= 0)
  767. move_msr_up(vmx, index, save_nmsrs++);
  768. index = __find_msr_index(vmx, MSR_CSTAR);
  769. if (index >= 0)
  770. move_msr_up(vmx, index, save_nmsrs++);
  771. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  772. if (index >= 0)
  773. move_msr_up(vmx, index, save_nmsrs++);
  774. /*
  775. * MSR_K6_STAR is only needed on long mode guests, and only
  776. * if efer.sce is enabled.
  777. */
  778. index = __find_msr_index(vmx, MSR_K6_STAR);
  779. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  780. move_msr_up(vmx, index, save_nmsrs++);
  781. }
  782. #endif
  783. vmx->save_nmsrs = save_nmsrs;
  784. #ifdef CONFIG_X86_64
  785. vmx->msr_offset_kernel_gs_base =
  786. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  787. #endif
  788. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  789. if (cpu_has_vmx_msr_bitmap()) {
  790. if (is_long_mode(&vmx->vcpu))
  791. msr_bitmap = vmx_msr_bitmap_longmode;
  792. else
  793. msr_bitmap = vmx_msr_bitmap_legacy;
  794. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  795. }
  796. }
  797. /*
  798. * reads and returns guest's timestamp counter "register"
  799. * guest_tsc = host_tsc + tsc_offset -- 21.3
  800. */
  801. static u64 guest_read_tsc(void)
  802. {
  803. u64 host_tsc, tsc_offset;
  804. rdtscll(host_tsc);
  805. tsc_offset = vmcs_read64(TSC_OFFSET);
  806. return host_tsc + tsc_offset;
  807. }
  808. /*
  809. * writes 'guest_tsc' into guest's timestamp counter "register"
  810. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  811. */
  812. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  813. {
  814. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  815. }
  816. /*
  817. * Reads an msr value (of 'msr_index') into 'pdata'.
  818. * Returns 0 on success, non-0 otherwise.
  819. * Assumes vcpu_load() was already called.
  820. */
  821. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  822. {
  823. u64 data;
  824. struct kvm_msr_entry *msr;
  825. if (!pdata) {
  826. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  827. return -EINVAL;
  828. }
  829. switch (msr_index) {
  830. #ifdef CONFIG_X86_64
  831. case MSR_FS_BASE:
  832. data = vmcs_readl(GUEST_FS_BASE);
  833. break;
  834. case MSR_GS_BASE:
  835. data = vmcs_readl(GUEST_GS_BASE);
  836. break;
  837. case MSR_EFER:
  838. return kvm_get_msr_common(vcpu, msr_index, pdata);
  839. #endif
  840. case MSR_IA32_TSC:
  841. data = guest_read_tsc();
  842. break;
  843. case MSR_IA32_SYSENTER_CS:
  844. data = vmcs_read32(GUEST_SYSENTER_CS);
  845. break;
  846. case MSR_IA32_SYSENTER_EIP:
  847. data = vmcs_readl(GUEST_SYSENTER_EIP);
  848. break;
  849. case MSR_IA32_SYSENTER_ESP:
  850. data = vmcs_readl(GUEST_SYSENTER_ESP);
  851. break;
  852. default:
  853. vmx_load_host_state(to_vmx(vcpu));
  854. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  855. if (msr) {
  856. data = msr->data;
  857. break;
  858. }
  859. return kvm_get_msr_common(vcpu, msr_index, pdata);
  860. }
  861. *pdata = data;
  862. return 0;
  863. }
  864. /*
  865. * Writes msr value into into the appropriate "register".
  866. * Returns 0 on success, non-0 otherwise.
  867. * Assumes vcpu_load() was already called.
  868. */
  869. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  870. {
  871. struct vcpu_vmx *vmx = to_vmx(vcpu);
  872. struct kvm_msr_entry *msr;
  873. u64 host_tsc;
  874. int ret = 0;
  875. switch (msr_index) {
  876. case MSR_EFER:
  877. vmx_load_host_state(vmx);
  878. ret = kvm_set_msr_common(vcpu, msr_index, data);
  879. break;
  880. #ifdef CONFIG_X86_64
  881. case MSR_FS_BASE:
  882. vmcs_writel(GUEST_FS_BASE, data);
  883. break;
  884. case MSR_GS_BASE:
  885. vmcs_writel(GUEST_GS_BASE, data);
  886. break;
  887. #endif
  888. case MSR_IA32_SYSENTER_CS:
  889. vmcs_write32(GUEST_SYSENTER_CS, data);
  890. break;
  891. case MSR_IA32_SYSENTER_EIP:
  892. vmcs_writel(GUEST_SYSENTER_EIP, data);
  893. break;
  894. case MSR_IA32_SYSENTER_ESP:
  895. vmcs_writel(GUEST_SYSENTER_ESP, data);
  896. break;
  897. case MSR_IA32_TSC:
  898. rdtscll(host_tsc);
  899. guest_write_tsc(data, host_tsc);
  900. break;
  901. case MSR_IA32_CR_PAT:
  902. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  903. vmcs_write64(GUEST_IA32_PAT, data);
  904. vcpu->arch.pat = data;
  905. break;
  906. }
  907. /* Otherwise falls through to kvm_set_msr_common */
  908. default:
  909. vmx_load_host_state(vmx);
  910. msr = find_msr_entry(vmx, msr_index);
  911. if (msr) {
  912. msr->data = data;
  913. break;
  914. }
  915. ret = kvm_set_msr_common(vcpu, msr_index, data);
  916. }
  917. return ret;
  918. }
  919. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  920. {
  921. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  922. switch (reg) {
  923. case VCPU_REGS_RSP:
  924. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  925. break;
  926. case VCPU_REGS_RIP:
  927. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  928. break;
  929. case VCPU_EXREG_PDPTR:
  930. if (enable_ept)
  931. ept_save_pdptrs(vcpu);
  932. break;
  933. default:
  934. break;
  935. }
  936. }
  937. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  938. {
  939. int old_debug = vcpu->guest_debug;
  940. unsigned long flags;
  941. vcpu->guest_debug = dbg->control;
  942. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  943. vcpu->guest_debug = 0;
  944. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  945. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  946. else
  947. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  948. flags = vmcs_readl(GUEST_RFLAGS);
  949. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  950. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  951. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  952. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  953. vmcs_writel(GUEST_RFLAGS, flags);
  954. update_exception_bitmap(vcpu);
  955. return 0;
  956. }
  957. static __init int cpu_has_kvm_support(void)
  958. {
  959. return cpu_has_vmx();
  960. }
  961. static __init int vmx_disabled_by_bios(void)
  962. {
  963. u64 msr;
  964. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  965. return (msr & (FEATURE_CONTROL_LOCKED |
  966. FEATURE_CONTROL_VMXON_ENABLED))
  967. == FEATURE_CONTROL_LOCKED;
  968. /* locked but not enabled */
  969. }
  970. static void hardware_enable(void *garbage)
  971. {
  972. int cpu = raw_smp_processor_id();
  973. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  974. u64 old;
  975. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  976. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  977. if ((old & (FEATURE_CONTROL_LOCKED |
  978. FEATURE_CONTROL_VMXON_ENABLED))
  979. != (FEATURE_CONTROL_LOCKED |
  980. FEATURE_CONTROL_VMXON_ENABLED))
  981. /* enable and lock */
  982. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  983. FEATURE_CONTROL_LOCKED |
  984. FEATURE_CONTROL_VMXON_ENABLED);
  985. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  986. asm volatile (ASM_VMX_VMXON_RAX
  987. : : "a"(&phys_addr), "m"(phys_addr)
  988. : "memory", "cc");
  989. }
  990. static void vmclear_local_vcpus(void)
  991. {
  992. int cpu = raw_smp_processor_id();
  993. struct vcpu_vmx *vmx, *n;
  994. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  995. local_vcpus_link)
  996. __vcpu_clear(vmx);
  997. }
  998. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  999. * tricks.
  1000. */
  1001. static void kvm_cpu_vmxoff(void)
  1002. {
  1003. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1004. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1005. }
  1006. static void hardware_disable(void *garbage)
  1007. {
  1008. vmclear_local_vcpus();
  1009. kvm_cpu_vmxoff();
  1010. }
  1011. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1012. u32 msr, u32 *result)
  1013. {
  1014. u32 vmx_msr_low, vmx_msr_high;
  1015. u32 ctl = ctl_min | ctl_opt;
  1016. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1017. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1018. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1019. /* Ensure minimum (required) set of control bits are supported. */
  1020. if (ctl_min & ~ctl)
  1021. return -EIO;
  1022. *result = ctl;
  1023. return 0;
  1024. }
  1025. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1026. {
  1027. u32 vmx_msr_low, vmx_msr_high;
  1028. u32 min, opt, min2, opt2;
  1029. u32 _pin_based_exec_control = 0;
  1030. u32 _cpu_based_exec_control = 0;
  1031. u32 _cpu_based_2nd_exec_control = 0;
  1032. u32 _vmexit_control = 0;
  1033. u32 _vmentry_control = 0;
  1034. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1035. opt = PIN_BASED_VIRTUAL_NMIS;
  1036. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1037. &_pin_based_exec_control) < 0)
  1038. return -EIO;
  1039. min = CPU_BASED_HLT_EXITING |
  1040. #ifdef CONFIG_X86_64
  1041. CPU_BASED_CR8_LOAD_EXITING |
  1042. CPU_BASED_CR8_STORE_EXITING |
  1043. #endif
  1044. CPU_BASED_CR3_LOAD_EXITING |
  1045. CPU_BASED_CR3_STORE_EXITING |
  1046. CPU_BASED_USE_IO_BITMAPS |
  1047. CPU_BASED_MOV_DR_EXITING |
  1048. CPU_BASED_USE_TSC_OFFSETING |
  1049. CPU_BASED_INVLPG_EXITING;
  1050. opt = CPU_BASED_TPR_SHADOW |
  1051. CPU_BASED_USE_MSR_BITMAPS |
  1052. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1053. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1054. &_cpu_based_exec_control) < 0)
  1055. return -EIO;
  1056. #ifdef CONFIG_X86_64
  1057. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1058. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1059. ~CPU_BASED_CR8_STORE_EXITING;
  1060. #endif
  1061. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1062. min2 = 0;
  1063. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1064. SECONDARY_EXEC_WBINVD_EXITING |
  1065. SECONDARY_EXEC_ENABLE_VPID |
  1066. SECONDARY_EXEC_ENABLE_EPT |
  1067. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1068. if (adjust_vmx_controls(min2, opt2,
  1069. MSR_IA32_VMX_PROCBASED_CTLS2,
  1070. &_cpu_based_2nd_exec_control) < 0)
  1071. return -EIO;
  1072. }
  1073. #ifndef CONFIG_X86_64
  1074. if (!(_cpu_based_2nd_exec_control &
  1075. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1076. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1077. #endif
  1078. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1079. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1080. enabled */
  1081. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1082. CPU_BASED_CR3_STORE_EXITING |
  1083. CPU_BASED_INVLPG_EXITING);
  1084. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1085. &_cpu_based_exec_control) < 0)
  1086. return -EIO;
  1087. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1088. vmx_capability.ept, vmx_capability.vpid);
  1089. }
  1090. min = 0;
  1091. #ifdef CONFIG_X86_64
  1092. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1093. #endif
  1094. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1095. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1096. &_vmexit_control) < 0)
  1097. return -EIO;
  1098. min = 0;
  1099. opt = VM_ENTRY_LOAD_IA32_PAT;
  1100. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1101. &_vmentry_control) < 0)
  1102. return -EIO;
  1103. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1104. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1105. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1106. return -EIO;
  1107. #ifdef CONFIG_X86_64
  1108. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1109. if (vmx_msr_high & (1u<<16))
  1110. return -EIO;
  1111. #endif
  1112. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1113. if (((vmx_msr_high >> 18) & 15) != 6)
  1114. return -EIO;
  1115. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1116. vmcs_conf->order = get_order(vmcs_config.size);
  1117. vmcs_conf->revision_id = vmx_msr_low;
  1118. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1119. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1120. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1121. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1122. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1123. return 0;
  1124. }
  1125. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1126. {
  1127. int node = cpu_to_node(cpu);
  1128. struct page *pages;
  1129. struct vmcs *vmcs;
  1130. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1131. if (!pages)
  1132. return NULL;
  1133. vmcs = page_address(pages);
  1134. memset(vmcs, 0, vmcs_config.size);
  1135. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1136. return vmcs;
  1137. }
  1138. static struct vmcs *alloc_vmcs(void)
  1139. {
  1140. return alloc_vmcs_cpu(raw_smp_processor_id());
  1141. }
  1142. static void free_vmcs(struct vmcs *vmcs)
  1143. {
  1144. free_pages((unsigned long)vmcs, vmcs_config.order);
  1145. }
  1146. static void free_kvm_area(void)
  1147. {
  1148. int cpu;
  1149. for_each_online_cpu(cpu)
  1150. free_vmcs(per_cpu(vmxarea, cpu));
  1151. }
  1152. static __init int alloc_kvm_area(void)
  1153. {
  1154. int cpu;
  1155. for_each_online_cpu(cpu) {
  1156. struct vmcs *vmcs;
  1157. vmcs = alloc_vmcs_cpu(cpu);
  1158. if (!vmcs) {
  1159. free_kvm_area();
  1160. return -ENOMEM;
  1161. }
  1162. per_cpu(vmxarea, cpu) = vmcs;
  1163. }
  1164. return 0;
  1165. }
  1166. static __init int hardware_setup(void)
  1167. {
  1168. if (setup_vmcs_config(&vmcs_config) < 0)
  1169. return -EIO;
  1170. if (boot_cpu_has(X86_FEATURE_NX))
  1171. kvm_enable_efer_bits(EFER_NX);
  1172. if (!cpu_has_vmx_vpid())
  1173. enable_vpid = 0;
  1174. if (!cpu_has_vmx_ept()) {
  1175. enable_ept = 0;
  1176. enable_unrestricted_guest = 0;
  1177. }
  1178. if (!cpu_has_vmx_unrestricted_guest())
  1179. enable_unrestricted_guest = 0;
  1180. if (!cpu_has_vmx_flexpriority())
  1181. flexpriority_enabled = 0;
  1182. if (!cpu_has_vmx_tpr_shadow())
  1183. kvm_x86_ops->update_cr8_intercept = NULL;
  1184. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1185. kvm_disable_largepages();
  1186. return alloc_kvm_area();
  1187. }
  1188. static __exit void hardware_unsetup(void)
  1189. {
  1190. free_kvm_area();
  1191. }
  1192. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1193. {
  1194. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1195. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1196. vmcs_write16(sf->selector, save->selector);
  1197. vmcs_writel(sf->base, save->base);
  1198. vmcs_write32(sf->limit, save->limit);
  1199. vmcs_write32(sf->ar_bytes, save->ar);
  1200. } else {
  1201. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1202. << AR_DPL_SHIFT;
  1203. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1204. }
  1205. }
  1206. static void enter_pmode(struct kvm_vcpu *vcpu)
  1207. {
  1208. unsigned long flags;
  1209. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1210. vmx->emulation_required = 1;
  1211. vmx->rmode.vm86_active = 0;
  1212. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1213. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1214. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1215. flags = vmcs_readl(GUEST_RFLAGS);
  1216. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1217. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1218. vmcs_writel(GUEST_RFLAGS, flags);
  1219. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1220. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1221. update_exception_bitmap(vcpu);
  1222. if (emulate_invalid_guest_state)
  1223. return;
  1224. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1225. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1226. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1227. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1228. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1229. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1230. vmcs_write16(GUEST_CS_SELECTOR,
  1231. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1232. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1233. }
  1234. static gva_t rmode_tss_base(struct kvm *kvm)
  1235. {
  1236. if (!kvm->arch.tss_addr) {
  1237. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1238. kvm->memslots[0].npages - 3;
  1239. return base_gfn << PAGE_SHIFT;
  1240. }
  1241. return kvm->arch.tss_addr;
  1242. }
  1243. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1244. {
  1245. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1246. save->selector = vmcs_read16(sf->selector);
  1247. save->base = vmcs_readl(sf->base);
  1248. save->limit = vmcs_read32(sf->limit);
  1249. save->ar = vmcs_read32(sf->ar_bytes);
  1250. vmcs_write16(sf->selector, save->base >> 4);
  1251. vmcs_write32(sf->base, save->base & 0xfffff);
  1252. vmcs_write32(sf->limit, 0xffff);
  1253. vmcs_write32(sf->ar_bytes, 0xf3);
  1254. }
  1255. static void enter_rmode(struct kvm_vcpu *vcpu)
  1256. {
  1257. unsigned long flags;
  1258. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1259. if (enable_unrestricted_guest)
  1260. return;
  1261. vmx->emulation_required = 1;
  1262. vmx->rmode.vm86_active = 1;
  1263. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1264. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1265. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1266. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1267. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1268. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1269. flags = vmcs_readl(GUEST_RFLAGS);
  1270. vmx->rmode.save_iopl
  1271. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1272. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1273. vmcs_writel(GUEST_RFLAGS, flags);
  1274. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1275. update_exception_bitmap(vcpu);
  1276. if (emulate_invalid_guest_state)
  1277. goto continue_rmode;
  1278. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1279. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1280. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1281. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1282. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1283. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1284. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1285. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1286. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1287. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1288. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1289. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1290. continue_rmode:
  1291. kvm_mmu_reset_context(vcpu);
  1292. init_rmode(vcpu->kvm);
  1293. }
  1294. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1295. {
  1296. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1297. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1298. vcpu->arch.shadow_efer = efer;
  1299. if (!msr)
  1300. return;
  1301. if (efer & EFER_LMA) {
  1302. vmcs_write32(VM_ENTRY_CONTROLS,
  1303. vmcs_read32(VM_ENTRY_CONTROLS) |
  1304. VM_ENTRY_IA32E_MODE);
  1305. msr->data = efer;
  1306. } else {
  1307. vmcs_write32(VM_ENTRY_CONTROLS,
  1308. vmcs_read32(VM_ENTRY_CONTROLS) &
  1309. ~VM_ENTRY_IA32E_MODE);
  1310. msr->data = efer & ~EFER_LME;
  1311. }
  1312. setup_msrs(vmx);
  1313. }
  1314. #ifdef CONFIG_X86_64
  1315. static void enter_lmode(struct kvm_vcpu *vcpu)
  1316. {
  1317. u32 guest_tr_ar;
  1318. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1319. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1320. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1321. __func__);
  1322. vmcs_write32(GUEST_TR_AR_BYTES,
  1323. (guest_tr_ar & ~AR_TYPE_MASK)
  1324. | AR_TYPE_BUSY_64_TSS);
  1325. }
  1326. vcpu->arch.shadow_efer |= EFER_LMA;
  1327. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1328. }
  1329. static void exit_lmode(struct kvm_vcpu *vcpu)
  1330. {
  1331. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1332. vmcs_write32(VM_ENTRY_CONTROLS,
  1333. vmcs_read32(VM_ENTRY_CONTROLS)
  1334. & ~VM_ENTRY_IA32E_MODE);
  1335. }
  1336. #endif
  1337. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1338. {
  1339. vpid_sync_vcpu_all(to_vmx(vcpu));
  1340. if (enable_ept)
  1341. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1342. }
  1343. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1344. {
  1345. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1346. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1347. }
  1348. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1349. {
  1350. if (!test_bit(VCPU_EXREG_PDPTR,
  1351. (unsigned long *)&vcpu->arch.regs_dirty))
  1352. return;
  1353. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1354. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1355. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1356. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1357. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1358. }
  1359. }
  1360. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1361. {
  1362. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1363. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1364. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1365. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1366. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1367. }
  1368. __set_bit(VCPU_EXREG_PDPTR,
  1369. (unsigned long *)&vcpu->arch.regs_avail);
  1370. __set_bit(VCPU_EXREG_PDPTR,
  1371. (unsigned long *)&vcpu->arch.regs_dirty);
  1372. }
  1373. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1374. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1375. unsigned long cr0,
  1376. struct kvm_vcpu *vcpu)
  1377. {
  1378. if (!(cr0 & X86_CR0_PG)) {
  1379. /* From paging/starting to nonpaging */
  1380. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1381. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1382. (CPU_BASED_CR3_LOAD_EXITING |
  1383. CPU_BASED_CR3_STORE_EXITING));
  1384. vcpu->arch.cr0 = cr0;
  1385. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1386. *hw_cr0 &= ~X86_CR0_WP;
  1387. } else if (!is_paging(vcpu)) {
  1388. /* From nonpaging to paging */
  1389. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1390. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1391. ~(CPU_BASED_CR3_LOAD_EXITING |
  1392. CPU_BASED_CR3_STORE_EXITING));
  1393. vcpu->arch.cr0 = cr0;
  1394. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1395. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1396. *hw_cr0 &= ~X86_CR0_WP;
  1397. }
  1398. }
  1399. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1400. struct kvm_vcpu *vcpu)
  1401. {
  1402. if (!is_paging(vcpu)) {
  1403. *hw_cr4 &= ~X86_CR4_PAE;
  1404. *hw_cr4 |= X86_CR4_PSE;
  1405. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1406. *hw_cr4 &= ~X86_CR4_PAE;
  1407. }
  1408. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1409. {
  1410. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1411. unsigned long hw_cr0;
  1412. if (enable_unrestricted_guest)
  1413. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1414. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1415. else
  1416. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1417. vmx_fpu_deactivate(vcpu);
  1418. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1419. enter_pmode(vcpu);
  1420. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1421. enter_rmode(vcpu);
  1422. #ifdef CONFIG_X86_64
  1423. if (vcpu->arch.shadow_efer & EFER_LME) {
  1424. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1425. enter_lmode(vcpu);
  1426. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1427. exit_lmode(vcpu);
  1428. }
  1429. #endif
  1430. if (enable_ept)
  1431. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1432. vmcs_writel(CR0_READ_SHADOW, cr0);
  1433. vmcs_writel(GUEST_CR0, hw_cr0);
  1434. vcpu->arch.cr0 = cr0;
  1435. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1436. vmx_fpu_activate(vcpu);
  1437. }
  1438. static u64 construct_eptp(unsigned long root_hpa)
  1439. {
  1440. u64 eptp;
  1441. /* TODO write the value reading from MSR */
  1442. eptp = VMX_EPT_DEFAULT_MT |
  1443. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1444. eptp |= (root_hpa & PAGE_MASK);
  1445. return eptp;
  1446. }
  1447. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1448. {
  1449. unsigned long guest_cr3;
  1450. u64 eptp;
  1451. guest_cr3 = cr3;
  1452. if (enable_ept) {
  1453. eptp = construct_eptp(cr3);
  1454. vmcs_write64(EPT_POINTER, eptp);
  1455. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1456. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1457. }
  1458. vmx_flush_tlb(vcpu);
  1459. vmcs_writel(GUEST_CR3, guest_cr3);
  1460. if (vcpu->arch.cr0 & X86_CR0_PE)
  1461. vmx_fpu_deactivate(vcpu);
  1462. }
  1463. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1464. {
  1465. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1466. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1467. vcpu->arch.cr4 = cr4;
  1468. if (enable_ept)
  1469. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1470. vmcs_writel(CR4_READ_SHADOW, cr4);
  1471. vmcs_writel(GUEST_CR4, hw_cr4);
  1472. }
  1473. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1474. {
  1475. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1476. return vmcs_readl(sf->base);
  1477. }
  1478. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1479. struct kvm_segment *var, int seg)
  1480. {
  1481. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1482. u32 ar;
  1483. var->base = vmcs_readl(sf->base);
  1484. var->limit = vmcs_read32(sf->limit);
  1485. var->selector = vmcs_read16(sf->selector);
  1486. ar = vmcs_read32(sf->ar_bytes);
  1487. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1488. ar = 0;
  1489. var->type = ar & 15;
  1490. var->s = (ar >> 4) & 1;
  1491. var->dpl = (ar >> 5) & 3;
  1492. var->present = (ar >> 7) & 1;
  1493. var->avl = (ar >> 12) & 1;
  1494. var->l = (ar >> 13) & 1;
  1495. var->db = (ar >> 14) & 1;
  1496. var->g = (ar >> 15) & 1;
  1497. var->unusable = (ar >> 16) & 1;
  1498. }
  1499. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1500. {
  1501. struct kvm_segment kvm_seg;
  1502. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1503. return 0;
  1504. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1505. return 3;
  1506. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1507. return kvm_seg.selector & 3;
  1508. }
  1509. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1510. {
  1511. u32 ar;
  1512. if (var->unusable)
  1513. ar = 1 << 16;
  1514. else {
  1515. ar = var->type & 15;
  1516. ar |= (var->s & 1) << 4;
  1517. ar |= (var->dpl & 3) << 5;
  1518. ar |= (var->present & 1) << 7;
  1519. ar |= (var->avl & 1) << 12;
  1520. ar |= (var->l & 1) << 13;
  1521. ar |= (var->db & 1) << 14;
  1522. ar |= (var->g & 1) << 15;
  1523. }
  1524. if (ar == 0) /* a 0 value means unusable */
  1525. ar = AR_UNUSABLE_MASK;
  1526. return ar;
  1527. }
  1528. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1529. struct kvm_segment *var, int seg)
  1530. {
  1531. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1532. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1533. u32 ar;
  1534. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1535. vmx->rmode.tr.selector = var->selector;
  1536. vmx->rmode.tr.base = var->base;
  1537. vmx->rmode.tr.limit = var->limit;
  1538. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1539. return;
  1540. }
  1541. vmcs_writel(sf->base, var->base);
  1542. vmcs_write32(sf->limit, var->limit);
  1543. vmcs_write16(sf->selector, var->selector);
  1544. if (vmx->rmode.vm86_active && var->s) {
  1545. /*
  1546. * Hack real-mode segments into vm86 compatibility.
  1547. */
  1548. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1549. vmcs_writel(sf->base, 0xf0000);
  1550. ar = 0xf3;
  1551. } else
  1552. ar = vmx_segment_access_rights(var);
  1553. /*
  1554. * Fix the "Accessed" bit in AR field of segment registers for older
  1555. * qemu binaries.
  1556. * IA32 arch specifies that at the time of processor reset the
  1557. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1558. * is setting it to 0 in the usedland code. This causes invalid guest
  1559. * state vmexit when "unrestricted guest" mode is turned on.
  1560. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1561. * tree. Newer qemu binaries with that qemu fix would not need this
  1562. * kvm hack.
  1563. */
  1564. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1565. ar |= 0x1; /* Accessed */
  1566. vmcs_write32(sf->ar_bytes, ar);
  1567. }
  1568. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1569. {
  1570. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1571. *db = (ar >> 14) & 1;
  1572. *l = (ar >> 13) & 1;
  1573. }
  1574. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1575. {
  1576. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1577. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1578. }
  1579. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1580. {
  1581. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1582. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1583. }
  1584. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1585. {
  1586. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1587. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1588. }
  1589. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1590. {
  1591. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1592. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1593. }
  1594. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1595. {
  1596. struct kvm_segment var;
  1597. u32 ar;
  1598. vmx_get_segment(vcpu, &var, seg);
  1599. ar = vmx_segment_access_rights(&var);
  1600. if (var.base != (var.selector << 4))
  1601. return false;
  1602. if (var.limit != 0xffff)
  1603. return false;
  1604. if (ar != 0xf3)
  1605. return false;
  1606. return true;
  1607. }
  1608. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1609. {
  1610. struct kvm_segment cs;
  1611. unsigned int cs_rpl;
  1612. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1613. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1614. if (cs.unusable)
  1615. return false;
  1616. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1617. return false;
  1618. if (!cs.s)
  1619. return false;
  1620. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1621. if (cs.dpl > cs_rpl)
  1622. return false;
  1623. } else {
  1624. if (cs.dpl != cs_rpl)
  1625. return false;
  1626. }
  1627. if (!cs.present)
  1628. return false;
  1629. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1630. return true;
  1631. }
  1632. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1633. {
  1634. struct kvm_segment ss;
  1635. unsigned int ss_rpl;
  1636. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1637. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1638. if (ss.unusable)
  1639. return true;
  1640. if (ss.type != 3 && ss.type != 7)
  1641. return false;
  1642. if (!ss.s)
  1643. return false;
  1644. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1645. return false;
  1646. if (!ss.present)
  1647. return false;
  1648. return true;
  1649. }
  1650. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1651. {
  1652. struct kvm_segment var;
  1653. unsigned int rpl;
  1654. vmx_get_segment(vcpu, &var, seg);
  1655. rpl = var.selector & SELECTOR_RPL_MASK;
  1656. if (var.unusable)
  1657. return true;
  1658. if (!var.s)
  1659. return false;
  1660. if (!var.present)
  1661. return false;
  1662. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1663. if (var.dpl < rpl) /* DPL < RPL */
  1664. return false;
  1665. }
  1666. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1667. * rights flags
  1668. */
  1669. return true;
  1670. }
  1671. static bool tr_valid(struct kvm_vcpu *vcpu)
  1672. {
  1673. struct kvm_segment tr;
  1674. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1675. if (tr.unusable)
  1676. return false;
  1677. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1678. return false;
  1679. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1680. return false;
  1681. if (!tr.present)
  1682. return false;
  1683. return true;
  1684. }
  1685. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1686. {
  1687. struct kvm_segment ldtr;
  1688. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1689. if (ldtr.unusable)
  1690. return true;
  1691. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1692. return false;
  1693. if (ldtr.type != 2)
  1694. return false;
  1695. if (!ldtr.present)
  1696. return false;
  1697. return true;
  1698. }
  1699. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1700. {
  1701. struct kvm_segment cs, ss;
  1702. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1703. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1704. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1705. (ss.selector & SELECTOR_RPL_MASK));
  1706. }
  1707. /*
  1708. * Check if guest state is valid. Returns true if valid, false if
  1709. * not.
  1710. * We assume that registers are always usable
  1711. */
  1712. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1713. {
  1714. /* real mode guest state checks */
  1715. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1716. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1717. return false;
  1718. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1719. return false;
  1720. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1721. return false;
  1722. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1723. return false;
  1724. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1725. return false;
  1726. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1727. return false;
  1728. } else {
  1729. /* protected mode guest state checks */
  1730. if (!cs_ss_rpl_check(vcpu))
  1731. return false;
  1732. if (!code_segment_valid(vcpu))
  1733. return false;
  1734. if (!stack_segment_valid(vcpu))
  1735. return false;
  1736. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1737. return false;
  1738. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1739. return false;
  1740. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1741. return false;
  1742. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1743. return false;
  1744. if (!tr_valid(vcpu))
  1745. return false;
  1746. if (!ldtr_valid(vcpu))
  1747. return false;
  1748. }
  1749. /* TODO:
  1750. * - Add checks on RIP
  1751. * - Add checks on RFLAGS
  1752. */
  1753. return true;
  1754. }
  1755. static int init_rmode_tss(struct kvm *kvm)
  1756. {
  1757. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1758. u16 data = 0;
  1759. int ret = 0;
  1760. int r;
  1761. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1762. if (r < 0)
  1763. goto out;
  1764. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1765. r = kvm_write_guest_page(kvm, fn++, &data,
  1766. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1767. if (r < 0)
  1768. goto out;
  1769. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1770. if (r < 0)
  1771. goto out;
  1772. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1773. if (r < 0)
  1774. goto out;
  1775. data = ~0;
  1776. r = kvm_write_guest_page(kvm, fn, &data,
  1777. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1778. sizeof(u8));
  1779. if (r < 0)
  1780. goto out;
  1781. ret = 1;
  1782. out:
  1783. return ret;
  1784. }
  1785. static int init_rmode_identity_map(struct kvm *kvm)
  1786. {
  1787. int i, r, ret;
  1788. pfn_t identity_map_pfn;
  1789. u32 tmp;
  1790. if (!enable_ept)
  1791. return 1;
  1792. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1793. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1794. "haven't been allocated!\n");
  1795. return 0;
  1796. }
  1797. if (likely(kvm->arch.ept_identity_pagetable_done))
  1798. return 1;
  1799. ret = 0;
  1800. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1801. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1802. if (r < 0)
  1803. goto out;
  1804. /* Set up identity-mapping pagetable for EPT in real mode */
  1805. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1806. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1807. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1808. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1809. &tmp, i * sizeof(tmp), sizeof(tmp));
  1810. if (r < 0)
  1811. goto out;
  1812. }
  1813. kvm->arch.ept_identity_pagetable_done = true;
  1814. ret = 1;
  1815. out:
  1816. return ret;
  1817. }
  1818. static void seg_setup(int seg)
  1819. {
  1820. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1821. unsigned int ar;
  1822. vmcs_write16(sf->selector, 0);
  1823. vmcs_writel(sf->base, 0);
  1824. vmcs_write32(sf->limit, 0xffff);
  1825. if (enable_unrestricted_guest) {
  1826. ar = 0x93;
  1827. if (seg == VCPU_SREG_CS)
  1828. ar |= 0x08; /* code segment */
  1829. } else
  1830. ar = 0xf3;
  1831. vmcs_write32(sf->ar_bytes, ar);
  1832. }
  1833. static int alloc_apic_access_page(struct kvm *kvm)
  1834. {
  1835. struct kvm_userspace_memory_region kvm_userspace_mem;
  1836. int r = 0;
  1837. down_write(&kvm->slots_lock);
  1838. if (kvm->arch.apic_access_page)
  1839. goto out;
  1840. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1841. kvm_userspace_mem.flags = 0;
  1842. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1843. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1844. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1845. if (r)
  1846. goto out;
  1847. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1848. out:
  1849. up_write(&kvm->slots_lock);
  1850. return r;
  1851. }
  1852. static int alloc_identity_pagetable(struct kvm *kvm)
  1853. {
  1854. struct kvm_userspace_memory_region kvm_userspace_mem;
  1855. int r = 0;
  1856. down_write(&kvm->slots_lock);
  1857. if (kvm->arch.ept_identity_pagetable)
  1858. goto out;
  1859. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1860. kvm_userspace_mem.flags = 0;
  1861. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1862. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1863. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1864. if (r)
  1865. goto out;
  1866. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1867. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1868. out:
  1869. up_write(&kvm->slots_lock);
  1870. return r;
  1871. }
  1872. static void allocate_vpid(struct vcpu_vmx *vmx)
  1873. {
  1874. int vpid;
  1875. vmx->vpid = 0;
  1876. if (!enable_vpid)
  1877. return;
  1878. spin_lock(&vmx_vpid_lock);
  1879. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1880. if (vpid < VMX_NR_VPIDS) {
  1881. vmx->vpid = vpid;
  1882. __set_bit(vpid, vmx_vpid_bitmap);
  1883. }
  1884. spin_unlock(&vmx_vpid_lock);
  1885. }
  1886. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1887. {
  1888. int f = sizeof(unsigned long);
  1889. if (!cpu_has_vmx_msr_bitmap())
  1890. return;
  1891. /*
  1892. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1893. * have the write-low and read-high bitmap offsets the wrong way round.
  1894. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1895. */
  1896. if (msr <= 0x1fff) {
  1897. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1898. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1899. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1900. msr &= 0x1fff;
  1901. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1902. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1903. }
  1904. }
  1905. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1906. {
  1907. if (!longmode_only)
  1908. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1909. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1910. }
  1911. /*
  1912. * Sets up the vmcs for emulated real mode.
  1913. */
  1914. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1915. {
  1916. u32 host_sysenter_cs, msr_low, msr_high;
  1917. u32 junk;
  1918. u64 host_pat, tsc_this, tsc_base;
  1919. unsigned long a;
  1920. struct descriptor_table dt;
  1921. int i;
  1922. unsigned long kvm_vmx_return;
  1923. u32 exec_control;
  1924. /* I/O */
  1925. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1926. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1927. if (cpu_has_vmx_msr_bitmap())
  1928. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1929. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1930. /* Control */
  1931. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1932. vmcs_config.pin_based_exec_ctrl);
  1933. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1934. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1935. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1936. #ifdef CONFIG_X86_64
  1937. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1938. CPU_BASED_CR8_LOAD_EXITING;
  1939. #endif
  1940. }
  1941. if (!enable_ept)
  1942. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1943. CPU_BASED_CR3_LOAD_EXITING |
  1944. CPU_BASED_INVLPG_EXITING;
  1945. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1946. if (cpu_has_secondary_exec_ctrls()) {
  1947. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1948. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1949. exec_control &=
  1950. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1951. if (vmx->vpid == 0)
  1952. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1953. if (!enable_ept)
  1954. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1955. if (!enable_unrestricted_guest)
  1956. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1957. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1958. }
  1959. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1960. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1961. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1962. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1963. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1964. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1965. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1966. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1967. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1968. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1969. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1970. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1971. #ifdef CONFIG_X86_64
  1972. rdmsrl(MSR_FS_BASE, a);
  1973. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1974. rdmsrl(MSR_GS_BASE, a);
  1975. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1976. #else
  1977. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1978. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1979. #endif
  1980. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1981. kvm_get_idt(&dt);
  1982. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1983. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1984. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1985. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1986. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1987. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1988. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1989. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1990. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1991. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1992. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1993. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1994. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1995. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1996. host_pat = msr_low | ((u64) msr_high << 32);
  1997. vmcs_write64(HOST_IA32_PAT, host_pat);
  1998. }
  1999. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2000. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2001. host_pat = msr_low | ((u64) msr_high << 32);
  2002. /* Write the default value follow host pat */
  2003. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2004. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2005. vmx->vcpu.arch.pat = host_pat;
  2006. }
  2007. for (i = 0; i < NR_VMX_MSR; ++i) {
  2008. u32 index = vmx_msr_index[i];
  2009. u32 data_low, data_high;
  2010. u64 data;
  2011. int j = vmx->nmsrs;
  2012. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2013. continue;
  2014. if (wrmsr_safe(index, data_low, data_high) < 0)
  2015. continue;
  2016. data = data_low | ((u64)data_high << 32);
  2017. vmx->host_msrs[j].index = index;
  2018. vmx->host_msrs[j].reserved = 0;
  2019. vmx->host_msrs[j].data = data;
  2020. vmx->guest_msrs[j] = vmx->host_msrs[j];
  2021. ++vmx->nmsrs;
  2022. }
  2023. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2024. /* 22.2.1, 20.8.1 */
  2025. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2026. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2027. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2028. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2029. rdtscll(tsc_this);
  2030. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2031. tsc_base = tsc_this;
  2032. guest_write_tsc(0, tsc_base);
  2033. return 0;
  2034. }
  2035. static int init_rmode(struct kvm *kvm)
  2036. {
  2037. if (!init_rmode_tss(kvm))
  2038. return 0;
  2039. if (!init_rmode_identity_map(kvm))
  2040. return 0;
  2041. return 1;
  2042. }
  2043. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2044. {
  2045. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2046. u64 msr;
  2047. int ret;
  2048. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2049. down_read(&vcpu->kvm->slots_lock);
  2050. if (!init_rmode(vmx->vcpu.kvm)) {
  2051. ret = -ENOMEM;
  2052. goto out;
  2053. }
  2054. vmx->rmode.vm86_active = 0;
  2055. vmx->soft_vnmi_blocked = 0;
  2056. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2057. kvm_set_cr8(&vmx->vcpu, 0);
  2058. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2059. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2060. msr |= MSR_IA32_APICBASE_BSP;
  2061. kvm_set_apic_base(&vmx->vcpu, msr);
  2062. fx_init(&vmx->vcpu);
  2063. seg_setup(VCPU_SREG_CS);
  2064. /*
  2065. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2066. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2067. */
  2068. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2069. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2070. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2071. } else {
  2072. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2073. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2074. }
  2075. seg_setup(VCPU_SREG_DS);
  2076. seg_setup(VCPU_SREG_ES);
  2077. seg_setup(VCPU_SREG_FS);
  2078. seg_setup(VCPU_SREG_GS);
  2079. seg_setup(VCPU_SREG_SS);
  2080. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2081. vmcs_writel(GUEST_TR_BASE, 0);
  2082. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2083. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2084. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2085. vmcs_writel(GUEST_LDTR_BASE, 0);
  2086. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2087. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2088. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2089. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2090. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2091. vmcs_writel(GUEST_RFLAGS, 0x02);
  2092. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2093. kvm_rip_write(vcpu, 0xfff0);
  2094. else
  2095. kvm_rip_write(vcpu, 0);
  2096. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2097. vmcs_writel(GUEST_DR7, 0x400);
  2098. vmcs_writel(GUEST_GDTR_BASE, 0);
  2099. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2100. vmcs_writel(GUEST_IDTR_BASE, 0);
  2101. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2102. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2103. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2104. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2105. /* Special registers */
  2106. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2107. setup_msrs(vmx);
  2108. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2109. if (cpu_has_vmx_tpr_shadow()) {
  2110. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2111. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2112. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2113. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2114. vmcs_write32(TPR_THRESHOLD, 0);
  2115. }
  2116. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2117. vmcs_write64(APIC_ACCESS_ADDR,
  2118. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2119. if (vmx->vpid != 0)
  2120. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2121. vmx->vcpu.arch.cr0 = 0x60000010;
  2122. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2123. vmx_set_cr4(&vmx->vcpu, 0);
  2124. vmx_set_efer(&vmx->vcpu, 0);
  2125. vmx_fpu_activate(&vmx->vcpu);
  2126. update_exception_bitmap(&vmx->vcpu);
  2127. vpid_sync_vcpu_all(vmx);
  2128. ret = 0;
  2129. /* HACK: Don't enable emulation on guest boot/reset */
  2130. vmx->emulation_required = 0;
  2131. out:
  2132. up_read(&vcpu->kvm->slots_lock);
  2133. return ret;
  2134. }
  2135. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2136. {
  2137. u32 cpu_based_vm_exec_control;
  2138. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2139. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2140. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2141. }
  2142. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2143. {
  2144. u32 cpu_based_vm_exec_control;
  2145. if (!cpu_has_virtual_nmis()) {
  2146. enable_irq_window(vcpu);
  2147. return;
  2148. }
  2149. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2150. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2151. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2152. }
  2153. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2154. {
  2155. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2156. uint32_t intr;
  2157. int irq = vcpu->arch.interrupt.nr;
  2158. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2159. ++vcpu->stat.irq_injections;
  2160. if (vmx->rmode.vm86_active) {
  2161. vmx->rmode.irq.pending = true;
  2162. vmx->rmode.irq.vector = irq;
  2163. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2164. if (vcpu->arch.interrupt.soft)
  2165. vmx->rmode.irq.rip +=
  2166. vmx->vcpu.arch.event_exit_inst_len;
  2167. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2168. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2169. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2170. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2171. return;
  2172. }
  2173. intr = irq | INTR_INFO_VALID_MASK;
  2174. if (vcpu->arch.interrupt.soft) {
  2175. intr |= INTR_TYPE_SOFT_INTR;
  2176. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2177. vmx->vcpu.arch.event_exit_inst_len);
  2178. } else
  2179. intr |= INTR_TYPE_EXT_INTR;
  2180. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2181. }
  2182. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2183. {
  2184. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2185. if (!cpu_has_virtual_nmis()) {
  2186. /*
  2187. * Tracking the NMI-blocked state in software is built upon
  2188. * finding the next open IRQ window. This, in turn, depends on
  2189. * well-behaving guests: They have to keep IRQs disabled at
  2190. * least as long as the NMI handler runs. Otherwise we may
  2191. * cause NMI nesting, maybe breaking the guest. But as this is
  2192. * highly unlikely, we can live with the residual risk.
  2193. */
  2194. vmx->soft_vnmi_blocked = 1;
  2195. vmx->vnmi_blocked_time = 0;
  2196. }
  2197. ++vcpu->stat.nmi_injections;
  2198. if (vmx->rmode.vm86_active) {
  2199. vmx->rmode.irq.pending = true;
  2200. vmx->rmode.irq.vector = NMI_VECTOR;
  2201. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2202. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2203. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2204. INTR_INFO_VALID_MASK);
  2205. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2206. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2207. return;
  2208. }
  2209. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2210. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2211. }
  2212. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2213. {
  2214. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2215. return 0;
  2216. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2217. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2218. GUEST_INTR_STATE_NMI));
  2219. }
  2220. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2221. {
  2222. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2223. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2224. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2225. }
  2226. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2227. {
  2228. int ret;
  2229. struct kvm_userspace_memory_region tss_mem = {
  2230. .slot = TSS_PRIVATE_MEMSLOT,
  2231. .guest_phys_addr = addr,
  2232. .memory_size = PAGE_SIZE * 3,
  2233. .flags = 0,
  2234. };
  2235. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2236. if (ret)
  2237. return ret;
  2238. kvm->arch.tss_addr = addr;
  2239. return 0;
  2240. }
  2241. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2242. int vec, u32 err_code)
  2243. {
  2244. /*
  2245. * Instruction with address size override prefix opcode 0x67
  2246. * Cause the #SS fault with 0 error code in VM86 mode.
  2247. */
  2248. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2249. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2250. return 1;
  2251. /*
  2252. * Forward all other exceptions that are valid in real mode.
  2253. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2254. * the required debugging infrastructure rework.
  2255. */
  2256. switch (vec) {
  2257. case DB_VECTOR:
  2258. if (vcpu->guest_debug &
  2259. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2260. return 0;
  2261. kvm_queue_exception(vcpu, vec);
  2262. return 1;
  2263. case BP_VECTOR:
  2264. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2265. return 0;
  2266. /* fall through */
  2267. case DE_VECTOR:
  2268. case OF_VECTOR:
  2269. case BR_VECTOR:
  2270. case UD_VECTOR:
  2271. case DF_VECTOR:
  2272. case SS_VECTOR:
  2273. case GP_VECTOR:
  2274. case MF_VECTOR:
  2275. kvm_queue_exception(vcpu, vec);
  2276. return 1;
  2277. }
  2278. return 0;
  2279. }
  2280. /*
  2281. * Trigger machine check on the host. We assume all the MSRs are already set up
  2282. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2283. * We pass a fake environment to the machine check handler because we want
  2284. * the guest to be always treated like user space, no matter what context
  2285. * it used internally.
  2286. */
  2287. static void kvm_machine_check(void)
  2288. {
  2289. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2290. struct pt_regs regs = {
  2291. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2292. .flags = X86_EFLAGS_IF,
  2293. };
  2294. do_machine_check(&regs, 0);
  2295. #endif
  2296. }
  2297. static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2298. {
  2299. /* already handled by vcpu_run */
  2300. return 1;
  2301. }
  2302. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2303. {
  2304. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2305. u32 intr_info, ex_no, error_code;
  2306. unsigned long cr2, rip, dr6;
  2307. u32 vect_info;
  2308. enum emulation_result er;
  2309. vect_info = vmx->idt_vectoring_info;
  2310. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2311. if (is_machine_check(intr_info))
  2312. return handle_machine_check(vcpu, kvm_run);
  2313. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2314. !is_page_fault(intr_info))
  2315. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2316. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2317. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2318. return 1; /* already handled by vmx_vcpu_run() */
  2319. if (is_no_device(intr_info)) {
  2320. vmx_fpu_activate(vcpu);
  2321. return 1;
  2322. }
  2323. if (is_invalid_opcode(intr_info)) {
  2324. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2325. if (er != EMULATE_DONE)
  2326. kvm_queue_exception(vcpu, UD_VECTOR);
  2327. return 1;
  2328. }
  2329. error_code = 0;
  2330. rip = kvm_rip_read(vcpu);
  2331. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2332. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2333. if (is_page_fault(intr_info)) {
  2334. /* EPT won't cause page fault directly */
  2335. if (enable_ept)
  2336. BUG();
  2337. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2338. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2339. (u32)((u64)cr2 >> 32), handler);
  2340. if (kvm_event_needs_reinjection(vcpu))
  2341. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2342. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2343. }
  2344. if (vmx->rmode.vm86_active &&
  2345. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2346. error_code)) {
  2347. if (vcpu->arch.halt_request) {
  2348. vcpu->arch.halt_request = 0;
  2349. return kvm_emulate_halt(vcpu);
  2350. }
  2351. return 1;
  2352. }
  2353. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2354. switch (ex_no) {
  2355. case DB_VECTOR:
  2356. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2357. if (!(vcpu->guest_debug &
  2358. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2359. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2360. kvm_queue_exception(vcpu, DB_VECTOR);
  2361. return 1;
  2362. }
  2363. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2364. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2365. /* fall through */
  2366. case BP_VECTOR:
  2367. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2368. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2369. kvm_run->debug.arch.exception = ex_no;
  2370. break;
  2371. default:
  2372. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2373. kvm_run->ex.exception = ex_no;
  2374. kvm_run->ex.error_code = error_code;
  2375. break;
  2376. }
  2377. return 0;
  2378. }
  2379. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2380. struct kvm_run *kvm_run)
  2381. {
  2382. ++vcpu->stat.irq_exits;
  2383. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2384. return 1;
  2385. }
  2386. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2387. {
  2388. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2389. return 0;
  2390. }
  2391. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2392. {
  2393. unsigned long exit_qualification;
  2394. int size, in, string;
  2395. unsigned port;
  2396. ++vcpu->stat.io_exits;
  2397. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2398. string = (exit_qualification & 16) != 0;
  2399. if (string) {
  2400. if (emulate_instruction(vcpu,
  2401. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2402. return 0;
  2403. return 1;
  2404. }
  2405. size = (exit_qualification & 7) + 1;
  2406. in = (exit_qualification & 8) != 0;
  2407. port = exit_qualification >> 16;
  2408. skip_emulated_instruction(vcpu);
  2409. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2410. }
  2411. static void
  2412. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2413. {
  2414. /*
  2415. * Patch in the VMCALL instruction:
  2416. */
  2417. hypercall[0] = 0x0f;
  2418. hypercall[1] = 0x01;
  2419. hypercall[2] = 0xc1;
  2420. }
  2421. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2422. {
  2423. unsigned long exit_qualification;
  2424. int cr;
  2425. int reg;
  2426. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2427. cr = exit_qualification & 15;
  2428. reg = (exit_qualification >> 8) & 15;
  2429. switch ((exit_qualification >> 4) & 3) {
  2430. case 0: /* mov to cr */
  2431. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2432. (u32)kvm_register_read(vcpu, reg),
  2433. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2434. handler);
  2435. switch (cr) {
  2436. case 0:
  2437. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2438. skip_emulated_instruction(vcpu);
  2439. return 1;
  2440. case 3:
  2441. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2442. skip_emulated_instruction(vcpu);
  2443. return 1;
  2444. case 4:
  2445. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2446. skip_emulated_instruction(vcpu);
  2447. return 1;
  2448. case 8: {
  2449. u8 cr8_prev = kvm_get_cr8(vcpu);
  2450. u8 cr8 = kvm_register_read(vcpu, reg);
  2451. kvm_set_cr8(vcpu, cr8);
  2452. skip_emulated_instruction(vcpu);
  2453. if (irqchip_in_kernel(vcpu->kvm))
  2454. return 1;
  2455. if (cr8_prev <= cr8)
  2456. return 1;
  2457. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2458. return 0;
  2459. }
  2460. };
  2461. break;
  2462. case 2: /* clts */
  2463. vmx_fpu_deactivate(vcpu);
  2464. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2465. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2466. vmx_fpu_activate(vcpu);
  2467. KVMTRACE_0D(CLTS, vcpu, handler);
  2468. skip_emulated_instruction(vcpu);
  2469. return 1;
  2470. case 1: /*mov from cr*/
  2471. switch (cr) {
  2472. case 3:
  2473. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2474. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2475. (u32)kvm_register_read(vcpu, reg),
  2476. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2477. handler);
  2478. skip_emulated_instruction(vcpu);
  2479. return 1;
  2480. case 8:
  2481. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2482. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2483. (u32)kvm_register_read(vcpu, reg), handler);
  2484. skip_emulated_instruction(vcpu);
  2485. return 1;
  2486. }
  2487. break;
  2488. case 3: /* lmsw */
  2489. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2490. skip_emulated_instruction(vcpu);
  2491. return 1;
  2492. default:
  2493. break;
  2494. }
  2495. kvm_run->exit_reason = 0;
  2496. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2497. (int)(exit_qualification >> 4) & 3, cr);
  2498. return 0;
  2499. }
  2500. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2501. {
  2502. unsigned long exit_qualification;
  2503. unsigned long val;
  2504. int dr, reg;
  2505. dr = vmcs_readl(GUEST_DR7);
  2506. if (dr & DR7_GD) {
  2507. /*
  2508. * As the vm-exit takes precedence over the debug trap, we
  2509. * need to emulate the latter, either for the host or the
  2510. * guest debugging itself.
  2511. */
  2512. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2513. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2514. kvm_run->debug.arch.dr7 = dr;
  2515. kvm_run->debug.arch.pc =
  2516. vmcs_readl(GUEST_CS_BASE) +
  2517. vmcs_readl(GUEST_RIP);
  2518. kvm_run->debug.arch.exception = DB_VECTOR;
  2519. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2520. return 0;
  2521. } else {
  2522. vcpu->arch.dr7 &= ~DR7_GD;
  2523. vcpu->arch.dr6 |= DR6_BD;
  2524. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2525. kvm_queue_exception(vcpu, DB_VECTOR);
  2526. return 1;
  2527. }
  2528. }
  2529. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2530. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2531. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2532. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2533. switch (dr) {
  2534. case 0 ... 3:
  2535. val = vcpu->arch.db[dr];
  2536. break;
  2537. case 6:
  2538. val = vcpu->arch.dr6;
  2539. break;
  2540. case 7:
  2541. val = vcpu->arch.dr7;
  2542. break;
  2543. default:
  2544. val = 0;
  2545. }
  2546. kvm_register_write(vcpu, reg, val);
  2547. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2548. } else {
  2549. val = vcpu->arch.regs[reg];
  2550. switch (dr) {
  2551. case 0 ... 3:
  2552. vcpu->arch.db[dr] = val;
  2553. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2554. vcpu->arch.eff_db[dr] = val;
  2555. break;
  2556. case 4 ... 5:
  2557. if (vcpu->arch.cr4 & X86_CR4_DE)
  2558. kvm_queue_exception(vcpu, UD_VECTOR);
  2559. break;
  2560. case 6:
  2561. if (val & 0xffffffff00000000ULL) {
  2562. kvm_queue_exception(vcpu, GP_VECTOR);
  2563. break;
  2564. }
  2565. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2566. break;
  2567. case 7:
  2568. if (val & 0xffffffff00000000ULL) {
  2569. kvm_queue_exception(vcpu, GP_VECTOR);
  2570. break;
  2571. }
  2572. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2573. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2574. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2575. vcpu->arch.switch_db_regs =
  2576. (val & DR7_BP_EN_MASK);
  2577. }
  2578. break;
  2579. }
  2580. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2581. }
  2582. skip_emulated_instruction(vcpu);
  2583. return 1;
  2584. }
  2585. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2586. {
  2587. kvm_emulate_cpuid(vcpu);
  2588. return 1;
  2589. }
  2590. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2591. {
  2592. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2593. u64 data;
  2594. if (vmx_get_msr(vcpu, ecx, &data)) {
  2595. kvm_inject_gp(vcpu, 0);
  2596. return 1;
  2597. }
  2598. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2599. handler);
  2600. /* FIXME: handling of bits 32:63 of rax, rdx */
  2601. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2602. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2603. skip_emulated_instruction(vcpu);
  2604. return 1;
  2605. }
  2606. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2607. {
  2608. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2609. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2610. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2611. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2612. handler);
  2613. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2614. kvm_inject_gp(vcpu, 0);
  2615. return 1;
  2616. }
  2617. skip_emulated_instruction(vcpu);
  2618. return 1;
  2619. }
  2620. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2621. struct kvm_run *kvm_run)
  2622. {
  2623. return 1;
  2624. }
  2625. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2626. struct kvm_run *kvm_run)
  2627. {
  2628. u32 cpu_based_vm_exec_control;
  2629. /* clear pending irq */
  2630. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2631. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2632. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2633. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2634. ++vcpu->stat.irq_window_exits;
  2635. /*
  2636. * If the user space waits to inject interrupts, exit as soon as
  2637. * possible
  2638. */
  2639. if (!irqchip_in_kernel(vcpu->kvm) &&
  2640. kvm_run->request_interrupt_window &&
  2641. !kvm_cpu_has_interrupt(vcpu)) {
  2642. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2643. return 0;
  2644. }
  2645. return 1;
  2646. }
  2647. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2648. {
  2649. skip_emulated_instruction(vcpu);
  2650. return kvm_emulate_halt(vcpu);
  2651. }
  2652. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2653. {
  2654. skip_emulated_instruction(vcpu);
  2655. kvm_emulate_hypercall(vcpu);
  2656. return 1;
  2657. }
  2658. static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2659. {
  2660. kvm_queue_exception(vcpu, UD_VECTOR);
  2661. return 1;
  2662. }
  2663. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2664. {
  2665. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2666. kvm_mmu_invlpg(vcpu, exit_qualification);
  2667. skip_emulated_instruction(vcpu);
  2668. return 1;
  2669. }
  2670. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2671. {
  2672. skip_emulated_instruction(vcpu);
  2673. /* TODO: Add support for VT-d/pass-through device */
  2674. return 1;
  2675. }
  2676. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2677. {
  2678. unsigned long exit_qualification;
  2679. enum emulation_result er;
  2680. unsigned long offset;
  2681. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2682. offset = exit_qualification & 0xffful;
  2683. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2684. if (er != EMULATE_DONE) {
  2685. printk(KERN_ERR
  2686. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2687. offset);
  2688. return -ENOTSUPP;
  2689. }
  2690. return 1;
  2691. }
  2692. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2693. {
  2694. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2695. unsigned long exit_qualification;
  2696. u16 tss_selector;
  2697. int reason, type, idt_v;
  2698. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2699. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2700. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2701. reason = (u32)exit_qualification >> 30;
  2702. if (reason == TASK_SWITCH_GATE && idt_v) {
  2703. switch (type) {
  2704. case INTR_TYPE_NMI_INTR:
  2705. vcpu->arch.nmi_injected = false;
  2706. if (cpu_has_virtual_nmis())
  2707. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2708. GUEST_INTR_STATE_NMI);
  2709. break;
  2710. case INTR_TYPE_EXT_INTR:
  2711. case INTR_TYPE_SOFT_INTR:
  2712. kvm_clear_interrupt_queue(vcpu);
  2713. break;
  2714. case INTR_TYPE_HARD_EXCEPTION:
  2715. case INTR_TYPE_SOFT_EXCEPTION:
  2716. kvm_clear_exception_queue(vcpu);
  2717. break;
  2718. default:
  2719. break;
  2720. }
  2721. }
  2722. tss_selector = exit_qualification;
  2723. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2724. type != INTR_TYPE_EXT_INTR &&
  2725. type != INTR_TYPE_NMI_INTR))
  2726. skip_emulated_instruction(vcpu);
  2727. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2728. return 0;
  2729. /* clear all local breakpoint enable flags */
  2730. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2731. /*
  2732. * TODO: What about debug traps on tss switch?
  2733. * Are we supposed to inject them and update dr6?
  2734. */
  2735. return 1;
  2736. }
  2737. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2738. {
  2739. unsigned long exit_qualification;
  2740. gpa_t gpa;
  2741. int gla_validity;
  2742. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2743. if (exit_qualification & (1 << 6)) {
  2744. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2745. return -ENOTSUPP;
  2746. }
  2747. gla_validity = (exit_qualification >> 7) & 0x3;
  2748. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2749. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2750. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2751. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2752. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2753. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2754. (long unsigned int)exit_qualification);
  2755. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2756. kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2757. return 0;
  2758. }
  2759. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2760. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2761. }
  2762. static u64 ept_rsvd_mask(u64 spte, int level)
  2763. {
  2764. int i;
  2765. u64 mask = 0;
  2766. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2767. mask |= (1ULL << i);
  2768. if (level > 2)
  2769. /* bits 7:3 reserved */
  2770. mask |= 0xf8;
  2771. else if (level == 2) {
  2772. if (spte & (1ULL << 7))
  2773. /* 2MB ref, bits 20:12 reserved */
  2774. mask |= 0x1ff000;
  2775. else
  2776. /* bits 6:3 reserved */
  2777. mask |= 0x78;
  2778. }
  2779. return mask;
  2780. }
  2781. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2782. int level)
  2783. {
  2784. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2785. /* 010b (write-only) */
  2786. WARN_ON((spte & 0x7) == 0x2);
  2787. /* 110b (write/execute) */
  2788. WARN_ON((spte & 0x7) == 0x6);
  2789. /* 100b (execute-only) and value not supported by logical processor */
  2790. if (!cpu_has_vmx_ept_execute_only())
  2791. WARN_ON((spte & 0x7) == 0x4);
  2792. /* not 000b */
  2793. if ((spte & 0x7)) {
  2794. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2795. if (rsvd_bits != 0) {
  2796. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2797. __func__, rsvd_bits);
  2798. WARN_ON(1);
  2799. }
  2800. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2801. u64 ept_mem_type = (spte & 0x38) >> 3;
  2802. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2803. ept_mem_type == 7) {
  2804. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2805. __func__, ept_mem_type);
  2806. WARN_ON(1);
  2807. }
  2808. }
  2809. }
  2810. }
  2811. static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2812. {
  2813. u64 sptes[4];
  2814. int nr_sptes, i;
  2815. gpa_t gpa;
  2816. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2817. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2818. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2819. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2820. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2821. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2822. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2823. kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2824. return 0;
  2825. }
  2826. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2827. {
  2828. u32 cpu_based_vm_exec_control;
  2829. /* clear pending NMI */
  2830. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2831. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2832. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2833. ++vcpu->stat.nmi_window_exits;
  2834. return 1;
  2835. }
  2836. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2837. struct kvm_run *kvm_run)
  2838. {
  2839. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2840. enum emulation_result err = EMULATE_DONE;
  2841. local_irq_enable();
  2842. preempt_enable();
  2843. while (!guest_state_valid(vcpu)) {
  2844. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2845. if (err == EMULATE_DO_MMIO)
  2846. break;
  2847. if (err != EMULATE_DONE) {
  2848. kvm_report_emulation_failure(vcpu, "emulation failure");
  2849. break;
  2850. }
  2851. if (signal_pending(current))
  2852. break;
  2853. if (need_resched())
  2854. schedule();
  2855. }
  2856. preempt_disable();
  2857. local_irq_disable();
  2858. vmx->invalid_state_emulation_result = err;
  2859. }
  2860. /*
  2861. * The exit handlers return 1 if the exit was handled fully and guest execution
  2862. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2863. * to be done to userspace and return 0.
  2864. */
  2865. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2866. struct kvm_run *kvm_run) = {
  2867. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2868. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2869. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2870. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2871. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2872. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2873. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2874. [EXIT_REASON_CPUID] = handle_cpuid,
  2875. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2876. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2877. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2878. [EXIT_REASON_HLT] = handle_halt,
  2879. [EXIT_REASON_INVLPG] = handle_invlpg,
  2880. [EXIT_REASON_VMCALL] = handle_vmcall,
  2881. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2882. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2883. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2884. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2885. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2886. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2887. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2888. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2889. [EXIT_REASON_VMON] = handle_vmx_insn,
  2890. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2891. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2892. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2893. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2894. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2895. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2896. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2897. };
  2898. static const int kvm_vmx_max_exit_handlers =
  2899. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2900. /*
  2901. * The guest has exited. See if we can fix it or if we need userspace
  2902. * assistance.
  2903. */
  2904. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2905. {
  2906. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2907. u32 exit_reason = vmx->exit_reason;
  2908. u32 vectoring_info = vmx->idt_vectoring_info;
  2909. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2910. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2911. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2912. * we just return 0 */
  2913. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2914. if (guest_state_valid(vcpu))
  2915. vmx->emulation_required = 0;
  2916. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2917. }
  2918. /* Access CR3 don't cause VMExit in paging mode, so we need
  2919. * to sync with guest real CR3. */
  2920. if (enable_ept && is_paging(vcpu))
  2921. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2922. if (unlikely(vmx->fail)) {
  2923. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2924. kvm_run->fail_entry.hardware_entry_failure_reason
  2925. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2926. return 0;
  2927. }
  2928. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2929. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2930. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2931. exit_reason != EXIT_REASON_TASK_SWITCH))
  2932. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2933. "(0x%x) and exit reason is 0x%x\n",
  2934. __func__, vectoring_info, exit_reason);
  2935. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2936. if (vmx_interrupt_allowed(vcpu)) {
  2937. vmx->soft_vnmi_blocked = 0;
  2938. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2939. vcpu->arch.nmi_pending) {
  2940. /*
  2941. * This CPU don't support us in finding the end of an
  2942. * NMI-blocked window if the guest runs with IRQs
  2943. * disabled. So we pull the trigger after 1 s of
  2944. * futile waiting, but inform the user about this.
  2945. */
  2946. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2947. "state on VCPU %d after 1 s timeout\n",
  2948. __func__, vcpu->vcpu_id);
  2949. vmx->soft_vnmi_blocked = 0;
  2950. }
  2951. }
  2952. if (exit_reason < kvm_vmx_max_exit_handlers
  2953. && kvm_vmx_exit_handlers[exit_reason])
  2954. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2955. else {
  2956. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2957. kvm_run->hw.hardware_exit_reason = exit_reason;
  2958. }
  2959. return 0;
  2960. }
  2961. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2962. {
  2963. if (irr == -1 || tpr < irr) {
  2964. vmcs_write32(TPR_THRESHOLD, 0);
  2965. return;
  2966. }
  2967. vmcs_write32(TPR_THRESHOLD, irr);
  2968. }
  2969. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2970. {
  2971. u32 exit_intr_info;
  2972. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2973. bool unblock_nmi;
  2974. u8 vector;
  2975. int type;
  2976. bool idtv_info_valid;
  2977. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2978. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2979. /* Handle machine checks before interrupts are enabled */
  2980. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2981. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2982. && is_machine_check(exit_intr_info)))
  2983. kvm_machine_check();
  2984. /* We need to handle NMIs before interrupts are enabled */
  2985. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2986. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  2987. KVMTRACE_0D(NMI, &vmx->vcpu, handler);
  2988. asm("int $2");
  2989. }
  2990. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2991. if (cpu_has_virtual_nmis()) {
  2992. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2993. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2994. /*
  2995. * SDM 3: 27.7.1.2 (September 2008)
  2996. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2997. * a guest IRET fault.
  2998. * SDM 3: 23.2.2 (September 2008)
  2999. * Bit 12 is undefined in any of the following cases:
  3000. * If the VM exit sets the valid bit in the IDT-vectoring
  3001. * information field.
  3002. * If the VM exit is due to a double fault.
  3003. */
  3004. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3005. vector != DF_VECTOR && !idtv_info_valid)
  3006. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3007. GUEST_INTR_STATE_NMI);
  3008. } else if (unlikely(vmx->soft_vnmi_blocked))
  3009. vmx->vnmi_blocked_time +=
  3010. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3011. vmx->vcpu.arch.nmi_injected = false;
  3012. kvm_clear_exception_queue(&vmx->vcpu);
  3013. kvm_clear_interrupt_queue(&vmx->vcpu);
  3014. if (!idtv_info_valid)
  3015. return;
  3016. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3017. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3018. switch (type) {
  3019. case INTR_TYPE_NMI_INTR:
  3020. vmx->vcpu.arch.nmi_injected = true;
  3021. /*
  3022. * SDM 3: 27.7.1.2 (September 2008)
  3023. * Clear bit "block by NMI" before VM entry if a NMI
  3024. * delivery faulted.
  3025. */
  3026. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3027. GUEST_INTR_STATE_NMI);
  3028. break;
  3029. case INTR_TYPE_SOFT_EXCEPTION:
  3030. vmx->vcpu.arch.event_exit_inst_len =
  3031. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3032. /* fall through */
  3033. case INTR_TYPE_HARD_EXCEPTION:
  3034. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3035. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3036. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3037. } else
  3038. kvm_queue_exception(&vmx->vcpu, vector);
  3039. break;
  3040. case INTR_TYPE_SOFT_INTR:
  3041. vmx->vcpu.arch.event_exit_inst_len =
  3042. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3043. /* fall through */
  3044. case INTR_TYPE_EXT_INTR:
  3045. kvm_queue_interrupt(&vmx->vcpu, vector,
  3046. type == INTR_TYPE_SOFT_INTR);
  3047. break;
  3048. default:
  3049. break;
  3050. }
  3051. }
  3052. /*
  3053. * Failure to inject an interrupt should give us the information
  3054. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3055. * when fetching the interrupt redirection bitmap in the real-mode
  3056. * tss, this doesn't happen. So we do it ourselves.
  3057. */
  3058. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3059. {
  3060. vmx->rmode.irq.pending = 0;
  3061. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3062. return;
  3063. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3064. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3065. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3066. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3067. return;
  3068. }
  3069. vmx->idt_vectoring_info =
  3070. VECTORING_INFO_VALID_MASK
  3071. | INTR_TYPE_EXT_INTR
  3072. | vmx->rmode.irq.vector;
  3073. }
  3074. #ifdef CONFIG_X86_64
  3075. #define R "r"
  3076. #define Q "q"
  3077. #else
  3078. #define R "e"
  3079. #define Q "l"
  3080. #endif
  3081. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3082. {
  3083. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3084. if (enable_ept && is_paging(vcpu)) {
  3085. vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
  3086. ept_load_pdptrs(vcpu);
  3087. }
  3088. /* Record the guest's net vcpu time for enforced NMI injections. */
  3089. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3090. vmx->entry_time = ktime_get();
  3091. /* Handle invalid guest state instead of entering VMX */
  3092. if (vmx->emulation_required && emulate_invalid_guest_state) {
  3093. handle_invalid_guest_state(vcpu, kvm_run);
  3094. return;
  3095. }
  3096. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3097. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3098. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3099. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3100. /* When single-stepping over STI and MOV SS, we must clear the
  3101. * corresponding interruptibility bits in the guest state. Otherwise
  3102. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3103. * exceptions being set, but that's not correct for the guest debugging
  3104. * case. */
  3105. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3106. vmx_set_interrupt_shadow(vcpu, 0);
  3107. /*
  3108. * Loading guest fpu may have cleared host cr0.ts
  3109. */
  3110. vmcs_writel(HOST_CR0, read_cr0());
  3111. set_debugreg(vcpu->arch.dr6, 6);
  3112. asm(
  3113. /* Store host registers */
  3114. "push %%"R"dx; push %%"R"bp;"
  3115. "push %%"R"cx \n\t"
  3116. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3117. "je 1f \n\t"
  3118. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3119. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3120. "1: \n\t"
  3121. /* Check if vmlaunch of vmresume is needed */
  3122. "cmpl $0, %c[launched](%0) \n\t"
  3123. /* Load guest registers. Don't clobber flags. */
  3124. "mov %c[cr2](%0), %%"R"ax \n\t"
  3125. "mov %%"R"ax, %%cr2 \n\t"
  3126. "mov %c[rax](%0), %%"R"ax \n\t"
  3127. "mov %c[rbx](%0), %%"R"bx \n\t"
  3128. "mov %c[rdx](%0), %%"R"dx \n\t"
  3129. "mov %c[rsi](%0), %%"R"si \n\t"
  3130. "mov %c[rdi](%0), %%"R"di \n\t"
  3131. "mov %c[rbp](%0), %%"R"bp \n\t"
  3132. #ifdef CONFIG_X86_64
  3133. "mov %c[r8](%0), %%r8 \n\t"
  3134. "mov %c[r9](%0), %%r9 \n\t"
  3135. "mov %c[r10](%0), %%r10 \n\t"
  3136. "mov %c[r11](%0), %%r11 \n\t"
  3137. "mov %c[r12](%0), %%r12 \n\t"
  3138. "mov %c[r13](%0), %%r13 \n\t"
  3139. "mov %c[r14](%0), %%r14 \n\t"
  3140. "mov %c[r15](%0), %%r15 \n\t"
  3141. #endif
  3142. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3143. /* Enter guest mode */
  3144. "jne .Llaunched \n\t"
  3145. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3146. "jmp .Lkvm_vmx_return \n\t"
  3147. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3148. ".Lkvm_vmx_return: "
  3149. /* Save guest registers, load host registers, keep flags */
  3150. "xchg %0, (%%"R"sp) \n\t"
  3151. "mov %%"R"ax, %c[rax](%0) \n\t"
  3152. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3153. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3154. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3155. "mov %%"R"si, %c[rsi](%0) \n\t"
  3156. "mov %%"R"di, %c[rdi](%0) \n\t"
  3157. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3158. #ifdef CONFIG_X86_64
  3159. "mov %%r8, %c[r8](%0) \n\t"
  3160. "mov %%r9, %c[r9](%0) \n\t"
  3161. "mov %%r10, %c[r10](%0) \n\t"
  3162. "mov %%r11, %c[r11](%0) \n\t"
  3163. "mov %%r12, %c[r12](%0) \n\t"
  3164. "mov %%r13, %c[r13](%0) \n\t"
  3165. "mov %%r14, %c[r14](%0) \n\t"
  3166. "mov %%r15, %c[r15](%0) \n\t"
  3167. #endif
  3168. "mov %%cr2, %%"R"ax \n\t"
  3169. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3170. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3171. "setbe %c[fail](%0) \n\t"
  3172. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3173. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3174. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3175. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3176. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3177. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3178. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3179. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3180. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3181. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3182. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3183. #ifdef CONFIG_X86_64
  3184. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3185. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3186. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3187. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3188. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3189. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3190. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3191. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3192. #endif
  3193. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3194. : "cc", "memory"
  3195. , R"bx", R"di", R"si"
  3196. #ifdef CONFIG_X86_64
  3197. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3198. #endif
  3199. );
  3200. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3201. | (1 << VCPU_EXREG_PDPTR));
  3202. vcpu->arch.regs_dirty = 0;
  3203. get_debugreg(vcpu->arch.dr6, 6);
  3204. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3205. if (vmx->rmode.irq.pending)
  3206. fixup_rmode_irq(vmx);
  3207. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3208. vmx->launched = 1;
  3209. vmx_complete_interrupts(vmx);
  3210. }
  3211. #undef R
  3212. #undef Q
  3213. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3214. {
  3215. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3216. if (vmx->vmcs) {
  3217. vcpu_clear(vmx);
  3218. free_vmcs(vmx->vmcs);
  3219. vmx->vmcs = NULL;
  3220. }
  3221. }
  3222. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3223. {
  3224. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3225. spin_lock(&vmx_vpid_lock);
  3226. if (vmx->vpid != 0)
  3227. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3228. spin_unlock(&vmx_vpid_lock);
  3229. vmx_free_vmcs(vcpu);
  3230. kfree(vmx->host_msrs);
  3231. kfree(vmx->guest_msrs);
  3232. kvm_vcpu_uninit(vcpu);
  3233. kmem_cache_free(kvm_vcpu_cache, vmx);
  3234. }
  3235. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3236. {
  3237. int err;
  3238. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3239. int cpu;
  3240. if (!vmx)
  3241. return ERR_PTR(-ENOMEM);
  3242. allocate_vpid(vmx);
  3243. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3244. if (err)
  3245. goto free_vcpu;
  3246. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3247. if (!vmx->guest_msrs) {
  3248. err = -ENOMEM;
  3249. goto uninit_vcpu;
  3250. }
  3251. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3252. if (!vmx->host_msrs)
  3253. goto free_guest_msrs;
  3254. vmx->vmcs = alloc_vmcs();
  3255. if (!vmx->vmcs)
  3256. goto free_msrs;
  3257. vmcs_clear(vmx->vmcs);
  3258. cpu = get_cpu();
  3259. vmx_vcpu_load(&vmx->vcpu, cpu);
  3260. err = vmx_vcpu_setup(vmx);
  3261. vmx_vcpu_put(&vmx->vcpu);
  3262. put_cpu();
  3263. if (err)
  3264. goto free_vmcs;
  3265. if (vm_need_virtualize_apic_accesses(kvm))
  3266. if (alloc_apic_access_page(kvm) != 0)
  3267. goto free_vmcs;
  3268. if (enable_ept)
  3269. if (alloc_identity_pagetable(kvm) != 0)
  3270. goto free_vmcs;
  3271. return &vmx->vcpu;
  3272. free_vmcs:
  3273. free_vmcs(vmx->vmcs);
  3274. free_msrs:
  3275. kfree(vmx->host_msrs);
  3276. free_guest_msrs:
  3277. kfree(vmx->guest_msrs);
  3278. uninit_vcpu:
  3279. kvm_vcpu_uninit(&vmx->vcpu);
  3280. free_vcpu:
  3281. kmem_cache_free(kvm_vcpu_cache, vmx);
  3282. return ERR_PTR(err);
  3283. }
  3284. static void __init vmx_check_processor_compat(void *rtn)
  3285. {
  3286. struct vmcs_config vmcs_conf;
  3287. *(int *)rtn = 0;
  3288. if (setup_vmcs_config(&vmcs_conf) < 0)
  3289. *(int *)rtn = -EIO;
  3290. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3291. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3292. smp_processor_id());
  3293. *(int *)rtn = -EIO;
  3294. }
  3295. }
  3296. static int get_ept_level(void)
  3297. {
  3298. return VMX_EPT_DEFAULT_GAW + 1;
  3299. }
  3300. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3301. {
  3302. u64 ret;
  3303. /* For VT-d and EPT combination
  3304. * 1. MMIO: always map as UC
  3305. * 2. EPT with VT-d:
  3306. * a. VT-d without snooping control feature: can't guarantee the
  3307. * result, try to trust guest.
  3308. * b. VT-d with snooping control feature: snooping control feature of
  3309. * VT-d engine can guarantee the cache correctness. Just set it
  3310. * to WB to keep consistent with host. So the same as item 3.
  3311. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3312. * consistent with host MTRR
  3313. */
  3314. if (is_mmio)
  3315. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3316. else if (vcpu->kvm->arch.iommu_domain &&
  3317. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3318. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3319. VMX_EPT_MT_EPTE_SHIFT;
  3320. else
  3321. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3322. | VMX_EPT_IGMT_BIT;
  3323. return ret;
  3324. }
  3325. static struct kvm_x86_ops vmx_x86_ops = {
  3326. .cpu_has_kvm_support = cpu_has_kvm_support,
  3327. .disabled_by_bios = vmx_disabled_by_bios,
  3328. .hardware_setup = hardware_setup,
  3329. .hardware_unsetup = hardware_unsetup,
  3330. .check_processor_compatibility = vmx_check_processor_compat,
  3331. .hardware_enable = hardware_enable,
  3332. .hardware_disable = hardware_disable,
  3333. .cpu_has_accelerated_tpr = report_flexpriority,
  3334. .vcpu_create = vmx_create_vcpu,
  3335. .vcpu_free = vmx_free_vcpu,
  3336. .vcpu_reset = vmx_vcpu_reset,
  3337. .prepare_guest_switch = vmx_save_host_state,
  3338. .vcpu_load = vmx_vcpu_load,
  3339. .vcpu_put = vmx_vcpu_put,
  3340. .set_guest_debug = set_guest_debug,
  3341. .get_msr = vmx_get_msr,
  3342. .set_msr = vmx_set_msr,
  3343. .get_segment_base = vmx_get_segment_base,
  3344. .get_segment = vmx_get_segment,
  3345. .set_segment = vmx_set_segment,
  3346. .get_cpl = vmx_get_cpl,
  3347. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3348. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3349. .set_cr0 = vmx_set_cr0,
  3350. .set_cr3 = vmx_set_cr3,
  3351. .set_cr4 = vmx_set_cr4,
  3352. .set_efer = vmx_set_efer,
  3353. .get_idt = vmx_get_idt,
  3354. .set_idt = vmx_set_idt,
  3355. .get_gdt = vmx_get_gdt,
  3356. .set_gdt = vmx_set_gdt,
  3357. .cache_reg = vmx_cache_reg,
  3358. .get_rflags = vmx_get_rflags,
  3359. .set_rflags = vmx_set_rflags,
  3360. .tlb_flush = vmx_flush_tlb,
  3361. .run = vmx_vcpu_run,
  3362. .handle_exit = vmx_handle_exit,
  3363. .skip_emulated_instruction = skip_emulated_instruction,
  3364. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3365. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3366. .patch_hypercall = vmx_patch_hypercall,
  3367. .set_irq = vmx_inject_irq,
  3368. .set_nmi = vmx_inject_nmi,
  3369. .queue_exception = vmx_queue_exception,
  3370. .interrupt_allowed = vmx_interrupt_allowed,
  3371. .nmi_allowed = vmx_nmi_allowed,
  3372. .enable_nmi_window = enable_nmi_window,
  3373. .enable_irq_window = enable_irq_window,
  3374. .update_cr8_intercept = update_cr8_intercept,
  3375. .set_tss_addr = vmx_set_tss_addr,
  3376. .get_tdp_level = get_ept_level,
  3377. .get_mt_mask = vmx_get_mt_mask,
  3378. };
  3379. static int __init vmx_init(void)
  3380. {
  3381. int r;
  3382. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3383. if (!vmx_io_bitmap_a)
  3384. return -ENOMEM;
  3385. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3386. if (!vmx_io_bitmap_b) {
  3387. r = -ENOMEM;
  3388. goto out;
  3389. }
  3390. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3391. if (!vmx_msr_bitmap_legacy) {
  3392. r = -ENOMEM;
  3393. goto out1;
  3394. }
  3395. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3396. if (!vmx_msr_bitmap_longmode) {
  3397. r = -ENOMEM;
  3398. goto out2;
  3399. }
  3400. /*
  3401. * Allow direct access to the PC debug port (it is often used for I/O
  3402. * delays, but the vmexits simply slow things down).
  3403. */
  3404. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3405. clear_bit(0x80, vmx_io_bitmap_a);
  3406. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3407. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3408. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3409. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3410. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3411. if (r)
  3412. goto out3;
  3413. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3414. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3415. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3416. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3417. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3418. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3419. if (enable_ept) {
  3420. bypass_guest_pf = 0;
  3421. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3422. VMX_EPT_WRITABLE_MASK);
  3423. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3424. VMX_EPT_EXECUTABLE_MASK);
  3425. kvm_enable_tdp();
  3426. } else
  3427. kvm_disable_tdp();
  3428. if (bypass_guest_pf)
  3429. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3430. ept_sync_global();
  3431. return 0;
  3432. out3:
  3433. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3434. out2:
  3435. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3436. out1:
  3437. free_page((unsigned long)vmx_io_bitmap_b);
  3438. out:
  3439. free_page((unsigned long)vmx_io_bitmap_a);
  3440. return r;
  3441. }
  3442. static void __exit vmx_exit(void)
  3443. {
  3444. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3445. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3446. free_page((unsigned long)vmx_io_bitmap_b);
  3447. free_page((unsigned long)vmx_io_bitmap_a);
  3448. kvm_exit();
  3449. }
  3450. module_init(vmx_init)
  3451. module_exit(vmx_exit)