ktime.h 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. /*
  2. * include/linux/ktime.h
  3. *
  4. * ktime_t - nanosecond-resolution time format.
  5. *
  6. * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
  7. * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
  8. *
  9. * data type definitions, declarations, prototypes and macros.
  10. *
  11. * Started by: Thomas Gleixner and Ingo Molnar
  12. *
  13. * Credits:
  14. *
  15. * Roman Zippel provided the ideas and primary code snippets of
  16. * the ktime_t union and further simplifications of the original
  17. * code.
  18. *
  19. * For licencing details see kernel-base/COPYING
  20. */
  21. #ifndef _LINUX_KTIME_H
  22. #define _LINUX_KTIME_H
  23. #include <linux/time.h>
  24. #include <linux/jiffies.h>
  25. /*
  26. * ktime_t:
  27. *
  28. * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
  29. * internal representation of time values in scalar nanoseconds. The
  30. * design plays out best on 64-bit CPUs, where most conversions are
  31. * NOPs and most arithmetic ktime_t operations are plain arithmetic
  32. * operations.
  33. *
  34. * On 32-bit CPUs an optimized representation of the timespec structure
  35. * is used to avoid expensive conversions from and to timespecs. The
  36. * endian-aware order of the tv struct members is choosen to allow
  37. * mathematical operations on the tv64 member of the union too, which
  38. * for certain operations produces better code.
  39. *
  40. * For architectures with efficient support for 64/32-bit conversions the
  41. * plain scalar nanosecond based representation can be selected by the
  42. * config switch CONFIG_KTIME_SCALAR.
  43. */
  44. typedef union {
  45. s64 tv64;
  46. #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
  47. struct {
  48. # ifdef __BIG_ENDIAN
  49. s32 sec, nsec;
  50. # else
  51. s32 nsec, sec;
  52. # endif
  53. } tv;
  54. #endif
  55. } ktime_t;
  56. #define KTIME_MAX ((s64)~((u64)1 << 63))
  57. #define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
  58. /*
  59. * ktime_t definitions when using the 64-bit scalar representation:
  60. */
  61. #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
  62. /**
  63. * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  64. * @secs: seconds to set
  65. * @nsecs: nanoseconds to set
  66. *
  67. * Return the ktime_t representation of the value
  68. */
  69. static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  70. {
  71. #if (BITS_PER_LONG == 64)
  72. if (unlikely(secs >= KTIME_SEC_MAX))
  73. return (ktime_t){ .tv64 = KTIME_MAX };
  74. #endif
  75. return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
  76. }
  77. /* Subtract two ktime_t variables. rem = lhs -rhs: */
  78. #define ktime_sub(lhs, rhs) \
  79. ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
  80. /* Add two ktime_t variables. res = lhs + rhs: */
  81. #define ktime_add(lhs, rhs) \
  82. ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
  83. /*
  84. * Add a ktime_t variable and a scalar nanosecond value.
  85. * res = kt + nsval:
  86. */
  87. #define ktime_add_ns(kt, nsval) \
  88. ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
  89. /* convert a timespec to ktime_t format: */
  90. static inline ktime_t timespec_to_ktime(struct timespec ts)
  91. {
  92. return ktime_set(ts.tv_sec, ts.tv_nsec);
  93. }
  94. /* convert a timeval to ktime_t format: */
  95. static inline ktime_t timeval_to_ktime(struct timeval tv)
  96. {
  97. return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
  98. }
  99. /* Map the ktime_t to timespec conversion to ns_to_timespec function */
  100. #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
  101. /* Map the ktime_t to timeval conversion to ns_to_timeval function */
  102. #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
  103. /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
  104. #define ktime_to_ns(kt) ((kt).tv64)
  105. #else
  106. /*
  107. * Helper macros/inlines to get the ktime_t math right in the timespec
  108. * representation. The macros are sometimes ugly - their actual use is
  109. * pretty okay-ish, given the circumstances. We do all this for
  110. * performance reasons. The pure scalar nsec_t based code was nice and
  111. * simple, but created too many 64-bit / 32-bit conversions and divisions.
  112. *
  113. * Be especially aware that negative values are represented in a way
  114. * that the tv.sec field is negative and the tv.nsec field is greater
  115. * or equal to zero but less than nanoseconds per second. This is the
  116. * same representation which is used by timespecs.
  117. *
  118. * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
  119. */
  120. /* Set a ktime_t variable to a value in sec/nsec representation: */
  121. static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  122. {
  123. return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
  124. }
  125. /**
  126. * ktime_sub - subtract two ktime_t variables
  127. * @lhs: minuend
  128. * @rhs: subtrahend
  129. *
  130. * Returns the remainder of the substraction
  131. */
  132. static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
  133. {
  134. ktime_t res;
  135. res.tv64 = lhs.tv64 - rhs.tv64;
  136. if (res.tv.nsec < 0)
  137. res.tv.nsec += NSEC_PER_SEC;
  138. return res;
  139. }
  140. /**
  141. * ktime_add - add two ktime_t variables
  142. * @add1: addend1
  143. * @add2: addend2
  144. *
  145. * Returns the sum of @add1 and @add2.
  146. */
  147. static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
  148. {
  149. ktime_t res;
  150. res.tv64 = add1.tv64 + add2.tv64;
  151. /*
  152. * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
  153. * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
  154. *
  155. * it's equivalent to:
  156. * tv.nsec -= NSEC_PER_SEC
  157. * tv.sec ++;
  158. */
  159. if (res.tv.nsec >= NSEC_PER_SEC)
  160. res.tv64 += (u32)-NSEC_PER_SEC;
  161. return res;
  162. }
  163. /**
  164. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  165. * @kt: addend
  166. * @nsec: the scalar nsec value to add
  167. *
  168. * Returns the sum of @kt and @nsec in ktime_t format
  169. */
  170. extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
  171. /**
  172. * timespec_to_ktime - convert a timespec to ktime_t format
  173. * @ts: the timespec variable to convert
  174. *
  175. * Returns a ktime_t variable with the converted timespec value
  176. */
  177. static inline ktime_t timespec_to_ktime(const struct timespec ts)
  178. {
  179. return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
  180. .nsec = (s32)ts.tv_nsec } };
  181. }
  182. /**
  183. * timeval_to_ktime - convert a timeval to ktime_t format
  184. * @tv: the timeval variable to convert
  185. *
  186. * Returns a ktime_t variable with the converted timeval value
  187. */
  188. static inline ktime_t timeval_to_ktime(const struct timeval tv)
  189. {
  190. return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
  191. .nsec = (s32)tv.tv_usec * 1000 } };
  192. }
  193. /**
  194. * ktime_to_timespec - convert a ktime_t variable to timespec format
  195. * @kt: the ktime_t variable to convert
  196. *
  197. * Returns the timespec representation of the ktime value
  198. */
  199. static inline struct timespec ktime_to_timespec(const ktime_t kt)
  200. {
  201. return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
  202. .tv_nsec = (long) kt.tv.nsec };
  203. }
  204. /**
  205. * ktime_to_timeval - convert a ktime_t variable to timeval format
  206. * @kt: the ktime_t variable to convert
  207. *
  208. * Returns the timeval representation of the ktime value
  209. */
  210. static inline struct timeval ktime_to_timeval(const ktime_t kt)
  211. {
  212. return (struct timeval) {
  213. .tv_sec = (time_t) kt.tv.sec,
  214. .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
  215. }
  216. /**
  217. * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
  218. * @kt: the ktime_t variable to convert
  219. *
  220. * Returns the scalar nanoseconds representation of @kt
  221. */
  222. static inline s64 ktime_to_ns(const ktime_t kt)
  223. {
  224. return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
  225. }
  226. #endif
  227. /*
  228. * The resolution of the clocks. The resolution value is returned in
  229. * the clock_getres() system call to give application programmers an
  230. * idea of the (in)accuracy of timers. Timer values are rounded up to
  231. * this resolution values.
  232. */
  233. #define KTIME_LOW_RES (ktime_t){ .tv64 = TICK_NSEC }
  234. /* Get the monotonic time in timespec format: */
  235. extern void ktime_get_ts(struct timespec *ts);
  236. /* Get the real (wall-) time in timespec format: */
  237. #define ktime_get_real_ts(ts) getnstimeofday(ts)
  238. #endif