tcp_memcontrol.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. #include <net/tcp.h>
  2. #include <net/tcp_memcontrol.h>
  3. #include <net/sock.h>
  4. #include <net/ip.h>
  5. #include <linux/nsproxy.h>
  6. #include <linux/memcontrol.h>
  7. #include <linux/module.h>
  8. static void memcg_tcp_enter_memory_pressure(struct sock *sk)
  9. {
  10. if (sk->sk_cgrp->memory_pressure)
  11. sk->sk_cgrp->memory_pressure = 1;
  12. }
  13. EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure);
  14. int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  15. {
  16. /*
  17. * The root cgroup does not use res_counters, but rather,
  18. * rely on the data already collected by the network
  19. * subsystem
  20. */
  21. struct res_counter *res_parent = NULL;
  22. struct cg_proto *cg_proto, *parent_cg;
  23. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  24. cg_proto = tcp_prot.proto_cgroup(memcg);
  25. if (!cg_proto)
  26. return 0;
  27. cg_proto->sysctl_mem[0] = sysctl_tcp_mem[0];
  28. cg_proto->sysctl_mem[1] = sysctl_tcp_mem[1];
  29. cg_proto->sysctl_mem[2] = sysctl_tcp_mem[2];
  30. cg_proto->memory_pressure = 0;
  31. cg_proto->memcg = memcg;
  32. parent_cg = tcp_prot.proto_cgroup(parent);
  33. if (parent_cg)
  34. res_parent = &parent_cg->memory_allocated;
  35. res_counter_init(&cg_proto->memory_allocated, res_parent);
  36. percpu_counter_init(&cg_proto->sockets_allocated, 0);
  37. return 0;
  38. }
  39. EXPORT_SYMBOL(tcp_init_cgroup);
  40. void tcp_destroy_cgroup(struct mem_cgroup *memcg)
  41. {
  42. struct cg_proto *cg_proto;
  43. cg_proto = tcp_prot.proto_cgroup(memcg);
  44. if (!cg_proto)
  45. return;
  46. percpu_counter_destroy(&cg_proto->sockets_allocated);
  47. }
  48. EXPORT_SYMBOL(tcp_destroy_cgroup);
  49. static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
  50. {
  51. struct cg_proto *cg_proto;
  52. u64 old_lim;
  53. int i;
  54. int ret;
  55. cg_proto = tcp_prot.proto_cgroup(memcg);
  56. if (!cg_proto)
  57. return -EINVAL;
  58. if (val > RES_COUNTER_MAX)
  59. val = RES_COUNTER_MAX;
  60. old_lim = res_counter_read_u64(&cg_proto->memory_allocated, RES_LIMIT);
  61. ret = res_counter_set_limit(&cg_proto->memory_allocated, val);
  62. if (ret)
  63. return ret;
  64. for (i = 0; i < 3; i++)
  65. cg_proto->sysctl_mem[i] = min_t(long, val >> PAGE_SHIFT,
  66. sysctl_tcp_mem[i]);
  67. if (val == RES_COUNTER_MAX)
  68. clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
  69. else if (val != RES_COUNTER_MAX) {
  70. /*
  71. * The active bit needs to be written after the static_key
  72. * update. This is what guarantees that the socket activation
  73. * function is the last one to run. See sock_update_memcg() for
  74. * details, and note that we don't mark any socket as belonging
  75. * to this memcg until that flag is up.
  76. *
  77. * We need to do this, because static_keys will span multiple
  78. * sites, but we can't control their order. If we mark a socket
  79. * as accounted, but the accounting functions are not patched in
  80. * yet, we'll lose accounting.
  81. *
  82. * We never race with the readers in sock_update_memcg(),
  83. * because when this value change, the code to process it is not
  84. * patched in yet.
  85. *
  86. * The activated bit is used to guarantee that no two writers
  87. * will do the update in the same memcg. Without that, we can't
  88. * properly shutdown the static key.
  89. */
  90. if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
  91. static_key_slow_inc(&memcg_socket_limit_enabled);
  92. set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
  93. }
  94. return 0;
  95. }
  96. static int tcp_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
  97. const char *buffer)
  98. {
  99. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  100. unsigned long long val;
  101. int ret = 0;
  102. switch (cft->private) {
  103. case RES_LIMIT:
  104. /* see memcontrol.c */
  105. ret = res_counter_memparse_write_strategy(buffer, &val);
  106. if (ret)
  107. break;
  108. ret = tcp_update_limit(memcg, val);
  109. break;
  110. default:
  111. ret = -EINVAL;
  112. break;
  113. }
  114. return ret;
  115. }
  116. static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
  117. {
  118. struct cg_proto *cg_proto;
  119. cg_proto = tcp_prot.proto_cgroup(memcg);
  120. if (!cg_proto)
  121. return default_val;
  122. return res_counter_read_u64(&cg_proto->memory_allocated, type);
  123. }
  124. static u64 tcp_read_usage(struct mem_cgroup *memcg)
  125. {
  126. struct cg_proto *cg_proto;
  127. cg_proto = tcp_prot.proto_cgroup(memcg);
  128. if (!cg_proto)
  129. return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
  130. return res_counter_read_u64(&cg_proto->memory_allocated, RES_USAGE);
  131. }
  132. static u64 tcp_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft)
  133. {
  134. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  135. u64 val;
  136. switch (cft->private) {
  137. case RES_LIMIT:
  138. val = tcp_read_stat(memcg, RES_LIMIT, RES_COUNTER_MAX);
  139. break;
  140. case RES_USAGE:
  141. val = tcp_read_usage(memcg);
  142. break;
  143. case RES_FAILCNT:
  144. case RES_MAX_USAGE:
  145. val = tcp_read_stat(memcg, cft->private, 0);
  146. break;
  147. default:
  148. BUG();
  149. }
  150. return val;
  151. }
  152. static int tcp_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
  153. {
  154. struct mem_cgroup *memcg;
  155. struct cg_proto *cg_proto;
  156. memcg = mem_cgroup_from_css(css);
  157. cg_proto = tcp_prot.proto_cgroup(memcg);
  158. if (!cg_proto)
  159. return 0;
  160. switch (event) {
  161. case RES_MAX_USAGE:
  162. res_counter_reset_max(&cg_proto->memory_allocated);
  163. break;
  164. case RES_FAILCNT:
  165. res_counter_reset_failcnt(&cg_proto->memory_allocated);
  166. break;
  167. }
  168. return 0;
  169. }
  170. static struct cftype tcp_files[] = {
  171. {
  172. .name = "kmem.tcp.limit_in_bytes",
  173. .write_string = tcp_cgroup_write,
  174. .read_u64 = tcp_cgroup_read,
  175. .private = RES_LIMIT,
  176. },
  177. {
  178. .name = "kmem.tcp.usage_in_bytes",
  179. .read_u64 = tcp_cgroup_read,
  180. .private = RES_USAGE,
  181. },
  182. {
  183. .name = "kmem.tcp.failcnt",
  184. .private = RES_FAILCNT,
  185. .trigger = tcp_cgroup_reset,
  186. .read_u64 = tcp_cgroup_read,
  187. },
  188. {
  189. .name = "kmem.tcp.max_usage_in_bytes",
  190. .private = RES_MAX_USAGE,
  191. .trigger = tcp_cgroup_reset,
  192. .read_u64 = tcp_cgroup_read,
  193. },
  194. { } /* terminate */
  195. };
  196. static int __init tcp_memcontrol_init(void)
  197. {
  198. WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
  199. return 0;
  200. }
  201. __initcall(tcp_memcontrol_init);