syncookies.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * Syncookies implementation for the Linux kernel
  3. *
  4. * Copyright (C) 1997 Andi Kleen
  5. * Based on ideas by D.J.Bernstein and Eric Schenk.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/tcp.h>
  13. #include <linux/slab.h>
  14. #include <linux/random.h>
  15. #include <linux/cryptohash.h>
  16. #include <linux/kernel.h>
  17. #include <linux/export.h>
  18. #include <net/tcp.h>
  19. #include <net/route.h>
  20. /* Timestamps: lowest bits store TCP options */
  21. #define TSBITS 6
  22. #define TSMASK (((__u32)1 << TSBITS) - 1)
  23. extern int sysctl_tcp_syncookies;
  24. static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
  25. #define COOKIEBITS 24 /* Upper bits store count */
  26. #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
  27. static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
  28. ipv4_cookie_scratch);
  29. static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
  30. u32 count, int c)
  31. {
  32. __u32 *tmp;
  33. net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
  34. tmp = __get_cpu_var(ipv4_cookie_scratch);
  35. memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
  36. tmp[0] = (__force u32)saddr;
  37. tmp[1] = (__force u32)daddr;
  38. tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
  39. tmp[3] = count;
  40. sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
  41. return tmp[17];
  42. }
  43. /*
  44. * when syncookies are in effect and tcp timestamps are enabled we encode
  45. * tcp options in the lower bits of the timestamp value that will be
  46. * sent in the syn-ack.
  47. * Since subsequent timestamps use the normal tcp_time_stamp value, we
  48. * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
  49. */
  50. __u32 cookie_init_timestamp(struct request_sock *req)
  51. {
  52. struct inet_request_sock *ireq;
  53. u32 ts, ts_now = tcp_time_stamp;
  54. u32 options = 0;
  55. ireq = inet_rsk(req);
  56. options = ireq->wscale_ok ? ireq->snd_wscale : 0xf;
  57. options |= ireq->sack_ok << 4;
  58. options |= ireq->ecn_ok << 5;
  59. ts = ts_now & ~TSMASK;
  60. ts |= options;
  61. if (ts > ts_now) {
  62. ts >>= TSBITS;
  63. ts--;
  64. ts <<= TSBITS;
  65. ts |= options;
  66. }
  67. return ts;
  68. }
  69. static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
  70. __be16 dport, __u32 sseq, __u32 data)
  71. {
  72. /*
  73. * Compute the secure sequence number.
  74. * The output should be:
  75. * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
  76. * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
  77. * Where sseq is their sequence number and count increases every
  78. * minute by 1.
  79. * As an extra hack, we add a small "data" value that encodes the
  80. * MSS into the second hash value.
  81. */
  82. u32 count = tcp_cookie_time();
  83. return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
  84. sseq + (count << COOKIEBITS) +
  85. ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
  86. & COOKIEMASK));
  87. }
  88. /*
  89. * This retrieves the small "data" value from the syncookie.
  90. * If the syncookie is bad, the data returned will be out of
  91. * range. This must be checked by the caller.
  92. *
  93. * The count value used to generate the cookie must be less than
  94. * MAX_SYNCOOKIE_AGE minutes in the past.
  95. * The return value (__u32)-1 if this test fails.
  96. */
  97. static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
  98. __be16 sport, __be16 dport, __u32 sseq)
  99. {
  100. u32 diff, count = tcp_cookie_time();
  101. /* Strip away the layers from the cookie */
  102. cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
  103. /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
  104. diff = (count - (cookie >> COOKIEBITS)) & ((__u32) - 1 >> COOKIEBITS);
  105. if (diff >= MAX_SYNCOOKIE_AGE)
  106. return (__u32)-1;
  107. return (cookie -
  108. cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
  109. & COOKIEMASK; /* Leaving the data behind */
  110. }
  111. /*
  112. * MSS Values are chosen based on the 2011 paper
  113. * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
  114. * Values ..
  115. * .. lower than 536 are rare (< 0.2%)
  116. * .. between 537 and 1299 account for less than < 1.5% of observed values
  117. * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
  118. * .. exceeding 1460 are very rare (< 0.04%)
  119. *
  120. * 1460 is the single most frequently announced mss value (30 to 46% depending
  121. * on monitor location). Table must be sorted.
  122. */
  123. static __u16 const msstab[] = {
  124. 536,
  125. 1300,
  126. 1440, /* 1440, 1452: PPPoE */
  127. 1460,
  128. };
  129. /*
  130. * Generate a syncookie. mssp points to the mss, which is returned
  131. * rounded down to the value encoded in the cookie.
  132. */
  133. u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
  134. u16 *mssp)
  135. {
  136. int mssind;
  137. const __u16 mss = *mssp;
  138. for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
  139. if (mss >= msstab[mssind])
  140. break;
  141. *mssp = msstab[mssind];
  142. return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
  143. th->source, th->dest, ntohl(th->seq),
  144. mssind);
  145. }
  146. EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
  147. __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mssp)
  148. {
  149. const struct iphdr *iph = ip_hdr(skb);
  150. const struct tcphdr *th = tcp_hdr(skb);
  151. tcp_synq_overflow(sk);
  152. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
  153. return __cookie_v4_init_sequence(iph, th, mssp);
  154. }
  155. /*
  156. * Check if a ack sequence number is a valid syncookie.
  157. * Return the decoded mss if it is, or 0 if not.
  158. */
  159. int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
  160. u32 cookie)
  161. {
  162. __u32 seq = ntohl(th->seq) - 1;
  163. __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
  164. th->source, th->dest, seq);
  165. return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
  166. }
  167. EXPORT_SYMBOL_GPL(__cookie_v4_check);
  168. static inline struct sock *get_cookie_sock(struct sock *sk, struct sk_buff *skb,
  169. struct request_sock *req,
  170. struct dst_entry *dst)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. struct sock *child;
  174. child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst);
  175. if (child)
  176. inet_csk_reqsk_queue_add(sk, req, child);
  177. else
  178. reqsk_free(req);
  179. return child;
  180. }
  181. /*
  182. * when syncookies are in effect and tcp timestamps are enabled we stored
  183. * additional tcp options in the timestamp.
  184. * This extracts these options from the timestamp echo.
  185. *
  186. * The lowest 4 bits store snd_wscale.
  187. * next 2 bits indicate SACK and ECN support.
  188. *
  189. * return false if we decode an option that should not be.
  190. */
  191. bool cookie_check_timestamp(struct tcp_options_received *tcp_opt,
  192. struct net *net, bool *ecn_ok)
  193. {
  194. /* echoed timestamp, lowest bits contain options */
  195. u32 options = tcp_opt->rcv_tsecr & TSMASK;
  196. if (!tcp_opt->saw_tstamp) {
  197. tcp_clear_options(tcp_opt);
  198. return true;
  199. }
  200. if (!sysctl_tcp_timestamps)
  201. return false;
  202. tcp_opt->sack_ok = (options & (1 << 4)) ? TCP_SACK_SEEN : 0;
  203. *ecn_ok = (options >> 5) & 1;
  204. if (*ecn_ok && !net->ipv4.sysctl_tcp_ecn)
  205. return false;
  206. if (tcp_opt->sack_ok && !sysctl_tcp_sack)
  207. return false;
  208. if ((options & 0xf) == 0xf)
  209. return true; /* no window scaling */
  210. tcp_opt->wscale_ok = 1;
  211. tcp_opt->snd_wscale = options & 0xf;
  212. return sysctl_tcp_window_scaling != 0;
  213. }
  214. EXPORT_SYMBOL(cookie_check_timestamp);
  215. struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
  216. struct ip_options *opt)
  217. {
  218. struct tcp_options_received tcp_opt;
  219. struct inet_request_sock *ireq;
  220. struct tcp_request_sock *treq;
  221. struct tcp_sock *tp = tcp_sk(sk);
  222. const struct tcphdr *th = tcp_hdr(skb);
  223. __u32 cookie = ntohl(th->ack_seq) - 1;
  224. struct sock *ret = sk;
  225. struct request_sock *req;
  226. int mss;
  227. struct rtable *rt;
  228. __u8 rcv_wscale;
  229. bool ecn_ok = false;
  230. struct flowi4 fl4;
  231. if (!sysctl_tcp_syncookies || !th->ack || th->rst)
  232. goto out;
  233. if (tcp_synq_no_recent_overflow(sk) ||
  234. (mss = __cookie_v4_check(ip_hdr(skb), th, cookie)) == 0) {
  235. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
  236. goto out;
  237. }
  238. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
  239. /* check for timestamp cookie support */
  240. memset(&tcp_opt, 0, sizeof(tcp_opt));
  241. tcp_parse_options(skb, &tcp_opt, 0, NULL);
  242. if (!cookie_check_timestamp(&tcp_opt, sock_net(sk), &ecn_ok))
  243. goto out;
  244. ret = NULL;
  245. req = inet_reqsk_alloc(&tcp_request_sock_ops); /* for safety */
  246. if (!req)
  247. goto out;
  248. ireq = inet_rsk(req);
  249. treq = tcp_rsk(req);
  250. treq->rcv_isn = ntohl(th->seq) - 1;
  251. treq->snt_isn = cookie;
  252. req->mss = mss;
  253. ireq->ir_num = ntohs(th->dest);
  254. ireq->ir_rmt_port = th->source;
  255. ireq->ir_loc_addr = ip_hdr(skb)->daddr;
  256. ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
  257. ireq->ecn_ok = ecn_ok;
  258. ireq->snd_wscale = tcp_opt.snd_wscale;
  259. ireq->sack_ok = tcp_opt.sack_ok;
  260. ireq->wscale_ok = tcp_opt.wscale_ok;
  261. ireq->tstamp_ok = tcp_opt.saw_tstamp;
  262. req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
  263. treq->snt_synack = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsecr : 0;
  264. treq->listener = NULL;
  265. /* We throwed the options of the initial SYN away, so we hope
  266. * the ACK carries the same options again (see RFC1122 4.2.3.8)
  267. */
  268. if (opt && opt->optlen) {
  269. int opt_size = sizeof(struct ip_options_rcu) + opt->optlen;
  270. ireq->opt = kmalloc(opt_size, GFP_ATOMIC);
  271. if (ireq->opt != NULL && ip_options_echo(&ireq->opt->opt, skb)) {
  272. kfree(ireq->opt);
  273. ireq->opt = NULL;
  274. }
  275. }
  276. if (security_inet_conn_request(sk, skb, req)) {
  277. reqsk_free(req);
  278. goto out;
  279. }
  280. req->expires = 0UL;
  281. req->num_retrans = 0;
  282. /*
  283. * We need to lookup the route here to get at the correct
  284. * window size. We should better make sure that the window size
  285. * hasn't changed since we received the original syn, but I see
  286. * no easy way to do this.
  287. */
  288. flowi4_init_output(&fl4, sk->sk_bound_dev_if, sk->sk_mark,
  289. RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
  290. inet_sk_flowi_flags(sk),
  291. (opt && opt->srr) ? opt->faddr : ireq->ir_rmt_addr,
  292. ireq->ir_loc_addr, th->source, th->dest);
  293. security_req_classify_flow(req, flowi4_to_flowi(&fl4));
  294. rt = ip_route_output_key(sock_net(sk), &fl4);
  295. if (IS_ERR(rt)) {
  296. reqsk_free(req);
  297. goto out;
  298. }
  299. /* Try to redo what tcp_v4_send_synack did. */
  300. req->window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
  301. tcp_select_initial_window(tcp_full_space(sk), req->mss,
  302. &req->rcv_wnd, &req->window_clamp,
  303. ireq->wscale_ok, &rcv_wscale,
  304. dst_metric(&rt->dst, RTAX_INITRWND));
  305. ireq->rcv_wscale = rcv_wscale;
  306. ret = get_cookie_sock(sk, skb, req, &rt->dst);
  307. /* ip_queue_xmit() depends on our flow being setup
  308. * Normal sockets get it right from inet_csk_route_child_sock()
  309. */
  310. if (ret)
  311. inet_sk(ret)->cork.fl.u.ip4 = fl4;
  312. out: return ret;
  313. }