slub.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in use.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Set of flags that will prevent slab merging
  160. */
  161. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  162. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  163. SLAB_FAILSLAB)
  164. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  165. SLAB_CACHE_DMA | SLAB_NOTRACK)
  166. #define OO_SHIFT 16
  167. #define OO_MASK ((1 << OO_SHIFT) - 1)
  168. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  169. /* Internal SLUB flags */
  170. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  171. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  172. #ifdef CONFIG_SMP
  173. static struct notifier_block slab_notifier;
  174. #endif
  175. /*
  176. * Tracking user of a slab.
  177. */
  178. #define TRACK_ADDRS_COUNT 16
  179. struct track {
  180. unsigned long addr; /* Called from address */
  181. #ifdef CONFIG_STACKTRACE
  182. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. enum track_item { TRACK_ALLOC, TRACK_FREE };
  189. #ifdef CONFIG_SYSFS
  190. static int sysfs_slab_add(struct kmem_cache *);
  191. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  192. static void sysfs_slab_remove(struct kmem_cache *);
  193. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  194. #else
  195. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  196. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  197. { return 0; }
  198. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  199. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  200. #endif
  201. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  202. {
  203. #ifdef CONFIG_SLUB_STATS
  204. __this_cpu_inc(s->cpu_slab->stat[si]);
  205. #endif
  206. }
  207. /********************************************************************
  208. * Core slab cache functions
  209. *******************************************************************/
  210. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  211. {
  212. return s->node[node];
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  233. {
  234. prefetch(object + s->offset);
  235. }
  236. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  237. {
  238. void *p;
  239. #ifdef CONFIG_DEBUG_PAGEALLOC
  240. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  241. #else
  242. p = get_freepointer(s, object);
  243. #endif
  244. return p;
  245. }
  246. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  247. {
  248. *(void **)(object + s->offset) = fp;
  249. }
  250. /* Loop over all objects in a slab */
  251. #define for_each_object(__p, __s, __addr, __objects) \
  252. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  253. __p += (__s)->size)
  254. /* Determine object index from a given position */
  255. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  256. {
  257. return (p - addr) / s->size;
  258. }
  259. static inline size_t slab_ksize(const struct kmem_cache *s)
  260. {
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debugging requires use of the padding between object
  264. * and whatever may come after it.
  265. */
  266. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  267. return s->object_size;
  268. #endif
  269. /*
  270. * If we have the need to store the freelist pointer
  271. * back there or track user information then we can
  272. * only use the space before that information.
  273. */
  274. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  275. return s->inuse;
  276. /*
  277. * Else we can use all the padding etc for the allocation
  278. */
  279. return s->size;
  280. }
  281. static inline int order_objects(int order, unsigned long size, int reserved)
  282. {
  283. return ((PAGE_SIZE << order) - reserved) / size;
  284. }
  285. static inline struct kmem_cache_order_objects oo_make(int order,
  286. unsigned long size, int reserved)
  287. {
  288. struct kmem_cache_order_objects x = {
  289. (order << OO_SHIFT) + order_objects(order, size, reserved)
  290. };
  291. return x;
  292. }
  293. static inline int oo_order(struct kmem_cache_order_objects x)
  294. {
  295. return x.x >> OO_SHIFT;
  296. }
  297. static inline int oo_objects(struct kmem_cache_order_objects x)
  298. {
  299. return x.x & OO_MASK;
  300. }
  301. /*
  302. * Per slab locking using the pagelock
  303. */
  304. static __always_inline void slab_lock(struct page *page)
  305. {
  306. bit_spin_lock(PG_locked, &page->flags);
  307. }
  308. static __always_inline void slab_unlock(struct page *page)
  309. {
  310. __bit_spin_unlock(PG_locked, &page->flags);
  311. }
  312. /* Interrupts must be disabled (for the fallback code to work right) */
  313. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  314. void *freelist_old, unsigned long counters_old,
  315. void *freelist_new, unsigned long counters_new,
  316. const char *n)
  317. {
  318. VM_BUG_ON(!irqs_disabled());
  319. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  320. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist, &page->counters,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old &&
  331. page->counters == counters_old) {
  332. page->freelist = freelist_new;
  333. page->counters = counters_new;
  334. slab_unlock(page);
  335. return 1;
  336. }
  337. slab_unlock(page);
  338. }
  339. cpu_relax();
  340. stat(s, CMPXCHG_DOUBLE_FAIL);
  341. #ifdef SLUB_DEBUG_CMPXCHG
  342. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  343. #endif
  344. return 0;
  345. }
  346. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  347. void *freelist_old, unsigned long counters_old,
  348. void *freelist_new, unsigned long counters_new,
  349. const char *n)
  350. {
  351. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  352. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  353. if (s->flags & __CMPXCHG_DOUBLE) {
  354. if (cmpxchg_double(&page->freelist, &page->counters,
  355. freelist_old, counters_old,
  356. freelist_new, counters_new))
  357. return 1;
  358. } else
  359. #endif
  360. {
  361. unsigned long flags;
  362. local_irq_save(flags);
  363. slab_lock(page);
  364. if (page->freelist == freelist_old &&
  365. page->counters == counters_old) {
  366. page->freelist = freelist_new;
  367. page->counters = counters_new;
  368. slab_unlock(page);
  369. local_irq_restore(flags);
  370. return 1;
  371. }
  372. slab_unlock(page);
  373. local_irq_restore(flags);
  374. }
  375. cpu_relax();
  376. stat(s, CMPXCHG_DOUBLE_FAIL);
  377. #ifdef SLUB_DEBUG_CMPXCHG
  378. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  379. #endif
  380. return 0;
  381. }
  382. #ifdef CONFIG_SLUB_DEBUG
  383. /*
  384. * Determine a map of object in use on a page.
  385. *
  386. * Node listlock must be held to guarantee that the page does
  387. * not vanish from under us.
  388. */
  389. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  390. {
  391. void *p;
  392. void *addr = page_address(page);
  393. for (p = page->freelist; p; p = get_freepointer(s, p))
  394. set_bit(slab_index(p, s, addr), map);
  395. }
  396. /*
  397. * Debug settings:
  398. */
  399. #ifdef CONFIG_SLUB_DEBUG_ON
  400. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  401. #else
  402. static int slub_debug;
  403. #endif
  404. static char *slub_debug_slabs;
  405. static int disable_higher_order_debug;
  406. /*
  407. * Object debugging
  408. */
  409. static void print_section(char *text, u8 *addr, unsigned int length)
  410. {
  411. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  412. length, 1);
  413. }
  414. static struct track *get_track(struct kmem_cache *s, void *object,
  415. enum track_item alloc)
  416. {
  417. struct track *p;
  418. if (s->offset)
  419. p = object + s->offset + sizeof(void *);
  420. else
  421. p = object + s->inuse;
  422. return p + alloc;
  423. }
  424. static void set_track(struct kmem_cache *s, void *object,
  425. enum track_item alloc, unsigned long addr)
  426. {
  427. struct track *p = get_track(s, object, alloc);
  428. if (addr) {
  429. #ifdef CONFIG_STACKTRACE
  430. struct stack_trace trace;
  431. int i;
  432. trace.nr_entries = 0;
  433. trace.max_entries = TRACK_ADDRS_COUNT;
  434. trace.entries = p->addrs;
  435. trace.skip = 3;
  436. save_stack_trace(&trace);
  437. /* See rant in lockdep.c */
  438. if (trace.nr_entries != 0 &&
  439. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  440. trace.nr_entries--;
  441. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  442. p->addrs[i] = 0;
  443. #endif
  444. p->addr = addr;
  445. p->cpu = smp_processor_id();
  446. p->pid = current->pid;
  447. p->when = jiffies;
  448. } else
  449. memset(p, 0, sizeof(struct track));
  450. }
  451. static void init_tracking(struct kmem_cache *s, void *object)
  452. {
  453. if (!(s->flags & SLAB_STORE_USER))
  454. return;
  455. set_track(s, object, TRACK_FREE, 0UL);
  456. set_track(s, object, TRACK_ALLOC, 0UL);
  457. }
  458. static void print_track(const char *s, struct track *t)
  459. {
  460. if (!t->addr)
  461. return;
  462. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  463. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  464. #ifdef CONFIG_STACKTRACE
  465. {
  466. int i;
  467. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  468. if (t->addrs[i])
  469. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  470. else
  471. break;
  472. }
  473. #endif
  474. }
  475. static void print_tracking(struct kmem_cache *s, void *object)
  476. {
  477. if (!(s->flags & SLAB_STORE_USER))
  478. return;
  479. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  480. print_track("Freed", get_track(s, object, TRACK_FREE));
  481. }
  482. static void print_page_info(struct page *page)
  483. {
  484. printk(KERN_ERR
  485. "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  486. page, page->objects, page->inuse, page->freelist, page->flags);
  487. }
  488. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  489. {
  490. va_list args;
  491. char buf[100];
  492. va_start(args, fmt);
  493. vsnprintf(buf, sizeof(buf), fmt, args);
  494. va_end(args);
  495. printk(KERN_ERR "========================================"
  496. "=====================================\n");
  497. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  498. printk(KERN_ERR "----------------------------------------"
  499. "-------------------------------------\n\n");
  500. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  501. }
  502. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  503. {
  504. va_list args;
  505. char buf[100];
  506. va_start(args, fmt);
  507. vsnprintf(buf, sizeof(buf), fmt, args);
  508. va_end(args);
  509. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  510. }
  511. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  512. {
  513. unsigned int off; /* Offset of last byte */
  514. u8 *addr = page_address(page);
  515. print_tracking(s, p);
  516. print_page_info(page);
  517. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  518. p, p - addr, get_freepointer(s, p));
  519. if (p > addr + 16)
  520. print_section("Bytes b4 ", p - 16, 16);
  521. print_section("Object ", p, min_t(unsigned long, s->object_size,
  522. PAGE_SIZE));
  523. if (s->flags & SLAB_RED_ZONE)
  524. print_section("Redzone ", p + s->object_size,
  525. s->inuse - s->object_size);
  526. if (s->offset)
  527. off = s->offset + sizeof(void *);
  528. else
  529. off = s->inuse;
  530. if (s->flags & SLAB_STORE_USER)
  531. off += 2 * sizeof(struct track);
  532. if (off != s->size)
  533. /* Beginning of the filler is the free pointer */
  534. print_section("Padding ", p + off, s->size - off);
  535. dump_stack();
  536. }
  537. static void object_err(struct kmem_cache *s, struct page *page,
  538. u8 *object, char *reason)
  539. {
  540. slab_bug(s, "%s", reason);
  541. print_trailer(s, page, object);
  542. }
  543. static void slab_err(struct kmem_cache *s, struct page *page,
  544. const char *fmt, ...)
  545. {
  546. va_list args;
  547. char buf[100];
  548. va_start(args, fmt);
  549. vsnprintf(buf, sizeof(buf), fmt, args);
  550. va_end(args);
  551. slab_bug(s, "%s", buf);
  552. print_page_info(page);
  553. dump_stack();
  554. }
  555. static void init_object(struct kmem_cache *s, void *object, u8 val)
  556. {
  557. u8 *p = object;
  558. if (s->flags & __OBJECT_POISON) {
  559. memset(p, POISON_FREE, s->object_size - 1);
  560. p[s->object_size - 1] = POISON_END;
  561. }
  562. if (s->flags & SLAB_RED_ZONE)
  563. memset(p + s->object_size, val, s->inuse - s->object_size);
  564. }
  565. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  566. void *from, void *to)
  567. {
  568. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  569. memset(from, data, to - from);
  570. }
  571. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  572. u8 *object, char *what,
  573. u8 *start, unsigned int value, unsigned int bytes)
  574. {
  575. u8 *fault;
  576. u8 *end;
  577. fault = memchr_inv(start, value, bytes);
  578. if (!fault)
  579. return 1;
  580. end = start + bytes;
  581. while (end > fault && end[-1] == value)
  582. end--;
  583. slab_bug(s, "%s overwritten", what);
  584. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  585. fault, end - 1, fault[0], value);
  586. print_trailer(s, page, object);
  587. restore_bytes(s, what, value, fault, end);
  588. return 0;
  589. }
  590. /*
  591. * Object layout:
  592. *
  593. * object address
  594. * Bytes of the object to be managed.
  595. * If the freepointer may overlay the object then the free
  596. * pointer is the first word of the object.
  597. *
  598. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  599. * 0xa5 (POISON_END)
  600. *
  601. * object + s->object_size
  602. * Padding to reach word boundary. This is also used for Redzoning.
  603. * Padding is extended by another word if Redzoning is enabled and
  604. * object_size == inuse.
  605. *
  606. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  607. * 0xcc (RED_ACTIVE) for objects in use.
  608. *
  609. * object + s->inuse
  610. * Meta data starts here.
  611. *
  612. * A. Free pointer (if we cannot overwrite object on free)
  613. * B. Tracking data for SLAB_STORE_USER
  614. * C. Padding to reach required alignment boundary or at mininum
  615. * one word if debugging is on to be able to detect writes
  616. * before the word boundary.
  617. *
  618. * Padding is done using 0x5a (POISON_INUSE)
  619. *
  620. * object + s->size
  621. * Nothing is used beyond s->size.
  622. *
  623. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  624. * ignored. And therefore no slab options that rely on these boundaries
  625. * may be used with merged slabcaches.
  626. */
  627. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  628. {
  629. unsigned long off = s->inuse; /* The end of info */
  630. if (s->offset)
  631. /* Freepointer is placed after the object. */
  632. off += sizeof(void *);
  633. if (s->flags & SLAB_STORE_USER)
  634. /* We also have user information there */
  635. off += 2 * sizeof(struct track);
  636. if (s->size == off)
  637. return 1;
  638. return check_bytes_and_report(s, page, p, "Object padding",
  639. p + off, POISON_INUSE, s->size - off);
  640. }
  641. /* Check the pad bytes at the end of a slab page */
  642. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  643. {
  644. u8 *start;
  645. u8 *fault;
  646. u8 *end;
  647. int length;
  648. int remainder;
  649. if (!(s->flags & SLAB_POISON))
  650. return 1;
  651. start = page_address(page);
  652. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  653. end = start + length;
  654. remainder = length % s->size;
  655. if (!remainder)
  656. return 1;
  657. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  658. if (!fault)
  659. return 1;
  660. while (end > fault && end[-1] == POISON_INUSE)
  661. end--;
  662. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  663. print_section("Padding ", end - remainder, remainder);
  664. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  665. return 0;
  666. }
  667. static int check_object(struct kmem_cache *s, struct page *page,
  668. void *object, u8 val)
  669. {
  670. u8 *p = object;
  671. u8 *endobject = object + s->object_size;
  672. if (s->flags & SLAB_RED_ZONE) {
  673. if (!check_bytes_and_report(s, page, object, "Redzone",
  674. endobject, val, s->inuse - s->object_size))
  675. return 0;
  676. } else {
  677. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  678. check_bytes_and_report(s, page, p, "Alignment padding",
  679. endobject, POISON_INUSE,
  680. s->inuse - s->object_size);
  681. }
  682. }
  683. if (s->flags & SLAB_POISON) {
  684. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  685. (!check_bytes_and_report(s, page, p, "Poison", p,
  686. POISON_FREE, s->object_size - 1) ||
  687. !check_bytes_and_report(s, page, p, "Poison",
  688. p + s->object_size - 1, POISON_END, 1)))
  689. return 0;
  690. /*
  691. * check_pad_bytes cleans up on its own.
  692. */
  693. check_pad_bytes(s, page, p);
  694. }
  695. if (!s->offset && val == SLUB_RED_ACTIVE)
  696. /*
  697. * Object and freepointer overlap. Cannot check
  698. * freepointer while object is allocated.
  699. */
  700. return 1;
  701. /* Check free pointer validity */
  702. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  703. object_err(s, page, p, "Freepointer corrupt");
  704. /*
  705. * No choice but to zap it and thus lose the remainder
  706. * of the free objects in this slab. May cause
  707. * another error because the object count is now wrong.
  708. */
  709. set_freepointer(s, p, NULL);
  710. return 0;
  711. }
  712. return 1;
  713. }
  714. static int check_slab(struct kmem_cache *s, struct page *page)
  715. {
  716. int maxobj;
  717. VM_BUG_ON(!irqs_disabled());
  718. if (!PageSlab(page)) {
  719. slab_err(s, page, "Not a valid slab page");
  720. return 0;
  721. }
  722. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  723. if (page->objects > maxobj) {
  724. slab_err(s, page, "objects %u > max %u",
  725. s->name, page->objects, maxobj);
  726. return 0;
  727. }
  728. if (page->inuse > page->objects) {
  729. slab_err(s, page, "inuse %u > max %u",
  730. s->name, page->inuse, page->objects);
  731. return 0;
  732. }
  733. /* Slab_pad_check fixes things up after itself */
  734. slab_pad_check(s, page);
  735. return 1;
  736. }
  737. /*
  738. * Determine if a certain object on a page is on the freelist. Must hold the
  739. * slab lock to guarantee that the chains are in a consistent state.
  740. */
  741. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  742. {
  743. int nr = 0;
  744. void *fp;
  745. void *object = NULL;
  746. unsigned long max_objects;
  747. fp = page->freelist;
  748. while (fp && nr <= page->objects) {
  749. if (fp == search)
  750. return 1;
  751. if (!check_valid_pointer(s, page, fp)) {
  752. if (object) {
  753. object_err(s, page, object,
  754. "Freechain corrupt");
  755. set_freepointer(s, object, NULL);
  756. } else {
  757. slab_err(s, page, "Freepointer corrupt");
  758. page->freelist = NULL;
  759. page->inuse = page->objects;
  760. slab_fix(s, "Freelist cleared");
  761. return 0;
  762. }
  763. break;
  764. }
  765. object = fp;
  766. fp = get_freepointer(s, object);
  767. nr++;
  768. }
  769. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  770. if (max_objects > MAX_OBJS_PER_PAGE)
  771. max_objects = MAX_OBJS_PER_PAGE;
  772. if (page->objects != max_objects) {
  773. slab_err(s, page, "Wrong number of objects. Found %d but "
  774. "should be %d", page->objects, max_objects);
  775. page->objects = max_objects;
  776. slab_fix(s, "Number of objects adjusted.");
  777. }
  778. if (page->inuse != page->objects - nr) {
  779. slab_err(s, page, "Wrong object count. Counter is %d but "
  780. "counted were %d", page->inuse, page->objects - nr);
  781. page->inuse = page->objects - nr;
  782. slab_fix(s, "Object count adjusted.");
  783. }
  784. return search == NULL;
  785. }
  786. static void trace(struct kmem_cache *s, struct page *page, void *object,
  787. int alloc)
  788. {
  789. if (s->flags & SLAB_TRACE) {
  790. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  791. s->name,
  792. alloc ? "alloc" : "free",
  793. object, page->inuse,
  794. page->freelist);
  795. if (!alloc)
  796. print_section("Object ", (void *)object,
  797. s->object_size);
  798. dump_stack();
  799. }
  800. }
  801. /*
  802. * Hooks for other subsystems that check memory allocations. In a typical
  803. * production configuration these hooks all should produce no code at all.
  804. */
  805. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  806. {
  807. kmemleak_alloc(ptr, size, 1, flags);
  808. }
  809. static inline void kfree_hook(const void *x)
  810. {
  811. kmemleak_free(x);
  812. }
  813. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  814. {
  815. flags &= gfp_allowed_mask;
  816. lockdep_trace_alloc(flags);
  817. might_sleep_if(flags & __GFP_WAIT);
  818. return should_failslab(s->object_size, flags, s->flags);
  819. }
  820. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  821. gfp_t flags, void *object)
  822. {
  823. flags &= gfp_allowed_mask;
  824. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  825. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  826. }
  827. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  828. {
  829. kmemleak_free_recursive(x, s->flags);
  830. /*
  831. * Trouble is that we may no longer disable interrupts in the fast path
  832. * So in order to make the debug calls that expect irqs to be
  833. * disabled we need to disable interrupts temporarily.
  834. */
  835. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  836. {
  837. unsigned long flags;
  838. local_irq_save(flags);
  839. kmemcheck_slab_free(s, x, s->object_size);
  840. debug_check_no_locks_freed(x, s->object_size);
  841. local_irq_restore(flags);
  842. }
  843. #endif
  844. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  845. debug_check_no_obj_freed(x, s->object_size);
  846. }
  847. /*
  848. * Tracking of fully allocated slabs for debugging purposes.
  849. *
  850. * list_lock must be held.
  851. */
  852. static void add_full(struct kmem_cache *s,
  853. struct kmem_cache_node *n, struct page *page)
  854. {
  855. if (!(s->flags & SLAB_STORE_USER))
  856. return;
  857. list_add(&page->lru, &n->full);
  858. }
  859. /*
  860. * list_lock must be held.
  861. */
  862. static void remove_full(struct kmem_cache *s, struct page *page)
  863. {
  864. if (!(s->flags & SLAB_STORE_USER))
  865. return;
  866. list_del(&page->lru);
  867. }
  868. /* Tracking of the number of slabs for debugging purposes */
  869. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  870. {
  871. struct kmem_cache_node *n = get_node(s, node);
  872. return atomic_long_read(&n->nr_slabs);
  873. }
  874. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  875. {
  876. return atomic_long_read(&n->nr_slabs);
  877. }
  878. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  879. {
  880. struct kmem_cache_node *n = get_node(s, node);
  881. /*
  882. * May be called early in order to allocate a slab for the
  883. * kmem_cache_node structure. Solve the chicken-egg
  884. * dilemma by deferring the increment of the count during
  885. * bootstrap (see early_kmem_cache_node_alloc).
  886. */
  887. if (likely(n)) {
  888. atomic_long_inc(&n->nr_slabs);
  889. atomic_long_add(objects, &n->total_objects);
  890. }
  891. }
  892. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  893. {
  894. struct kmem_cache_node *n = get_node(s, node);
  895. atomic_long_dec(&n->nr_slabs);
  896. atomic_long_sub(objects, &n->total_objects);
  897. }
  898. /* Object debug checks for alloc/free paths */
  899. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  900. void *object)
  901. {
  902. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  903. return;
  904. init_object(s, object, SLUB_RED_INACTIVE);
  905. init_tracking(s, object);
  906. }
  907. static noinline int alloc_debug_processing(struct kmem_cache *s,
  908. struct page *page,
  909. void *object, unsigned long addr)
  910. {
  911. if (!check_slab(s, page))
  912. goto bad;
  913. if (!check_valid_pointer(s, page, object)) {
  914. object_err(s, page, object, "Freelist Pointer check fails");
  915. goto bad;
  916. }
  917. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  918. goto bad;
  919. /* Success perform special debug activities for allocs */
  920. if (s->flags & SLAB_STORE_USER)
  921. set_track(s, object, TRACK_ALLOC, addr);
  922. trace(s, page, object, 1);
  923. init_object(s, object, SLUB_RED_ACTIVE);
  924. return 1;
  925. bad:
  926. if (PageSlab(page)) {
  927. /*
  928. * If this is a slab page then lets do the best we can
  929. * to avoid issues in the future. Marking all objects
  930. * as used avoids touching the remaining objects.
  931. */
  932. slab_fix(s, "Marking all objects used");
  933. page->inuse = page->objects;
  934. page->freelist = NULL;
  935. }
  936. return 0;
  937. }
  938. static noinline struct kmem_cache_node *free_debug_processing(
  939. struct kmem_cache *s, struct page *page, void *object,
  940. unsigned long addr, unsigned long *flags)
  941. {
  942. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  943. spin_lock_irqsave(&n->list_lock, *flags);
  944. slab_lock(page);
  945. if (!check_slab(s, page))
  946. goto fail;
  947. if (!check_valid_pointer(s, page, object)) {
  948. slab_err(s, page, "Invalid object pointer 0x%p", object);
  949. goto fail;
  950. }
  951. if (on_freelist(s, page, object)) {
  952. object_err(s, page, object, "Object already free");
  953. goto fail;
  954. }
  955. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  956. goto out;
  957. if (unlikely(s != page->slab_cache)) {
  958. if (!PageSlab(page)) {
  959. slab_err(s, page, "Attempt to free object(0x%p) "
  960. "outside of slab", object);
  961. } else if (!page->slab_cache) {
  962. printk(KERN_ERR
  963. "SLUB <none>: no slab for object 0x%p.\n",
  964. object);
  965. dump_stack();
  966. } else
  967. object_err(s, page, object,
  968. "page slab pointer corrupt.");
  969. goto fail;
  970. }
  971. if (s->flags & SLAB_STORE_USER)
  972. set_track(s, object, TRACK_FREE, addr);
  973. trace(s, page, object, 0);
  974. init_object(s, object, SLUB_RED_INACTIVE);
  975. out:
  976. slab_unlock(page);
  977. /*
  978. * Keep node_lock to preserve integrity
  979. * until the object is actually freed
  980. */
  981. return n;
  982. fail:
  983. slab_unlock(page);
  984. spin_unlock_irqrestore(&n->list_lock, *flags);
  985. slab_fix(s, "Object at 0x%p not freed", object);
  986. return NULL;
  987. }
  988. static int __init setup_slub_debug(char *str)
  989. {
  990. slub_debug = DEBUG_DEFAULT_FLAGS;
  991. if (*str++ != '=' || !*str)
  992. /*
  993. * No options specified. Switch on full debugging.
  994. */
  995. goto out;
  996. if (*str == ',')
  997. /*
  998. * No options but restriction on slabs. This means full
  999. * debugging for slabs matching a pattern.
  1000. */
  1001. goto check_slabs;
  1002. if (tolower(*str) == 'o') {
  1003. /*
  1004. * Avoid enabling debugging on caches if its minimum order
  1005. * would increase as a result.
  1006. */
  1007. disable_higher_order_debug = 1;
  1008. goto out;
  1009. }
  1010. slub_debug = 0;
  1011. if (*str == '-')
  1012. /*
  1013. * Switch off all debugging measures.
  1014. */
  1015. goto out;
  1016. /*
  1017. * Determine which debug features should be switched on
  1018. */
  1019. for (; *str && *str != ','; str++) {
  1020. switch (tolower(*str)) {
  1021. case 'f':
  1022. slub_debug |= SLAB_DEBUG_FREE;
  1023. break;
  1024. case 'z':
  1025. slub_debug |= SLAB_RED_ZONE;
  1026. break;
  1027. case 'p':
  1028. slub_debug |= SLAB_POISON;
  1029. break;
  1030. case 'u':
  1031. slub_debug |= SLAB_STORE_USER;
  1032. break;
  1033. case 't':
  1034. slub_debug |= SLAB_TRACE;
  1035. break;
  1036. case 'a':
  1037. slub_debug |= SLAB_FAILSLAB;
  1038. break;
  1039. default:
  1040. printk(KERN_ERR "slub_debug option '%c' "
  1041. "unknown. skipped\n", *str);
  1042. }
  1043. }
  1044. check_slabs:
  1045. if (*str == ',')
  1046. slub_debug_slabs = str + 1;
  1047. out:
  1048. return 1;
  1049. }
  1050. __setup("slub_debug", setup_slub_debug);
  1051. static unsigned long kmem_cache_flags(unsigned long object_size,
  1052. unsigned long flags, const char *name,
  1053. void (*ctor)(void *))
  1054. {
  1055. /*
  1056. * Enable debugging if selected on the kernel commandline.
  1057. */
  1058. if (slub_debug && (!slub_debug_slabs || (name &&
  1059. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1060. flags |= slub_debug;
  1061. return flags;
  1062. }
  1063. #else
  1064. static inline void setup_object_debug(struct kmem_cache *s,
  1065. struct page *page, void *object) {}
  1066. static inline int alloc_debug_processing(struct kmem_cache *s,
  1067. struct page *page, void *object, unsigned long addr) { return 0; }
  1068. static inline struct kmem_cache_node *free_debug_processing(
  1069. struct kmem_cache *s, struct page *page, void *object,
  1070. unsigned long addr, unsigned long *flags) { return NULL; }
  1071. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1072. { return 1; }
  1073. static inline int check_object(struct kmem_cache *s, struct page *page,
  1074. void *object, u8 val) { return 1; }
  1075. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1076. struct page *page) {}
  1077. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1078. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1079. unsigned long flags, const char *name,
  1080. void (*ctor)(void *))
  1081. {
  1082. return flags;
  1083. }
  1084. #define slub_debug 0
  1085. #define disable_higher_order_debug 0
  1086. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1087. { return 0; }
  1088. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1089. { return 0; }
  1090. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1091. int objects) {}
  1092. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1093. int objects) {}
  1094. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1095. {
  1096. kmemleak_alloc(ptr, size, 1, flags);
  1097. }
  1098. static inline void kfree_hook(const void *x)
  1099. {
  1100. kmemleak_free(x);
  1101. }
  1102. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1103. { return 0; }
  1104. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1105. void *object)
  1106. {
  1107. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
  1108. flags & gfp_allowed_mask);
  1109. }
  1110. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1111. {
  1112. kmemleak_free_recursive(x, s->flags);
  1113. }
  1114. #endif /* CONFIG_SLUB_DEBUG */
  1115. /*
  1116. * Slab allocation and freeing
  1117. */
  1118. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1119. struct kmem_cache_order_objects oo)
  1120. {
  1121. int order = oo_order(oo);
  1122. flags |= __GFP_NOTRACK;
  1123. if (node == NUMA_NO_NODE)
  1124. return alloc_pages(flags, order);
  1125. else
  1126. return alloc_pages_exact_node(node, flags, order);
  1127. }
  1128. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1129. {
  1130. struct page *page;
  1131. struct kmem_cache_order_objects oo = s->oo;
  1132. gfp_t alloc_gfp;
  1133. flags &= gfp_allowed_mask;
  1134. if (flags & __GFP_WAIT)
  1135. local_irq_enable();
  1136. flags |= s->allocflags;
  1137. /*
  1138. * Let the initial higher-order allocation fail under memory pressure
  1139. * so we fall-back to the minimum order allocation.
  1140. */
  1141. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1142. page = alloc_slab_page(alloc_gfp, node, oo);
  1143. if (unlikely(!page)) {
  1144. oo = s->min;
  1145. /*
  1146. * Allocation may have failed due to fragmentation.
  1147. * Try a lower order alloc if possible
  1148. */
  1149. page = alloc_slab_page(flags, node, oo);
  1150. if (page)
  1151. stat(s, ORDER_FALLBACK);
  1152. }
  1153. if (kmemcheck_enabled && page
  1154. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1155. int pages = 1 << oo_order(oo);
  1156. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1157. /*
  1158. * Objects from caches that have a constructor don't get
  1159. * cleared when they're allocated, so we need to do it here.
  1160. */
  1161. if (s->ctor)
  1162. kmemcheck_mark_uninitialized_pages(page, pages);
  1163. else
  1164. kmemcheck_mark_unallocated_pages(page, pages);
  1165. }
  1166. if (flags & __GFP_WAIT)
  1167. local_irq_disable();
  1168. if (!page)
  1169. return NULL;
  1170. page->objects = oo_objects(oo);
  1171. mod_zone_page_state(page_zone(page),
  1172. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1173. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1174. 1 << oo_order(oo));
  1175. return page;
  1176. }
  1177. static void setup_object(struct kmem_cache *s, struct page *page,
  1178. void *object)
  1179. {
  1180. setup_object_debug(s, page, object);
  1181. if (unlikely(s->ctor))
  1182. s->ctor(object);
  1183. }
  1184. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1185. {
  1186. struct page *page;
  1187. void *start;
  1188. void *last;
  1189. void *p;
  1190. int order;
  1191. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1192. page = allocate_slab(s,
  1193. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1194. if (!page)
  1195. goto out;
  1196. order = compound_order(page);
  1197. inc_slabs_node(s, page_to_nid(page), page->objects);
  1198. memcg_bind_pages(s, order);
  1199. page->slab_cache = s;
  1200. __SetPageSlab(page);
  1201. if (page->pfmemalloc)
  1202. SetPageSlabPfmemalloc(page);
  1203. start = page_address(page);
  1204. if (unlikely(s->flags & SLAB_POISON))
  1205. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1206. last = start;
  1207. for_each_object(p, s, start, page->objects) {
  1208. setup_object(s, page, last);
  1209. set_freepointer(s, last, p);
  1210. last = p;
  1211. }
  1212. setup_object(s, page, last);
  1213. set_freepointer(s, last, NULL);
  1214. page->freelist = start;
  1215. page->inuse = page->objects;
  1216. page->frozen = 1;
  1217. out:
  1218. return page;
  1219. }
  1220. static void __free_slab(struct kmem_cache *s, struct page *page)
  1221. {
  1222. int order = compound_order(page);
  1223. int pages = 1 << order;
  1224. if (kmem_cache_debug(s)) {
  1225. void *p;
  1226. slab_pad_check(s, page);
  1227. for_each_object(p, s, page_address(page),
  1228. page->objects)
  1229. check_object(s, page, p, SLUB_RED_INACTIVE);
  1230. }
  1231. kmemcheck_free_shadow(page, compound_order(page));
  1232. mod_zone_page_state(page_zone(page),
  1233. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1234. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1235. -pages);
  1236. __ClearPageSlabPfmemalloc(page);
  1237. __ClearPageSlab(page);
  1238. memcg_release_pages(s, order);
  1239. page_mapcount_reset(page);
  1240. if (current->reclaim_state)
  1241. current->reclaim_state->reclaimed_slab += pages;
  1242. __free_memcg_kmem_pages(page, order);
  1243. }
  1244. #define need_reserve_slab_rcu \
  1245. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1246. static void rcu_free_slab(struct rcu_head *h)
  1247. {
  1248. struct page *page;
  1249. if (need_reserve_slab_rcu)
  1250. page = virt_to_head_page(h);
  1251. else
  1252. page = container_of((struct list_head *)h, struct page, lru);
  1253. __free_slab(page->slab_cache, page);
  1254. }
  1255. static void free_slab(struct kmem_cache *s, struct page *page)
  1256. {
  1257. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1258. struct rcu_head *head;
  1259. if (need_reserve_slab_rcu) {
  1260. int order = compound_order(page);
  1261. int offset = (PAGE_SIZE << order) - s->reserved;
  1262. VM_BUG_ON(s->reserved != sizeof(*head));
  1263. head = page_address(page) + offset;
  1264. } else {
  1265. /*
  1266. * RCU free overloads the RCU head over the LRU
  1267. */
  1268. head = (void *)&page->lru;
  1269. }
  1270. call_rcu(head, rcu_free_slab);
  1271. } else
  1272. __free_slab(s, page);
  1273. }
  1274. static void discard_slab(struct kmem_cache *s, struct page *page)
  1275. {
  1276. dec_slabs_node(s, page_to_nid(page), page->objects);
  1277. free_slab(s, page);
  1278. }
  1279. /*
  1280. * Management of partially allocated slabs.
  1281. *
  1282. * list_lock must be held.
  1283. */
  1284. static inline void add_partial(struct kmem_cache_node *n,
  1285. struct page *page, int tail)
  1286. {
  1287. n->nr_partial++;
  1288. if (tail == DEACTIVATE_TO_TAIL)
  1289. list_add_tail(&page->lru, &n->partial);
  1290. else
  1291. list_add(&page->lru, &n->partial);
  1292. }
  1293. /*
  1294. * list_lock must be held.
  1295. */
  1296. static inline void remove_partial(struct kmem_cache_node *n,
  1297. struct page *page)
  1298. {
  1299. list_del(&page->lru);
  1300. n->nr_partial--;
  1301. }
  1302. /*
  1303. * Remove slab from the partial list, freeze it and
  1304. * return the pointer to the freelist.
  1305. *
  1306. * Returns a list of objects or NULL if it fails.
  1307. *
  1308. * Must hold list_lock since we modify the partial list.
  1309. */
  1310. static inline void *acquire_slab(struct kmem_cache *s,
  1311. struct kmem_cache_node *n, struct page *page,
  1312. int mode, int *objects)
  1313. {
  1314. void *freelist;
  1315. unsigned long counters;
  1316. struct page new;
  1317. /*
  1318. * Zap the freelist and set the frozen bit.
  1319. * The old freelist is the list of objects for the
  1320. * per cpu allocation list.
  1321. */
  1322. freelist = page->freelist;
  1323. counters = page->counters;
  1324. new.counters = counters;
  1325. *objects = new.objects - new.inuse;
  1326. if (mode) {
  1327. new.inuse = page->objects;
  1328. new.freelist = NULL;
  1329. } else {
  1330. new.freelist = freelist;
  1331. }
  1332. VM_BUG_ON(new.frozen);
  1333. new.frozen = 1;
  1334. if (!__cmpxchg_double_slab(s, page,
  1335. freelist, counters,
  1336. new.freelist, new.counters,
  1337. "acquire_slab"))
  1338. return NULL;
  1339. remove_partial(n, page);
  1340. WARN_ON(!freelist);
  1341. return freelist;
  1342. }
  1343. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1344. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1345. /*
  1346. * Try to allocate a partial slab from a specific node.
  1347. */
  1348. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1349. struct kmem_cache_cpu *c, gfp_t flags)
  1350. {
  1351. struct page *page, *page2;
  1352. void *object = NULL;
  1353. int available = 0;
  1354. int objects;
  1355. /*
  1356. * Racy check. If we mistakenly see no partial slabs then we
  1357. * just allocate an empty slab. If we mistakenly try to get a
  1358. * partial slab and there is none available then get_partials()
  1359. * will return NULL.
  1360. */
  1361. if (!n || !n->nr_partial)
  1362. return NULL;
  1363. spin_lock(&n->list_lock);
  1364. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1365. void *t;
  1366. if (!pfmemalloc_match(page, flags))
  1367. continue;
  1368. t = acquire_slab(s, n, page, object == NULL, &objects);
  1369. if (!t)
  1370. break;
  1371. available += objects;
  1372. if (!object) {
  1373. c->page = page;
  1374. stat(s, ALLOC_FROM_PARTIAL);
  1375. object = t;
  1376. } else {
  1377. put_cpu_partial(s, page, 0);
  1378. stat(s, CPU_PARTIAL_NODE);
  1379. }
  1380. if (!kmem_cache_has_cpu_partial(s)
  1381. || available > s->cpu_partial / 2)
  1382. break;
  1383. }
  1384. spin_unlock(&n->list_lock);
  1385. return object;
  1386. }
  1387. /*
  1388. * Get a page from somewhere. Search in increasing NUMA distances.
  1389. */
  1390. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1391. struct kmem_cache_cpu *c)
  1392. {
  1393. #ifdef CONFIG_NUMA
  1394. struct zonelist *zonelist;
  1395. struct zoneref *z;
  1396. struct zone *zone;
  1397. enum zone_type high_zoneidx = gfp_zone(flags);
  1398. void *object;
  1399. unsigned int cpuset_mems_cookie;
  1400. /*
  1401. * The defrag ratio allows a configuration of the tradeoffs between
  1402. * inter node defragmentation and node local allocations. A lower
  1403. * defrag_ratio increases the tendency to do local allocations
  1404. * instead of attempting to obtain partial slabs from other nodes.
  1405. *
  1406. * If the defrag_ratio is set to 0 then kmalloc() always
  1407. * returns node local objects. If the ratio is higher then kmalloc()
  1408. * may return off node objects because partial slabs are obtained
  1409. * from other nodes and filled up.
  1410. *
  1411. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1412. * defrag_ratio = 1000) then every (well almost) allocation will
  1413. * first attempt to defrag slab caches on other nodes. This means
  1414. * scanning over all nodes to look for partial slabs which may be
  1415. * expensive if we do it every time we are trying to find a slab
  1416. * with available objects.
  1417. */
  1418. if (!s->remote_node_defrag_ratio ||
  1419. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1420. return NULL;
  1421. do {
  1422. cpuset_mems_cookie = get_mems_allowed();
  1423. zonelist = node_zonelist(slab_node(), flags);
  1424. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1425. struct kmem_cache_node *n;
  1426. n = get_node(s, zone_to_nid(zone));
  1427. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1428. n->nr_partial > s->min_partial) {
  1429. object = get_partial_node(s, n, c, flags);
  1430. if (object) {
  1431. /*
  1432. * Return the object even if
  1433. * put_mems_allowed indicated that
  1434. * the cpuset mems_allowed was
  1435. * updated in parallel. It's a
  1436. * harmless race between the alloc
  1437. * and the cpuset update.
  1438. */
  1439. put_mems_allowed(cpuset_mems_cookie);
  1440. return object;
  1441. }
  1442. }
  1443. }
  1444. } while (!put_mems_allowed(cpuset_mems_cookie));
  1445. #endif
  1446. return NULL;
  1447. }
  1448. /*
  1449. * Get a partial page, lock it and return it.
  1450. */
  1451. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1452. struct kmem_cache_cpu *c)
  1453. {
  1454. void *object;
  1455. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1456. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1457. if (object || node != NUMA_NO_NODE)
  1458. return object;
  1459. return get_any_partial(s, flags, c);
  1460. }
  1461. #ifdef CONFIG_PREEMPT
  1462. /*
  1463. * Calculate the next globally unique transaction for disambiguiation
  1464. * during cmpxchg. The transactions start with the cpu number and are then
  1465. * incremented by CONFIG_NR_CPUS.
  1466. */
  1467. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1468. #else
  1469. /*
  1470. * No preemption supported therefore also no need to check for
  1471. * different cpus.
  1472. */
  1473. #define TID_STEP 1
  1474. #endif
  1475. static inline unsigned long next_tid(unsigned long tid)
  1476. {
  1477. return tid + TID_STEP;
  1478. }
  1479. static inline unsigned int tid_to_cpu(unsigned long tid)
  1480. {
  1481. return tid % TID_STEP;
  1482. }
  1483. static inline unsigned long tid_to_event(unsigned long tid)
  1484. {
  1485. return tid / TID_STEP;
  1486. }
  1487. static inline unsigned int init_tid(int cpu)
  1488. {
  1489. return cpu;
  1490. }
  1491. static inline void note_cmpxchg_failure(const char *n,
  1492. const struct kmem_cache *s, unsigned long tid)
  1493. {
  1494. #ifdef SLUB_DEBUG_CMPXCHG
  1495. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1496. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1497. #ifdef CONFIG_PREEMPT
  1498. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1499. printk("due to cpu change %d -> %d\n",
  1500. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1501. else
  1502. #endif
  1503. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1504. printk("due to cpu running other code. Event %ld->%ld\n",
  1505. tid_to_event(tid), tid_to_event(actual_tid));
  1506. else
  1507. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1508. actual_tid, tid, next_tid(tid));
  1509. #endif
  1510. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1511. }
  1512. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1513. {
  1514. int cpu;
  1515. for_each_possible_cpu(cpu)
  1516. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1517. }
  1518. /*
  1519. * Remove the cpu slab
  1520. */
  1521. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1522. void *freelist)
  1523. {
  1524. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1525. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1526. int lock = 0;
  1527. enum slab_modes l = M_NONE, m = M_NONE;
  1528. void *nextfree;
  1529. int tail = DEACTIVATE_TO_HEAD;
  1530. struct page new;
  1531. struct page old;
  1532. if (page->freelist) {
  1533. stat(s, DEACTIVATE_REMOTE_FREES);
  1534. tail = DEACTIVATE_TO_TAIL;
  1535. }
  1536. /*
  1537. * Stage one: Free all available per cpu objects back
  1538. * to the page freelist while it is still frozen. Leave the
  1539. * last one.
  1540. *
  1541. * There is no need to take the list->lock because the page
  1542. * is still frozen.
  1543. */
  1544. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1545. void *prior;
  1546. unsigned long counters;
  1547. do {
  1548. prior = page->freelist;
  1549. counters = page->counters;
  1550. set_freepointer(s, freelist, prior);
  1551. new.counters = counters;
  1552. new.inuse--;
  1553. VM_BUG_ON(!new.frozen);
  1554. } while (!__cmpxchg_double_slab(s, page,
  1555. prior, counters,
  1556. freelist, new.counters,
  1557. "drain percpu freelist"));
  1558. freelist = nextfree;
  1559. }
  1560. /*
  1561. * Stage two: Ensure that the page is unfrozen while the
  1562. * list presence reflects the actual number of objects
  1563. * during unfreeze.
  1564. *
  1565. * We setup the list membership and then perform a cmpxchg
  1566. * with the count. If there is a mismatch then the page
  1567. * is not unfrozen but the page is on the wrong list.
  1568. *
  1569. * Then we restart the process which may have to remove
  1570. * the page from the list that we just put it on again
  1571. * because the number of objects in the slab may have
  1572. * changed.
  1573. */
  1574. redo:
  1575. old.freelist = page->freelist;
  1576. old.counters = page->counters;
  1577. VM_BUG_ON(!old.frozen);
  1578. /* Determine target state of the slab */
  1579. new.counters = old.counters;
  1580. if (freelist) {
  1581. new.inuse--;
  1582. set_freepointer(s, freelist, old.freelist);
  1583. new.freelist = freelist;
  1584. } else
  1585. new.freelist = old.freelist;
  1586. new.frozen = 0;
  1587. if (!new.inuse && n->nr_partial > s->min_partial)
  1588. m = M_FREE;
  1589. else if (new.freelist) {
  1590. m = M_PARTIAL;
  1591. if (!lock) {
  1592. lock = 1;
  1593. /*
  1594. * Taking the spinlock removes the possiblity
  1595. * that acquire_slab() will see a slab page that
  1596. * is frozen
  1597. */
  1598. spin_lock(&n->list_lock);
  1599. }
  1600. } else {
  1601. m = M_FULL;
  1602. if (kmem_cache_debug(s) && !lock) {
  1603. lock = 1;
  1604. /*
  1605. * This also ensures that the scanning of full
  1606. * slabs from diagnostic functions will not see
  1607. * any frozen slabs.
  1608. */
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. }
  1612. if (l != m) {
  1613. if (l == M_PARTIAL)
  1614. remove_partial(n, page);
  1615. else if (l == M_FULL)
  1616. remove_full(s, page);
  1617. if (m == M_PARTIAL) {
  1618. add_partial(n, page, tail);
  1619. stat(s, tail);
  1620. } else if (m == M_FULL) {
  1621. stat(s, DEACTIVATE_FULL);
  1622. add_full(s, n, page);
  1623. }
  1624. }
  1625. l = m;
  1626. if (!__cmpxchg_double_slab(s, page,
  1627. old.freelist, old.counters,
  1628. new.freelist, new.counters,
  1629. "unfreezing slab"))
  1630. goto redo;
  1631. if (lock)
  1632. spin_unlock(&n->list_lock);
  1633. if (m == M_FREE) {
  1634. stat(s, DEACTIVATE_EMPTY);
  1635. discard_slab(s, page);
  1636. stat(s, FREE_SLAB);
  1637. }
  1638. }
  1639. /*
  1640. * Unfreeze all the cpu partial slabs.
  1641. *
  1642. * This function must be called with interrupts disabled
  1643. * for the cpu using c (or some other guarantee must be there
  1644. * to guarantee no concurrent accesses).
  1645. */
  1646. static void unfreeze_partials(struct kmem_cache *s,
  1647. struct kmem_cache_cpu *c)
  1648. {
  1649. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1650. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1651. struct page *page, *discard_page = NULL;
  1652. while ((page = c->partial)) {
  1653. struct page new;
  1654. struct page old;
  1655. c->partial = page->next;
  1656. n2 = get_node(s, page_to_nid(page));
  1657. if (n != n2) {
  1658. if (n)
  1659. spin_unlock(&n->list_lock);
  1660. n = n2;
  1661. spin_lock(&n->list_lock);
  1662. }
  1663. do {
  1664. old.freelist = page->freelist;
  1665. old.counters = page->counters;
  1666. VM_BUG_ON(!old.frozen);
  1667. new.counters = old.counters;
  1668. new.freelist = old.freelist;
  1669. new.frozen = 0;
  1670. } while (!__cmpxchg_double_slab(s, page,
  1671. old.freelist, old.counters,
  1672. new.freelist, new.counters,
  1673. "unfreezing slab"));
  1674. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1675. page->next = discard_page;
  1676. discard_page = page;
  1677. } else {
  1678. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1679. stat(s, FREE_ADD_PARTIAL);
  1680. }
  1681. }
  1682. if (n)
  1683. spin_unlock(&n->list_lock);
  1684. while (discard_page) {
  1685. page = discard_page;
  1686. discard_page = discard_page->next;
  1687. stat(s, DEACTIVATE_EMPTY);
  1688. discard_slab(s, page);
  1689. stat(s, FREE_SLAB);
  1690. }
  1691. #endif
  1692. }
  1693. /*
  1694. * Put a page that was just frozen (in __slab_free) into a partial page
  1695. * slot if available. This is done without interrupts disabled and without
  1696. * preemption disabled. The cmpxchg is racy and may put the partial page
  1697. * onto a random cpus partial slot.
  1698. *
  1699. * If we did not find a slot then simply move all the partials to the
  1700. * per node partial list.
  1701. */
  1702. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1703. {
  1704. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1705. struct page *oldpage;
  1706. int pages;
  1707. int pobjects;
  1708. do {
  1709. pages = 0;
  1710. pobjects = 0;
  1711. oldpage = this_cpu_read(s->cpu_slab->partial);
  1712. if (oldpage) {
  1713. pobjects = oldpage->pobjects;
  1714. pages = oldpage->pages;
  1715. if (drain && pobjects > s->cpu_partial) {
  1716. unsigned long flags;
  1717. /*
  1718. * partial array is full. Move the existing
  1719. * set to the per node partial list.
  1720. */
  1721. local_irq_save(flags);
  1722. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1723. local_irq_restore(flags);
  1724. oldpage = NULL;
  1725. pobjects = 0;
  1726. pages = 0;
  1727. stat(s, CPU_PARTIAL_DRAIN);
  1728. }
  1729. }
  1730. pages++;
  1731. pobjects += page->objects - page->inuse;
  1732. page->pages = pages;
  1733. page->pobjects = pobjects;
  1734. page->next = oldpage;
  1735. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1736. != oldpage);
  1737. #endif
  1738. }
  1739. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1740. {
  1741. stat(s, CPUSLAB_FLUSH);
  1742. deactivate_slab(s, c->page, c->freelist);
  1743. c->tid = next_tid(c->tid);
  1744. c->page = NULL;
  1745. c->freelist = NULL;
  1746. }
  1747. /*
  1748. * Flush cpu slab.
  1749. *
  1750. * Called from IPI handler with interrupts disabled.
  1751. */
  1752. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1753. {
  1754. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1755. if (likely(c)) {
  1756. if (c->page)
  1757. flush_slab(s, c);
  1758. unfreeze_partials(s, c);
  1759. }
  1760. }
  1761. static void flush_cpu_slab(void *d)
  1762. {
  1763. struct kmem_cache *s = d;
  1764. __flush_cpu_slab(s, smp_processor_id());
  1765. }
  1766. static bool has_cpu_slab(int cpu, void *info)
  1767. {
  1768. struct kmem_cache *s = info;
  1769. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1770. return c->page || c->partial;
  1771. }
  1772. static void flush_all(struct kmem_cache *s)
  1773. {
  1774. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1775. }
  1776. /*
  1777. * Check if the objects in a per cpu structure fit numa
  1778. * locality expectations.
  1779. */
  1780. static inline int node_match(struct page *page, int node)
  1781. {
  1782. #ifdef CONFIG_NUMA
  1783. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1784. return 0;
  1785. #endif
  1786. return 1;
  1787. }
  1788. static int count_free(struct page *page)
  1789. {
  1790. return page->objects - page->inuse;
  1791. }
  1792. static unsigned long count_partial(struct kmem_cache_node *n,
  1793. int (*get_count)(struct page *))
  1794. {
  1795. unsigned long flags;
  1796. unsigned long x = 0;
  1797. struct page *page;
  1798. spin_lock_irqsave(&n->list_lock, flags);
  1799. list_for_each_entry(page, &n->partial, lru)
  1800. x += get_count(page);
  1801. spin_unlock_irqrestore(&n->list_lock, flags);
  1802. return x;
  1803. }
  1804. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1805. {
  1806. #ifdef CONFIG_SLUB_DEBUG
  1807. return atomic_long_read(&n->total_objects);
  1808. #else
  1809. return 0;
  1810. #endif
  1811. }
  1812. static noinline void
  1813. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1814. {
  1815. int node;
  1816. printk(KERN_WARNING
  1817. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1818. nid, gfpflags);
  1819. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1820. "default order: %d, min order: %d\n", s->name, s->object_size,
  1821. s->size, oo_order(s->oo), oo_order(s->min));
  1822. if (oo_order(s->min) > get_order(s->object_size))
  1823. printk(KERN_WARNING " %s debugging increased min order, use "
  1824. "slub_debug=O to disable.\n", s->name);
  1825. for_each_online_node(node) {
  1826. struct kmem_cache_node *n = get_node(s, node);
  1827. unsigned long nr_slabs;
  1828. unsigned long nr_objs;
  1829. unsigned long nr_free;
  1830. if (!n)
  1831. continue;
  1832. nr_free = count_partial(n, count_free);
  1833. nr_slabs = node_nr_slabs(n);
  1834. nr_objs = node_nr_objs(n);
  1835. printk(KERN_WARNING
  1836. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1837. node, nr_slabs, nr_objs, nr_free);
  1838. }
  1839. }
  1840. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1841. int node, struct kmem_cache_cpu **pc)
  1842. {
  1843. void *freelist;
  1844. struct kmem_cache_cpu *c = *pc;
  1845. struct page *page;
  1846. freelist = get_partial(s, flags, node, c);
  1847. if (freelist)
  1848. return freelist;
  1849. page = new_slab(s, flags, node);
  1850. if (page) {
  1851. c = __this_cpu_ptr(s->cpu_slab);
  1852. if (c->page)
  1853. flush_slab(s, c);
  1854. /*
  1855. * No other reference to the page yet so we can
  1856. * muck around with it freely without cmpxchg
  1857. */
  1858. freelist = page->freelist;
  1859. page->freelist = NULL;
  1860. stat(s, ALLOC_SLAB);
  1861. c->page = page;
  1862. *pc = c;
  1863. } else
  1864. freelist = NULL;
  1865. return freelist;
  1866. }
  1867. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1868. {
  1869. if (unlikely(PageSlabPfmemalloc(page)))
  1870. return gfp_pfmemalloc_allowed(gfpflags);
  1871. return true;
  1872. }
  1873. /*
  1874. * Check the page->freelist of a page and either transfer the freelist to the
  1875. * per cpu freelist or deactivate the page.
  1876. *
  1877. * The page is still frozen if the return value is not NULL.
  1878. *
  1879. * If this function returns NULL then the page has been unfrozen.
  1880. *
  1881. * This function must be called with interrupt disabled.
  1882. */
  1883. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1884. {
  1885. struct page new;
  1886. unsigned long counters;
  1887. void *freelist;
  1888. do {
  1889. freelist = page->freelist;
  1890. counters = page->counters;
  1891. new.counters = counters;
  1892. VM_BUG_ON(!new.frozen);
  1893. new.inuse = page->objects;
  1894. new.frozen = freelist != NULL;
  1895. } while (!__cmpxchg_double_slab(s, page,
  1896. freelist, counters,
  1897. NULL, new.counters,
  1898. "get_freelist"));
  1899. return freelist;
  1900. }
  1901. /*
  1902. * Slow path. The lockless freelist is empty or we need to perform
  1903. * debugging duties.
  1904. *
  1905. * Processing is still very fast if new objects have been freed to the
  1906. * regular freelist. In that case we simply take over the regular freelist
  1907. * as the lockless freelist and zap the regular freelist.
  1908. *
  1909. * If that is not working then we fall back to the partial lists. We take the
  1910. * first element of the freelist as the object to allocate now and move the
  1911. * rest of the freelist to the lockless freelist.
  1912. *
  1913. * And if we were unable to get a new slab from the partial slab lists then
  1914. * we need to allocate a new slab. This is the slowest path since it involves
  1915. * a call to the page allocator and the setup of a new slab.
  1916. */
  1917. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1918. unsigned long addr, struct kmem_cache_cpu *c)
  1919. {
  1920. void *freelist;
  1921. struct page *page;
  1922. unsigned long flags;
  1923. local_irq_save(flags);
  1924. #ifdef CONFIG_PREEMPT
  1925. /*
  1926. * We may have been preempted and rescheduled on a different
  1927. * cpu before disabling interrupts. Need to reload cpu area
  1928. * pointer.
  1929. */
  1930. c = this_cpu_ptr(s->cpu_slab);
  1931. #endif
  1932. page = c->page;
  1933. if (!page)
  1934. goto new_slab;
  1935. redo:
  1936. if (unlikely(!node_match(page, node))) {
  1937. stat(s, ALLOC_NODE_MISMATCH);
  1938. deactivate_slab(s, page, c->freelist);
  1939. c->page = NULL;
  1940. c->freelist = NULL;
  1941. goto new_slab;
  1942. }
  1943. /*
  1944. * By rights, we should be searching for a slab page that was
  1945. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1946. * information when the page leaves the per-cpu allocator
  1947. */
  1948. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1949. deactivate_slab(s, page, c->freelist);
  1950. c->page = NULL;
  1951. c->freelist = NULL;
  1952. goto new_slab;
  1953. }
  1954. /* must check again c->freelist in case of cpu migration or IRQ */
  1955. freelist = c->freelist;
  1956. if (freelist)
  1957. goto load_freelist;
  1958. stat(s, ALLOC_SLOWPATH);
  1959. freelist = get_freelist(s, page);
  1960. if (!freelist) {
  1961. c->page = NULL;
  1962. stat(s, DEACTIVATE_BYPASS);
  1963. goto new_slab;
  1964. }
  1965. stat(s, ALLOC_REFILL);
  1966. load_freelist:
  1967. /*
  1968. * freelist is pointing to the list of objects to be used.
  1969. * page is pointing to the page from which the objects are obtained.
  1970. * That page must be frozen for per cpu allocations to work.
  1971. */
  1972. VM_BUG_ON(!c->page->frozen);
  1973. c->freelist = get_freepointer(s, freelist);
  1974. c->tid = next_tid(c->tid);
  1975. local_irq_restore(flags);
  1976. return freelist;
  1977. new_slab:
  1978. if (c->partial) {
  1979. page = c->page = c->partial;
  1980. c->partial = page->next;
  1981. stat(s, CPU_PARTIAL_ALLOC);
  1982. c->freelist = NULL;
  1983. goto redo;
  1984. }
  1985. freelist = new_slab_objects(s, gfpflags, node, &c);
  1986. if (unlikely(!freelist)) {
  1987. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1988. slab_out_of_memory(s, gfpflags, node);
  1989. local_irq_restore(flags);
  1990. return NULL;
  1991. }
  1992. page = c->page;
  1993. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1994. goto load_freelist;
  1995. /* Only entered in the debug case */
  1996. if (kmem_cache_debug(s) &&
  1997. !alloc_debug_processing(s, page, freelist, addr))
  1998. goto new_slab; /* Slab failed checks. Next slab needed */
  1999. deactivate_slab(s, page, get_freepointer(s, freelist));
  2000. c->page = NULL;
  2001. c->freelist = NULL;
  2002. local_irq_restore(flags);
  2003. return freelist;
  2004. }
  2005. /*
  2006. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2007. * have the fastpath folded into their functions. So no function call
  2008. * overhead for requests that can be satisfied on the fastpath.
  2009. *
  2010. * The fastpath works by first checking if the lockless freelist can be used.
  2011. * If not then __slab_alloc is called for slow processing.
  2012. *
  2013. * Otherwise we can simply pick the next object from the lockless free list.
  2014. */
  2015. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2016. gfp_t gfpflags, int node, unsigned long addr)
  2017. {
  2018. void **object;
  2019. struct kmem_cache_cpu *c;
  2020. struct page *page;
  2021. unsigned long tid;
  2022. if (slab_pre_alloc_hook(s, gfpflags))
  2023. return NULL;
  2024. s = memcg_kmem_get_cache(s, gfpflags);
  2025. redo:
  2026. /*
  2027. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2028. * enabled. We may switch back and forth between cpus while
  2029. * reading from one cpu area. That does not matter as long
  2030. * as we end up on the original cpu again when doing the cmpxchg.
  2031. *
  2032. * Preemption is disabled for the retrieval of the tid because that
  2033. * must occur from the current processor. We cannot allow rescheduling
  2034. * on a different processor between the determination of the pointer
  2035. * and the retrieval of the tid.
  2036. */
  2037. preempt_disable();
  2038. c = __this_cpu_ptr(s->cpu_slab);
  2039. /*
  2040. * The transaction ids are globally unique per cpu and per operation on
  2041. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2042. * occurs on the right processor and that there was no operation on the
  2043. * linked list in between.
  2044. */
  2045. tid = c->tid;
  2046. preempt_enable();
  2047. object = c->freelist;
  2048. page = c->page;
  2049. if (unlikely(!object || !node_match(page, node)))
  2050. object = __slab_alloc(s, gfpflags, node, addr, c);
  2051. else {
  2052. void *next_object = get_freepointer_safe(s, object);
  2053. /*
  2054. * The cmpxchg will only match if there was no additional
  2055. * operation and if we are on the right processor.
  2056. *
  2057. * The cmpxchg does the following atomically (without lock
  2058. * semantics!)
  2059. * 1. Relocate first pointer to the current per cpu area.
  2060. * 2. Verify that tid and freelist have not been changed
  2061. * 3. If they were not changed replace tid and freelist
  2062. *
  2063. * Since this is without lock semantics the protection is only
  2064. * against code executing on this cpu *not* from access by
  2065. * other cpus.
  2066. */
  2067. if (unlikely(!this_cpu_cmpxchg_double(
  2068. s->cpu_slab->freelist, s->cpu_slab->tid,
  2069. object, tid,
  2070. next_object, next_tid(tid)))) {
  2071. note_cmpxchg_failure("slab_alloc", s, tid);
  2072. goto redo;
  2073. }
  2074. prefetch_freepointer(s, next_object);
  2075. stat(s, ALLOC_FASTPATH);
  2076. }
  2077. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2078. memset(object, 0, s->object_size);
  2079. slab_post_alloc_hook(s, gfpflags, object);
  2080. return object;
  2081. }
  2082. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2083. gfp_t gfpflags, unsigned long addr)
  2084. {
  2085. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2086. }
  2087. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2088. {
  2089. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2090. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2091. s->size, gfpflags);
  2092. return ret;
  2093. }
  2094. EXPORT_SYMBOL(kmem_cache_alloc);
  2095. #ifdef CONFIG_TRACING
  2096. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2097. {
  2098. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2099. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2100. return ret;
  2101. }
  2102. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2103. #endif
  2104. #ifdef CONFIG_NUMA
  2105. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2106. {
  2107. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2108. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2109. s->object_size, s->size, gfpflags, node);
  2110. return ret;
  2111. }
  2112. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2113. #ifdef CONFIG_TRACING
  2114. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2115. gfp_t gfpflags,
  2116. int node, size_t size)
  2117. {
  2118. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2119. trace_kmalloc_node(_RET_IP_, ret,
  2120. size, s->size, gfpflags, node);
  2121. return ret;
  2122. }
  2123. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2124. #endif
  2125. #endif
  2126. /*
  2127. * Slow patch handling. This may still be called frequently since objects
  2128. * have a longer lifetime than the cpu slabs in most processing loads.
  2129. *
  2130. * So we still attempt to reduce cache line usage. Just take the slab
  2131. * lock and free the item. If there is no additional partial page
  2132. * handling required then we can return immediately.
  2133. */
  2134. static void __slab_free(struct kmem_cache *s, struct page *page,
  2135. void *x, unsigned long addr)
  2136. {
  2137. void *prior;
  2138. void **object = (void *)x;
  2139. int was_frozen;
  2140. struct page new;
  2141. unsigned long counters;
  2142. struct kmem_cache_node *n = NULL;
  2143. unsigned long uninitialized_var(flags);
  2144. stat(s, FREE_SLOWPATH);
  2145. if (kmem_cache_debug(s) &&
  2146. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2147. return;
  2148. do {
  2149. if (unlikely(n)) {
  2150. spin_unlock_irqrestore(&n->list_lock, flags);
  2151. n = NULL;
  2152. }
  2153. prior = page->freelist;
  2154. counters = page->counters;
  2155. set_freepointer(s, object, prior);
  2156. new.counters = counters;
  2157. was_frozen = new.frozen;
  2158. new.inuse--;
  2159. if ((!new.inuse || !prior) && !was_frozen) {
  2160. if (kmem_cache_has_cpu_partial(s) && !prior)
  2161. /*
  2162. * Slab was on no list before and will be
  2163. * partially empty
  2164. * We can defer the list move and instead
  2165. * freeze it.
  2166. */
  2167. new.frozen = 1;
  2168. else { /* Needs to be taken off a list */
  2169. n = get_node(s, page_to_nid(page));
  2170. /*
  2171. * Speculatively acquire the list_lock.
  2172. * If the cmpxchg does not succeed then we may
  2173. * drop the list_lock without any processing.
  2174. *
  2175. * Otherwise the list_lock will synchronize with
  2176. * other processors updating the list of slabs.
  2177. */
  2178. spin_lock_irqsave(&n->list_lock, flags);
  2179. }
  2180. }
  2181. } while (!cmpxchg_double_slab(s, page,
  2182. prior, counters,
  2183. object, new.counters,
  2184. "__slab_free"));
  2185. if (likely(!n)) {
  2186. /*
  2187. * If we just froze the page then put it onto the
  2188. * per cpu partial list.
  2189. */
  2190. if (new.frozen && !was_frozen) {
  2191. put_cpu_partial(s, page, 1);
  2192. stat(s, CPU_PARTIAL_FREE);
  2193. }
  2194. /*
  2195. * The list lock was not taken therefore no list
  2196. * activity can be necessary.
  2197. */
  2198. if (was_frozen)
  2199. stat(s, FREE_FROZEN);
  2200. return;
  2201. }
  2202. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2203. goto slab_empty;
  2204. /*
  2205. * Objects left in the slab. If it was not on the partial list before
  2206. * then add it.
  2207. */
  2208. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2209. if (kmem_cache_debug(s))
  2210. remove_full(s, page);
  2211. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2212. stat(s, FREE_ADD_PARTIAL);
  2213. }
  2214. spin_unlock_irqrestore(&n->list_lock, flags);
  2215. return;
  2216. slab_empty:
  2217. if (prior) {
  2218. /*
  2219. * Slab on the partial list.
  2220. */
  2221. remove_partial(n, page);
  2222. stat(s, FREE_REMOVE_PARTIAL);
  2223. } else
  2224. /* Slab must be on the full list */
  2225. remove_full(s, page);
  2226. spin_unlock_irqrestore(&n->list_lock, flags);
  2227. stat(s, FREE_SLAB);
  2228. discard_slab(s, page);
  2229. }
  2230. /*
  2231. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2232. * can perform fastpath freeing without additional function calls.
  2233. *
  2234. * The fastpath is only possible if we are freeing to the current cpu slab
  2235. * of this processor. This typically the case if we have just allocated
  2236. * the item before.
  2237. *
  2238. * If fastpath is not possible then fall back to __slab_free where we deal
  2239. * with all sorts of special processing.
  2240. */
  2241. static __always_inline void slab_free(struct kmem_cache *s,
  2242. struct page *page, void *x, unsigned long addr)
  2243. {
  2244. void **object = (void *)x;
  2245. struct kmem_cache_cpu *c;
  2246. unsigned long tid;
  2247. slab_free_hook(s, x);
  2248. redo:
  2249. /*
  2250. * Determine the currently cpus per cpu slab.
  2251. * The cpu may change afterward. However that does not matter since
  2252. * data is retrieved via this pointer. If we are on the same cpu
  2253. * during the cmpxchg then the free will succedd.
  2254. */
  2255. preempt_disable();
  2256. c = __this_cpu_ptr(s->cpu_slab);
  2257. tid = c->tid;
  2258. preempt_enable();
  2259. if (likely(page == c->page)) {
  2260. set_freepointer(s, object, c->freelist);
  2261. if (unlikely(!this_cpu_cmpxchg_double(
  2262. s->cpu_slab->freelist, s->cpu_slab->tid,
  2263. c->freelist, tid,
  2264. object, next_tid(tid)))) {
  2265. note_cmpxchg_failure("slab_free", s, tid);
  2266. goto redo;
  2267. }
  2268. stat(s, FREE_FASTPATH);
  2269. } else
  2270. __slab_free(s, page, x, addr);
  2271. }
  2272. void kmem_cache_free(struct kmem_cache *s, void *x)
  2273. {
  2274. s = cache_from_obj(s, x);
  2275. if (!s)
  2276. return;
  2277. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2278. trace_kmem_cache_free(_RET_IP_, x);
  2279. }
  2280. EXPORT_SYMBOL(kmem_cache_free);
  2281. /*
  2282. * Object placement in a slab is made very easy because we always start at
  2283. * offset 0. If we tune the size of the object to the alignment then we can
  2284. * get the required alignment by putting one properly sized object after
  2285. * another.
  2286. *
  2287. * Notice that the allocation order determines the sizes of the per cpu
  2288. * caches. Each processor has always one slab available for allocations.
  2289. * Increasing the allocation order reduces the number of times that slabs
  2290. * must be moved on and off the partial lists and is therefore a factor in
  2291. * locking overhead.
  2292. */
  2293. /*
  2294. * Mininum / Maximum order of slab pages. This influences locking overhead
  2295. * and slab fragmentation. A higher order reduces the number of partial slabs
  2296. * and increases the number of allocations possible without having to
  2297. * take the list_lock.
  2298. */
  2299. static int slub_min_order;
  2300. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2301. static int slub_min_objects;
  2302. /*
  2303. * Merge control. If this is set then no merging of slab caches will occur.
  2304. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2305. */
  2306. static int slub_nomerge;
  2307. /*
  2308. * Calculate the order of allocation given an slab object size.
  2309. *
  2310. * The order of allocation has significant impact on performance and other
  2311. * system components. Generally order 0 allocations should be preferred since
  2312. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2313. * be problematic to put into order 0 slabs because there may be too much
  2314. * unused space left. We go to a higher order if more than 1/16th of the slab
  2315. * would be wasted.
  2316. *
  2317. * In order to reach satisfactory performance we must ensure that a minimum
  2318. * number of objects is in one slab. Otherwise we may generate too much
  2319. * activity on the partial lists which requires taking the list_lock. This is
  2320. * less a concern for large slabs though which are rarely used.
  2321. *
  2322. * slub_max_order specifies the order where we begin to stop considering the
  2323. * number of objects in a slab as critical. If we reach slub_max_order then
  2324. * we try to keep the page order as low as possible. So we accept more waste
  2325. * of space in favor of a small page order.
  2326. *
  2327. * Higher order allocations also allow the placement of more objects in a
  2328. * slab and thereby reduce object handling overhead. If the user has
  2329. * requested a higher mininum order then we start with that one instead of
  2330. * the smallest order which will fit the object.
  2331. */
  2332. static inline int slab_order(int size, int min_objects,
  2333. int max_order, int fract_leftover, int reserved)
  2334. {
  2335. int order;
  2336. int rem;
  2337. int min_order = slub_min_order;
  2338. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2339. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2340. for (order = max(min_order,
  2341. fls(min_objects * size - 1) - PAGE_SHIFT);
  2342. order <= max_order; order++) {
  2343. unsigned long slab_size = PAGE_SIZE << order;
  2344. if (slab_size < min_objects * size + reserved)
  2345. continue;
  2346. rem = (slab_size - reserved) % size;
  2347. if (rem <= slab_size / fract_leftover)
  2348. break;
  2349. }
  2350. return order;
  2351. }
  2352. static inline int calculate_order(int size, int reserved)
  2353. {
  2354. int order;
  2355. int min_objects;
  2356. int fraction;
  2357. int max_objects;
  2358. /*
  2359. * Attempt to find best configuration for a slab. This
  2360. * works by first attempting to generate a layout with
  2361. * the best configuration and backing off gradually.
  2362. *
  2363. * First we reduce the acceptable waste in a slab. Then
  2364. * we reduce the minimum objects required in a slab.
  2365. */
  2366. min_objects = slub_min_objects;
  2367. if (!min_objects)
  2368. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2369. max_objects = order_objects(slub_max_order, size, reserved);
  2370. min_objects = min(min_objects, max_objects);
  2371. while (min_objects > 1) {
  2372. fraction = 16;
  2373. while (fraction >= 4) {
  2374. order = slab_order(size, min_objects,
  2375. slub_max_order, fraction, reserved);
  2376. if (order <= slub_max_order)
  2377. return order;
  2378. fraction /= 2;
  2379. }
  2380. min_objects--;
  2381. }
  2382. /*
  2383. * We were unable to place multiple objects in a slab. Now
  2384. * lets see if we can place a single object there.
  2385. */
  2386. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2387. if (order <= slub_max_order)
  2388. return order;
  2389. /*
  2390. * Doh this slab cannot be placed using slub_max_order.
  2391. */
  2392. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2393. if (order < MAX_ORDER)
  2394. return order;
  2395. return -ENOSYS;
  2396. }
  2397. static void
  2398. init_kmem_cache_node(struct kmem_cache_node *n)
  2399. {
  2400. n->nr_partial = 0;
  2401. spin_lock_init(&n->list_lock);
  2402. INIT_LIST_HEAD(&n->partial);
  2403. #ifdef CONFIG_SLUB_DEBUG
  2404. atomic_long_set(&n->nr_slabs, 0);
  2405. atomic_long_set(&n->total_objects, 0);
  2406. INIT_LIST_HEAD(&n->full);
  2407. #endif
  2408. }
  2409. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2410. {
  2411. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2412. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2413. /*
  2414. * Must align to double word boundary for the double cmpxchg
  2415. * instructions to work; see __pcpu_double_call_return_bool().
  2416. */
  2417. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2418. 2 * sizeof(void *));
  2419. if (!s->cpu_slab)
  2420. return 0;
  2421. init_kmem_cache_cpus(s);
  2422. return 1;
  2423. }
  2424. static struct kmem_cache *kmem_cache_node;
  2425. /*
  2426. * No kmalloc_node yet so do it by hand. We know that this is the first
  2427. * slab on the node for this slabcache. There are no concurrent accesses
  2428. * possible.
  2429. *
  2430. * Note that this function only works on the kmem_cache_node
  2431. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2432. * memory on a fresh node that has no slab structures yet.
  2433. */
  2434. static void early_kmem_cache_node_alloc(int node)
  2435. {
  2436. struct page *page;
  2437. struct kmem_cache_node *n;
  2438. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2439. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2440. BUG_ON(!page);
  2441. if (page_to_nid(page) != node) {
  2442. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2443. "node %d\n", node);
  2444. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2445. "in order to be able to continue\n");
  2446. }
  2447. n = page->freelist;
  2448. BUG_ON(!n);
  2449. page->freelist = get_freepointer(kmem_cache_node, n);
  2450. page->inuse = 1;
  2451. page->frozen = 0;
  2452. kmem_cache_node->node[node] = n;
  2453. #ifdef CONFIG_SLUB_DEBUG
  2454. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2455. init_tracking(kmem_cache_node, n);
  2456. #endif
  2457. init_kmem_cache_node(n);
  2458. inc_slabs_node(kmem_cache_node, node, page->objects);
  2459. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2460. }
  2461. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2462. {
  2463. int node;
  2464. for_each_node_state(node, N_NORMAL_MEMORY) {
  2465. struct kmem_cache_node *n = s->node[node];
  2466. if (n)
  2467. kmem_cache_free(kmem_cache_node, n);
  2468. s->node[node] = NULL;
  2469. }
  2470. }
  2471. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2472. {
  2473. int node;
  2474. for_each_node_state(node, N_NORMAL_MEMORY) {
  2475. struct kmem_cache_node *n;
  2476. if (slab_state == DOWN) {
  2477. early_kmem_cache_node_alloc(node);
  2478. continue;
  2479. }
  2480. n = kmem_cache_alloc_node(kmem_cache_node,
  2481. GFP_KERNEL, node);
  2482. if (!n) {
  2483. free_kmem_cache_nodes(s);
  2484. return 0;
  2485. }
  2486. s->node[node] = n;
  2487. init_kmem_cache_node(n);
  2488. }
  2489. return 1;
  2490. }
  2491. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2492. {
  2493. if (min < MIN_PARTIAL)
  2494. min = MIN_PARTIAL;
  2495. else if (min > MAX_PARTIAL)
  2496. min = MAX_PARTIAL;
  2497. s->min_partial = min;
  2498. }
  2499. /*
  2500. * calculate_sizes() determines the order and the distribution of data within
  2501. * a slab object.
  2502. */
  2503. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2504. {
  2505. unsigned long flags = s->flags;
  2506. unsigned long size = s->object_size;
  2507. int order;
  2508. /*
  2509. * Round up object size to the next word boundary. We can only
  2510. * place the free pointer at word boundaries and this determines
  2511. * the possible location of the free pointer.
  2512. */
  2513. size = ALIGN(size, sizeof(void *));
  2514. #ifdef CONFIG_SLUB_DEBUG
  2515. /*
  2516. * Determine if we can poison the object itself. If the user of
  2517. * the slab may touch the object after free or before allocation
  2518. * then we should never poison the object itself.
  2519. */
  2520. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2521. !s->ctor)
  2522. s->flags |= __OBJECT_POISON;
  2523. else
  2524. s->flags &= ~__OBJECT_POISON;
  2525. /*
  2526. * If we are Redzoning then check if there is some space between the
  2527. * end of the object and the free pointer. If not then add an
  2528. * additional word to have some bytes to store Redzone information.
  2529. */
  2530. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2531. size += sizeof(void *);
  2532. #endif
  2533. /*
  2534. * With that we have determined the number of bytes in actual use
  2535. * by the object. This is the potential offset to the free pointer.
  2536. */
  2537. s->inuse = size;
  2538. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2539. s->ctor)) {
  2540. /*
  2541. * Relocate free pointer after the object if it is not
  2542. * permitted to overwrite the first word of the object on
  2543. * kmem_cache_free.
  2544. *
  2545. * This is the case if we do RCU, have a constructor or
  2546. * destructor or are poisoning the objects.
  2547. */
  2548. s->offset = size;
  2549. size += sizeof(void *);
  2550. }
  2551. #ifdef CONFIG_SLUB_DEBUG
  2552. if (flags & SLAB_STORE_USER)
  2553. /*
  2554. * Need to store information about allocs and frees after
  2555. * the object.
  2556. */
  2557. size += 2 * sizeof(struct track);
  2558. if (flags & SLAB_RED_ZONE)
  2559. /*
  2560. * Add some empty padding so that we can catch
  2561. * overwrites from earlier objects rather than let
  2562. * tracking information or the free pointer be
  2563. * corrupted if a user writes before the start
  2564. * of the object.
  2565. */
  2566. size += sizeof(void *);
  2567. #endif
  2568. /*
  2569. * SLUB stores one object immediately after another beginning from
  2570. * offset 0. In order to align the objects we have to simply size
  2571. * each object to conform to the alignment.
  2572. */
  2573. size = ALIGN(size, s->align);
  2574. s->size = size;
  2575. if (forced_order >= 0)
  2576. order = forced_order;
  2577. else
  2578. order = calculate_order(size, s->reserved);
  2579. if (order < 0)
  2580. return 0;
  2581. s->allocflags = 0;
  2582. if (order)
  2583. s->allocflags |= __GFP_COMP;
  2584. if (s->flags & SLAB_CACHE_DMA)
  2585. s->allocflags |= GFP_DMA;
  2586. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2587. s->allocflags |= __GFP_RECLAIMABLE;
  2588. /*
  2589. * Determine the number of objects per slab
  2590. */
  2591. s->oo = oo_make(order, size, s->reserved);
  2592. s->min = oo_make(get_order(size), size, s->reserved);
  2593. if (oo_objects(s->oo) > oo_objects(s->max))
  2594. s->max = s->oo;
  2595. return !!oo_objects(s->oo);
  2596. }
  2597. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2598. {
  2599. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2600. s->reserved = 0;
  2601. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2602. s->reserved = sizeof(struct rcu_head);
  2603. if (!calculate_sizes(s, -1))
  2604. goto error;
  2605. if (disable_higher_order_debug) {
  2606. /*
  2607. * Disable debugging flags that store metadata if the min slab
  2608. * order increased.
  2609. */
  2610. if (get_order(s->size) > get_order(s->object_size)) {
  2611. s->flags &= ~DEBUG_METADATA_FLAGS;
  2612. s->offset = 0;
  2613. if (!calculate_sizes(s, -1))
  2614. goto error;
  2615. }
  2616. }
  2617. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2618. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2619. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2620. /* Enable fast mode */
  2621. s->flags |= __CMPXCHG_DOUBLE;
  2622. #endif
  2623. /*
  2624. * The larger the object size is, the more pages we want on the partial
  2625. * list to avoid pounding the page allocator excessively.
  2626. */
  2627. set_min_partial(s, ilog2(s->size) / 2);
  2628. /*
  2629. * cpu_partial determined the maximum number of objects kept in the
  2630. * per cpu partial lists of a processor.
  2631. *
  2632. * Per cpu partial lists mainly contain slabs that just have one
  2633. * object freed. If they are used for allocation then they can be
  2634. * filled up again with minimal effort. The slab will never hit the
  2635. * per node partial lists and therefore no locking will be required.
  2636. *
  2637. * This setting also determines
  2638. *
  2639. * A) The number of objects from per cpu partial slabs dumped to the
  2640. * per node list when we reach the limit.
  2641. * B) The number of objects in cpu partial slabs to extract from the
  2642. * per node list when we run out of per cpu objects. We only fetch
  2643. * 50% to keep some capacity around for frees.
  2644. */
  2645. if (!kmem_cache_has_cpu_partial(s))
  2646. s->cpu_partial = 0;
  2647. else if (s->size >= PAGE_SIZE)
  2648. s->cpu_partial = 2;
  2649. else if (s->size >= 1024)
  2650. s->cpu_partial = 6;
  2651. else if (s->size >= 256)
  2652. s->cpu_partial = 13;
  2653. else
  2654. s->cpu_partial = 30;
  2655. #ifdef CONFIG_NUMA
  2656. s->remote_node_defrag_ratio = 1000;
  2657. #endif
  2658. if (!init_kmem_cache_nodes(s))
  2659. goto error;
  2660. if (alloc_kmem_cache_cpus(s))
  2661. return 0;
  2662. free_kmem_cache_nodes(s);
  2663. error:
  2664. if (flags & SLAB_PANIC)
  2665. panic("Cannot create slab %s size=%lu realsize=%u "
  2666. "order=%u offset=%u flags=%lx\n",
  2667. s->name, (unsigned long)s->size, s->size,
  2668. oo_order(s->oo), s->offset, flags);
  2669. return -EINVAL;
  2670. }
  2671. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2672. const char *text)
  2673. {
  2674. #ifdef CONFIG_SLUB_DEBUG
  2675. void *addr = page_address(page);
  2676. void *p;
  2677. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2678. sizeof(long), GFP_ATOMIC);
  2679. if (!map)
  2680. return;
  2681. slab_err(s, page, text, s->name);
  2682. slab_lock(page);
  2683. get_map(s, page, map);
  2684. for_each_object(p, s, addr, page->objects) {
  2685. if (!test_bit(slab_index(p, s, addr), map)) {
  2686. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2687. p, p - addr);
  2688. print_tracking(s, p);
  2689. }
  2690. }
  2691. slab_unlock(page);
  2692. kfree(map);
  2693. #endif
  2694. }
  2695. /*
  2696. * Attempt to free all partial slabs on a node.
  2697. * This is called from kmem_cache_close(). We must be the last thread
  2698. * using the cache and therefore we do not need to lock anymore.
  2699. */
  2700. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2701. {
  2702. struct page *page, *h;
  2703. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2704. if (!page->inuse) {
  2705. remove_partial(n, page);
  2706. discard_slab(s, page);
  2707. } else {
  2708. list_slab_objects(s, page,
  2709. "Objects remaining in %s on kmem_cache_close()");
  2710. }
  2711. }
  2712. }
  2713. /*
  2714. * Release all resources used by a slab cache.
  2715. */
  2716. static inline int kmem_cache_close(struct kmem_cache *s)
  2717. {
  2718. int node;
  2719. flush_all(s);
  2720. /* Attempt to free all objects */
  2721. for_each_node_state(node, N_NORMAL_MEMORY) {
  2722. struct kmem_cache_node *n = get_node(s, node);
  2723. free_partial(s, n);
  2724. if (n->nr_partial || slabs_node(s, node))
  2725. return 1;
  2726. }
  2727. free_percpu(s->cpu_slab);
  2728. free_kmem_cache_nodes(s);
  2729. return 0;
  2730. }
  2731. int __kmem_cache_shutdown(struct kmem_cache *s)
  2732. {
  2733. int rc = kmem_cache_close(s);
  2734. if (!rc) {
  2735. /*
  2736. * We do the same lock strategy around sysfs_slab_add, see
  2737. * __kmem_cache_create. Because this is pretty much the last
  2738. * operation we do and the lock will be released shortly after
  2739. * that in slab_common.c, we could just move sysfs_slab_remove
  2740. * to a later point in common code. We should do that when we
  2741. * have a common sysfs framework for all allocators.
  2742. */
  2743. mutex_unlock(&slab_mutex);
  2744. sysfs_slab_remove(s);
  2745. mutex_lock(&slab_mutex);
  2746. }
  2747. return rc;
  2748. }
  2749. /********************************************************************
  2750. * Kmalloc subsystem
  2751. *******************************************************************/
  2752. static int __init setup_slub_min_order(char *str)
  2753. {
  2754. get_option(&str, &slub_min_order);
  2755. return 1;
  2756. }
  2757. __setup("slub_min_order=", setup_slub_min_order);
  2758. static int __init setup_slub_max_order(char *str)
  2759. {
  2760. get_option(&str, &slub_max_order);
  2761. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2762. return 1;
  2763. }
  2764. __setup("slub_max_order=", setup_slub_max_order);
  2765. static int __init setup_slub_min_objects(char *str)
  2766. {
  2767. get_option(&str, &slub_min_objects);
  2768. return 1;
  2769. }
  2770. __setup("slub_min_objects=", setup_slub_min_objects);
  2771. static int __init setup_slub_nomerge(char *str)
  2772. {
  2773. slub_nomerge = 1;
  2774. return 1;
  2775. }
  2776. __setup("slub_nomerge", setup_slub_nomerge);
  2777. void *__kmalloc(size_t size, gfp_t flags)
  2778. {
  2779. struct kmem_cache *s;
  2780. void *ret;
  2781. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2782. return kmalloc_large(size, flags);
  2783. s = kmalloc_slab(size, flags);
  2784. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2785. return s;
  2786. ret = slab_alloc(s, flags, _RET_IP_);
  2787. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2788. return ret;
  2789. }
  2790. EXPORT_SYMBOL(__kmalloc);
  2791. #ifdef CONFIG_NUMA
  2792. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2793. {
  2794. struct page *page;
  2795. void *ptr = NULL;
  2796. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2797. page = alloc_pages_node(node, flags, get_order(size));
  2798. if (page)
  2799. ptr = page_address(page);
  2800. kmalloc_large_node_hook(ptr, size, flags);
  2801. return ptr;
  2802. }
  2803. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2804. {
  2805. struct kmem_cache *s;
  2806. void *ret;
  2807. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2808. ret = kmalloc_large_node(size, flags, node);
  2809. trace_kmalloc_node(_RET_IP_, ret,
  2810. size, PAGE_SIZE << get_order(size),
  2811. flags, node);
  2812. return ret;
  2813. }
  2814. s = kmalloc_slab(size, flags);
  2815. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2816. return s;
  2817. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2818. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2819. return ret;
  2820. }
  2821. EXPORT_SYMBOL(__kmalloc_node);
  2822. #endif
  2823. size_t ksize(const void *object)
  2824. {
  2825. struct page *page;
  2826. if (unlikely(object == ZERO_SIZE_PTR))
  2827. return 0;
  2828. page = virt_to_head_page(object);
  2829. if (unlikely(!PageSlab(page))) {
  2830. WARN_ON(!PageCompound(page));
  2831. return PAGE_SIZE << compound_order(page);
  2832. }
  2833. return slab_ksize(page->slab_cache);
  2834. }
  2835. EXPORT_SYMBOL(ksize);
  2836. void kfree(const void *x)
  2837. {
  2838. struct page *page;
  2839. void *object = (void *)x;
  2840. trace_kfree(_RET_IP_, x);
  2841. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2842. return;
  2843. page = virt_to_head_page(x);
  2844. if (unlikely(!PageSlab(page))) {
  2845. BUG_ON(!PageCompound(page));
  2846. kfree_hook(x);
  2847. __free_memcg_kmem_pages(page, compound_order(page));
  2848. return;
  2849. }
  2850. slab_free(page->slab_cache, page, object, _RET_IP_);
  2851. }
  2852. EXPORT_SYMBOL(kfree);
  2853. /*
  2854. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2855. * the remaining slabs by the number of items in use. The slabs with the
  2856. * most items in use come first. New allocations will then fill those up
  2857. * and thus they can be removed from the partial lists.
  2858. *
  2859. * The slabs with the least items are placed last. This results in them
  2860. * being allocated from last increasing the chance that the last objects
  2861. * are freed in them.
  2862. */
  2863. int kmem_cache_shrink(struct kmem_cache *s)
  2864. {
  2865. int node;
  2866. int i;
  2867. struct kmem_cache_node *n;
  2868. struct page *page;
  2869. struct page *t;
  2870. int objects = oo_objects(s->max);
  2871. struct list_head *slabs_by_inuse =
  2872. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2873. unsigned long flags;
  2874. if (!slabs_by_inuse)
  2875. return -ENOMEM;
  2876. flush_all(s);
  2877. for_each_node_state(node, N_NORMAL_MEMORY) {
  2878. n = get_node(s, node);
  2879. if (!n->nr_partial)
  2880. continue;
  2881. for (i = 0; i < objects; i++)
  2882. INIT_LIST_HEAD(slabs_by_inuse + i);
  2883. spin_lock_irqsave(&n->list_lock, flags);
  2884. /*
  2885. * Build lists indexed by the items in use in each slab.
  2886. *
  2887. * Note that concurrent frees may occur while we hold the
  2888. * list_lock. page->inuse here is the upper limit.
  2889. */
  2890. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2891. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2892. if (!page->inuse)
  2893. n->nr_partial--;
  2894. }
  2895. /*
  2896. * Rebuild the partial list with the slabs filled up most
  2897. * first and the least used slabs at the end.
  2898. */
  2899. for (i = objects - 1; i > 0; i--)
  2900. list_splice(slabs_by_inuse + i, n->partial.prev);
  2901. spin_unlock_irqrestore(&n->list_lock, flags);
  2902. /* Release empty slabs */
  2903. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2904. discard_slab(s, page);
  2905. }
  2906. kfree(slabs_by_inuse);
  2907. return 0;
  2908. }
  2909. EXPORT_SYMBOL(kmem_cache_shrink);
  2910. static int slab_mem_going_offline_callback(void *arg)
  2911. {
  2912. struct kmem_cache *s;
  2913. mutex_lock(&slab_mutex);
  2914. list_for_each_entry(s, &slab_caches, list)
  2915. kmem_cache_shrink(s);
  2916. mutex_unlock(&slab_mutex);
  2917. return 0;
  2918. }
  2919. static void slab_mem_offline_callback(void *arg)
  2920. {
  2921. struct kmem_cache_node *n;
  2922. struct kmem_cache *s;
  2923. struct memory_notify *marg = arg;
  2924. int offline_node;
  2925. offline_node = marg->status_change_nid_normal;
  2926. /*
  2927. * If the node still has available memory. we need kmem_cache_node
  2928. * for it yet.
  2929. */
  2930. if (offline_node < 0)
  2931. return;
  2932. mutex_lock(&slab_mutex);
  2933. list_for_each_entry(s, &slab_caches, list) {
  2934. n = get_node(s, offline_node);
  2935. if (n) {
  2936. /*
  2937. * if n->nr_slabs > 0, slabs still exist on the node
  2938. * that is going down. We were unable to free them,
  2939. * and offline_pages() function shouldn't call this
  2940. * callback. So, we must fail.
  2941. */
  2942. BUG_ON(slabs_node(s, offline_node));
  2943. s->node[offline_node] = NULL;
  2944. kmem_cache_free(kmem_cache_node, n);
  2945. }
  2946. }
  2947. mutex_unlock(&slab_mutex);
  2948. }
  2949. static int slab_mem_going_online_callback(void *arg)
  2950. {
  2951. struct kmem_cache_node *n;
  2952. struct kmem_cache *s;
  2953. struct memory_notify *marg = arg;
  2954. int nid = marg->status_change_nid_normal;
  2955. int ret = 0;
  2956. /*
  2957. * If the node's memory is already available, then kmem_cache_node is
  2958. * already created. Nothing to do.
  2959. */
  2960. if (nid < 0)
  2961. return 0;
  2962. /*
  2963. * We are bringing a node online. No memory is available yet. We must
  2964. * allocate a kmem_cache_node structure in order to bring the node
  2965. * online.
  2966. */
  2967. mutex_lock(&slab_mutex);
  2968. list_for_each_entry(s, &slab_caches, list) {
  2969. /*
  2970. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2971. * since memory is not yet available from the node that
  2972. * is brought up.
  2973. */
  2974. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2975. if (!n) {
  2976. ret = -ENOMEM;
  2977. goto out;
  2978. }
  2979. init_kmem_cache_node(n);
  2980. s->node[nid] = n;
  2981. }
  2982. out:
  2983. mutex_unlock(&slab_mutex);
  2984. return ret;
  2985. }
  2986. static int slab_memory_callback(struct notifier_block *self,
  2987. unsigned long action, void *arg)
  2988. {
  2989. int ret = 0;
  2990. switch (action) {
  2991. case MEM_GOING_ONLINE:
  2992. ret = slab_mem_going_online_callback(arg);
  2993. break;
  2994. case MEM_GOING_OFFLINE:
  2995. ret = slab_mem_going_offline_callback(arg);
  2996. break;
  2997. case MEM_OFFLINE:
  2998. case MEM_CANCEL_ONLINE:
  2999. slab_mem_offline_callback(arg);
  3000. break;
  3001. case MEM_ONLINE:
  3002. case MEM_CANCEL_OFFLINE:
  3003. break;
  3004. }
  3005. if (ret)
  3006. ret = notifier_from_errno(ret);
  3007. else
  3008. ret = NOTIFY_OK;
  3009. return ret;
  3010. }
  3011. static struct notifier_block slab_memory_callback_nb = {
  3012. .notifier_call = slab_memory_callback,
  3013. .priority = SLAB_CALLBACK_PRI,
  3014. };
  3015. /********************************************************************
  3016. * Basic setup of slabs
  3017. *******************************************************************/
  3018. /*
  3019. * Used for early kmem_cache structures that were allocated using
  3020. * the page allocator. Allocate them properly then fix up the pointers
  3021. * that may be pointing to the wrong kmem_cache structure.
  3022. */
  3023. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3024. {
  3025. int node;
  3026. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3027. memcpy(s, static_cache, kmem_cache->object_size);
  3028. /*
  3029. * This runs very early, and only the boot processor is supposed to be
  3030. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3031. * IPIs around.
  3032. */
  3033. __flush_cpu_slab(s, smp_processor_id());
  3034. for_each_node_state(node, N_NORMAL_MEMORY) {
  3035. struct kmem_cache_node *n = get_node(s, node);
  3036. struct page *p;
  3037. if (n) {
  3038. list_for_each_entry(p, &n->partial, lru)
  3039. p->slab_cache = s;
  3040. #ifdef CONFIG_SLUB_DEBUG
  3041. list_for_each_entry(p, &n->full, lru)
  3042. p->slab_cache = s;
  3043. #endif
  3044. }
  3045. }
  3046. list_add(&s->list, &slab_caches);
  3047. return s;
  3048. }
  3049. void __init kmem_cache_init(void)
  3050. {
  3051. static __initdata struct kmem_cache boot_kmem_cache,
  3052. boot_kmem_cache_node;
  3053. if (debug_guardpage_minorder())
  3054. slub_max_order = 0;
  3055. kmem_cache_node = &boot_kmem_cache_node;
  3056. kmem_cache = &boot_kmem_cache;
  3057. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3058. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3059. register_hotmemory_notifier(&slab_memory_callback_nb);
  3060. /* Able to allocate the per node structures */
  3061. slab_state = PARTIAL;
  3062. create_boot_cache(kmem_cache, "kmem_cache",
  3063. offsetof(struct kmem_cache, node) +
  3064. nr_node_ids * sizeof(struct kmem_cache_node *),
  3065. SLAB_HWCACHE_ALIGN);
  3066. kmem_cache = bootstrap(&boot_kmem_cache);
  3067. /*
  3068. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3069. * kmem_cache_node is separately allocated so no need to
  3070. * update any list pointers.
  3071. */
  3072. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3073. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3074. create_kmalloc_caches(0);
  3075. #ifdef CONFIG_SMP
  3076. register_cpu_notifier(&slab_notifier);
  3077. #endif
  3078. printk(KERN_INFO
  3079. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3080. " CPUs=%d, Nodes=%d\n",
  3081. cache_line_size(),
  3082. slub_min_order, slub_max_order, slub_min_objects,
  3083. nr_cpu_ids, nr_node_ids);
  3084. }
  3085. void __init kmem_cache_init_late(void)
  3086. {
  3087. }
  3088. /*
  3089. * Find a mergeable slab cache
  3090. */
  3091. static int slab_unmergeable(struct kmem_cache *s)
  3092. {
  3093. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3094. return 1;
  3095. if (s->ctor)
  3096. return 1;
  3097. /*
  3098. * We may have set a slab to be unmergeable during bootstrap.
  3099. */
  3100. if (s->refcount < 0)
  3101. return 1;
  3102. return 0;
  3103. }
  3104. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3105. size_t align, unsigned long flags, const char *name,
  3106. void (*ctor)(void *))
  3107. {
  3108. struct kmem_cache *s;
  3109. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3110. return NULL;
  3111. if (ctor)
  3112. return NULL;
  3113. size = ALIGN(size, sizeof(void *));
  3114. align = calculate_alignment(flags, align, size);
  3115. size = ALIGN(size, align);
  3116. flags = kmem_cache_flags(size, flags, name, NULL);
  3117. list_for_each_entry(s, &slab_caches, list) {
  3118. if (slab_unmergeable(s))
  3119. continue;
  3120. if (size > s->size)
  3121. continue;
  3122. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3123. continue;
  3124. /*
  3125. * Check if alignment is compatible.
  3126. * Courtesy of Adrian Drzewiecki
  3127. */
  3128. if ((s->size & ~(align - 1)) != s->size)
  3129. continue;
  3130. if (s->size - size >= sizeof(void *))
  3131. continue;
  3132. if (!cache_match_memcg(s, memcg))
  3133. continue;
  3134. return s;
  3135. }
  3136. return NULL;
  3137. }
  3138. struct kmem_cache *
  3139. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3140. size_t align, unsigned long flags, void (*ctor)(void *))
  3141. {
  3142. struct kmem_cache *s;
  3143. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3144. if (s) {
  3145. s->refcount++;
  3146. /*
  3147. * Adjust the object sizes so that we clear
  3148. * the complete object on kzalloc.
  3149. */
  3150. s->object_size = max(s->object_size, (int)size);
  3151. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3152. if (sysfs_slab_alias(s, name)) {
  3153. s->refcount--;
  3154. s = NULL;
  3155. }
  3156. }
  3157. return s;
  3158. }
  3159. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3160. {
  3161. int err;
  3162. err = kmem_cache_open(s, flags);
  3163. if (err)
  3164. return err;
  3165. /* Mutex is not taken during early boot */
  3166. if (slab_state <= UP)
  3167. return 0;
  3168. memcg_propagate_slab_attrs(s);
  3169. mutex_unlock(&slab_mutex);
  3170. err = sysfs_slab_add(s);
  3171. mutex_lock(&slab_mutex);
  3172. if (err)
  3173. kmem_cache_close(s);
  3174. return err;
  3175. }
  3176. #ifdef CONFIG_SMP
  3177. /*
  3178. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3179. * necessary.
  3180. */
  3181. static int slab_cpuup_callback(struct notifier_block *nfb,
  3182. unsigned long action, void *hcpu)
  3183. {
  3184. long cpu = (long)hcpu;
  3185. struct kmem_cache *s;
  3186. unsigned long flags;
  3187. switch (action) {
  3188. case CPU_UP_CANCELED:
  3189. case CPU_UP_CANCELED_FROZEN:
  3190. case CPU_DEAD:
  3191. case CPU_DEAD_FROZEN:
  3192. mutex_lock(&slab_mutex);
  3193. list_for_each_entry(s, &slab_caches, list) {
  3194. local_irq_save(flags);
  3195. __flush_cpu_slab(s, cpu);
  3196. local_irq_restore(flags);
  3197. }
  3198. mutex_unlock(&slab_mutex);
  3199. break;
  3200. default:
  3201. break;
  3202. }
  3203. return NOTIFY_OK;
  3204. }
  3205. static struct notifier_block slab_notifier = {
  3206. .notifier_call = slab_cpuup_callback
  3207. };
  3208. #endif
  3209. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3210. {
  3211. struct kmem_cache *s;
  3212. void *ret;
  3213. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3214. return kmalloc_large(size, gfpflags);
  3215. s = kmalloc_slab(size, gfpflags);
  3216. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3217. return s;
  3218. ret = slab_alloc(s, gfpflags, caller);
  3219. /* Honor the call site pointer we received. */
  3220. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3221. return ret;
  3222. }
  3223. #ifdef CONFIG_NUMA
  3224. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3225. int node, unsigned long caller)
  3226. {
  3227. struct kmem_cache *s;
  3228. void *ret;
  3229. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3230. ret = kmalloc_large_node(size, gfpflags, node);
  3231. trace_kmalloc_node(caller, ret,
  3232. size, PAGE_SIZE << get_order(size),
  3233. gfpflags, node);
  3234. return ret;
  3235. }
  3236. s = kmalloc_slab(size, gfpflags);
  3237. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3238. return s;
  3239. ret = slab_alloc_node(s, gfpflags, node, caller);
  3240. /* Honor the call site pointer we received. */
  3241. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3242. return ret;
  3243. }
  3244. #endif
  3245. #ifdef CONFIG_SYSFS
  3246. static int count_inuse(struct page *page)
  3247. {
  3248. return page->inuse;
  3249. }
  3250. static int count_total(struct page *page)
  3251. {
  3252. return page->objects;
  3253. }
  3254. #endif
  3255. #ifdef CONFIG_SLUB_DEBUG
  3256. static int validate_slab(struct kmem_cache *s, struct page *page,
  3257. unsigned long *map)
  3258. {
  3259. void *p;
  3260. void *addr = page_address(page);
  3261. if (!check_slab(s, page) ||
  3262. !on_freelist(s, page, NULL))
  3263. return 0;
  3264. /* Now we know that a valid freelist exists */
  3265. bitmap_zero(map, page->objects);
  3266. get_map(s, page, map);
  3267. for_each_object(p, s, addr, page->objects) {
  3268. if (test_bit(slab_index(p, s, addr), map))
  3269. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3270. return 0;
  3271. }
  3272. for_each_object(p, s, addr, page->objects)
  3273. if (!test_bit(slab_index(p, s, addr), map))
  3274. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3275. return 0;
  3276. return 1;
  3277. }
  3278. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3279. unsigned long *map)
  3280. {
  3281. slab_lock(page);
  3282. validate_slab(s, page, map);
  3283. slab_unlock(page);
  3284. }
  3285. static int validate_slab_node(struct kmem_cache *s,
  3286. struct kmem_cache_node *n, unsigned long *map)
  3287. {
  3288. unsigned long count = 0;
  3289. struct page *page;
  3290. unsigned long flags;
  3291. spin_lock_irqsave(&n->list_lock, flags);
  3292. list_for_each_entry(page, &n->partial, lru) {
  3293. validate_slab_slab(s, page, map);
  3294. count++;
  3295. }
  3296. if (count != n->nr_partial)
  3297. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3298. "counter=%ld\n", s->name, count, n->nr_partial);
  3299. if (!(s->flags & SLAB_STORE_USER))
  3300. goto out;
  3301. list_for_each_entry(page, &n->full, lru) {
  3302. validate_slab_slab(s, page, map);
  3303. count++;
  3304. }
  3305. if (count != atomic_long_read(&n->nr_slabs))
  3306. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3307. "counter=%ld\n", s->name, count,
  3308. atomic_long_read(&n->nr_slabs));
  3309. out:
  3310. spin_unlock_irqrestore(&n->list_lock, flags);
  3311. return count;
  3312. }
  3313. static long validate_slab_cache(struct kmem_cache *s)
  3314. {
  3315. int node;
  3316. unsigned long count = 0;
  3317. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3318. sizeof(unsigned long), GFP_KERNEL);
  3319. if (!map)
  3320. return -ENOMEM;
  3321. flush_all(s);
  3322. for_each_node_state(node, N_NORMAL_MEMORY) {
  3323. struct kmem_cache_node *n = get_node(s, node);
  3324. count += validate_slab_node(s, n, map);
  3325. }
  3326. kfree(map);
  3327. return count;
  3328. }
  3329. /*
  3330. * Generate lists of code addresses where slabcache objects are allocated
  3331. * and freed.
  3332. */
  3333. struct location {
  3334. unsigned long count;
  3335. unsigned long addr;
  3336. long long sum_time;
  3337. long min_time;
  3338. long max_time;
  3339. long min_pid;
  3340. long max_pid;
  3341. DECLARE_BITMAP(cpus, NR_CPUS);
  3342. nodemask_t nodes;
  3343. };
  3344. struct loc_track {
  3345. unsigned long max;
  3346. unsigned long count;
  3347. struct location *loc;
  3348. };
  3349. static void free_loc_track(struct loc_track *t)
  3350. {
  3351. if (t->max)
  3352. free_pages((unsigned long)t->loc,
  3353. get_order(sizeof(struct location) * t->max));
  3354. }
  3355. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3356. {
  3357. struct location *l;
  3358. int order;
  3359. order = get_order(sizeof(struct location) * max);
  3360. l = (void *)__get_free_pages(flags, order);
  3361. if (!l)
  3362. return 0;
  3363. if (t->count) {
  3364. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3365. free_loc_track(t);
  3366. }
  3367. t->max = max;
  3368. t->loc = l;
  3369. return 1;
  3370. }
  3371. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3372. const struct track *track)
  3373. {
  3374. long start, end, pos;
  3375. struct location *l;
  3376. unsigned long caddr;
  3377. unsigned long age = jiffies - track->when;
  3378. start = -1;
  3379. end = t->count;
  3380. for ( ; ; ) {
  3381. pos = start + (end - start + 1) / 2;
  3382. /*
  3383. * There is nothing at "end". If we end up there
  3384. * we need to add something to before end.
  3385. */
  3386. if (pos == end)
  3387. break;
  3388. caddr = t->loc[pos].addr;
  3389. if (track->addr == caddr) {
  3390. l = &t->loc[pos];
  3391. l->count++;
  3392. if (track->when) {
  3393. l->sum_time += age;
  3394. if (age < l->min_time)
  3395. l->min_time = age;
  3396. if (age > l->max_time)
  3397. l->max_time = age;
  3398. if (track->pid < l->min_pid)
  3399. l->min_pid = track->pid;
  3400. if (track->pid > l->max_pid)
  3401. l->max_pid = track->pid;
  3402. cpumask_set_cpu(track->cpu,
  3403. to_cpumask(l->cpus));
  3404. }
  3405. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3406. return 1;
  3407. }
  3408. if (track->addr < caddr)
  3409. end = pos;
  3410. else
  3411. start = pos;
  3412. }
  3413. /*
  3414. * Not found. Insert new tracking element.
  3415. */
  3416. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3417. return 0;
  3418. l = t->loc + pos;
  3419. if (pos < t->count)
  3420. memmove(l + 1, l,
  3421. (t->count - pos) * sizeof(struct location));
  3422. t->count++;
  3423. l->count = 1;
  3424. l->addr = track->addr;
  3425. l->sum_time = age;
  3426. l->min_time = age;
  3427. l->max_time = age;
  3428. l->min_pid = track->pid;
  3429. l->max_pid = track->pid;
  3430. cpumask_clear(to_cpumask(l->cpus));
  3431. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3432. nodes_clear(l->nodes);
  3433. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3434. return 1;
  3435. }
  3436. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3437. struct page *page, enum track_item alloc,
  3438. unsigned long *map)
  3439. {
  3440. void *addr = page_address(page);
  3441. void *p;
  3442. bitmap_zero(map, page->objects);
  3443. get_map(s, page, map);
  3444. for_each_object(p, s, addr, page->objects)
  3445. if (!test_bit(slab_index(p, s, addr), map))
  3446. add_location(t, s, get_track(s, p, alloc));
  3447. }
  3448. static int list_locations(struct kmem_cache *s, char *buf,
  3449. enum track_item alloc)
  3450. {
  3451. int len = 0;
  3452. unsigned long i;
  3453. struct loc_track t = { 0, 0, NULL };
  3454. int node;
  3455. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3456. sizeof(unsigned long), GFP_KERNEL);
  3457. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3458. GFP_TEMPORARY)) {
  3459. kfree(map);
  3460. return sprintf(buf, "Out of memory\n");
  3461. }
  3462. /* Push back cpu slabs */
  3463. flush_all(s);
  3464. for_each_node_state(node, N_NORMAL_MEMORY) {
  3465. struct kmem_cache_node *n = get_node(s, node);
  3466. unsigned long flags;
  3467. struct page *page;
  3468. if (!atomic_long_read(&n->nr_slabs))
  3469. continue;
  3470. spin_lock_irqsave(&n->list_lock, flags);
  3471. list_for_each_entry(page, &n->partial, lru)
  3472. process_slab(&t, s, page, alloc, map);
  3473. list_for_each_entry(page, &n->full, lru)
  3474. process_slab(&t, s, page, alloc, map);
  3475. spin_unlock_irqrestore(&n->list_lock, flags);
  3476. }
  3477. for (i = 0; i < t.count; i++) {
  3478. struct location *l = &t.loc[i];
  3479. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3480. break;
  3481. len += sprintf(buf + len, "%7ld ", l->count);
  3482. if (l->addr)
  3483. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3484. else
  3485. len += sprintf(buf + len, "<not-available>");
  3486. if (l->sum_time != l->min_time) {
  3487. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3488. l->min_time,
  3489. (long)div_u64(l->sum_time, l->count),
  3490. l->max_time);
  3491. } else
  3492. len += sprintf(buf + len, " age=%ld",
  3493. l->min_time);
  3494. if (l->min_pid != l->max_pid)
  3495. len += sprintf(buf + len, " pid=%ld-%ld",
  3496. l->min_pid, l->max_pid);
  3497. else
  3498. len += sprintf(buf + len, " pid=%ld",
  3499. l->min_pid);
  3500. if (num_online_cpus() > 1 &&
  3501. !cpumask_empty(to_cpumask(l->cpus)) &&
  3502. len < PAGE_SIZE - 60) {
  3503. len += sprintf(buf + len, " cpus=");
  3504. len += cpulist_scnprintf(buf + len,
  3505. PAGE_SIZE - len - 50,
  3506. to_cpumask(l->cpus));
  3507. }
  3508. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3509. len < PAGE_SIZE - 60) {
  3510. len += sprintf(buf + len, " nodes=");
  3511. len += nodelist_scnprintf(buf + len,
  3512. PAGE_SIZE - len - 50,
  3513. l->nodes);
  3514. }
  3515. len += sprintf(buf + len, "\n");
  3516. }
  3517. free_loc_track(&t);
  3518. kfree(map);
  3519. if (!t.count)
  3520. len += sprintf(buf, "No data\n");
  3521. return len;
  3522. }
  3523. #endif
  3524. #ifdef SLUB_RESILIENCY_TEST
  3525. static void resiliency_test(void)
  3526. {
  3527. u8 *p;
  3528. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3529. printk(KERN_ERR "SLUB resiliency testing\n");
  3530. printk(KERN_ERR "-----------------------\n");
  3531. printk(KERN_ERR "A. Corruption after allocation\n");
  3532. p = kzalloc(16, GFP_KERNEL);
  3533. p[16] = 0x12;
  3534. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3535. " 0x12->0x%p\n\n", p + 16);
  3536. validate_slab_cache(kmalloc_caches[4]);
  3537. /* Hmmm... The next two are dangerous */
  3538. p = kzalloc(32, GFP_KERNEL);
  3539. p[32 + sizeof(void *)] = 0x34;
  3540. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3541. " 0x34 -> -0x%p\n", p);
  3542. printk(KERN_ERR
  3543. "If allocated object is overwritten then not detectable\n\n");
  3544. validate_slab_cache(kmalloc_caches[5]);
  3545. p = kzalloc(64, GFP_KERNEL);
  3546. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3547. *p = 0x56;
  3548. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3549. p);
  3550. printk(KERN_ERR
  3551. "If allocated object is overwritten then not detectable\n\n");
  3552. validate_slab_cache(kmalloc_caches[6]);
  3553. printk(KERN_ERR "\nB. Corruption after free\n");
  3554. p = kzalloc(128, GFP_KERNEL);
  3555. kfree(p);
  3556. *p = 0x78;
  3557. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3558. validate_slab_cache(kmalloc_caches[7]);
  3559. p = kzalloc(256, GFP_KERNEL);
  3560. kfree(p);
  3561. p[50] = 0x9a;
  3562. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3563. p);
  3564. validate_slab_cache(kmalloc_caches[8]);
  3565. p = kzalloc(512, GFP_KERNEL);
  3566. kfree(p);
  3567. p[512] = 0xab;
  3568. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3569. validate_slab_cache(kmalloc_caches[9]);
  3570. }
  3571. #else
  3572. #ifdef CONFIG_SYSFS
  3573. static void resiliency_test(void) {};
  3574. #endif
  3575. #endif
  3576. #ifdef CONFIG_SYSFS
  3577. enum slab_stat_type {
  3578. SL_ALL, /* All slabs */
  3579. SL_PARTIAL, /* Only partially allocated slabs */
  3580. SL_CPU, /* Only slabs used for cpu caches */
  3581. SL_OBJECTS, /* Determine allocated objects not slabs */
  3582. SL_TOTAL /* Determine object capacity not slabs */
  3583. };
  3584. #define SO_ALL (1 << SL_ALL)
  3585. #define SO_PARTIAL (1 << SL_PARTIAL)
  3586. #define SO_CPU (1 << SL_CPU)
  3587. #define SO_OBJECTS (1 << SL_OBJECTS)
  3588. #define SO_TOTAL (1 << SL_TOTAL)
  3589. static ssize_t show_slab_objects(struct kmem_cache *s,
  3590. char *buf, unsigned long flags)
  3591. {
  3592. unsigned long total = 0;
  3593. int node;
  3594. int x;
  3595. unsigned long *nodes;
  3596. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3597. if (!nodes)
  3598. return -ENOMEM;
  3599. if (flags & SO_CPU) {
  3600. int cpu;
  3601. for_each_possible_cpu(cpu) {
  3602. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3603. cpu);
  3604. int node;
  3605. struct page *page;
  3606. page = ACCESS_ONCE(c->page);
  3607. if (!page)
  3608. continue;
  3609. node = page_to_nid(page);
  3610. if (flags & SO_TOTAL)
  3611. x = page->objects;
  3612. else if (flags & SO_OBJECTS)
  3613. x = page->inuse;
  3614. else
  3615. x = 1;
  3616. total += x;
  3617. nodes[node] += x;
  3618. page = ACCESS_ONCE(c->partial);
  3619. if (page) {
  3620. x = page->pobjects;
  3621. total += x;
  3622. nodes[node] += x;
  3623. }
  3624. }
  3625. }
  3626. lock_memory_hotplug();
  3627. #ifdef CONFIG_SLUB_DEBUG
  3628. if (flags & SO_ALL) {
  3629. for_each_node_state(node, N_NORMAL_MEMORY) {
  3630. struct kmem_cache_node *n = get_node(s, node);
  3631. if (flags & SO_TOTAL)
  3632. x = atomic_long_read(&n->total_objects);
  3633. else if (flags & SO_OBJECTS)
  3634. x = atomic_long_read(&n->total_objects) -
  3635. count_partial(n, count_free);
  3636. else
  3637. x = atomic_long_read(&n->nr_slabs);
  3638. total += x;
  3639. nodes[node] += x;
  3640. }
  3641. } else
  3642. #endif
  3643. if (flags & SO_PARTIAL) {
  3644. for_each_node_state(node, N_NORMAL_MEMORY) {
  3645. struct kmem_cache_node *n = get_node(s, node);
  3646. if (flags & SO_TOTAL)
  3647. x = count_partial(n, count_total);
  3648. else if (flags & SO_OBJECTS)
  3649. x = count_partial(n, count_inuse);
  3650. else
  3651. x = n->nr_partial;
  3652. total += x;
  3653. nodes[node] += x;
  3654. }
  3655. }
  3656. x = sprintf(buf, "%lu", total);
  3657. #ifdef CONFIG_NUMA
  3658. for_each_node_state(node, N_NORMAL_MEMORY)
  3659. if (nodes[node])
  3660. x += sprintf(buf + x, " N%d=%lu",
  3661. node, nodes[node]);
  3662. #endif
  3663. unlock_memory_hotplug();
  3664. kfree(nodes);
  3665. return x + sprintf(buf + x, "\n");
  3666. }
  3667. #ifdef CONFIG_SLUB_DEBUG
  3668. static int any_slab_objects(struct kmem_cache *s)
  3669. {
  3670. int node;
  3671. for_each_online_node(node) {
  3672. struct kmem_cache_node *n = get_node(s, node);
  3673. if (!n)
  3674. continue;
  3675. if (atomic_long_read(&n->total_objects))
  3676. return 1;
  3677. }
  3678. return 0;
  3679. }
  3680. #endif
  3681. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3682. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3683. struct slab_attribute {
  3684. struct attribute attr;
  3685. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3686. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3687. };
  3688. #define SLAB_ATTR_RO(_name) \
  3689. static struct slab_attribute _name##_attr = \
  3690. __ATTR(_name, 0400, _name##_show, NULL)
  3691. #define SLAB_ATTR(_name) \
  3692. static struct slab_attribute _name##_attr = \
  3693. __ATTR(_name, 0600, _name##_show, _name##_store)
  3694. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3695. {
  3696. return sprintf(buf, "%d\n", s->size);
  3697. }
  3698. SLAB_ATTR_RO(slab_size);
  3699. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3700. {
  3701. return sprintf(buf, "%d\n", s->align);
  3702. }
  3703. SLAB_ATTR_RO(align);
  3704. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3705. {
  3706. return sprintf(buf, "%d\n", s->object_size);
  3707. }
  3708. SLAB_ATTR_RO(object_size);
  3709. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3710. {
  3711. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3712. }
  3713. SLAB_ATTR_RO(objs_per_slab);
  3714. static ssize_t order_store(struct kmem_cache *s,
  3715. const char *buf, size_t length)
  3716. {
  3717. unsigned long order;
  3718. int err;
  3719. err = kstrtoul(buf, 10, &order);
  3720. if (err)
  3721. return err;
  3722. if (order > slub_max_order || order < slub_min_order)
  3723. return -EINVAL;
  3724. calculate_sizes(s, order);
  3725. return length;
  3726. }
  3727. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3728. {
  3729. return sprintf(buf, "%d\n", oo_order(s->oo));
  3730. }
  3731. SLAB_ATTR(order);
  3732. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3733. {
  3734. return sprintf(buf, "%lu\n", s->min_partial);
  3735. }
  3736. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3737. size_t length)
  3738. {
  3739. unsigned long min;
  3740. int err;
  3741. err = kstrtoul(buf, 10, &min);
  3742. if (err)
  3743. return err;
  3744. set_min_partial(s, min);
  3745. return length;
  3746. }
  3747. SLAB_ATTR(min_partial);
  3748. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3749. {
  3750. return sprintf(buf, "%u\n", s->cpu_partial);
  3751. }
  3752. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3753. size_t length)
  3754. {
  3755. unsigned long objects;
  3756. int err;
  3757. err = kstrtoul(buf, 10, &objects);
  3758. if (err)
  3759. return err;
  3760. if (objects && !kmem_cache_has_cpu_partial(s))
  3761. return -EINVAL;
  3762. s->cpu_partial = objects;
  3763. flush_all(s);
  3764. return length;
  3765. }
  3766. SLAB_ATTR(cpu_partial);
  3767. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3768. {
  3769. if (!s->ctor)
  3770. return 0;
  3771. return sprintf(buf, "%pS\n", s->ctor);
  3772. }
  3773. SLAB_ATTR_RO(ctor);
  3774. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3775. {
  3776. return sprintf(buf, "%d\n", s->refcount - 1);
  3777. }
  3778. SLAB_ATTR_RO(aliases);
  3779. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3780. {
  3781. return show_slab_objects(s, buf, SO_PARTIAL);
  3782. }
  3783. SLAB_ATTR_RO(partial);
  3784. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3785. {
  3786. return show_slab_objects(s, buf, SO_CPU);
  3787. }
  3788. SLAB_ATTR_RO(cpu_slabs);
  3789. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3790. {
  3791. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3792. }
  3793. SLAB_ATTR_RO(objects);
  3794. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3795. {
  3796. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3797. }
  3798. SLAB_ATTR_RO(objects_partial);
  3799. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3800. {
  3801. int objects = 0;
  3802. int pages = 0;
  3803. int cpu;
  3804. int len;
  3805. for_each_online_cpu(cpu) {
  3806. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3807. if (page) {
  3808. pages += page->pages;
  3809. objects += page->pobjects;
  3810. }
  3811. }
  3812. len = sprintf(buf, "%d(%d)", objects, pages);
  3813. #ifdef CONFIG_SMP
  3814. for_each_online_cpu(cpu) {
  3815. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3816. if (page && len < PAGE_SIZE - 20)
  3817. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3818. page->pobjects, page->pages);
  3819. }
  3820. #endif
  3821. return len + sprintf(buf + len, "\n");
  3822. }
  3823. SLAB_ATTR_RO(slabs_cpu_partial);
  3824. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3825. {
  3826. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3827. }
  3828. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3829. const char *buf, size_t length)
  3830. {
  3831. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3832. if (buf[0] == '1')
  3833. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3834. return length;
  3835. }
  3836. SLAB_ATTR(reclaim_account);
  3837. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3838. {
  3839. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3840. }
  3841. SLAB_ATTR_RO(hwcache_align);
  3842. #ifdef CONFIG_ZONE_DMA
  3843. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3844. {
  3845. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3846. }
  3847. SLAB_ATTR_RO(cache_dma);
  3848. #endif
  3849. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3850. {
  3851. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3852. }
  3853. SLAB_ATTR_RO(destroy_by_rcu);
  3854. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3855. {
  3856. return sprintf(buf, "%d\n", s->reserved);
  3857. }
  3858. SLAB_ATTR_RO(reserved);
  3859. #ifdef CONFIG_SLUB_DEBUG
  3860. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3861. {
  3862. return show_slab_objects(s, buf, SO_ALL);
  3863. }
  3864. SLAB_ATTR_RO(slabs);
  3865. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3866. {
  3867. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3868. }
  3869. SLAB_ATTR_RO(total_objects);
  3870. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3871. {
  3872. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3873. }
  3874. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3875. const char *buf, size_t length)
  3876. {
  3877. s->flags &= ~SLAB_DEBUG_FREE;
  3878. if (buf[0] == '1') {
  3879. s->flags &= ~__CMPXCHG_DOUBLE;
  3880. s->flags |= SLAB_DEBUG_FREE;
  3881. }
  3882. return length;
  3883. }
  3884. SLAB_ATTR(sanity_checks);
  3885. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3886. {
  3887. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3888. }
  3889. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3890. size_t length)
  3891. {
  3892. s->flags &= ~SLAB_TRACE;
  3893. if (buf[0] == '1') {
  3894. s->flags &= ~__CMPXCHG_DOUBLE;
  3895. s->flags |= SLAB_TRACE;
  3896. }
  3897. return length;
  3898. }
  3899. SLAB_ATTR(trace);
  3900. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3901. {
  3902. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3903. }
  3904. static ssize_t red_zone_store(struct kmem_cache *s,
  3905. const char *buf, size_t length)
  3906. {
  3907. if (any_slab_objects(s))
  3908. return -EBUSY;
  3909. s->flags &= ~SLAB_RED_ZONE;
  3910. if (buf[0] == '1') {
  3911. s->flags &= ~__CMPXCHG_DOUBLE;
  3912. s->flags |= SLAB_RED_ZONE;
  3913. }
  3914. calculate_sizes(s, -1);
  3915. return length;
  3916. }
  3917. SLAB_ATTR(red_zone);
  3918. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3919. {
  3920. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3921. }
  3922. static ssize_t poison_store(struct kmem_cache *s,
  3923. const char *buf, size_t length)
  3924. {
  3925. if (any_slab_objects(s))
  3926. return -EBUSY;
  3927. s->flags &= ~SLAB_POISON;
  3928. if (buf[0] == '1') {
  3929. s->flags &= ~__CMPXCHG_DOUBLE;
  3930. s->flags |= SLAB_POISON;
  3931. }
  3932. calculate_sizes(s, -1);
  3933. return length;
  3934. }
  3935. SLAB_ATTR(poison);
  3936. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3937. {
  3938. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3939. }
  3940. static ssize_t store_user_store(struct kmem_cache *s,
  3941. const char *buf, size_t length)
  3942. {
  3943. if (any_slab_objects(s))
  3944. return -EBUSY;
  3945. s->flags &= ~SLAB_STORE_USER;
  3946. if (buf[0] == '1') {
  3947. s->flags &= ~__CMPXCHG_DOUBLE;
  3948. s->flags |= SLAB_STORE_USER;
  3949. }
  3950. calculate_sizes(s, -1);
  3951. return length;
  3952. }
  3953. SLAB_ATTR(store_user);
  3954. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3955. {
  3956. return 0;
  3957. }
  3958. static ssize_t validate_store(struct kmem_cache *s,
  3959. const char *buf, size_t length)
  3960. {
  3961. int ret = -EINVAL;
  3962. if (buf[0] == '1') {
  3963. ret = validate_slab_cache(s);
  3964. if (ret >= 0)
  3965. ret = length;
  3966. }
  3967. return ret;
  3968. }
  3969. SLAB_ATTR(validate);
  3970. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3971. {
  3972. if (!(s->flags & SLAB_STORE_USER))
  3973. return -ENOSYS;
  3974. return list_locations(s, buf, TRACK_ALLOC);
  3975. }
  3976. SLAB_ATTR_RO(alloc_calls);
  3977. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3978. {
  3979. if (!(s->flags & SLAB_STORE_USER))
  3980. return -ENOSYS;
  3981. return list_locations(s, buf, TRACK_FREE);
  3982. }
  3983. SLAB_ATTR_RO(free_calls);
  3984. #endif /* CONFIG_SLUB_DEBUG */
  3985. #ifdef CONFIG_FAILSLAB
  3986. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3987. {
  3988. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3989. }
  3990. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3991. size_t length)
  3992. {
  3993. s->flags &= ~SLAB_FAILSLAB;
  3994. if (buf[0] == '1')
  3995. s->flags |= SLAB_FAILSLAB;
  3996. return length;
  3997. }
  3998. SLAB_ATTR(failslab);
  3999. #endif
  4000. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4001. {
  4002. return 0;
  4003. }
  4004. static ssize_t shrink_store(struct kmem_cache *s,
  4005. const char *buf, size_t length)
  4006. {
  4007. if (buf[0] == '1') {
  4008. int rc = kmem_cache_shrink(s);
  4009. if (rc)
  4010. return rc;
  4011. } else
  4012. return -EINVAL;
  4013. return length;
  4014. }
  4015. SLAB_ATTR(shrink);
  4016. #ifdef CONFIG_NUMA
  4017. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4018. {
  4019. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4020. }
  4021. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4022. const char *buf, size_t length)
  4023. {
  4024. unsigned long ratio;
  4025. int err;
  4026. err = kstrtoul(buf, 10, &ratio);
  4027. if (err)
  4028. return err;
  4029. if (ratio <= 100)
  4030. s->remote_node_defrag_ratio = ratio * 10;
  4031. return length;
  4032. }
  4033. SLAB_ATTR(remote_node_defrag_ratio);
  4034. #endif
  4035. #ifdef CONFIG_SLUB_STATS
  4036. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4037. {
  4038. unsigned long sum = 0;
  4039. int cpu;
  4040. int len;
  4041. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4042. if (!data)
  4043. return -ENOMEM;
  4044. for_each_online_cpu(cpu) {
  4045. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4046. data[cpu] = x;
  4047. sum += x;
  4048. }
  4049. len = sprintf(buf, "%lu", sum);
  4050. #ifdef CONFIG_SMP
  4051. for_each_online_cpu(cpu) {
  4052. if (data[cpu] && len < PAGE_SIZE - 20)
  4053. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4054. }
  4055. #endif
  4056. kfree(data);
  4057. return len + sprintf(buf + len, "\n");
  4058. }
  4059. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4060. {
  4061. int cpu;
  4062. for_each_online_cpu(cpu)
  4063. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4064. }
  4065. #define STAT_ATTR(si, text) \
  4066. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4067. { \
  4068. return show_stat(s, buf, si); \
  4069. } \
  4070. static ssize_t text##_store(struct kmem_cache *s, \
  4071. const char *buf, size_t length) \
  4072. { \
  4073. if (buf[0] != '0') \
  4074. return -EINVAL; \
  4075. clear_stat(s, si); \
  4076. return length; \
  4077. } \
  4078. SLAB_ATTR(text); \
  4079. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4080. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4081. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4082. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4083. STAT_ATTR(FREE_FROZEN, free_frozen);
  4084. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4085. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4086. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4087. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4088. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4089. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4090. STAT_ATTR(FREE_SLAB, free_slab);
  4091. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4092. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4093. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4094. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4095. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4096. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4097. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4098. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4099. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4100. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4101. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4102. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4103. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4104. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4105. #endif
  4106. static struct attribute *slab_attrs[] = {
  4107. &slab_size_attr.attr,
  4108. &object_size_attr.attr,
  4109. &objs_per_slab_attr.attr,
  4110. &order_attr.attr,
  4111. &min_partial_attr.attr,
  4112. &cpu_partial_attr.attr,
  4113. &objects_attr.attr,
  4114. &objects_partial_attr.attr,
  4115. &partial_attr.attr,
  4116. &cpu_slabs_attr.attr,
  4117. &ctor_attr.attr,
  4118. &aliases_attr.attr,
  4119. &align_attr.attr,
  4120. &hwcache_align_attr.attr,
  4121. &reclaim_account_attr.attr,
  4122. &destroy_by_rcu_attr.attr,
  4123. &shrink_attr.attr,
  4124. &reserved_attr.attr,
  4125. &slabs_cpu_partial_attr.attr,
  4126. #ifdef CONFIG_SLUB_DEBUG
  4127. &total_objects_attr.attr,
  4128. &slabs_attr.attr,
  4129. &sanity_checks_attr.attr,
  4130. &trace_attr.attr,
  4131. &red_zone_attr.attr,
  4132. &poison_attr.attr,
  4133. &store_user_attr.attr,
  4134. &validate_attr.attr,
  4135. &alloc_calls_attr.attr,
  4136. &free_calls_attr.attr,
  4137. #endif
  4138. #ifdef CONFIG_ZONE_DMA
  4139. &cache_dma_attr.attr,
  4140. #endif
  4141. #ifdef CONFIG_NUMA
  4142. &remote_node_defrag_ratio_attr.attr,
  4143. #endif
  4144. #ifdef CONFIG_SLUB_STATS
  4145. &alloc_fastpath_attr.attr,
  4146. &alloc_slowpath_attr.attr,
  4147. &free_fastpath_attr.attr,
  4148. &free_slowpath_attr.attr,
  4149. &free_frozen_attr.attr,
  4150. &free_add_partial_attr.attr,
  4151. &free_remove_partial_attr.attr,
  4152. &alloc_from_partial_attr.attr,
  4153. &alloc_slab_attr.attr,
  4154. &alloc_refill_attr.attr,
  4155. &alloc_node_mismatch_attr.attr,
  4156. &free_slab_attr.attr,
  4157. &cpuslab_flush_attr.attr,
  4158. &deactivate_full_attr.attr,
  4159. &deactivate_empty_attr.attr,
  4160. &deactivate_to_head_attr.attr,
  4161. &deactivate_to_tail_attr.attr,
  4162. &deactivate_remote_frees_attr.attr,
  4163. &deactivate_bypass_attr.attr,
  4164. &order_fallback_attr.attr,
  4165. &cmpxchg_double_fail_attr.attr,
  4166. &cmpxchg_double_cpu_fail_attr.attr,
  4167. &cpu_partial_alloc_attr.attr,
  4168. &cpu_partial_free_attr.attr,
  4169. &cpu_partial_node_attr.attr,
  4170. &cpu_partial_drain_attr.attr,
  4171. #endif
  4172. #ifdef CONFIG_FAILSLAB
  4173. &failslab_attr.attr,
  4174. #endif
  4175. NULL
  4176. };
  4177. static struct attribute_group slab_attr_group = {
  4178. .attrs = slab_attrs,
  4179. };
  4180. static ssize_t slab_attr_show(struct kobject *kobj,
  4181. struct attribute *attr,
  4182. char *buf)
  4183. {
  4184. struct slab_attribute *attribute;
  4185. struct kmem_cache *s;
  4186. int err;
  4187. attribute = to_slab_attr(attr);
  4188. s = to_slab(kobj);
  4189. if (!attribute->show)
  4190. return -EIO;
  4191. err = attribute->show(s, buf);
  4192. return err;
  4193. }
  4194. static ssize_t slab_attr_store(struct kobject *kobj,
  4195. struct attribute *attr,
  4196. const char *buf, size_t len)
  4197. {
  4198. struct slab_attribute *attribute;
  4199. struct kmem_cache *s;
  4200. int err;
  4201. attribute = to_slab_attr(attr);
  4202. s = to_slab(kobj);
  4203. if (!attribute->store)
  4204. return -EIO;
  4205. err = attribute->store(s, buf, len);
  4206. #ifdef CONFIG_MEMCG_KMEM
  4207. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4208. int i;
  4209. mutex_lock(&slab_mutex);
  4210. if (s->max_attr_size < len)
  4211. s->max_attr_size = len;
  4212. /*
  4213. * This is a best effort propagation, so this function's return
  4214. * value will be determined by the parent cache only. This is
  4215. * basically because not all attributes will have a well
  4216. * defined semantics for rollbacks - most of the actions will
  4217. * have permanent effects.
  4218. *
  4219. * Returning the error value of any of the children that fail
  4220. * is not 100 % defined, in the sense that users seeing the
  4221. * error code won't be able to know anything about the state of
  4222. * the cache.
  4223. *
  4224. * Only returning the error code for the parent cache at least
  4225. * has well defined semantics. The cache being written to
  4226. * directly either failed or succeeded, in which case we loop
  4227. * through the descendants with best-effort propagation.
  4228. */
  4229. for_each_memcg_cache_index(i) {
  4230. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4231. if (c)
  4232. attribute->store(c, buf, len);
  4233. }
  4234. mutex_unlock(&slab_mutex);
  4235. }
  4236. #endif
  4237. return err;
  4238. }
  4239. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4240. {
  4241. #ifdef CONFIG_MEMCG_KMEM
  4242. int i;
  4243. char *buffer = NULL;
  4244. if (!is_root_cache(s))
  4245. return;
  4246. /*
  4247. * This mean this cache had no attribute written. Therefore, no point
  4248. * in copying default values around
  4249. */
  4250. if (!s->max_attr_size)
  4251. return;
  4252. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4253. char mbuf[64];
  4254. char *buf;
  4255. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4256. if (!attr || !attr->store || !attr->show)
  4257. continue;
  4258. /*
  4259. * It is really bad that we have to allocate here, so we will
  4260. * do it only as a fallback. If we actually allocate, though,
  4261. * we can just use the allocated buffer until the end.
  4262. *
  4263. * Most of the slub attributes will tend to be very small in
  4264. * size, but sysfs allows buffers up to a page, so they can
  4265. * theoretically happen.
  4266. */
  4267. if (buffer)
  4268. buf = buffer;
  4269. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4270. buf = mbuf;
  4271. else {
  4272. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4273. if (WARN_ON(!buffer))
  4274. continue;
  4275. buf = buffer;
  4276. }
  4277. attr->show(s->memcg_params->root_cache, buf);
  4278. attr->store(s, buf, strlen(buf));
  4279. }
  4280. if (buffer)
  4281. free_page((unsigned long)buffer);
  4282. #endif
  4283. }
  4284. static const struct sysfs_ops slab_sysfs_ops = {
  4285. .show = slab_attr_show,
  4286. .store = slab_attr_store,
  4287. };
  4288. static struct kobj_type slab_ktype = {
  4289. .sysfs_ops = &slab_sysfs_ops,
  4290. };
  4291. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4292. {
  4293. struct kobj_type *ktype = get_ktype(kobj);
  4294. if (ktype == &slab_ktype)
  4295. return 1;
  4296. return 0;
  4297. }
  4298. static const struct kset_uevent_ops slab_uevent_ops = {
  4299. .filter = uevent_filter,
  4300. };
  4301. static struct kset *slab_kset;
  4302. #define ID_STR_LENGTH 64
  4303. /* Create a unique string id for a slab cache:
  4304. *
  4305. * Format :[flags-]size
  4306. */
  4307. static char *create_unique_id(struct kmem_cache *s)
  4308. {
  4309. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4310. char *p = name;
  4311. BUG_ON(!name);
  4312. *p++ = ':';
  4313. /*
  4314. * First flags affecting slabcache operations. We will only
  4315. * get here for aliasable slabs so we do not need to support
  4316. * too many flags. The flags here must cover all flags that
  4317. * are matched during merging to guarantee that the id is
  4318. * unique.
  4319. */
  4320. if (s->flags & SLAB_CACHE_DMA)
  4321. *p++ = 'd';
  4322. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4323. *p++ = 'a';
  4324. if (s->flags & SLAB_DEBUG_FREE)
  4325. *p++ = 'F';
  4326. if (!(s->flags & SLAB_NOTRACK))
  4327. *p++ = 't';
  4328. if (p != name + 1)
  4329. *p++ = '-';
  4330. p += sprintf(p, "%07d", s->size);
  4331. #ifdef CONFIG_MEMCG_KMEM
  4332. if (!is_root_cache(s))
  4333. p += sprintf(p, "-%08d",
  4334. memcg_cache_id(s->memcg_params->memcg));
  4335. #endif
  4336. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4337. return name;
  4338. }
  4339. static int sysfs_slab_add(struct kmem_cache *s)
  4340. {
  4341. int err;
  4342. const char *name;
  4343. int unmergeable = slab_unmergeable(s);
  4344. if (unmergeable) {
  4345. /*
  4346. * Slabcache can never be merged so we can use the name proper.
  4347. * This is typically the case for debug situations. In that
  4348. * case we can catch duplicate names easily.
  4349. */
  4350. sysfs_remove_link(&slab_kset->kobj, s->name);
  4351. name = s->name;
  4352. } else {
  4353. /*
  4354. * Create a unique name for the slab as a target
  4355. * for the symlinks.
  4356. */
  4357. name = create_unique_id(s);
  4358. }
  4359. s->kobj.kset = slab_kset;
  4360. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4361. if (err) {
  4362. kobject_put(&s->kobj);
  4363. return err;
  4364. }
  4365. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4366. if (err) {
  4367. kobject_del(&s->kobj);
  4368. kobject_put(&s->kobj);
  4369. return err;
  4370. }
  4371. kobject_uevent(&s->kobj, KOBJ_ADD);
  4372. if (!unmergeable) {
  4373. /* Setup first alias */
  4374. sysfs_slab_alias(s, s->name);
  4375. kfree(name);
  4376. }
  4377. return 0;
  4378. }
  4379. static void sysfs_slab_remove(struct kmem_cache *s)
  4380. {
  4381. if (slab_state < FULL)
  4382. /*
  4383. * Sysfs has not been setup yet so no need to remove the
  4384. * cache from sysfs.
  4385. */
  4386. return;
  4387. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4388. kobject_del(&s->kobj);
  4389. kobject_put(&s->kobj);
  4390. }
  4391. /*
  4392. * Need to buffer aliases during bootup until sysfs becomes
  4393. * available lest we lose that information.
  4394. */
  4395. struct saved_alias {
  4396. struct kmem_cache *s;
  4397. const char *name;
  4398. struct saved_alias *next;
  4399. };
  4400. static struct saved_alias *alias_list;
  4401. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4402. {
  4403. struct saved_alias *al;
  4404. if (slab_state == FULL) {
  4405. /*
  4406. * If we have a leftover link then remove it.
  4407. */
  4408. sysfs_remove_link(&slab_kset->kobj, name);
  4409. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4410. }
  4411. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4412. if (!al)
  4413. return -ENOMEM;
  4414. al->s = s;
  4415. al->name = name;
  4416. al->next = alias_list;
  4417. alias_list = al;
  4418. return 0;
  4419. }
  4420. static int __init slab_sysfs_init(void)
  4421. {
  4422. struct kmem_cache *s;
  4423. int err;
  4424. mutex_lock(&slab_mutex);
  4425. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4426. if (!slab_kset) {
  4427. mutex_unlock(&slab_mutex);
  4428. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4429. return -ENOSYS;
  4430. }
  4431. slab_state = FULL;
  4432. list_for_each_entry(s, &slab_caches, list) {
  4433. err = sysfs_slab_add(s);
  4434. if (err)
  4435. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4436. " to sysfs\n", s->name);
  4437. }
  4438. while (alias_list) {
  4439. struct saved_alias *al = alias_list;
  4440. alias_list = alias_list->next;
  4441. err = sysfs_slab_alias(al->s, al->name);
  4442. if (err)
  4443. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4444. " %s to sysfs\n", al->name);
  4445. kfree(al);
  4446. }
  4447. mutex_unlock(&slab_mutex);
  4448. resiliency_test();
  4449. return 0;
  4450. }
  4451. __initcall(slab_sysfs_init);
  4452. #endif /* CONFIG_SYSFS */
  4453. /*
  4454. * The /proc/slabinfo ABI
  4455. */
  4456. #ifdef CONFIG_SLABINFO
  4457. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4458. {
  4459. unsigned long nr_slabs = 0;
  4460. unsigned long nr_objs = 0;
  4461. unsigned long nr_free = 0;
  4462. int node;
  4463. for_each_online_node(node) {
  4464. struct kmem_cache_node *n = get_node(s, node);
  4465. if (!n)
  4466. continue;
  4467. nr_slabs += node_nr_slabs(n);
  4468. nr_objs += node_nr_objs(n);
  4469. nr_free += count_partial(n, count_free);
  4470. }
  4471. sinfo->active_objs = nr_objs - nr_free;
  4472. sinfo->num_objs = nr_objs;
  4473. sinfo->active_slabs = nr_slabs;
  4474. sinfo->num_slabs = nr_slabs;
  4475. sinfo->objects_per_slab = oo_objects(s->oo);
  4476. sinfo->cache_order = oo_order(s->oo);
  4477. }
  4478. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4479. {
  4480. }
  4481. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4482. size_t count, loff_t *ppos)
  4483. {
  4484. return -EIO;
  4485. }
  4486. #endif /* CONFIG_SLABINFO */