sched.h 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/mutex.h>
  5. #include <linux/spinlock.h>
  6. #include <linux/stop_machine.h>
  7. #include <linux/tick.h>
  8. #include <linux/slab.h>
  9. #include "cpupri.h"
  10. #include "cpuacct.h"
  11. struct rq;
  12. extern __read_mostly int scheduler_running;
  13. extern unsigned long calc_load_update;
  14. extern atomic_long_t calc_load_tasks;
  15. extern long calc_load_fold_active(struct rq *this_rq);
  16. extern void update_cpu_load_active(struct rq *this_rq);
  17. /*
  18. * Convert user-nice values [ -20 ... 0 ... 19 ]
  19. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  20. * and back.
  21. */
  22. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  23. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  24. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  25. /*
  26. * 'User priority' is the nice value converted to something we
  27. * can work with better when scaling various scheduler parameters,
  28. * it's a [ 0 ... 39 ] range.
  29. */
  30. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  31. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  32. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  33. /*
  34. * Helpers for converting nanosecond timing to jiffy resolution
  35. */
  36. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  37. /*
  38. * Increase resolution of nice-level calculations for 64-bit architectures.
  39. * The extra resolution improves shares distribution and load balancing of
  40. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  41. * hierarchies, especially on larger systems. This is not a user-visible change
  42. * and does not change the user-interface for setting shares/weights.
  43. *
  44. * We increase resolution only if we have enough bits to allow this increased
  45. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  46. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  47. * increased costs.
  48. */
  49. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  50. # define SCHED_LOAD_RESOLUTION 10
  51. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  52. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  53. #else
  54. # define SCHED_LOAD_RESOLUTION 0
  55. # define scale_load(w) (w)
  56. # define scale_load_down(w) (w)
  57. #endif
  58. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  59. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  60. #define NICE_0_LOAD SCHED_LOAD_SCALE
  61. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  62. /*
  63. * These are the 'tuning knobs' of the scheduler:
  64. */
  65. /*
  66. * single value that denotes runtime == period, ie unlimited time.
  67. */
  68. #define RUNTIME_INF ((u64)~0ULL)
  69. static inline int rt_policy(int policy)
  70. {
  71. if (policy == SCHED_FIFO || policy == SCHED_RR)
  72. return 1;
  73. return 0;
  74. }
  75. static inline int task_has_rt_policy(struct task_struct *p)
  76. {
  77. return rt_policy(p->policy);
  78. }
  79. /*
  80. * This is the priority-queue data structure of the RT scheduling class:
  81. */
  82. struct rt_prio_array {
  83. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  84. struct list_head queue[MAX_RT_PRIO];
  85. };
  86. struct rt_bandwidth {
  87. /* nests inside the rq lock: */
  88. raw_spinlock_t rt_runtime_lock;
  89. ktime_t rt_period;
  90. u64 rt_runtime;
  91. struct hrtimer rt_period_timer;
  92. };
  93. extern struct mutex sched_domains_mutex;
  94. #ifdef CONFIG_CGROUP_SCHED
  95. #include <linux/cgroup.h>
  96. struct cfs_rq;
  97. struct rt_rq;
  98. extern struct list_head task_groups;
  99. struct cfs_bandwidth {
  100. #ifdef CONFIG_CFS_BANDWIDTH
  101. raw_spinlock_t lock;
  102. ktime_t period;
  103. u64 quota, runtime;
  104. s64 hierarchal_quota;
  105. u64 runtime_expires;
  106. int idle, timer_active;
  107. struct hrtimer period_timer, slack_timer;
  108. struct list_head throttled_cfs_rq;
  109. /* statistics */
  110. int nr_periods, nr_throttled;
  111. u64 throttled_time;
  112. #endif
  113. };
  114. /* task group related information */
  115. struct task_group {
  116. struct cgroup_subsys_state css;
  117. #ifdef CONFIG_FAIR_GROUP_SCHED
  118. /* schedulable entities of this group on each cpu */
  119. struct sched_entity **se;
  120. /* runqueue "owned" by this group on each cpu */
  121. struct cfs_rq **cfs_rq;
  122. unsigned long shares;
  123. #ifdef CONFIG_SMP
  124. atomic_long_t load_avg;
  125. atomic_t runnable_avg;
  126. #endif
  127. #endif
  128. #ifdef CONFIG_RT_GROUP_SCHED
  129. struct sched_rt_entity **rt_se;
  130. struct rt_rq **rt_rq;
  131. struct rt_bandwidth rt_bandwidth;
  132. #endif
  133. struct rcu_head rcu;
  134. struct list_head list;
  135. struct task_group *parent;
  136. struct list_head siblings;
  137. struct list_head children;
  138. #ifdef CONFIG_SCHED_AUTOGROUP
  139. struct autogroup *autogroup;
  140. #endif
  141. struct cfs_bandwidth cfs_bandwidth;
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  145. /*
  146. * A weight of 0 or 1 can cause arithmetics problems.
  147. * A weight of a cfs_rq is the sum of weights of which entities
  148. * are queued on this cfs_rq, so a weight of a entity should not be
  149. * too large, so as the shares value of a task group.
  150. * (The default weight is 1024 - so there's no practical
  151. * limitation from this.)
  152. */
  153. #define MIN_SHARES (1UL << 1)
  154. #define MAX_SHARES (1UL << 18)
  155. #endif
  156. typedef int (*tg_visitor)(struct task_group *, void *);
  157. extern int walk_tg_tree_from(struct task_group *from,
  158. tg_visitor down, tg_visitor up, void *data);
  159. /*
  160. * Iterate the full tree, calling @down when first entering a node and @up when
  161. * leaving it for the final time.
  162. *
  163. * Caller must hold rcu_lock or sufficient equivalent.
  164. */
  165. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  166. {
  167. return walk_tg_tree_from(&root_task_group, down, up, data);
  168. }
  169. extern int tg_nop(struct task_group *tg, void *data);
  170. extern void free_fair_sched_group(struct task_group *tg);
  171. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  172. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  173. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  174. struct sched_entity *se, int cpu,
  175. struct sched_entity *parent);
  176. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  177. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  178. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  179. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  180. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  181. extern void free_rt_sched_group(struct task_group *tg);
  182. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  183. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  184. struct sched_rt_entity *rt_se, int cpu,
  185. struct sched_rt_entity *parent);
  186. extern struct task_group *sched_create_group(struct task_group *parent);
  187. extern void sched_online_group(struct task_group *tg,
  188. struct task_group *parent);
  189. extern void sched_destroy_group(struct task_group *tg);
  190. extern void sched_offline_group(struct task_group *tg);
  191. extern void sched_move_task(struct task_struct *tsk);
  192. #ifdef CONFIG_FAIR_GROUP_SCHED
  193. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  194. #endif
  195. #else /* CONFIG_CGROUP_SCHED */
  196. struct cfs_bandwidth { };
  197. #endif /* CONFIG_CGROUP_SCHED */
  198. /* CFS-related fields in a runqueue */
  199. struct cfs_rq {
  200. struct load_weight load;
  201. unsigned int nr_running, h_nr_running;
  202. u64 exec_clock;
  203. u64 min_vruntime;
  204. #ifndef CONFIG_64BIT
  205. u64 min_vruntime_copy;
  206. #endif
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. /*
  210. * 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr, *next, *last, *skip;
  214. #ifdef CONFIG_SCHED_DEBUG
  215. unsigned int nr_spread_over;
  216. #endif
  217. #ifdef CONFIG_SMP
  218. /*
  219. * CFS Load tracking
  220. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  221. * This allows for the description of both thread and group usage (in
  222. * the FAIR_GROUP_SCHED case).
  223. */
  224. unsigned long runnable_load_avg, blocked_load_avg;
  225. atomic64_t decay_counter;
  226. u64 last_decay;
  227. atomic_long_t removed_load;
  228. #ifdef CONFIG_FAIR_GROUP_SCHED
  229. /* Required to track per-cpu representation of a task_group */
  230. u32 tg_runnable_contrib;
  231. unsigned long tg_load_contrib;
  232. /*
  233. * h_load = weight * f(tg)
  234. *
  235. * Where f(tg) is the recursive weight fraction assigned to
  236. * this group.
  237. */
  238. unsigned long h_load;
  239. u64 last_h_load_update;
  240. struct sched_entity *h_load_next;
  241. #endif /* CONFIG_FAIR_GROUP_SCHED */
  242. #endif /* CONFIG_SMP */
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  245. /*
  246. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  247. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  248. * (like users, containers etc.)
  249. *
  250. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  251. * list is used during load balance.
  252. */
  253. int on_list;
  254. struct list_head leaf_cfs_rq_list;
  255. struct task_group *tg; /* group that "owns" this runqueue */
  256. #ifdef CONFIG_CFS_BANDWIDTH
  257. int runtime_enabled;
  258. u64 runtime_expires;
  259. s64 runtime_remaining;
  260. u64 throttled_clock, throttled_clock_task;
  261. u64 throttled_clock_task_time;
  262. int throttled, throttle_count;
  263. struct list_head throttled_list;
  264. #endif /* CONFIG_CFS_BANDWIDTH */
  265. #endif /* CONFIG_FAIR_GROUP_SCHED */
  266. };
  267. static inline int rt_bandwidth_enabled(void)
  268. {
  269. return sysctl_sched_rt_runtime >= 0;
  270. }
  271. /* Real-Time classes' related field in a runqueue: */
  272. struct rt_rq {
  273. struct rt_prio_array active;
  274. unsigned int rt_nr_running;
  275. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  276. struct {
  277. int curr; /* highest queued rt task prio */
  278. #ifdef CONFIG_SMP
  279. int next; /* next highest */
  280. #endif
  281. } highest_prio;
  282. #endif
  283. #ifdef CONFIG_SMP
  284. unsigned long rt_nr_migratory;
  285. unsigned long rt_nr_total;
  286. int overloaded;
  287. struct plist_head pushable_tasks;
  288. #endif
  289. int rt_throttled;
  290. u64 rt_time;
  291. u64 rt_runtime;
  292. /* Nests inside the rq lock: */
  293. raw_spinlock_t rt_runtime_lock;
  294. #ifdef CONFIG_RT_GROUP_SCHED
  295. unsigned long rt_nr_boosted;
  296. struct rq *rq;
  297. struct task_group *tg;
  298. #endif
  299. };
  300. #ifdef CONFIG_SMP
  301. /*
  302. * We add the notion of a root-domain which will be used to define per-domain
  303. * variables. Each exclusive cpuset essentially defines an island domain by
  304. * fully partitioning the member cpus from any other cpuset. Whenever a new
  305. * exclusive cpuset is created, we also create and attach a new root-domain
  306. * object.
  307. *
  308. */
  309. struct root_domain {
  310. atomic_t refcount;
  311. atomic_t rto_count;
  312. struct rcu_head rcu;
  313. cpumask_var_t span;
  314. cpumask_var_t online;
  315. /*
  316. * The "RT overload" flag: it gets set if a CPU has more than
  317. * one runnable RT task.
  318. */
  319. cpumask_var_t rto_mask;
  320. struct cpupri cpupri;
  321. };
  322. extern struct root_domain def_root_domain;
  323. #endif /* CONFIG_SMP */
  324. /*
  325. * This is the main, per-CPU runqueue data structure.
  326. *
  327. * Locking rule: those places that want to lock multiple runqueues
  328. * (such as the load balancing or the thread migration code), lock
  329. * acquire operations must be ordered by ascending &runqueue.
  330. */
  331. struct rq {
  332. /* runqueue lock: */
  333. raw_spinlock_t lock;
  334. /*
  335. * nr_running and cpu_load should be in the same cacheline because
  336. * remote CPUs use both these fields when doing load calculation.
  337. */
  338. unsigned int nr_running;
  339. #ifdef CONFIG_NUMA_BALANCING
  340. unsigned int nr_numa_running;
  341. unsigned int nr_preferred_running;
  342. #endif
  343. #define CPU_LOAD_IDX_MAX 5
  344. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  345. unsigned long last_load_update_tick;
  346. #ifdef CONFIG_NO_HZ_COMMON
  347. u64 nohz_stamp;
  348. unsigned long nohz_flags;
  349. #endif
  350. #ifdef CONFIG_NO_HZ_FULL
  351. unsigned long last_sched_tick;
  352. #endif
  353. int skip_clock_update;
  354. /* capture load from *all* tasks on this cpu: */
  355. struct load_weight load;
  356. unsigned long nr_load_updates;
  357. u64 nr_switches;
  358. struct cfs_rq cfs;
  359. struct rt_rq rt;
  360. #ifdef CONFIG_FAIR_GROUP_SCHED
  361. /* list of leaf cfs_rq on this cpu: */
  362. struct list_head leaf_cfs_rq_list;
  363. #endif /* CONFIG_FAIR_GROUP_SCHED */
  364. #ifdef CONFIG_RT_GROUP_SCHED
  365. struct list_head leaf_rt_rq_list;
  366. #endif
  367. /*
  368. * This is part of a global counter where only the total sum
  369. * over all CPUs matters. A task can increase this counter on
  370. * one CPU and if it got migrated afterwards it may decrease
  371. * it on another CPU. Always updated under the runqueue lock:
  372. */
  373. unsigned long nr_uninterruptible;
  374. struct task_struct *curr, *idle, *stop;
  375. unsigned long next_balance;
  376. struct mm_struct *prev_mm;
  377. u64 clock;
  378. u64 clock_task;
  379. atomic_t nr_iowait;
  380. #ifdef CONFIG_SMP
  381. struct root_domain *rd;
  382. struct sched_domain *sd;
  383. unsigned long cpu_power;
  384. unsigned char idle_balance;
  385. /* For active balancing */
  386. int post_schedule;
  387. int active_balance;
  388. int push_cpu;
  389. struct cpu_stop_work active_balance_work;
  390. /* cpu of this runqueue: */
  391. int cpu;
  392. int online;
  393. struct list_head cfs_tasks;
  394. u64 rt_avg;
  395. u64 age_stamp;
  396. u64 idle_stamp;
  397. u64 avg_idle;
  398. /* This is used to determine avg_idle's max value */
  399. u64 max_idle_balance_cost;
  400. #endif
  401. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  402. u64 prev_irq_time;
  403. #endif
  404. #ifdef CONFIG_PARAVIRT
  405. u64 prev_steal_time;
  406. #endif
  407. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  408. u64 prev_steal_time_rq;
  409. #endif
  410. /* calc_load related fields */
  411. unsigned long calc_load_update;
  412. long calc_load_active;
  413. #ifdef CONFIG_SCHED_HRTICK
  414. #ifdef CONFIG_SMP
  415. int hrtick_csd_pending;
  416. struct call_single_data hrtick_csd;
  417. #endif
  418. struct hrtimer hrtick_timer;
  419. #endif
  420. #ifdef CONFIG_SCHEDSTATS
  421. /* latency stats */
  422. struct sched_info rq_sched_info;
  423. unsigned long long rq_cpu_time;
  424. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  425. /* sys_sched_yield() stats */
  426. unsigned int yld_count;
  427. /* schedule() stats */
  428. unsigned int sched_count;
  429. unsigned int sched_goidle;
  430. /* try_to_wake_up() stats */
  431. unsigned int ttwu_count;
  432. unsigned int ttwu_local;
  433. #endif
  434. #ifdef CONFIG_SMP
  435. struct llist_head wake_list;
  436. #endif
  437. struct sched_avg avg;
  438. };
  439. static inline int cpu_of(struct rq *rq)
  440. {
  441. #ifdef CONFIG_SMP
  442. return rq->cpu;
  443. #else
  444. return 0;
  445. #endif
  446. }
  447. DECLARE_PER_CPU(struct rq, runqueues);
  448. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  449. #define this_rq() (&__get_cpu_var(runqueues))
  450. #define task_rq(p) cpu_rq(task_cpu(p))
  451. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  452. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  453. static inline u64 rq_clock(struct rq *rq)
  454. {
  455. return rq->clock;
  456. }
  457. static inline u64 rq_clock_task(struct rq *rq)
  458. {
  459. return rq->clock_task;
  460. }
  461. #ifdef CONFIG_NUMA_BALANCING
  462. extern void sched_setnuma(struct task_struct *p, int node);
  463. extern int migrate_task_to(struct task_struct *p, int cpu);
  464. extern int migrate_swap(struct task_struct *, struct task_struct *);
  465. #endif /* CONFIG_NUMA_BALANCING */
  466. #ifdef CONFIG_SMP
  467. #define rcu_dereference_check_sched_domain(p) \
  468. rcu_dereference_check((p), \
  469. lockdep_is_held(&sched_domains_mutex))
  470. /*
  471. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  472. * See detach_destroy_domains: synchronize_sched for details.
  473. *
  474. * The domain tree of any CPU may only be accessed from within
  475. * preempt-disabled sections.
  476. */
  477. #define for_each_domain(cpu, __sd) \
  478. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  479. __sd; __sd = __sd->parent)
  480. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  481. /**
  482. * highest_flag_domain - Return highest sched_domain containing flag.
  483. * @cpu: The cpu whose highest level of sched domain is to
  484. * be returned.
  485. * @flag: The flag to check for the highest sched_domain
  486. * for the given cpu.
  487. *
  488. * Returns the highest sched_domain of a cpu which contains the given flag.
  489. */
  490. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  491. {
  492. struct sched_domain *sd, *hsd = NULL;
  493. for_each_domain(cpu, sd) {
  494. if (!(sd->flags & flag))
  495. break;
  496. hsd = sd;
  497. }
  498. return hsd;
  499. }
  500. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  501. {
  502. struct sched_domain *sd;
  503. for_each_domain(cpu, sd) {
  504. if (sd->flags & flag)
  505. break;
  506. }
  507. return sd;
  508. }
  509. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  510. DECLARE_PER_CPU(int, sd_llc_size);
  511. DECLARE_PER_CPU(int, sd_llc_id);
  512. DECLARE_PER_CPU(struct sched_domain *, sd_numa);
  513. DECLARE_PER_CPU(struct sched_domain *, sd_busy);
  514. DECLARE_PER_CPU(struct sched_domain *, sd_asym);
  515. struct sched_group_power {
  516. atomic_t ref;
  517. /*
  518. * CPU power of this group, SCHED_LOAD_SCALE being max power for a
  519. * single CPU.
  520. */
  521. unsigned int power, power_orig;
  522. unsigned long next_update;
  523. int imbalance; /* XXX unrelated to power but shared group state */
  524. /*
  525. * Number of busy cpus in this group.
  526. */
  527. atomic_t nr_busy_cpus;
  528. unsigned long cpumask[0]; /* iteration mask */
  529. };
  530. struct sched_group {
  531. struct sched_group *next; /* Must be a circular list */
  532. atomic_t ref;
  533. unsigned int group_weight;
  534. struct sched_group_power *sgp;
  535. /*
  536. * The CPUs this group covers.
  537. *
  538. * NOTE: this field is variable length. (Allocated dynamically
  539. * by attaching extra space to the end of the structure,
  540. * depending on how many CPUs the kernel has booted up with)
  541. */
  542. unsigned long cpumask[0];
  543. };
  544. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  545. {
  546. return to_cpumask(sg->cpumask);
  547. }
  548. /*
  549. * cpumask masking which cpus in the group are allowed to iterate up the domain
  550. * tree.
  551. */
  552. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  553. {
  554. return to_cpumask(sg->sgp->cpumask);
  555. }
  556. /**
  557. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  558. * @group: The group whose first cpu is to be returned.
  559. */
  560. static inline unsigned int group_first_cpu(struct sched_group *group)
  561. {
  562. return cpumask_first(sched_group_cpus(group));
  563. }
  564. extern int group_balance_cpu(struct sched_group *sg);
  565. #endif /* CONFIG_SMP */
  566. #include "stats.h"
  567. #include "auto_group.h"
  568. #ifdef CONFIG_CGROUP_SCHED
  569. /*
  570. * Return the group to which this tasks belongs.
  571. *
  572. * We cannot use task_css() and friends because the cgroup subsystem
  573. * changes that value before the cgroup_subsys::attach() method is called,
  574. * therefore we cannot pin it and might observe the wrong value.
  575. *
  576. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  577. * core changes this before calling sched_move_task().
  578. *
  579. * Instead we use a 'copy' which is updated from sched_move_task() while
  580. * holding both task_struct::pi_lock and rq::lock.
  581. */
  582. static inline struct task_group *task_group(struct task_struct *p)
  583. {
  584. return p->sched_task_group;
  585. }
  586. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  587. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  588. {
  589. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  590. struct task_group *tg = task_group(p);
  591. #endif
  592. #ifdef CONFIG_FAIR_GROUP_SCHED
  593. p->se.cfs_rq = tg->cfs_rq[cpu];
  594. p->se.parent = tg->se[cpu];
  595. #endif
  596. #ifdef CONFIG_RT_GROUP_SCHED
  597. p->rt.rt_rq = tg->rt_rq[cpu];
  598. p->rt.parent = tg->rt_se[cpu];
  599. #endif
  600. }
  601. #else /* CONFIG_CGROUP_SCHED */
  602. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  603. static inline struct task_group *task_group(struct task_struct *p)
  604. {
  605. return NULL;
  606. }
  607. #endif /* CONFIG_CGROUP_SCHED */
  608. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  609. {
  610. set_task_rq(p, cpu);
  611. #ifdef CONFIG_SMP
  612. /*
  613. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  614. * successfuly executed on another CPU. We must ensure that updates of
  615. * per-task data have been completed by this moment.
  616. */
  617. smp_wmb();
  618. task_thread_info(p)->cpu = cpu;
  619. p->wake_cpu = cpu;
  620. #endif
  621. }
  622. /*
  623. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  624. */
  625. #ifdef CONFIG_SCHED_DEBUG
  626. # include <linux/static_key.h>
  627. # define const_debug __read_mostly
  628. #else
  629. # define const_debug const
  630. #endif
  631. extern const_debug unsigned int sysctl_sched_features;
  632. #define SCHED_FEAT(name, enabled) \
  633. __SCHED_FEAT_##name ,
  634. enum {
  635. #include "features.h"
  636. __SCHED_FEAT_NR,
  637. };
  638. #undef SCHED_FEAT
  639. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  640. static __always_inline bool static_branch__true(struct static_key *key)
  641. {
  642. return static_key_true(key); /* Not out of line branch. */
  643. }
  644. static __always_inline bool static_branch__false(struct static_key *key)
  645. {
  646. return static_key_false(key); /* Out of line branch. */
  647. }
  648. #define SCHED_FEAT(name, enabled) \
  649. static __always_inline bool static_branch_##name(struct static_key *key) \
  650. { \
  651. return static_branch__##enabled(key); \
  652. }
  653. #include "features.h"
  654. #undef SCHED_FEAT
  655. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  656. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  657. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  658. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  659. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  660. #ifdef CONFIG_NUMA_BALANCING
  661. #define sched_feat_numa(x) sched_feat(x)
  662. #ifdef CONFIG_SCHED_DEBUG
  663. #define numabalancing_enabled sched_feat_numa(NUMA)
  664. #else
  665. extern bool numabalancing_enabled;
  666. #endif /* CONFIG_SCHED_DEBUG */
  667. #else
  668. #define sched_feat_numa(x) (0)
  669. #define numabalancing_enabled (0)
  670. #endif /* CONFIG_NUMA_BALANCING */
  671. static inline u64 global_rt_period(void)
  672. {
  673. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  674. }
  675. static inline u64 global_rt_runtime(void)
  676. {
  677. if (sysctl_sched_rt_runtime < 0)
  678. return RUNTIME_INF;
  679. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  680. }
  681. static inline int task_current(struct rq *rq, struct task_struct *p)
  682. {
  683. return rq->curr == p;
  684. }
  685. static inline int task_running(struct rq *rq, struct task_struct *p)
  686. {
  687. #ifdef CONFIG_SMP
  688. return p->on_cpu;
  689. #else
  690. return task_current(rq, p);
  691. #endif
  692. }
  693. #ifndef prepare_arch_switch
  694. # define prepare_arch_switch(next) do { } while (0)
  695. #endif
  696. #ifndef finish_arch_switch
  697. # define finish_arch_switch(prev) do { } while (0)
  698. #endif
  699. #ifndef finish_arch_post_lock_switch
  700. # define finish_arch_post_lock_switch() do { } while (0)
  701. #endif
  702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  703. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  704. {
  705. #ifdef CONFIG_SMP
  706. /*
  707. * We can optimise this out completely for !SMP, because the
  708. * SMP rebalancing from interrupt is the only thing that cares
  709. * here.
  710. */
  711. next->on_cpu = 1;
  712. #endif
  713. }
  714. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  715. {
  716. #ifdef CONFIG_SMP
  717. /*
  718. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  719. * We must ensure this doesn't happen until the switch is completely
  720. * finished.
  721. */
  722. smp_wmb();
  723. prev->on_cpu = 0;
  724. #endif
  725. #ifdef CONFIG_DEBUG_SPINLOCK
  726. /* this is a valid case when another task releases the spinlock */
  727. rq->lock.owner = current;
  728. #endif
  729. /*
  730. * If we are tracking spinlock dependencies then we have to
  731. * fix up the runqueue lock - which gets 'carried over' from
  732. * prev into current:
  733. */
  734. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  735. raw_spin_unlock_irq(&rq->lock);
  736. }
  737. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  738. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  739. {
  740. #ifdef CONFIG_SMP
  741. /*
  742. * We can optimise this out completely for !SMP, because the
  743. * SMP rebalancing from interrupt is the only thing that cares
  744. * here.
  745. */
  746. next->on_cpu = 1;
  747. #endif
  748. raw_spin_unlock(&rq->lock);
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  755. * We must ensure this doesn't happen until the switch is completely
  756. * finished.
  757. */
  758. smp_wmb();
  759. prev->on_cpu = 0;
  760. #endif
  761. local_irq_enable();
  762. }
  763. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  764. /*
  765. * wake flags
  766. */
  767. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  768. #define WF_FORK 0x02 /* child wakeup after fork */
  769. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  770. /*
  771. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  772. * of tasks with abnormal "nice" values across CPUs the contribution that
  773. * each task makes to its run queue's load is weighted according to its
  774. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  775. * scaled version of the new time slice allocation that they receive on time
  776. * slice expiry etc.
  777. */
  778. #define WEIGHT_IDLEPRIO 3
  779. #define WMULT_IDLEPRIO 1431655765
  780. /*
  781. * Nice levels are multiplicative, with a gentle 10% change for every
  782. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  783. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  784. * that remained on nice 0.
  785. *
  786. * The "10% effect" is relative and cumulative: from _any_ nice level,
  787. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  788. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  789. * If a task goes up by ~10% and another task goes down by ~10% then
  790. * the relative distance between them is ~25%.)
  791. */
  792. static const int prio_to_weight[40] = {
  793. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  794. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  795. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  796. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  797. /* 0 */ 1024, 820, 655, 526, 423,
  798. /* 5 */ 335, 272, 215, 172, 137,
  799. /* 10 */ 110, 87, 70, 56, 45,
  800. /* 15 */ 36, 29, 23, 18, 15,
  801. };
  802. /*
  803. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  804. *
  805. * In cases where the weight does not change often, we can use the
  806. * precalculated inverse to speed up arithmetics by turning divisions
  807. * into multiplications:
  808. */
  809. static const u32 prio_to_wmult[40] = {
  810. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  811. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  812. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  813. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  814. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  815. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  816. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  817. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  818. };
  819. #define ENQUEUE_WAKEUP 1
  820. #define ENQUEUE_HEAD 2
  821. #ifdef CONFIG_SMP
  822. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  823. #else
  824. #define ENQUEUE_WAKING 0
  825. #endif
  826. #define DEQUEUE_SLEEP 1
  827. struct sched_class {
  828. const struct sched_class *next;
  829. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  830. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  831. void (*yield_task) (struct rq *rq);
  832. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  833. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  834. struct task_struct * (*pick_next_task) (struct rq *rq);
  835. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  836. #ifdef CONFIG_SMP
  837. int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
  838. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  839. void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
  840. void (*post_schedule) (struct rq *this_rq);
  841. void (*task_waking) (struct task_struct *task);
  842. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  843. void (*set_cpus_allowed)(struct task_struct *p,
  844. const struct cpumask *newmask);
  845. void (*rq_online)(struct rq *rq);
  846. void (*rq_offline)(struct rq *rq);
  847. #endif
  848. void (*set_curr_task) (struct rq *rq);
  849. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  850. void (*task_fork) (struct task_struct *p);
  851. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  852. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  853. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  854. int oldprio);
  855. unsigned int (*get_rr_interval) (struct rq *rq,
  856. struct task_struct *task);
  857. #ifdef CONFIG_FAIR_GROUP_SCHED
  858. void (*task_move_group) (struct task_struct *p, int on_rq);
  859. #endif
  860. };
  861. #define sched_class_highest (&stop_sched_class)
  862. #define for_each_class(class) \
  863. for (class = sched_class_highest; class; class = class->next)
  864. extern const struct sched_class stop_sched_class;
  865. extern const struct sched_class rt_sched_class;
  866. extern const struct sched_class fair_sched_class;
  867. extern const struct sched_class idle_sched_class;
  868. #ifdef CONFIG_SMP
  869. extern void update_group_power(struct sched_domain *sd, int cpu);
  870. extern void trigger_load_balance(struct rq *rq, int cpu);
  871. extern void idle_balance(int this_cpu, struct rq *this_rq);
  872. extern void idle_enter_fair(struct rq *this_rq);
  873. extern void idle_exit_fair(struct rq *this_rq);
  874. #else /* CONFIG_SMP */
  875. static inline void idle_balance(int cpu, struct rq *rq)
  876. {
  877. }
  878. #endif
  879. extern void sysrq_sched_debug_show(void);
  880. extern void sched_init_granularity(void);
  881. extern void update_max_interval(void);
  882. extern void init_sched_rt_class(void);
  883. extern void init_sched_fair_class(void);
  884. extern void resched_task(struct task_struct *p);
  885. extern void resched_cpu(int cpu);
  886. extern struct rt_bandwidth def_rt_bandwidth;
  887. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  888. extern void update_idle_cpu_load(struct rq *this_rq);
  889. extern void init_task_runnable_average(struct task_struct *p);
  890. #ifdef CONFIG_PARAVIRT
  891. static inline u64 steal_ticks(u64 steal)
  892. {
  893. if (unlikely(steal > NSEC_PER_SEC))
  894. return div_u64(steal, TICK_NSEC);
  895. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  896. }
  897. #endif
  898. static inline void inc_nr_running(struct rq *rq)
  899. {
  900. rq->nr_running++;
  901. #ifdef CONFIG_NO_HZ_FULL
  902. if (rq->nr_running == 2) {
  903. if (tick_nohz_full_cpu(rq->cpu)) {
  904. /* Order rq->nr_running write against the IPI */
  905. smp_wmb();
  906. smp_send_reschedule(rq->cpu);
  907. }
  908. }
  909. #endif
  910. }
  911. static inline void dec_nr_running(struct rq *rq)
  912. {
  913. rq->nr_running--;
  914. }
  915. static inline void rq_last_tick_reset(struct rq *rq)
  916. {
  917. #ifdef CONFIG_NO_HZ_FULL
  918. rq->last_sched_tick = jiffies;
  919. #endif
  920. }
  921. extern void update_rq_clock(struct rq *rq);
  922. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  923. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  924. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  925. extern const_debug unsigned int sysctl_sched_time_avg;
  926. extern const_debug unsigned int sysctl_sched_nr_migrate;
  927. extern const_debug unsigned int sysctl_sched_migration_cost;
  928. static inline u64 sched_avg_period(void)
  929. {
  930. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  931. }
  932. #ifdef CONFIG_SCHED_HRTICK
  933. /*
  934. * Use hrtick when:
  935. * - enabled by features
  936. * - hrtimer is actually high res
  937. */
  938. static inline int hrtick_enabled(struct rq *rq)
  939. {
  940. if (!sched_feat(HRTICK))
  941. return 0;
  942. if (!cpu_active(cpu_of(rq)))
  943. return 0;
  944. return hrtimer_is_hres_active(&rq->hrtick_timer);
  945. }
  946. void hrtick_start(struct rq *rq, u64 delay);
  947. #else
  948. static inline int hrtick_enabled(struct rq *rq)
  949. {
  950. return 0;
  951. }
  952. #endif /* CONFIG_SCHED_HRTICK */
  953. #ifdef CONFIG_SMP
  954. extern void sched_avg_update(struct rq *rq);
  955. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  956. {
  957. rq->rt_avg += rt_delta;
  958. sched_avg_update(rq);
  959. }
  960. #else
  961. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  962. static inline void sched_avg_update(struct rq *rq) { }
  963. #endif
  964. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  965. #ifdef CONFIG_SMP
  966. #ifdef CONFIG_PREEMPT
  967. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  968. /*
  969. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  970. * way at the expense of forcing extra atomic operations in all
  971. * invocations. This assures that the double_lock is acquired using the
  972. * same underlying policy as the spinlock_t on this architecture, which
  973. * reduces latency compared to the unfair variant below. However, it
  974. * also adds more overhead and therefore may reduce throughput.
  975. */
  976. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  977. __releases(this_rq->lock)
  978. __acquires(busiest->lock)
  979. __acquires(this_rq->lock)
  980. {
  981. raw_spin_unlock(&this_rq->lock);
  982. double_rq_lock(this_rq, busiest);
  983. return 1;
  984. }
  985. #else
  986. /*
  987. * Unfair double_lock_balance: Optimizes throughput at the expense of
  988. * latency by eliminating extra atomic operations when the locks are
  989. * already in proper order on entry. This favors lower cpu-ids and will
  990. * grant the double lock to lower cpus over higher ids under contention,
  991. * regardless of entry order into the function.
  992. */
  993. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  994. __releases(this_rq->lock)
  995. __acquires(busiest->lock)
  996. __acquires(this_rq->lock)
  997. {
  998. int ret = 0;
  999. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1000. if (busiest < this_rq) {
  1001. raw_spin_unlock(&this_rq->lock);
  1002. raw_spin_lock(&busiest->lock);
  1003. raw_spin_lock_nested(&this_rq->lock,
  1004. SINGLE_DEPTH_NESTING);
  1005. ret = 1;
  1006. } else
  1007. raw_spin_lock_nested(&busiest->lock,
  1008. SINGLE_DEPTH_NESTING);
  1009. }
  1010. return ret;
  1011. }
  1012. #endif /* CONFIG_PREEMPT */
  1013. /*
  1014. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1015. */
  1016. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1017. {
  1018. if (unlikely(!irqs_disabled())) {
  1019. /* printk() doesn't work good under rq->lock */
  1020. raw_spin_unlock(&this_rq->lock);
  1021. BUG_ON(1);
  1022. }
  1023. return _double_lock_balance(this_rq, busiest);
  1024. }
  1025. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1026. __releases(busiest->lock)
  1027. {
  1028. raw_spin_unlock(&busiest->lock);
  1029. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1030. }
  1031. static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
  1032. {
  1033. if (l1 > l2)
  1034. swap(l1, l2);
  1035. spin_lock(l1);
  1036. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1037. }
  1038. static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
  1039. {
  1040. if (l1 > l2)
  1041. swap(l1, l2);
  1042. raw_spin_lock(l1);
  1043. raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1044. }
  1045. /*
  1046. * double_rq_lock - safely lock two runqueues
  1047. *
  1048. * Note this does not disable interrupts like task_rq_lock,
  1049. * you need to do so manually before calling.
  1050. */
  1051. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1052. __acquires(rq1->lock)
  1053. __acquires(rq2->lock)
  1054. {
  1055. BUG_ON(!irqs_disabled());
  1056. if (rq1 == rq2) {
  1057. raw_spin_lock(&rq1->lock);
  1058. __acquire(rq2->lock); /* Fake it out ;) */
  1059. } else {
  1060. if (rq1 < rq2) {
  1061. raw_spin_lock(&rq1->lock);
  1062. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1063. } else {
  1064. raw_spin_lock(&rq2->lock);
  1065. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1066. }
  1067. }
  1068. }
  1069. /*
  1070. * double_rq_unlock - safely unlock two runqueues
  1071. *
  1072. * Note this does not restore interrupts like task_rq_unlock,
  1073. * you need to do so manually after calling.
  1074. */
  1075. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1076. __releases(rq1->lock)
  1077. __releases(rq2->lock)
  1078. {
  1079. raw_spin_unlock(&rq1->lock);
  1080. if (rq1 != rq2)
  1081. raw_spin_unlock(&rq2->lock);
  1082. else
  1083. __release(rq2->lock);
  1084. }
  1085. #else /* CONFIG_SMP */
  1086. /*
  1087. * double_rq_lock - safely lock two runqueues
  1088. *
  1089. * Note this does not disable interrupts like task_rq_lock,
  1090. * you need to do so manually before calling.
  1091. */
  1092. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1093. __acquires(rq1->lock)
  1094. __acquires(rq2->lock)
  1095. {
  1096. BUG_ON(!irqs_disabled());
  1097. BUG_ON(rq1 != rq2);
  1098. raw_spin_lock(&rq1->lock);
  1099. __acquire(rq2->lock); /* Fake it out ;) */
  1100. }
  1101. /*
  1102. * double_rq_unlock - safely unlock two runqueues
  1103. *
  1104. * Note this does not restore interrupts like task_rq_unlock,
  1105. * you need to do so manually after calling.
  1106. */
  1107. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1108. __releases(rq1->lock)
  1109. __releases(rq2->lock)
  1110. {
  1111. BUG_ON(rq1 != rq2);
  1112. raw_spin_unlock(&rq1->lock);
  1113. __release(rq2->lock);
  1114. }
  1115. #endif
  1116. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1117. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1118. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1119. extern void print_rt_stats(struct seq_file *m, int cpu);
  1120. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1121. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1122. extern void cfs_bandwidth_usage_inc(void);
  1123. extern void cfs_bandwidth_usage_dec(void);
  1124. #ifdef CONFIG_NO_HZ_COMMON
  1125. enum rq_nohz_flag_bits {
  1126. NOHZ_TICK_STOPPED,
  1127. NOHZ_BALANCE_KICK,
  1128. };
  1129. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1130. #endif
  1131. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1132. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1133. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1134. #ifndef CONFIG_64BIT
  1135. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1136. static inline void irq_time_write_begin(void)
  1137. {
  1138. __this_cpu_inc(irq_time_seq.sequence);
  1139. smp_wmb();
  1140. }
  1141. static inline void irq_time_write_end(void)
  1142. {
  1143. smp_wmb();
  1144. __this_cpu_inc(irq_time_seq.sequence);
  1145. }
  1146. static inline u64 irq_time_read(int cpu)
  1147. {
  1148. u64 irq_time;
  1149. unsigned seq;
  1150. do {
  1151. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1152. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1153. per_cpu(cpu_hardirq_time, cpu);
  1154. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1155. return irq_time;
  1156. }
  1157. #else /* CONFIG_64BIT */
  1158. static inline void irq_time_write_begin(void)
  1159. {
  1160. }
  1161. static inline void irq_time_write_end(void)
  1162. {
  1163. }
  1164. static inline u64 irq_time_read(int cpu)
  1165. {
  1166. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1167. }
  1168. #endif /* CONFIG_64BIT */
  1169. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */