core.c 173 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_rt_policy(p))
  752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  753. else
  754. prio = __normal_prio(p);
  755. return prio;
  756. }
  757. /*
  758. * Calculate the current priority, i.e. the priority
  759. * taken into account by the scheduler. This value might
  760. * be boosted by RT tasks, or might be boosted by
  761. * interactivity modifiers. Will be RT if the task got
  762. * RT-boosted. If not then it returns p->normal_prio.
  763. */
  764. static int effective_prio(struct task_struct *p)
  765. {
  766. p->normal_prio = normal_prio(p);
  767. /*
  768. * If we are RT tasks or we were boosted to RT priority,
  769. * keep the priority unchanged. Otherwise, update priority
  770. * to the normal priority:
  771. */
  772. if (!rt_prio(p->prio))
  773. return p->normal_prio;
  774. return p->prio;
  775. }
  776. /**
  777. * task_curr - is this task currently executing on a CPU?
  778. * @p: the task in question.
  779. *
  780. * Return: 1 if the task is currently executing. 0 otherwise.
  781. */
  782. inline int task_curr(const struct task_struct *p)
  783. {
  784. return cpu_curr(task_cpu(p)) == p;
  785. }
  786. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  787. const struct sched_class *prev_class,
  788. int oldprio)
  789. {
  790. if (prev_class != p->sched_class) {
  791. if (prev_class->switched_from)
  792. prev_class->switched_from(rq, p);
  793. p->sched_class->switched_to(rq, p);
  794. } else if (oldprio != p->prio)
  795. p->sched_class->prio_changed(rq, p, oldprio);
  796. }
  797. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  798. {
  799. const struct sched_class *class;
  800. if (p->sched_class == rq->curr->sched_class) {
  801. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  802. } else {
  803. for_each_class(class) {
  804. if (class == rq->curr->sched_class)
  805. break;
  806. if (class == p->sched_class) {
  807. resched_task(rq->curr);
  808. break;
  809. }
  810. }
  811. }
  812. /*
  813. * A queue event has occurred, and we're going to schedule. In
  814. * this case, we can save a useless back to back clock update.
  815. */
  816. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  817. rq->skip_clock_update = 1;
  818. }
  819. #ifdef CONFIG_SMP
  820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  821. {
  822. #ifdef CONFIG_SCHED_DEBUG
  823. /*
  824. * We should never call set_task_cpu() on a blocked task,
  825. * ttwu() will sort out the placement.
  826. */
  827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  828. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  829. #ifdef CONFIG_LOCKDEP
  830. /*
  831. * The caller should hold either p->pi_lock or rq->lock, when changing
  832. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  833. *
  834. * sched_move_task() holds both and thus holding either pins the cgroup,
  835. * see task_group().
  836. *
  837. * Furthermore, all task_rq users should acquire both locks, see
  838. * task_rq_lock().
  839. */
  840. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  841. lockdep_is_held(&task_rq(p)->lock)));
  842. #endif
  843. #endif
  844. trace_sched_migrate_task(p, new_cpu);
  845. if (task_cpu(p) != new_cpu) {
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. }
  851. __set_task_cpu(p, new_cpu);
  852. }
  853. static void __migrate_swap_task(struct task_struct *p, int cpu)
  854. {
  855. if (p->on_rq) {
  856. struct rq *src_rq, *dst_rq;
  857. src_rq = task_rq(p);
  858. dst_rq = cpu_rq(cpu);
  859. deactivate_task(src_rq, p, 0);
  860. set_task_cpu(p, cpu);
  861. activate_task(dst_rq, p, 0);
  862. check_preempt_curr(dst_rq, p, 0);
  863. } else {
  864. /*
  865. * Task isn't running anymore; make it appear like we migrated
  866. * it before it went to sleep. This means on wakeup we make the
  867. * previous cpu our targer instead of where it really is.
  868. */
  869. p->wake_cpu = cpu;
  870. }
  871. }
  872. struct migration_swap_arg {
  873. struct task_struct *src_task, *dst_task;
  874. int src_cpu, dst_cpu;
  875. };
  876. static int migrate_swap_stop(void *data)
  877. {
  878. struct migration_swap_arg *arg = data;
  879. struct rq *src_rq, *dst_rq;
  880. int ret = -EAGAIN;
  881. src_rq = cpu_rq(arg->src_cpu);
  882. dst_rq = cpu_rq(arg->dst_cpu);
  883. double_raw_lock(&arg->src_task->pi_lock,
  884. &arg->dst_task->pi_lock);
  885. double_rq_lock(src_rq, dst_rq);
  886. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  887. goto unlock;
  888. if (task_cpu(arg->src_task) != arg->src_cpu)
  889. goto unlock;
  890. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  891. goto unlock;
  892. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  893. goto unlock;
  894. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  895. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  896. ret = 0;
  897. unlock:
  898. double_rq_unlock(src_rq, dst_rq);
  899. raw_spin_unlock(&arg->dst_task->pi_lock);
  900. raw_spin_unlock(&arg->src_task->pi_lock);
  901. return ret;
  902. }
  903. /*
  904. * Cross migrate two tasks
  905. */
  906. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  907. {
  908. struct migration_swap_arg arg;
  909. int ret = -EINVAL;
  910. arg = (struct migration_swap_arg){
  911. .src_task = cur,
  912. .src_cpu = task_cpu(cur),
  913. .dst_task = p,
  914. .dst_cpu = task_cpu(p),
  915. };
  916. if (arg.src_cpu == arg.dst_cpu)
  917. goto out;
  918. /*
  919. * These three tests are all lockless; this is OK since all of them
  920. * will be re-checked with proper locks held further down the line.
  921. */
  922. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  923. goto out;
  924. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  925. goto out;
  926. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  927. goto out;
  928. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  929. out:
  930. return ret;
  931. }
  932. struct migration_arg {
  933. struct task_struct *task;
  934. int dest_cpu;
  935. };
  936. static int migration_cpu_stop(void *data);
  937. /*
  938. * wait_task_inactive - wait for a thread to unschedule.
  939. *
  940. * If @match_state is nonzero, it's the @p->state value just checked and
  941. * not expected to change. If it changes, i.e. @p might have woken up,
  942. * then return zero. When we succeed in waiting for @p to be off its CPU,
  943. * we return a positive number (its total switch count). If a second call
  944. * a short while later returns the same number, the caller can be sure that
  945. * @p has remained unscheduled the whole time.
  946. *
  947. * The caller must ensure that the task *will* unschedule sometime soon,
  948. * else this function might spin for a *long* time. This function can't
  949. * be called with interrupts off, or it may introduce deadlock with
  950. * smp_call_function() if an IPI is sent by the same process we are
  951. * waiting to become inactive.
  952. */
  953. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  954. {
  955. unsigned long flags;
  956. int running, on_rq;
  957. unsigned long ncsw;
  958. struct rq *rq;
  959. for (;;) {
  960. /*
  961. * We do the initial early heuristics without holding
  962. * any task-queue locks at all. We'll only try to get
  963. * the runqueue lock when things look like they will
  964. * work out!
  965. */
  966. rq = task_rq(p);
  967. /*
  968. * If the task is actively running on another CPU
  969. * still, just relax and busy-wait without holding
  970. * any locks.
  971. *
  972. * NOTE! Since we don't hold any locks, it's not
  973. * even sure that "rq" stays as the right runqueue!
  974. * But we don't care, since "task_running()" will
  975. * return false if the runqueue has changed and p
  976. * is actually now running somewhere else!
  977. */
  978. while (task_running(rq, p)) {
  979. if (match_state && unlikely(p->state != match_state))
  980. return 0;
  981. cpu_relax();
  982. }
  983. /*
  984. * Ok, time to look more closely! We need the rq
  985. * lock now, to be *sure*. If we're wrong, we'll
  986. * just go back and repeat.
  987. */
  988. rq = task_rq_lock(p, &flags);
  989. trace_sched_wait_task(p);
  990. running = task_running(rq, p);
  991. on_rq = p->on_rq;
  992. ncsw = 0;
  993. if (!match_state || p->state == match_state)
  994. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  995. task_rq_unlock(rq, p, &flags);
  996. /*
  997. * If it changed from the expected state, bail out now.
  998. */
  999. if (unlikely(!ncsw))
  1000. break;
  1001. /*
  1002. * Was it really running after all now that we
  1003. * checked with the proper locks actually held?
  1004. *
  1005. * Oops. Go back and try again..
  1006. */
  1007. if (unlikely(running)) {
  1008. cpu_relax();
  1009. continue;
  1010. }
  1011. /*
  1012. * It's not enough that it's not actively running,
  1013. * it must be off the runqueue _entirely_, and not
  1014. * preempted!
  1015. *
  1016. * So if it was still runnable (but just not actively
  1017. * running right now), it's preempted, and we should
  1018. * yield - it could be a while.
  1019. */
  1020. if (unlikely(on_rq)) {
  1021. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1022. set_current_state(TASK_UNINTERRUPTIBLE);
  1023. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1024. continue;
  1025. }
  1026. /*
  1027. * Ahh, all good. It wasn't running, and it wasn't
  1028. * runnable, which means that it will never become
  1029. * running in the future either. We're all done!
  1030. */
  1031. break;
  1032. }
  1033. return ncsw;
  1034. }
  1035. /***
  1036. * kick_process - kick a running thread to enter/exit the kernel
  1037. * @p: the to-be-kicked thread
  1038. *
  1039. * Cause a process which is running on another CPU to enter
  1040. * kernel-mode, without any delay. (to get signals handled.)
  1041. *
  1042. * NOTE: this function doesn't have to take the runqueue lock,
  1043. * because all it wants to ensure is that the remote task enters
  1044. * the kernel. If the IPI races and the task has been migrated
  1045. * to another CPU then no harm is done and the purpose has been
  1046. * achieved as well.
  1047. */
  1048. void kick_process(struct task_struct *p)
  1049. {
  1050. int cpu;
  1051. preempt_disable();
  1052. cpu = task_cpu(p);
  1053. if ((cpu != smp_processor_id()) && task_curr(p))
  1054. smp_send_reschedule(cpu);
  1055. preempt_enable();
  1056. }
  1057. EXPORT_SYMBOL_GPL(kick_process);
  1058. #endif /* CONFIG_SMP */
  1059. #ifdef CONFIG_SMP
  1060. /*
  1061. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1062. */
  1063. static int select_fallback_rq(int cpu, struct task_struct *p)
  1064. {
  1065. int nid = cpu_to_node(cpu);
  1066. const struct cpumask *nodemask = NULL;
  1067. enum { cpuset, possible, fail } state = cpuset;
  1068. int dest_cpu;
  1069. /*
  1070. * If the node that the cpu is on has been offlined, cpu_to_node()
  1071. * will return -1. There is no cpu on the node, and we should
  1072. * select the cpu on the other node.
  1073. */
  1074. if (nid != -1) {
  1075. nodemask = cpumask_of_node(nid);
  1076. /* Look for allowed, online CPU in same node. */
  1077. for_each_cpu(dest_cpu, nodemask) {
  1078. if (!cpu_online(dest_cpu))
  1079. continue;
  1080. if (!cpu_active(dest_cpu))
  1081. continue;
  1082. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1083. return dest_cpu;
  1084. }
  1085. }
  1086. for (;;) {
  1087. /* Any allowed, online CPU? */
  1088. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1089. if (!cpu_online(dest_cpu))
  1090. continue;
  1091. if (!cpu_active(dest_cpu))
  1092. continue;
  1093. goto out;
  1094. }
  1095. switch (state) {
  1096. case cpuset:
  1097. /* No more Mr. Nice Guy. */
  1098. cpuset_cpus_allowed_fallback(p);
  1099. state = possible;
  1100. break;
  1101. case possible:
  1102. do_set_cpus_allowed(p, cpu_possible_mask);
  1103. state = fail;
  1104. break;
  1105. case fail:
  1106. BUG();
  1107. break;
  1108. }
  1109. }
  1110. out:
  1111. if (state != cpuset) {
  1112. /*
  1113. * Don't tell them about moving exiting tasks or
  1114. * kernel threads (both mm NULL), since they never
  1115. * leave kernel.
  1116. */
  1117. if (p->mm && printk_ratelimit()) {
  1118. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1119. task_pid_nr(p), p->comm, cpu);
  1120. }
  1121. }
  1122. return dest_cpu;
  1123. }
  1124. /*
  1125. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1126. */
  1127. static inline
  1128. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1129. {
  1130. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1131. /*
  1132. * In order not to call set_task_cpu() on a blocking task we need
  1133. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1134. * cpu.
  1135. *
  1136. * Since this is common to all placement strategies, this lives here.
  1137. *
  1138. * [ this allows ->select_task() to simply return task_cpu(p) and
  1139. * not worry about this generic constraint ]
  1140. */
  1141. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1142. !cpu_online(cpu)))
  1143. cpu = select_fallback_rq(task_cpu(p), p);
  1144. return cpu;
  1145. }
  1146. static void update_avg(u64 *avg, u64 sample)
  1147. {
  1148. s64 diff = sample - *avg;
  1149. *avg += diff >> 3;
  1150. }
  1151. #endif
  1152. static void
  1153. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1154. {
  1155. #ifdef CONFIG_SCHEDSTATS
  1156. struct rq *rq = this_rq();
  1157. #ifdef CONFIG_SMP
  1158. int this_cpu = smp_processor_id();
  1159. if (cpu == this_cpu) {
  1160. schedstat_inc(rq, ttwu_local);
  1161. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1162. } else {
  1163. struct sched_domain *sd;
  1164. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1165. rcu_read_lock();
  1166. for_each_domain(this_cpu, sd) {
  1167. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1168. schedstat_inc(sd, ttwu_wake_remote);
  1169. break;
  1170. }
  1171. }
  1172. rcu_read_unlock();
  1173. }
  1174. if (wake_flags & WF_MIGRATED)
  1175. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1176. #endif /* CONFIG_SMP */
  1177. schedstat_inc(rq, ttwu_count);
  1178. schedstat_inc(p, se.statistics.nr_wakeups);
  1179. if (wake_flags & WF_SYNC)
  1180. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1181. #endif /* CONFIG_SCHEDSTATS */
  1182. }
  1183. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1184. {
  1185. activate_task(rq, p, en_flags);
  1186. p->on_rq = 1;
  1187. /* if a worker is waking up, notify workqueue */
  1188. if (p->flags & PF_WQ_WORKER)
  1189. wq_worker_waking_up(p, cpu_of(rq));
  1190. }
  1191. /*
  1192. * Mark the task runnable and perform wakeup-preemption.
  1193. */
  1194. static void
  1195. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1196. {
  1197. check_preempt_curr(rq, p, wake_flags);
  1198. trace_sched_wakeup(p, true);
  1199. p->state = TASK_RUNNING;
  1200. #ifdef CONFIG_SMP
  1201. if (p->sched_class->task_woken)
  1202. p->sched_class->task_woken(rq, p);
  1203. if (rq->idle_stamp) {
  1204. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1205. u64 max = 2*rq->max_idle_balance_cost;
  1206. update_avg(&rq->avg_idle, delta);
  1207. if (rq->avg_idle > max)
  1208. rq->avg_idle = max;
  1209. rq->idle_stamp = 0;
  1210. }
  1211. #endif
  1212. }
  1213. static void
  1214. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1215. {
  1216. #ifdef CONFIG_SMP
  1217. if (p->sched_contributes_to_load)
  1218. rq->nr_uninterruptible--;
  1219. #endif
  1220. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1221. ttwu_do_wakeup(rq, p, wake_flags);
  1222. }
  1223. /*
  1224. * Called in case the task @p isn't fully descheduled from its runqueue,
  1225. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1226. * since all we need to do is flip p->state to TASK_RUNNING, since
  1227. * the task is still ->on_rq.
  1228. */
  1229. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1230. {
  1231. struct rq *rq;
  1232. int ret = 0;
  1233. rq = __task_rq_lock(p);
  1234. if (p->on_rq) {
  1235. /* check_preempt_curr() may use rq clock */
  1236. update_rq_clock(rq);
  1237. ttwu_do_wakeup(rq, p, wake_flags);
  1238. ret = 1;
  1239. }
  1240. __task_rq_unlock(rq);
  1241. return ret;
  1242. }
  1243. #ifdef CONFIG_SMP
  1244. static void sched_ttwu_pending(void)
  1245. {
  1246. struct rq *rq = this_rq();
  1247. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1248. struct task_struct *p;
  1249. raw_spin_lock(&rq->lock);
  1250. while (llist) {
  1251. p = llist_entry(llist, struct task_struct, wake_entry);
  1252. llist = llist_next(llist);
  1253. ttwu_do_activate(rq, p, 0);
  1254. }
  1255. raw_spin_unlock(&rq->lock);
  1256. }
  1257. void scheduler_ipi(void)
  1258. {
  1259. /*
  1260. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1261. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1262. * this IPI.
  1263. */
  1264. if (tif_need_resched())
  1265. set_preempt_need_resched();
  1266. if (llist_empty(&this_rq()->wake_list)
  1267. && !tick_nohz_full_cpu(smp_processor_id())
  1268. && !got_nohz_idle_kick())
  1269. return;
  1270. /*
  1271. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1272. * traditionally all their work was done from the interrupt return
  1273. * path. Now that we actually do some work, we need to make sure
  1274. * we do call them.
  1275. *
  1276. * Some archs already do call them, luckily irq_enter/exit nest
  1277. * properly.
  1278. *
  1279. * Arguably we should visit all archs and update all handlers,
  1280. * however a fair share of IPIs are still resched only so this would
  1281. * somewhat pessimize the simple resched case.
  1282. */
  1283. irq_enter();
  1284. tick_nohz_full_check();
  1285. sched_ttwu_pending();
  1286. /*
  1287. * Check if someone kicked us for doing the nohz idle load balance.
  1288. */
  1289. if (unlikely(got_nohz_idle_kick())) {
  1290. this_rq()->idle_balance = 1;
  1291. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1292. }
  1293. irq_exit();
  1294. }
  1295. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1296. {
  1297. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1298. smp_send_reschedule(cpu);
  1299. }
  1300. bool cpus_share_cache(int this_cpu, int that_cpu)
  1301. {
  1302. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1303. }
  1304. #endif /* CONFIG_SMP */
  1305. static void ttwu_queue(struct task_struct *p, int cpu)
  1306. {
  1307. struct rq *rq = cpu_rq(cpu);
  1308. #if defined(CONFIG_SMP)
  1309. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1310. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1311. ttwu_queue_remote(p, cpu);
  1312. return;
  1313. }
  1314. #endif
  1315. raw_spin_lock(&rq->lock);
  1316. ttwu_do_activate(rq, p, 0);
  1317. raw_spin_unlock(&rq->lock);
  1318. }
  1319. /**
  1320. * try_to_wake_up - wake up a thread
  1321. * @p: the thread to be awakened
  1322. * @state: the mask of task states that can be woken
  1323. * @wake_flags: wake modifier flags (WF_*)
  1324. *
  1325. * Put it on the run-queue if it's not already there. The "current"
  1326. * thread is always on the run-queue (except when the actual
  1327. * re-schedule is in progress), and as such you're allowed to do
  1328. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1329. * runnable without the overhead of this.
  1330. *
  1331. * Return: %true if @p was woken up, %false if it was already running.
  1332. * or @state didn't match @p's state.
  1333. */
  1334. static int
  1335. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1336. {
  1337. unsigned long flags;
  1338. int cpu, success = 0;
  1339. /*
  1340. * If we are going to wake up a thread waiting for CONDITION we
  1341. * need to ensure that CONDITION=1 done by the caller can not be
  1342. * reordered with p->state check below. This pairs with mb() in
  1343. * set_current_state() the waiting thread does.
  1344. */
  1345. smp_mb__before_spinlock();
  1346. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1347. if (!(p->state & state))
  1348. goto out;
  1349. success = 1; /* we're going to change ->state */
  1350. cpu = task_cpu(p);
  1351. if (p->on_rq && ttwu_remote(p, wake_flags))
  1352. goto stat;
  1353. #ifdef CONFIG_SMP
  1354. /*
  1355. * If the owning (remote) cpu is still in the middle of schedule() with
  1356. * this task as prev, wait until its done referencing the task.
  1357. */
  1358. while (p->on_cpu)
  1359. cpu_relax();
  1360. /*
  1361. * Pairs with the smp_wmb() in finish_lock_switch().
  1362. */
  1363. smp_rmb();
  1364. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1365. p->state = TASK_WAKING;
  1366. if (p->sched_class->task_waking)
  1367. p->sched_class->task_waking(p);
  1368. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1369. if (task_cpu(p) != cpu) {
  1370. wake_flags |= WF_MIGRATED;
  1371. set_task_cpu(p, cpu);
  1372. }
  1373. #endif /* CONFIG_SMP */
  1374. ttwu_queue(p, cpu);
  1375. stat:
  1376. ttwu_stat(p, cpu, wake_flags);
  1377. out:
  1378. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1379. return success;
  1380. }
  1381. /**
  1382. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1383. * @p: the thread to be awakened
  1384. *
  1385. * Put @p on the run-queue if it's not already there. The caller must
  1386. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1387. * the current task.
  1388. */
  1389. static void try_to_wake_up_local(struct task_struct *p)
  1390. {
  1391. struct rq *rq = task_rq(p);
  1392. if (WARN_ON_ONCE(rq != this_rq()) ||
  1393. WARN_ON_ONCE(p == current))
  1394. return;
  1395. lockdep_assert_held(&rq->lock);
  1396. if (!raw_spin_trylock(&p->pi_lock)) {
  1397. raw_spin_unlock(&rq->lock);
  1398. raw_spin_lock(&p->pi_lock);
  1399. raw_spin_lock(&rq->lock);
  1400. }
  1401. if (!(p->state & TASK_NORMAL))
  1402. goto out;
  1403. if (!p->on_rq)
  1404. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1405. ttwu_do_wakeup(rq, p, 0);
  1406. ttwu_stat(p, smp_processor_id(), 0);
  1407. out:
  1408. raw_spin_unlock(&p->pi_lock);
  1409. }
  1410. /**
  1411. * wake_up_process - Wake up a specific process
  1412. * @p: The process to be woken up.
  1413. *
  1414. * Attempt to wake up the nominated process and move it to the set of runnable
  1415. * processes.
  1416. *
  1417. * Return: 1 if the process was woken up, 0 if it was already running.
  1418. *
  1419. * It may be assumed that this function implies a write memory barrier before
  1420. * changing the task state if and only if any tasks are woken up.
  1421. */
  1422. int wake_up_process(struct task_struct *p)
  1423. {
  1424. WARN_ON(task_is_stopped_or_traced(p));
  1425. return try_to_wake_up(p, TASK_NORMAL, 0);
  1426. }
  1427. EXPORT_SYMBOL(wake_up_process);
  1428. int wake_up_state(struct task_struct *p, unsigned int state)
  1429. {
  1430. return try_to_wake_up(p, state, 0);
  1431. }
  1432. /*
  1433. * Perform scheduler related setup for a newly forked process p.
  1434. * p is forked by current.
  1435. *
  1436. * __sched_fork() is basic setup used by init_idle() too:
  1437. */
  1438. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1439. {
  1440. p->on_rq = 0;
  1441. p->se.on_rq = 0;
  1442. p->se.exec_start = 0;
  1443. p->se.sum_exec_runtime = 0;
  1444. p->se.prev_sum_exec_runtime = 0;
  1445. p->se.nr_migrations = 0;
  1446. p->se.vruntime = 0;
  1447. INIT_LIST_HEAD(&p->se.group_node);
  1448. #ifdef CONFIG_SCHEDSTATS
  1449. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1450. #endif
  1451. INIT_LIST_HEAD(&p->rt.run_list);
  1452. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1453. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1454. #endif
  1455. #ifdef CONFIG_NUMA_BALANCING
  1456. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1457. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1458. p->mm->numa_scan_seq = 0;
  1459. }
  1460. if (clone_flags & CLONE_VM)
  1461. p->numa_preferred_nid = current->numa_preferred_nid;
  1462. else
  1463. p->numa_preferred_nid = -1;
  1464. p->node_stamp = 0ULL;
  1465. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1466. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1467. p->numa_work.next = &p->numa_work;
  1468. p->numa_faults = NULL;
  1469. p->numa_faults_buffer = NULL;
  1470. INIT_LIST_HEAD(&p->numa_entry);
  1471. p->numa_group = NULL;
  1472. #endif /* CONFIG_NUMA_BALANCING */
  1473. }
  1474. #ifdef CONFIG_NUMA_BALANCING
  1475. #ifdef CONFIG_SCHED_DEBUG
  1476. void set_numabalancing_state(bool enabled)
  1477. {
  1478. if (enabled)
  1479. sched_feat_set("NUMA");
  1480. else
  1481. sched_feat_set("NO_NUMA");
  1482. }
  1483. #else
  1484. __read_mostly bool numabalancing_enabled;
  1485. void set_numabalancing_state(bool enabled)
  1486. {
  1487. numabalancing_enabled = enabled;
  1488. }
  1489. #endif /* CONFIG_SCHED_DEBUG */
  1490. #endif /* CONFIG_NUMA_BALANCING */
  1491. /*
  1492. * fork()/clone()-time setup:
  1493. */
  1494. void sched_fork(unsigned long clone_flags, struct task_struct *p)
  1495. {
  1496. unsigned long flags;
  1497. int cpu = get_cpu();
  1498. __sched_fork(clone_flags, p);
  1499. /*
  1500. * We mark the process as running here. This guarantees that
  1501. * nobody will actually run it, and a signal or other external
  1502. * event cannot wake it up and insert it on the runqueue either.
  1503. */
  1504. p->state = TASK_RUNNING;
  1505. /*
  1506. * Make sure we do not leak PI boosting priority to the child.
  1507. */
  1508. p->prio = current->normal_prio;
  1509. /*
  1510. * Revert to default priority/policy on fork if requested.
  1511. */
  1512. if (unlikely(p->sched_reset_on_fork)) {
  1513. if (task_has_rt_policy(p)) {
  1514. p->policy = SCHED_NORMAL;
  1515. p->static_prio = NICE_TO_PRIO(0);
  1516. p->rt_priority = 0;
  1517. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1518. p->static_prio = NICE_TO_PRIO(0);
  1519. p->prio = p->normal_prio = __normal_prio(p);
  1520. set_load_weight(p);
  1521. /*
  1522. * We don't need the reset flag anymore after the fork. It has
  1523. * fulfilled its duty:
  1524. */
  1525. p->sched_reset_on_fork = 0;
  1526. }
  1527. if (!rt_prio(p->prio))
  1528. p->sched_class = &fair_sched_class;
  1529. if (p->sched_class->task_fork)
  1530. p->sched_class->task_fork(p);
  1531. /*
  1532. * The child is not yet in the pid-hash so no cgroup attach races,
  1533. * and the cgroup is pinned to this child due to cgroup_fork()
  1534. * is ran before sched_fork().
  1535. *
  1536. * Silence PROVE_RCU.
  1537. */
  1538. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1539. set_task_cpu(p, cpu);
  1540. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1541. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1542. if (likely(sched_info_on()))
  1543. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1544. #endif
  1545. #if defined(CONFIG_SMP)
  1546. p->on_cpu = 0;
  1547. #endif
  1548. init_task_preempt_count(p);
  1549. #ifdef CONFIG_SMP
  1550. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1551. #endif
  1552. put_cpu();
  1553. }
  1554. /*
  1555. * wake_up_new_task - wake up a newly created task for the first time.
  1556. *
  1557. * This function will do some initial scheduler statistics housekeeping
  1558. * that must be done for every newly created context, then puts the task
  1559. * on the runqueue and wakes it.
  1560. */
  1561. void wake_up_new_task(struct task_struct *p)
  1562. {
  1563. unsigned long flags;
  1564. struct rq *rq;
  1565. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1566. #ifdef CONFIG_SMP
  1567. /*
  1568. * Fork balancing, do it here and not earlier because:
  1569. * - cpus_allowed can change in the fork path
  1570. * - any previously selected cpu might disappear through hotplug
  1571. */
  1572. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1573. #endif
  1574. /* Initialize new task's runnable average */
  1575. init_task_runnable_average(p);
  1576. rq = __task_rq_lock(p);
  1577. activate_task(rq, p, 0);
  1578. p->on_rq = 1;
  1579. trace_sched_wakeup_new(p, true);
  1580. check_preempt_curr(rq, p, WF_FORK);
  1581. #ifdef CONFIG_SMP
  1582. if (p->sched_class->task_woken)
  1583. p->sched_class->task_woken(rq, p);
  1584. #endif
  1585. task_rq_unlock(rq, p, &flags);
  1586. }
  1587. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1588. /**
  1589. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1590. * @notifier: notifier struct to register
  1591. */
  1592. void preempt_notifier_register(struct preempt_notifier *notifier)
  1593. {
  1594. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1595. }
  1596. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1597. /**
  1598. * preempt_notifier_unregister - no longer interested in preemption notifications
  1599. * @notifier: notifier struct to unregister
  1600. *
  1601. * This is safe to call from within a preemption notifier.
  1602. */
  1603. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1604. {
  1605. hlist_del(&notifier->link);
  1606. }
  1607. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1608. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1609. {
  1610. struct preempt_notifier *notifier;
  1611. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1612. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1613. }
  1614. static void
  1615. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1616. struct task_struct *next)
  1617. {
  1618. struct preempt_notifier *notifier;
  1619. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1620. notifier->ops->sched_out(notifier, next);
  1621. }
  1622. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1623. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1624. {
  1625. }
  1626. static void
  1627. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1628. struct task_struct *next)
  1629. {
  1630. }
  1631. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1632. /**
  1633. * prepare_task_switch - prepare to switch tasks
  1634. * @rq: the runqueue preparing to switch
  1635. * @prev: the current task that is being switched out
  1636. * @next: the task we are going to switch to.
  1637. *
  1638. * This is called with the rq lock held and interrupts off. It must
  1639. * be paired with a subsequent finish_task_switch after the context
  1640. * switch.
  1641. *
  1642. * prepare_task_switch sets up locking and calls architecture specific
  1643. * hooks.
  1644. */
  1645. static inline void
  1646. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1647. struct task_struct *next)
  1648. {
  1649. trace_sched_switch(prev, next);
  1650. sched_info_switch(rq, prev, next);
  1651. perf_event_task_sched_out(prev, next);
  1652. fire_sched_out_preempt_notifiers(prev, next);
  1653. prepare_lock_switch(rq, next);
  1654. prepare_arch_switch(next);
  1655. }
  1656. /**
  1657. * finish_task_switch - clean up after a task-switch
  1658. * @rq: runqueue associated with task-switch
  1659. * @prev: the thread we just switched away from.
  1660. *
  1661. * finish_task_switch must be called after the context switch, paired
  1662. * with a prepare_task_switch call before the context switch.
  1663. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1664. * and do any other architecture-specific cleanup actions.
  1665. *
  1666. * Note that we may have delayed dropping an mm in context_switch(). If
  1667. * so, we finish that here outside of the runqueue lock. (Doing it
  1668. * with the lock held can cause deadlocks; see schedule() for
  1669. * details.)
  1670. */
  1671. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1672. __releases(rq->lock)
  1673. {
  1674. struct mm_struct *mm = rq->prev_mm;
  1675. long prev_state;
  1676. rq->prev_mm = NULL;
  1677. /*
  1678. * A task struct has one reference for the use as "current".
  1679. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1680. * schedule one last time. The schedule call will never return, and
  1681. * the scheduled task must drop that reference.
  1682. * The test for TASK_DEAD must occur while the runqueue locks are
  1683. * still held, otherwise prev could be scheduled on another cpu, die
  1684. * there before we look at prev->state, and then the reference would
  1685. * be dropped twice.
  1686. * Manfred Spraul <manfred@colorfullife.com>
  1687. */
  1688. prev_state = prev->state;
  1689. vtime_task_switch(prev);
  1690. finish_arch_switch(prev);
  1691. perf_event_task_sched_in(prev, current);
  1692. finish_lock_switch(rq, prev);
  1693. finish_arch_post_lock_switch();
  1694. fire_sched_in_preempt_notifiers(current);
  1695. if (mm)
  1696. mmdrop(mm);
  1697. if (unlikely(prev_state == TASK_DEAD)) {
  1698. task_numa_free(prev);
  1699. /*
  1700. * Remove function-return probe instances associated with this
  1701. * task and put them back on the free list.
  1702. */
  1703. kprobe_flush_task(prev);
  1704. put_task_struct(prev);
  1705. }
  1706. tick_nohz_task_switch(current);
  1707. }
  1708. #ifdef CONFIG_SMP
  1709. /* assumes rq->lock is held */
  1710. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1711. {
  1712. if (prev->sched_class->pre_schedule)
  1713. prev->sched_class->pre_schedule(rq, prev);
  1714. }
  1715. /* rq->lock is NOT held, but preemption is disabled */
  1716. static inline void post_schedule(struct rq *rq)
  1717. {
  1718. if (rq->post_schedule) {
  1719. unsigned long flags;
  1720. raw_spin_lock_irqsave(&rq->lock, flags);
  1721. if (rq->curr->sched_class->post_schedule)
  1722. rq->curr->sched_class->post_schedule(rq);
  1723. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1724. rq->post_schedule = 0;
  1725. }
  1726. }
  1727. #else
  1728. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1729. {
  1730. }
  1731. static inline void post_schedule(struct rq *rq)
  1732. {
  1733. }
  1734. #endif
  1735. /**
  1736. * schedule_tail - first thing a freshly forked thread must call.
  1737. * @prev: the thread we just switched away from.
  1738. */
  1739. asmlinkage void schedule_tail(struct task_struct *prev)
  1740. __releases(rq->lock)
  1741. {
  1742. struct rq *rq = this_rq();
  1743. finish_task_switch(rq, prev);
  1744. /*
  1745. * FIXME: do we need to worry about rq being invalidated by the
  1746. * task_switch?
  1747. */
  1748. post_schedule(rq);
  1749. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1750. /* In this case, finish_task_switch does not reenable preemption */
  1751. preempt_enable();
  1752. #endif
  1753. if (current->set_child_tid)
  1754. put_user(task_pid_vnr(current), current->set_child_tid);
  1755. }
  1756. /*
  1757. * context_switch - switch to the new MM and the new
  1758. * thread's register state.
  1759. */
  1760. static inline void
  1761. context_switch(struct rq *rq, struct task_struct *prev,
  1762. struct task_struct *next)
  1763. {
  1764. struct mm_struct *mm, *oldmm;
  1765. prepare_task_switch(rq, prev, next);
  1766. mm = next->mm;
  1767. oldmm = prev->active_mm;
  1768. /*
  1769. * For paravirt, this is coupled with an exit in switch_to to
  1770. * combine the page table reload and the switch backend into
  1771. * one hypercall.
  1772. */
  1773. arch_start_context_switch(prev);
  1774. if (!mm) {
  1775. next->active_mm = oldmm;
  1776. atomic_inc(&oldmm->mm_count);
  1777. enter_lazy_tlb(oldmm, next);
  1778. } else
  1779. switch_mm(oldmm, mm, next);
  1780. if (!prev->mm) {
  1781. prev->active_mm = NULL;
  1782. rq->prev_mm = oldmm;
  1783. }
  1784. /*
  1785. * Since the runqueue lock will be released by the next
  1786. * task (which is an invalid locking op but in the case
  1787. * of the scheduler it's an obvious special-case), so we
  1788. * do an early lockdep release here:
  1789. */
  1790. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1791. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1792. #endif
  1793. context_tracking_task_switch(prev, next);
  1794. /* Here we just switch the register state and the stack. */
  1795. switch_to(prev, next, prev);
  1796. barrier();
  1797. /*
  1798. * this_rq must be evaluated again because prev may have moved
  1799. * CPUs since it called schedule(), thus the 'rq' on its stack
  1800. * frame will be invalid.
  1801. */
  1802. finish_task_switch(this_rq(), prev);
  1803. }
  1804. /*
  1805. * nr_running and nr_context_switches:
  1806. *
  1807. * externally visible scheduler statistics: current number of runnable
  1808. * threads, total number of context switches performed since bootup.
  1809. */
  1810. unsigned long nr_running(void)
  1811. {
  1812. unsigned long i, sum = 0;
  1813. for_each_online_cpu(i)
  1814. sum += cpu_rq(i)->nr_running;
  1815. return sum;
  1816. }
  1817. unsigned long long nr_context_switches(void)
  1818. {
  1819. int i;
  1820. unsigned long long sum = 0;
  1821. for_each_possible_cpu(i)
  1822. sum += cpu_rq(i)->nr_switches;
  1823. return sum;
  1824. }
  1825. unsigned long nr_iowait(void)
  1826. {
  1827. unsigned long i, sum = 0;
  1828. for_each_possible_cpu(i)
  1829. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1830. return sum;
  1831. }
  1832. unsigned long nr_iowait_cpu(int cpu)
  1833. {
  1834. struct rq *this = cpu_rq(cpu);
  1835. return atomic_read(&this->nr_iowait);
  1836. }
  1837. #ifdef CONFIG_SMP
  1838. /*
  1839. * sched_exec - execve() is a valuable balancing opportunity, because at
  1840. * this point the task has the smallest effective memory and cache footprint.
  1841. */
  1842. void sched_exec(void)
  1843. {
  1844. struct task_struct *p = current;
  1845. unsigned long flags;
  1846. int dest_cpu;
  1847. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1848. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1849. if (dest_cpu == smp_processor_id())
  1850. goto unlock;
  1851. if (likely(cpu_active(dest_cpu))) {
  1852. struct migration_arg arg = { p, dest_cpu };
  1853. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1854. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1855. return;
  1856. }
  1857. unlock:
  1858. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1859. }
  1860. #endif
  1861. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1862. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1863. EXPORT_PER_CPU_SYMBOL(kstat);
  1864. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1865. /*
  1866. * Return any ns on the sched_clock that have not yet been accounted in
  1867. * @p in case that task is currently running.
  1868. *
  1869. * Called with task_rq_lock() held on @rq.
  1870. */
  1871. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1872. {
  1873. u64 ns = 0;
  1874. if (task_current(rq, p)) {
  1875. update_rq_clock(rq);
  1876. ns = rq_clock_task(rq) - p->se.exec_start;
  1877. if ((s64)ns < 0)
  1878. ns = 0;
  1879. }
  1880. return ns;
  1881. }
  1882. unsigned long long task_delta_exec(struct task_struct *p)
  1883. {
  1884. unsigned long flags;
  1885. struct rq *rq;
  1886. u64 ns = 0;
  1887. rq = task_rq_lock(p, &flags);
  1888. ns = do_task_delta_exec(p, rq);
  1889. task_rq_unlock(rq, p, &flags);
  1890. return ns;
  1891. }
  1892. /*
  1893. * Return accounted runtime for the task.
  1894. * In case the task is currently running, return the runtime plus current's
  1895. * pending runtime that have not been accounted yet.
  1896. */
  1897. unsigned long long task_sched_runtime(struct task_struct *p)
  1898. {
  1899. unsigned long flags;
  1900. struct rq *rq;
  1901. u64 ns = 0;
  1902. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  1903. /*
  1904. * 64-bit doesn't need locks to atomically read a 64bit value.
  1905. * So we have a optimization chance when the task's delta_exec is 0.
  1906. * Reading ->on_cpu is racy, but this is ok.
  1907. *
  1908. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  1909. * If we race with it entering cpu, unaccounted time is 0. This is
  1910. * indistinguishable from the read occurring a few cycles earlier.
  1911. */
  1912. if (!p->on_cpu)
  1913. return p->se.sum_exec_runtime;
  1914. #endif
  1915. rq = task_rq_lock(p, &flags);
  1916. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1917. task_rq_unlock(rq, p, &flags);
  1918. return ns;
  1919. }
  1920. /*
  1921. * This function gets called by the timer code, with HZ frequency.
  1922. * We call it with interrupts disabled.
  1923. */
  1924. void scheduler_tick(void)
  1925. {
  1926. int cpu = smp_processor_id();
  1927. struct rq *rq = cpu_rq(cpu);
  1928. struct task_struct *curr = rq->curr;
  1929. sched_clock_tick();
  1930. raw_spin_lock(&rq->lock);
  1931. update_rq_clock(rq);
  1932. curr->sched_class->task_tick(rq, curr, 0);
  1933. update_cpu_load_active(rq);
  1934. raw_spin_unlock(&rq->lock);
  1935. perf_event_task_tick();
  1936. #ifdef CONFIG_SMP
  1937. rq->idle_balance = idle_cpu(cpu);
  1938. trigger_load_balance(rq, cpu);
  1939. #endif
  1940. rq_last_tick_reset(rq);
  1941. }
  1942. #ifdef CONFIG_NO_HZ_FULL
  1943. /**
  1944. * scheduler_tick_max_deferment
  1945. *
  1946. * Keep at least one tick per second when a single
  1947. * active task is running because the scheduler doesn't
  1948. * yet completely support full dynticks environment.
  1949. *
  1950. * This makes sure that uptime, CFS vruntime, load
  1951. * balancing, etc... continue to move forward, even
  1952. * with a very low granularity.
  1953. *
  1954. * Return: Maximum deferment in nanoseconds.
  1955. */
  1956. u64 scheduler_tick_max_deferment(void)
  1957. {
  1958. struct rq *rq = this_rq();
  1959. unsigned long next, now = ACCESS_ONCE(jiffies);
  1960. next = rq->last_sched_tick + HZ;
  1961. if (time_before_eq(next, now))
  1962. return 0;
  1963. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1964. }
  1965. #endif
  1966. notrace unsigned long get_parent_ip(unsigned long addr)
  1967. {
  1968. if (in_lock_functions(addr)) {
  1969. addr = CALLER_ADDR2;
  1970. if (in_lock_functions(addr))
  1971. addr = CALLER_ADDR3;
  1972. }
  1973. return addr;
  1974. }
  1975. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1976. defined(CONFIG_PREEMPT_TRACER))
  1977. void __kprobes preempt_count_add(int val)
  1978. {
  1979. #ifdef CONFIG_DEBUG_PREEMPT
  1980. /*
  1981. * Underflow?
  1982. */
  1983. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1984. return;
  1985. #endif
  1986. __preempt_count_add(val);
  1987. #ifdef CONFIG_DEBUG_PREEMPT
  1988. /*
  1989. * Spinlock count overflowing soon?
  1990. */
  1991. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1992. PREEMPT_MASK - 10);
  1993. #endif
  1994. if (preempt_count() == val)
  1995. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1996. }
  1997. EXPORT_SYMBOL(preempt_count_add);
  1998. void __kprobes preempt_count_sub(int val)
  1999. {
  2000. #ifdef CONFIG_DEBUG_PREEMPT
  2001. /*
  2002. * Underflow?
  2003. */
  2004. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2005. return;
  2006. /*
  2007. * Is the spinlock portion underflowing?
  2008. */
  2009. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2010. !(preempt_count() & PREEMPT_MASK)))
  2011. return;
  2012. #endif
  2013. if (preempt_count() == val)
  2014. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2015. __preempt_count_sub(val);
  2016. }
  2017. EXPORT_SYMBOL(preempt_count_sub);
  2018. #endif
  2019. /*
  2020. * Print scheduling while atomic bug:
  2021. */
  2022. static noinline void __schedule_bug(struct task_struct *prev)
  2023. {
  2024. if (oops_in_progress)
  2025. return;
  2026. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2027. prev->comm, prev->pid, preempt_count());
  2028. debug_show_held_locks(prev);
  2029. print_modules();
  2030. if (irqs_disabled())
  2031. print_irqtrace_events(prev);
  2032. dump_stack();
  2033. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2034. }
  2035. /*
  2036. * Various schedule()-time debugging checks and statistics:
  2037. */
  2038. static inline void schedule_debug(struct task_struct *prev)
  2039. {
  2040. /*
  2041. * Test if we are atomic. Since do_exit() needs to call into
  2042. * schedule() atomically, we ignore that path for now.
  2043. * Otherwise, whine if we are scheduling when we should not be.
  2044. */
  2045. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2046. __schedule_bug(prev);
  2047. rcu_sleep_check();
  2048. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2049. schedstat_inc(this_rq(), sched_count);
  2050. }
  2051. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2052. {
  2053. if (prev->on_rq || rq->skip_clock_update < 0)
  2054. update_rq_clock(rq);
  2055. prev->sched_class->put_prev_task(rq, prev);
  2056. }
  2057. /*
  2058. * Pick up the highest-prio task:
  2059. */
  2060. static inline struct task_struct *
  2061. pick_next_task(struct rq *rq)
  2062. {
  2063. const struct sched_class *class;
  2064. struct task_struct *p;
  2065. /*
  2066. * Optimization: we know that if all tasks are in
  2067. * the fair class we can call that function directly:
  2068. */
  2069. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2070. p = fair_sched_class.pick_next_task(rq);
  2071. if (likely(p))
  2072. return p;
  2073. }
  2074. for_each_class(class) {
  2075. p = class->pick_next_task(rq);
  2076. if (p)
  2077. return p;
  2078. }
  2079. BUG(); /* the idle class will always have a runnable task */
  2080. }
  2081. /*
  2082. * __schedule() is the main scheduler function.
  2083. *
  2084. * The main means of driving the scheduler and thus entering this function are:
  2085. *
  2086. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2087. *
  2088. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2089. * paths. For example, see arch/x86/entry_64.S.
  2090. *
  2091. * To drive preemption between tasks, the scheduler sets the flag in timer
  2092. * interrupt handler scheduler_tick().
  2093. *
  2094. * 3. Wakeups don't really cause entry into schedule(). They add a
  2095. * task to the run-queue and that's it.
  2096. *
  2097. * Now, if the new task added to the run-queue preempts the current
  2098. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2099. * called on the nearest possible occasion:
  2100. *
  2101. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2102. *
  2103. * - in syscall or exception context, at the next outmost
  2104. * preempt_enable(). (this might be as soon as the wake_up()'s
  2105. * spin_unlock()!)
  2106. *
  2107. * - in IRQ context, return from interrupt-handler to
  2108. * preemptible context
  2109. *
  2110. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2111. * then at the next:
  2112. *
  2113. * - cond_resched() call
  2114. * - explicit schedule() call
  2115. * - return from syscall or exception to user-space
  2116. * - return from interrupt-handler to user-space
  2117. */
  2118. static void __sched __schedule(void)
  2119. {
  2120. struct task_struct *prev, *next;
  2121. unsigned long *switch_count;
  2122. struct rq *rq;
  2123. int cpu;
  2124. need_resched:
  2125. preempt_disable();
  2126. cpu = smp_processor_id();
  2127. rq = cpu_rq(cpu);
  2128. rcu_note_context_switch(cpu);
  2129. prev = rq->curr;
  2130. schedule_debug(prev);
  2131. if (sched_feat(HRTICK))
  2132. hrtick_clear(rq);
  2133. /*
  2134. * Make sure that signal_pending_state()->signal_pending() below
  2135. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2136. * done by the caller to avoid the race with signal_wake_up().
  2137. */
  2138. smp_mb__before_spinlock();
  2139. raw_spin_lock_irq(&rq->lock);
  2140. switch_count = &prev->nivcsw;
  2141. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2142. if (unlikely(signal_pending_state(prev->state, prev))) {
  2143. prev->state = TASK_RUNNING;
  2144. } else {
  2145. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2146. prev->on_rq = 0;
  2147. /*
  2148. * If a worker went to sleep, notify and ask workqueue
  2149. * whether it wants to wake up a task to maintain
  2150. * concurrency.
  2151. */
  2152. if (prev->flags & PF_WQ_WORKER) {
  2153. struct task_struct *to_wakeup;
  2154. to_wakeup = wq_worker_sleeping(prev, cpu);
  2155. if (to_wakeup)
  2156. try_to_wake_up_local(to_wakeup);
  2157. }
  2158. }
  2159. switch_count = &prev->nvcsw;
  2160. }
  2161. pre_schedule(rq, prev);
  2162. if (unlikely(!rq->nr_running))
  2163. idle_balance(cpu, rq);
  2164. put_prev_task(rq, prev);
  2165. next = pick_next_task(rq);
  2166. clear_tsk_need_resched(prev);
  2167. clear_preempt_need_resched();
  2168. rq->skip_clock_update = 0;
  2169. if (likely(prev != next)) {
  2170. rq->nr_switches++;
  2171. rq->curr = next;
  2172. ++*switch_count;
  2173. context_switch(rq, prev, next); /* unlocks the rq */
  2174. /*
  2175. * The context switch have flipped the stack from under us
  2176. * and restored the local variables which were saved when
  2177. * this task called schedule() in the past. prev == current
  2178. * is still correct, but it can be moved to another cpu/rq.
  2179. */
  2180. cpu = smp_processor_id();
  2181. rq = cpu_rq(cpu);
  2182. } else
  2183. raw_spin_unlock_irq(&rq->lock);
  2184. post_schedule(rq);
  2185. sched_preempt_enable_no_resched();
  2186. if (need_resched())
  2187. goto need_resched;
  2188. }
  2189. static inline void sched_submit_work(struct task_struct *tsk)
  2190. {
  2191. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2192. return;
  2193. /*
  2194. * If we are going to sleep and we have plugged IO queued,
  2195. * make sure to submit it to avoid deadlocks.
  2196. */
  2197. if (blk_needs_flush_plug(tsk))
  2198. blk_schedule_flush_plug(tsk);
  2199. }
  2200. asmlinkage void __sched schedule(void)
  2201. {
  2202. struct task_struct *tsk = current;
  2203. sched_submit_work(tsk);
  2204. __schedule();
  2205. }
  2206. EXPORT_SYMBOL(schedule);
  2207. #ifdef CONFIG_CONTEXT_TRACKING
  2208. asmlinkage void __sched schedule_user(void)
  2209. {
  2210. /*
  2211. * If we come here after a random call to set_need_resched(),
  2212. * or we have been woken up remotely but the IPI has not yet arrived,
  2213. * we haven't yet exited the RCU idle mode. Do it here manually until
  2214. * we find a better solution.
  2215. */
  2216. user_exit();
  2217. schedule();
  2218. user_enter();
  2219. }
  2220. #endif
  2221. /**
  2222. * schedule_preempt_disabled - called with preemption disabled
  2223. *
  2224. * Returns with preemption disabled. Note: preempt_count must be 1
  2225. */
  2226. void __sched schedule_preempt_disabled(void)
  2227. {
  2228. sched_preempt_enable_no_resched();
  2229. schedule();
  2230. preempt_disable();
  2231. }
  2232. #ifdef CONFIG_PREEMPT
  2233. /*
  2234. * this is the entry point to schedule() from in-kernel preemption
  2235. * off of preempt_enable. Kernel preemptions off return from interrupt
  2236. * occur there and call schedule directly.
  2237. */
  2238. asmlinkage void __sched notrace preempt_schedule(void)
  2239. {
  2240. /*
  2241. * If there is a non-zero preempt_count or interrupts are disabled,
  2242. * we do not want to preempt the current task. Just return..
  2243. */
  2244. if (likely(!preemptible()))
  2245. return;
  2246. do {
  2247. __preempt_count_add(PREEMPT_ACTIVE);
  2248. __schedule();
  2249. __preempt_count_sub(PREEMPT_ACTIVE);
  2250. /*
  2251. * Check again in case we missed a preemption opportunity
  2252. * between schedule and now.
  2253. */
  2254. barrier();
  2255. } while (need_resched());
  2256. }
  2257. EXPORT_SYMBOL(preempt_schedule);
  2258. /*
  2259. * this is the entry point to schedule() from kernel preemption
  2260. * off of irq context.
  2261. * Note, that this is called and return with irqs disabled. This will
  2262. * protect us against recursive calling from irq.
  2263. */
  2264. asmlinkage void __sched preempt_schedule_irq(void)
  2265. {
  2266. enum ctx_state prev_state;
  2267. /* Catch callers which need to be fixed */
  2268. BUG_ON(preempt_count() || !irqs_disabled());
  2269. prev_state = exception_enter();
  2270. do {
  2271. __preempt_count_add(PREEMPT_ACTIVE);
  2272. local_irq_enable();
  2273. __schedule();
  2274. local_irq_disable();
  2275. __preempt_count_sub(PREEMPT_ACTIVE);
  2276. /*
  2277. * Check again in case we missed a preemption opportunity
  2278. * between schedule and now.
  2279. */
  2280. barrier();
  2281. } while (need_resched());
  2282. exception_exit(prev_state);
  2283. }
  2284. #endif /* CONFIG_PREEMPT */
  2285. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2286. void *key)
  2287. {
  2288. return try_to_wake_up(curr->private, mode, wake_flags);
  2289. }
  2290. EXPORT_SYMBOL(default_wake_function);
  2291. static long __sched
  2292. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2293. {
  2294. unsigned long flags;
  2295. wait_queue_t wait;
  2296. init_waitqueue_entry(&wait, current);
  2297. __set_current_state(state);
  2298. spin_lock_irqsave(&q->lock, flags);
  2299. __add_wait_queue(q, &wait);
  2300. spin_unlock(&q->lock);
  2301. timeout = schedule_timeout(timeout);
  2302. spin_lock_irq(&q->lock);
  2303. __remove_wait_queue(q, &wait);
  2304. spin_unlock_irqrestore(&q->lock, flags);
  2305. return timeout;
  2306. }
  2307. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2308. {
  2309. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2310. }
  2311. EXPORT_SYMBOL(interruptible_sleep_on);
  2312. long __sched
  2313. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2314. {
  2315. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2316. }
  2317. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2318. void __sched sleep_on(wait_queue_head_t *q)
  2319. {
  2320. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2321. }
  2322. EXPORT_SYMBOL(sleep_on);
  2323. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2324. {
  2325. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2326. }
  2327. EXPORT_SYMBOL(sleep_on_timeout);
  2328. #ifdef CONFIG_RT_MUTEXES
  2329. /*
  2330. * rt_mutex_setprio - set the current priority of a task
  2331. * @p: task
  2332. * @prio: prio value (kernel-internal form)
  2333. *
  2334. * This function changes the 'effective' priority of a task. It does
  2335. * not touch ->normal_prio like __setscheduler().
  2336. *
  2337. * Used by the rt_mutex code to implement priority inheritance logic.
  2338. */
  2339. void rt_mutex_setprio(struct task_struct *p, int prio)
  2340. {
  2341. int oldprio, on_rq, running;
  2342. struct rq *rq;
  2343. const struct sched_class *prev_class;
  2344. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2345. rq = __task_rq_lock(p);
  2346. /*
  2347. * Idle task boosting is a nono in general. There is one
  2348. * exception, when PREEMPT_RT and NOHZ is active:
  2349. *
  2350. * The idle task calls get_next_timer_interrupt() and holds
  2351. * the timer wheel base->lock on the CPU and another CPU wants
  2352. * to access the timer (probably to cancel it). We can safely
  2353. * ignore the boosting request, as the idle CPU runs this code
  2354. * with interrupts disabled and will complete the lock
  2355. * protected section without being interrupted. So there is no
  2356. * real need to boost.
  2357. */
  2358. if (unlikely(p == rq->idle)) {
  2359. WARN_ON(p != rq->curr);
  2360. WARN_ON(p->pi_blocked_on);
  2361. goto out_unlock;
  2362. }
  2363. trace_sched_pi_setprio(p, prio);
  2364. oldprio = p->prio;
  2365. prev_class = p->sched_class;
  2366. on_rq = p->on_rq;
  2367. running = task_current(rq, p);
  2368. if (on_rq)
  2369. dequeue_task(rq, p, 0);
  2370. if (running)
  2371. p->sched_class->put_prev_task(rq, p);
  2372. if (rt_prio(prio))
  2373. p->sched_class = &rt_sched_class;
  2374. else
  2375. p->sched_class = &fair_sched_class;
  2376. p->prio = prio;
  2377. if (running)
  2378. p->sched_class->set_curr_task(rq);
  2379. if (on_rq)
  2380. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2381. check_class_changed(rq, p, prev_class, oldprio);
  2382. out_unlock:
  2383. __task_rq_unlock(rq);
  2384. }
  2385. #endif
  2386. void set_user_nice(struct task_struct *p, long nice)
  2387. {
  2388. int old_prio, delta, on_rq;
  2389. unsigned long flags;
  2390. struct rq *rq;
  2391. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2392. return;
  2393. /*
  2394. * We have to be careful, if called from sys_setpriority(),
  2395. * the task might be in the middle of scheduling on another CPU.
  2396. */
  2397. rq = task_rq_lock(p, &flags);
  2398. /*
  2399. * The RT priorities are set via sched_setscheduler(), but we still
  2400. * allow the 'normal' nice value to be set - but as expected
  2401. * it wont have any effect on scheduling until the task is
  2402. * SCHED_FIFO/SCHED_RR:
  2403. */
  2404. if (task_has_rt_policy(p)) {
  2405. p->static_prio = NICE_TO_PRIO(nice);
  2406. goto out_unlock;
  2407. }
  2408. on_rq = p->on_rq;
  2409. if (on_rq)
  2410. dequeue_task(rq, p, 0);
  2411. p->static_prio = NICE_TO_PRIO(nice);
  2412. set_load_weight(p);
  2413. old_prio = p->prio;
  2414. p->prio = effective_prio(p);
  2415. delta = p->prio - old_prio;
  2416. if (on_rq) {
  2417. enqueue_task(rq, p, 0);
  2418. /*
  2419. * If the task increased its priority or is running and
  2420. * lowered its priority, then reschedule its CPU:
  2421. */
  2422. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2423. resched_task(rq->curr);
  2424. }
  2425. out_unlock:
  2426. task_rq_unlock(rq, p, &flags);
  2427. }
  2428. EXPORT_SYMBOL(set_user_nice);
  2429. /*
  2430. * can_nice - check if a task can reduce its nice value
  2431. * @p: task
  2432. * @nice: nice value
  2433. */
  2434. int can_nice(const struct task_struct *p, const int nice)
  2435. {
  2436. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2437. int nice_rlim = 20 - nice;
  2438. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2439. capable(CAP_SYS_NICE));
  2440. }
  2441. #ifdef __ARCH_WANT_SYS_NICE
  2442. /*
  2443. * sys_nice - change the priority of the current process.
  2444. * @increment: priority increment
  2445. *
  2446. * sys_setpriority is a more generic, but much slower function that
  2447. * does similar things.
  2448. */
  2449. SYSCALL_DEFINE1(nice, int, increment)
  2450. {
  2451. long nice, retval;
  2452. /*
  2453. * Setpriority might change our priority at the same moment.
  2454. * We don't have to worry. Conceptually one call occurs first
  2455. * and we have a single winner.
  2456. */
  2457. if (increment < -40)
  2458. increment = -40;
  2459. if (increment > 40)
  2460. increment = 40;
  2461. nice = TASK_NICE(current) + increment;
  2462. if (nice < -20)
  2463. nice = -20;
  2464. if (nice > 19)
  2465. nice = 19;
  2466. if (increment < 0 && !can_nice(current, nice))
  2467. return -EPERM;
  2468. retval = security_task_setnice(current, nice);
  2469. if (retval)
  2470. return retval;
  2471. set_user_nice(current, nice);
  2472. return 0;
  2473. }
  2474. #endif
  2475. /**
  2476. * task_prio - return the priority value of a given task.
  2477. * @p: the task in question.
  2478. *
  2479. * Return: The priority value as seen by users in /proc.
  2480. * RT tasks are offset by -200. Normal tasks are centered
  2481. * around 0, value goes from -16 to +15.
  2482. */
  2483. int task_prio(const struct task_struct *p)
  2484. {
  2485. return p->prio - MAX_RT_PRIO;
  2486. }
  2487. /**
  2488. * task_nice - return the nice value of a given task.
  2489. * @p: the task in question.
  2490. *
  2491. * Return: The nice value [ -20 ... 0 ... 19 ].
  2492. */
  2493. int task_nice(const struct task_struct *p)
  2494. {
  2495. return TASK_NICE(p);
  2496. }
  2497. EXPORT_SYMBOL(task_nice);
  2498. /**
  2499. * idle_cpu - is a given cpu idle currently?
  2500. * @cpu: the processor in question.
  2501. *
  2502. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2503. */
  2504. int idle_cpu(int cpu)
  2505. {
  2506. struct rq *rq = cpu_rq(cpu);
  2507. if (rq->curr != rq->idle)
  2508. return 0;
  2509. if (rq->nr_running)
  2510. return 0;
  2511. #ifdef CONFIG_SMP
  2512. if (!llist_empty(&rq->wake_list))
  2513. return 0;
  2514. #endif
  2515. return 1;
  2516. }
  2517. /**
  2518. * idle_task - return the idle task for a given cpu.
  2519. * @cpu: the processor in question.
  2520. *
  2521. * Return: The idle task for the cpu @cpu.
  2522. */
  2523. struct task_struct *idle_task(int cpu)
  2524. {
  2525. return cpu_rq(cpu)->idle;
  2526. }
  2527. /**
  2528. * find_process_by_pid - find a process with a matching PID value.
  2529. * @pid: the pid in question.
  2530. *
  2531. * The task of @pid, if found. %NULL otherwise.
  2532. */
  2533. static struct task_struct *find_process_by_pid(pid_t pid)
  2534. {
  2535. return pid ? find_task_by_vpid(pid) : current;
  2536. }
  2537. /* Actually do priority change: must hold rq lock. */
  2538. static void
  2539. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2540. {
  2541. p->policy = policy;
  2542. p->rt_priority = prio;
  2543. p->normal_prio = normal_prio(p);
  2544. /* we are holding p->pi_lock already */
  2545. p->prio = rt_mutex_getprio(p);
  2546. if (rt_prio(p->prio))
  2547. p->sched_class = &rt_sched_class;
  2548. else
  2549. p->sched_class = &fair_sched_class;
  2550. set_load_weight(p);
  2551. }
  2552. /*
  2553. * check the target process has a UID that matches the current process's
  2554. */
  2555. static bool check_same_owner(struct task_struct *p)
  2556. {
  2557. const struct cred *cred = current_cred(), *pcred;
  2558. bool match;
  2559. rcu_read_lock();
  2560. pcred = __task_cred(p);
  2561. match = (uid_eq(cred->euid, pcred->euid) ||
  2562. uid_eq(cred->euid, pcred->uid));
  2563. rcu_read_unlock();
  2564. return match;
  2565. }
  2566. static int __sched_setscheduler(struct task_struct *p, int policy,
  2567. const struct sched_param *param, bool user)
  2568. {
  2569. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2570. unsigned long flags;
  2571. const struct sched_class *prev_class;
  2572. struct rq *rq;
  2573. int reset_on_fork;
  2574. /* may grab non-irq protected spin_locks */
  2575. BUG_ON(in_interrupt());
  2576. recheck:
  2577. /* double check policy once rq lock held */
  2578. if (policy < 0) {
  2579. reset_on_fork = p->sched_reset_on_fork;
  2580. policy = oldpolicy = p->policy;
  2581. } else {
  2582. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2583. policy &= ~SCHED_RESET_ON_FORK;
  2584. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2585. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2586. policy != SCHED_IDLE)
  2587. return -EINVAL;
  2588. }
  2589. /*
  2590. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2591. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2592. * SCHED_BATCH and SCHED_IDLE is 0.
  2593. */
  2594. if (param->sched_priority < 0 ||
  2595. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2596. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2597. return -EINVAL;
  2598. if (rt_policy(policy) != (param->sched_priority != 0))
  2599. return -EINVAL;
  2600. /*
  2601. * Allow unprivileged RT tasks to decrease priority:
  2602. */
  2603. if (user && !capable(CAP_SYS_NICE)) {
  2604. if (rt_policy(policy)) {
  2605. unsigned long rlim_rtprio =
  2606. task_rlimit(p, RLIMIT_RTPRIO);
  2607. /* can't set/change the rt policy */
  2608. if (policy != p->policy && !rlim_rtprio)
  2609. return -EPERM;
  2610. /* can't increase priority */
  2611. if (param->sched_priority > p->rt_priority &&
  2612. param->sched_priority > rlim_rtprio)
  2613. return -EPERM;
  2614. }
  2615. /*
  2616. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2617. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2618. */
  2619. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2620. if (!can_nice(p, TASK_NICE(p)))
  2621. return -EPERM;
  2622. }
  2623. /* can't change other user's priorities */
  2624. if (!check_same_owner(p))
  2625. return -EPERM;
  2626. /* Normal users shall not reset the sched_reset_on_fork flag */
  2627. if (p->sched_reset_on_fork && !reset_on_fork)
  2628. return -EPERM;
  2629. }
  2630. if (user) {
  2631. retval = security_task_setscheduler(p);
  2632. if (retval)
  2633. return retval;
  2634. }
  2635. /*
  2636. * make sure no PI-waiters arrive (or leave) while we are
  2637. * changing the priority of the task:
  2638. *
  2639. * To be able to change p->policy safely, the appropriate
  2640. * runqueue lock must be held.
  2641. */
  2642. rq = task_rq_lock(p, &flags);
  2643. /*
  2644. * Changing the policy of the stop threads its a very bad idea
  2645. */
  2646. if (p == rq->stop) {
  2647. task_rq_unlock(rq, p, &flags);
  2648. return -EINVAL;
  2649. }
  2650. /*
  2651. * If not changing anything there's no need to proceed further:
  2652. */
  2653. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2654. param->sched_priority == p->rt_priority))) {
  2655. task_rq_unlock(rq, p, &flags);
  2656. return 0;
  2657. }
  2658. #ifdef CONFIG_RT_GROUP_SCHED
  2659. if (user) {
  2660. /*
  2661. * Do not allow realtime tasks into groups that have no runtime
  2662. * assigned.
  2663. */
  2664. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2665. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2666. !task_group_is_autogroup(task_group(p))) {
  2667. task_rq_unlock(rq, p, &flags);
  2668. return -EPERM;
  2669. }
  2670. }
  2671. #endif
  2672. /* recheck policy now with rq lock held */
  2673. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2674. policy = oldpolicy = -1;
  2675. task_rq_unlock(rq, p, &flags);
  2676. goto recheck;
  2677. }
  2678. on_rq = p->on_rq;
  2679. running = task_current(rq, p);
  2680. if (on_rq)
  2681. dequeue_task(rq, p, 0);
  2682. if (running)
  2683. p->sched_class->put_prev_task(rq, p);
  2684. p->sched_reset_on_fork = reset_on_fork;
  2685. oldprio = p->prio;
  2686. prev_class = p->sched_class;
  2687. __setscheduler(rq, p, policy, param->sched_priority);
  2688. if (running)
  2689. p->sched_class->set_curr_task(rq);
  2690. if (on_rq)
  2691. enqueue_task(rq, p, 0);
  2692. check_class_changed(rq, p, prev_class, oldprio);
  2693. task_rq_unlock(rq, p, &flags);
  2694. rt_mutex_adjust_pi(p);
  2695. return 0;
  2696. }
  2697. /**
  2698. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2699. * @p: the task in question.
  2700. * @policy: new policy.
  2701. * @param: structure containing the new RT priority.
  2702. *
  2703. * Return: 0 on success. An error code otherwise.
  2704. *
  2705. * NOTE that the task may be already dead.
  2706. */
  2707. int sched_setscheduler(struct task_struct *p, int policy,
  2708. const struct sched_param *param)
  2709. {
  2710. return __sched_setscheduler(p, policy, param, true);
  2711. }
  2712. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2713. /**
  2714. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2715. * @p: the task in question.
  2716. * @policy: new policy.
  2717. * @param: structure containing the new RT priority.
  2718. *
  2719. * Just like sched_setscheduler, only don't bother checking if the
  2720. * current context has permission. For example, this is needed in
  2721. * stop_machine(): we create temporary high priority worker threads,
  2722. * but our caller might not have that capability.
  2723. *
  2724. * Return: 0 on success. An error code otherwise.
  2725. */
  2726. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  2727. const struct sched_param *param)
  2728. {
  2729. return __sched_setscheduler(p, policy, param, false);
  2730. }
  2731. static int
  2732. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2733. {
  2734. struct sched_param lparam;
  2735. struct task_struct *p;
  2736. int retval;
  2737. if (!param || pid < 0)
  2738. return -EINVAL;
  2739. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2740. return -EFAULT;
  2741. rcu_read_lock();
  2742. retval = -ESRCH;
  2743. p = find_process_by_pid(pid);
  2744. if (p != NULL)
  2745. retval = sched_setscheduler(p, policy, &lparam);
  2746. rcu_read_unlock();
  2747. return retval;
  2748. }
  2749. /**
  2750. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  2751. * @pid: the pid in question.
  2752. * @policy: new policy.
  2753. * @param: structure containing the new RT priority.
  2754. *
  2755. * Return: 0 on success. An error code otherwise.
  2756. */
  2757. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  2758. struct sched_param __user *, param)
  2759. {
  2760. /* negative values for policy are not valid */
  2761. if (policy < 0)
  2762. return -EINVAL;
  2763. return do_sched_setscheduler(pid, policy, param);
  2764. }
  2765. /**
  2766. * sys_sched_setparam - set/change the RT priority of a thread
  2767. * @pid: the pid in question.
  2768. * @param: structure containing the new RT priority.
  2769. *
  2770. * Return: 0 on success. An error code otherwise.
  2771. */
  2772. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  2773. {
  2774. return do_sched_setscheduler(pid, -1, param);
  2775. }
  2776. /**
  2777. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  2778. * @pid: the pid in question.
  2779. *
  2780. * Return: On success, the policy of the thread. Otherwise, a negative error
  2781. * code.
  2782. */
  2783. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  2784. {
  2785. struct task_struct *p;
  2786. int retval;
  2787. if (pid < 0)
  2788. return -EINVAL;
  2789. retval = -ESRCH;
  2790. rcu_read_lock();
  2791. p = find_process_by_pid(pid);
  2792. if (p) {
  2793. retval = security_task_getscheduler(p);
  2794. if (!retval)
  2795. retval = p->policy
  2796. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  2797. }
  2798. rcu_read_unlock();
  2799. return retval;
  2800. }
  2801. /**
  2802. * sys_sched_getparam - get the RT priority of a thread
  2803. * @pid: the pid in question.
  2804. * @param: structure containing the RT priority.
  2805. *
  2806. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  2807. * code.
  2808. */
  2809. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  2810. {
  2811. struct sched_param lp;
  2812. struct task_struct *p;
  2813. int retval;
  2814. if (!param || pid < 0)
  2815. return -EINVAL;
  2816. rcu_read_lock();
  2817. p = find_process_by_pid(pid);
  2818. retval = -ESRCH;
  2819. if (!p)
  2820. goto out_unlock;
  2821. retval = security_task_getscheduler(p);
  2822. if (retval)
  2823. goto out_unlock;
  2824. lp.sched_priority = p->rt_priority;
  2825. rcu_read_unlock();
  2826. /*
  2827. * This one might sleep, we cannot do it with a spinlock held ...
  2828. */
  2829. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  2830. return retval;
  2831. out_unlock:
  2832. rcu_read_unlock();
  2833. return retval;
  2834. }
  2835. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  2836. {
  2837. cpumask_var_t cpus_allowed, new_mask;
  2838. struct task_struct *p;
  2839. int retval;
  2840. rcu_read_lock();
  2841. p = find_process_by_pid(pid);
  2842. if (!p) {
  2843. rcu_read_unlock();
  2844. return -ESRCH;
  2845. }
  2846. /* Prevent p going away */
  2847. get_task_struct(p);
  2848. rcu_read_unlock();
  2849. if (p->flags & PF_NO_SETAFFINITY) {
  2850. retval = -EINVAL;
  2851. goto out_put_task;
  2852. }
  2853. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  2854. retval = -ENOMEM;
  2855. goto out_put_task;
  2856. }
  2857. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  2858. retval = -ENOMEM;
  2859. goto out_free_cpus_allowed;
  2860. }
  2861. retval = -EPERM;
  2862. if (!check_same_owner(p)) {
  2863. rcu_read_lock();
  2864. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  2865. rcu_read_unlock();
  2866. goto out_unlock;
  2867. }
  2868. rcu_read_unlock();
  2869. }
  2870. retval = security_task_setscheduler(p);
  2871. if (retval)
  2872. goto out_unlock;
  2873. cpuset_cpus_allowed(p, cpus_allowed);
  2874. cpumask_and(new_mask, in_mask, cpus_allowed);
  2875. again:
  2876. retval = set_cpus_allowed_ptr(p, new_mask);
  2877. if (!retval) {
  2878. cpuset_cpus_allowed(p, cpus_allowed);
  2879. if (!cpumask_subset(new_mask, cpus_allowed)) {
  2880. /*
  2881. * We must have raced with a concurrent cpuset
  2882. * update. Just reset the cpus_allowed to the
  2883. * cpuset's cpus_allowed
  2884. */
  2885. cpumask_copy(new_mask, cpus_allowed);
  2886. goto again;
  2887. }
  2888. }
  2889. out_unlock:
  2890. free_cpumask_var(new_mask);
  2891. out_free_cpus_allowed:
  2892. free_cpumask_var(cpus_allowed);
  2893. out_put_task:
  2894. put_task_struct(p);
  2895. return retval;
  2896. }
  2897. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  2898. struct cpumask *new_mask)
  2899. {
  2900. if (len < cpumask_size())
  2901. cpumask_clear(new_mask);
  2902. else if (len > cpumask_size())
  2903. len = cpumask_size();
  2904. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  2905. }
  2906. /**
  2907. * sys_sched_setaffinity - set the cpu affinity of a process
  2908. * @pid: pid of the process
  2909. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  2910. * @user_mask_ptr: user-space pointer to the new cpu mask
  2911. *
  2912. * Return: 0 on success. An error code otherwise.
  2913. */
  2914. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  2915. unsigned long __user *, user_mask_ptr)
  2916. {
  2917. cpumask_var_t new_mask;
  2918. int retval;
  2919. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  2920. return -ENOMEM;
  2921. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  2922. if (retval == 0)
  2923. retval = sched_setaffinity(pid, new_mask);
  2924. free_cpumask_var(new_mask);
  2925. return retval;
  2926. }
  2927. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  2928. {
  2929. struct task_struct *p;
  2930. unsigned long flags;
  2931. int retval;
  2932. rcu_read_lock();
  2933. retval = -ESRCH;
  2934. p = find_process_by_pid(pid);
  2935. if (!p)
  2936. goto out_unlock;
  2937. retval = security_task_getscheduler(p);
  2938. if (retval)
  2939. goto out_unlock;
  2940. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2941. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  2942. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2943. out_unlock:
  2944. rcu_read_unlock();
  2945. return retval;
  2946. }
  2947. /**
  2948. * sys_sched_getaffinity - get the cpu affinity of a process
  2949. * @pid: pid of the process
  2950. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  2951. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  2952. *
  2953. * Return: 0 on success. An error code otherwise.
  2954. */
  2955. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  2956. unsigned long __user *, user_mask_ptr)
  2957. {
  2958. int ret;
  2959. cpumask_var_t mask;
  2960. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  2961. return -EINVAL;
  2962. if (len & (sizeof(unsigned long)-1))
  2963. return -EINVAL;
  2964. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  2965. return -ENOMEM;
  2966. ret = sched_getaffinity(pid, mask);
  2967. if (ret == 0) {
  2968. size_t retlen = min_t(size_t, len, cpumask_size());
  2969. if (copy_to_user(user_mask_ptr, mask, retlen))
  2970. ret = -EFAULT;
  2971. else
  2972. ret = retlen;
  2973. }
  2974. free_cpumask_var(mask);
  2975. return ret;
  2976. }
  2977. /**
  2978. * sys_sched_yield - yield the current processor to other threads.
  2979. *
  2980. * This function yields the current CPU to other tasks. If there are no
  2981. * other threads running on this CPU then this function will return.
  2982. *
  2983. * Return: 0.
  2984. */
  2985. SYSCALL_DEFINE0(sched_yield)
  2986. {
  2987. struct rq *rq = this_rq_lock();
  2988. schedstat_inc(rq, yld_count);
  2989. current->sched_class->yield_task(rq);
  2990. /*
  2991. * Since we are going to call schedule() anyway, there's
  2992. * no need to preempt or enable interrupts:
  2993. */
  2994. __release(rq->lock);
  2995. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2996. do_raw_spin_unlock(&rq->lock);
  2997. sched_preempt_enable_no_resched();
  2998. schedule();
  2999. return 0;
  3000. }
  3001. static void __cond_resched(void)
  3002. {
  3003. __preempt_count_add(PREEMPT_ACTIVE);
  3004. __schedule();
  3005. __preempt_count_sub(PREEMPT_ACTIVE);
  3006. }
  3007. int __sched _cond_resched(void)
  3008. {
  3009. if (should_resched()) {
  3010. __cond_resched();
  3011. return 1;
  3012. }
  3013. return 0;
  3014. }
  3015. EXPORT_SYMBOL(_cond_resched);
  3016. /*
  3017. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3018. * call schedule, and on return reacquire the lock.
  3019. *
  3020. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3021. * operations here to prevent schedule() from being called twice (once via
  3022. * spin_unlock(), once by hand).
  3023. */
  3024. int __cond_resched_lock(spinlock_t *lock)
  3025. {
  3026. int resched = should_resched();
  3027. int ret = 0;
  3028. lockdep_assert_held(lock);
  3029. if (spin_needbreak(lock) || resched) {
  3030. spin_unlock(lock);
  3031. if (resched)
  3032. __cond_resched();
  3033. else
  3034. cpu_relax();
  3035. ret = 1;
  3036. spin_lock(lock);
  3037. }
  3038. return ret;
  3039. }
  3040. EXPORT_SYMBOL(__cond_resched_lock);
  3041. int __sched __cond_resched_softirq(void)
  3042. {
  3043. BUG_ON(!in_softirq());
  3044. if (should_resched()) {
  3045. local_bh_enable();
  3046. __cond_resched();
  3047. local_bh_disable();
  3048. return 1;
  3049. }
  3050. return 0;
  3051. }
  3052. EXPORT_SYMBOL(__cond_resched_softirq);
  3053. /**
  3054. * yield - yield the current processor to other threads.
  3055. *
  3056. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3057. *
  3058. * The scheduler is at all times free to pick the calling task as the most
  3059. * eligible task to run, if removing the yield() call from your code breaks
  3060. * it, its already broken.
  3061. *
  3062. * Typical broken usage is:
  3063. *
  3064. * while (!event)
  3065. * yield();
  3066. *
  3067. * where one assumes that yield() will let 'the other' process run that will
  3068. * make event true. If the current task is a SCHED_FIFO task that will never
  3069. * happen. Never use yield() as a progress guarantee!!
  3070. *
  3071. * If you want to use yield() to wait for something, use wait_event().
  3072. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3073. * If you still want to use yield(), do not!
  3074. */
  3075. void __sched yield(void)
  3076. {
  3077. set_current_state(TASK_RUNNING);
  3078. sys_sched_yield();
  3079. }
  3080. EXPORT_SYMBOL(yield);
  3081. /**
  3082. * yield_to - yield the current processor to another thread in
  3083. * your thread group, or accelerate that thread toward the
  3084. * processor it's on.
  3085. * @p: target task
  3086. * @preempt: whether task preemption is allowed or not
  3087. *
  3088. * It's the caller's job to ensure that the target task struct
  3089. * can't go away on us before we can do any checks.
  3090. *
  3091. * Return:
  3092. * true (>0) if we indeed boosted the target task.
  3093. * false (0) if we failed to boost the target.
  3094. * -ESRCH if there's no task to yield to.
  3095. */
  3096. bool __sched yield_to(struct task_struct *p, bool preempt)
  3097. {
  3098. struct task_struct *curr = current;
  3099. struct rq *rq, *p_rq;
  3100. unsigned long flags;
  3101. int yielded = 0;
  3102. local_irq_save(flags);
  3103. rq = this_rq();
  3104. again:
  3105. p_rq = task_rq(p);
  3106. /*
  3107. * If we're the only runnable task on the rq and target rq also
  3108. * has only one task, there's absolutely no point in yielding.
  3109. */
  3110. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3111. yielded = -ESRCH;
  3112. goto out_irq;
  3113. }
  3114. double_rq_lock(rq, p_rq);
  3115. while (task_rq(p) != p_rq) {
  3116. double_rq_unlock(rq, p_rq);
  3117. goto again;
  3118. }
  3119. if (!curr->sched_class->yield_to_task)
  3120. goto out_unlock;
  3121. if (curr->sched_class != p->sched_class)
  3122. goto out_unlock;
  3123. if (task_running(p_rq, p) || p->state)
  3124. goto out_unlock;
  3125. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3126. if (yielded) {
  3127. schedstat_inc(rq, yld_count);
  3128. /*
  3129. * Make p's CPU reschedule; pick_next_entity takes care of
  3130. * fairness.
  3131. */
  3132. if (preempt && rq != p_rq)
  3133. resched_task(p_rq->curr);
  3134. }
  3135. out_unlock:
  3136. double_rq_unlock(rq, p_rq);
  3137. out_irq:
  3138. local_irq_restore(flags);
  3139. if (yielded > 0)
  3140. schedule();
  3141. return yielded;
  3142. }
  3143. EXPORT_SYMBOL_GPL(yield_to);
  3144. /*
  3145. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3146. * that process accounting knows that this is a task in IO wait state.
  3147. */
  3148. void __sched io_schedule(void)
  3149. {
  3150. struct rq *rq = raw_rq();
  3151. delayacct_blkio_start();
  3152. atomic_inc(&rq->nr_iowait);
  3153. blk_flush_plug(current);
  3154. current->in_iowait = 1;
  3155. schedule();
  3156. current->in_iowait = 0;
  3157. atomic_dec(&rq->nr_iowait);
  3158. delayacct_blkio_end();
  3159. }
  3160. EXPORT_SYMBOL(io_schedule);
  3161. long __sched io_schedule_timeout(long timeout)
  3162. {
  3163. struct rq *rq = raw_rq();
  3164. long ret;
  3165. delayacct_blkio_start();
  3166. atomic_inc(&rq->nr_iowait);
  3167. blk_flush_plug(current);
  3168. current->in_iowait = 1;
  3169. ret = schedule_timeout(timeout);
  3170. current->in_iowait = 0;
  3171. atomic_dec(&rq->nr_iowait);
  3172. delayacct_blkio_end();
  3173. return ret;
  3174. }
  3175. /**
  3176. * sys_sched_get_priority_max - return maximum RT priority.
  3177. * @policy: scheduling class.
  3178. *
  3179. * Return: On success, this syscall returns the maximum
  3180. * rt_priority that can be used by a given scheduling class.
  3181. * On failure, a negative error code is returned.
  3182. */
  3183. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3184. {
  3185. int ret = -EINVAL;
  3186. switch (policy) {
  3187. case SCHED_FIFO:
  3188. case SCHED_RR:
  3189. ret = MAX_USER_RT_PRIO-1;
  3190. break;
  3191. case SCHED_NORMAL:
  3192. case SCHED_BATCH:
  3193. case SCHED_IDLE:
  3194. ret = 0;
  3195. break;
  3196. }
  3197. return ret;
  3198. }
  3199. /**
  3200. * sys_sched_get_priority_min - return minimum RT priority.
  3201. * @policy: scheduling class.
  3202. *
  3203. * Return: On success, this syscall returns the minimum
  3204. * rt_priority that can be used by a given scheduling class.
  3205. * On failure, a negative error code is returned.
  3206. */
  3207. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3208. {
  3209. int ret = -EINVAL;
  3210. switch (policy) {
  3211. case SCHED_FIFO:
  3212. case SCHED_RR:
  3213. ret = 1;
  3214. break;
  3215. case SCHED_NORMAL:
  3216. case SCHED_BATCH:
  3217. case SCHED_IDLE:
  3218. ret = 0;
  3219. }
  3220. return ret;
  3221. }
  3222. /**
  3223. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3224. * @pid: pid of the process.
  3225. * @interval: userspace pointer to the timeslice value.
  3226. *
  3227. * this syscall writes the default timeslice value of a given process
  3228. * into the user-space timespec buffer. A value of '0' means infinity.
  3229. *
  3230. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3231. * an error code.
  3232. */
  3233. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3234. struct timespec __user *, interval)
  3235. {
  3236. struct task_struct *p;
  3237. unsigned int time_slice;
  3238. unsigned long flags;
  3239. struct rq *rq;
  3240. int retval;
  3241. struct timespec t;
  3242. if (pid < 0)
  3243. return -EINVAL;
  3244. retval = -ESRCH;
  3245. rcu_read_lock();
  3246. p = find_process_by_pid(pid);
  3247. if (!p)
  3248. goto out_unlock;
  3249. retval = security_task_getscheduler(p);
  3250. if (retval)
  3251. goto out_unlock;
  3252. rq = task_rq_lock(p, &flags);
  3253. time_slice = p->sched_class->get_rr_interval(rq, p);
  3254. task_rq_unlock(rq, p, &flags);
  3255. rcu_read_unlock();
  3256. jiffies_to_timespec(time_slice, &t);
  3257. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3258. return retval;
  3259. out_unlock:
  3260. rcu_read_unlock();
  3261. return retval;
  3262. }
  3263. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3264. void sched_show_task(struct task_struct *p)
  3265. {
  3266. unsigned long free = 0;
  3267. int ppid;
  3268. unsigned state;
  3269. state = p->state ? __ffs(p->state) + 1 : 0;
  3270. printk(KERN_INFO "%-15.15s %c", p->comm,
  3271. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3272. #if BITS_PER_LONG == 32
  3273. if (state == TASK_RUNNING)
  3274. printk(KERN_CONT " running ");
  3275. else
  3276. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3277. #else
  3278. if (state == TASK_RUNNING)
  3279. printk(KERN_CONT " running task ");
  3280. else
  3281. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3282. #endif
  3283. #ifdef CONFIG_DEBUG_STACK_USAGE
  3284. free = stack_not_used(p);
  3285. #endif
  3286. rcu_read_lock();
  3287. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3288. rcu_read_unlock();
  3289. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3290. task_pid_nr(p), ppid,
  3291. (unsigned long)task_thread_info(p)->flags);
  3292. print_worker_info(KERN_INFO, p);
  3293. show_stack(p, NULL);
  3294. }
  3295. void show_state_filter(unsigned long state_filter)
  3296. {
  3297. struct task_struct *g, *p;
  3298. #if BITS_PER_LONG == 32
  3299. printk(KERN_INFO
  3300. " task PC stack pid father\n");
  3301. #else
  3302. printk(KERN_INFO
  3303. " task PC stack pid father\n");
  3304. #endif
  3305. rcu_read_lock();
  3306. do_each_thread(g, p) {
  3307. /*
  3308. * reset the NMI-timeout, listing all files on a slow
  3309. * console might take a lot of time:
  3310. */
  3311. touch_nmi_watchdog();
  3312. if (!state_filter || (p->state & state_filter))
  3313. sched_show_task(p);
  3314. } while_each_thread(g, p);
  3315. touch_all_softlockup_watchdogs();
  3316. #ifdef CONFIG_SCHED_DEBUG
  3317. sysrq_sched_debug_show();
  3318. #endif
  3319. rcu_read_unlock();
  3320. /*
  3321. * Only show locks if all tasks are dumped:
  3322. */
  3323. if (!state_filter)
  3324. debug_show_all_locks();
  3325. }
  3326. void init_idle_bootup_task(struct task_struct *idle)
  3327. {
  3328. idle->sched_class = &idle_sched_class;
  3329. }
  3330. /**
  3331. * init_idle - set up an idle thread for a given CPU
  3332. * @idle: task in question
  3333. * @cpu: cpu the idle task belongs to
  3334. *
  3335. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3336. * flag, to make booting more robust.
  3337. */
  3338. void init_idle(struct task_struct *idle, int cpu)
  3339. {
  3340. struct rq *rq = cpu_rq(cpu);
  3341. unsigned long flags;
  3342. raw_spin_lock_irqsave(&rq->lock, flags);
  3343. __sched_fork(0, idle);
  3344. idle->state = TASK_RUNNING;
  3345. idle->se.exec_start = sched_clock();
  3346. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3347. /*
  3348. * We're having a chicken and egg problem, even though we are
  3349. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3350. * lockdep check in task_group() will fail.
  3351. *
  3352. * Similar case to sched_fork(). / Alternatively we could
  3353. * use task_rq_lock() here and obtain the other rq->lock.
  3354. *
  3355. * Silence PROVE_RCU
  3356. */
  3357. rcu_read_lock();
  3358. __set_task_cpu(idle, cpu);
  3359. rcu_read_unlock();
  3360. rq->curr = rq->idle = idle;
  3361. #if defined(CONFIG_SMP)
  3362. idle->on_cpu = 1;
  3363. #endif
  3364. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3365. /* Set the preempt count _outside_ the spinlocks! */
  3366. init_idle_preempt_count(idle, cpu);
  3367. /*
  3368. * The idle tasks have their own, simple scheduling class:
  3369. */
  3370. idle->sched_class = &idle_sched_class;
  3371. ftrace_graph_init_idle_task(idle, cpu);
  3372. vtime_init_idle(idle, cpu);
  3373. #if defined(CONFIG_SMP)
  3374. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3375. #endif
  3376. }
  3377. #ifdef CONFIG_SMP
  3378. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3379. {
  3380. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3381. p->sched_class->set_cpus_allowed(p, new_mask);
  3382. cpumask_copy(&p->cpus_allowed, new_mask);
  3383. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3384. }
  3385. /*
  3386. * This is how migration works:
  3387. *
  3388. * 1) we invoke migration_cpu_stop() on the target CPU using
  3389. * stop_one_cpu().
  3390. * 2) stopper starts to run (implicitly forcing the migrated thread
  3391. * off the CPU)
  3392. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3393. * 4) if it's in the wrong runqueue then the migration thread removes
  3394. * it and puts it into the right queue.
  3395. * 5) stopper completes and stop_one_cpu() returns and the migration
  3396. * is done.
  3397. */
  3398. /*
  3399. * Change a given task's CPU affinity. Migrate the thread to a
  3400. * proper CPU and schedule it away if the CPU it's executing on
  3401. * is removed from the allowed bitmask.
  3402. *
  3403. * NOTE: the caller must have a valid reference to the task, the
  3404. * task must not exit() & deallocate itself prematurely. The
  3405. * call is not atomic; no spinlocks may be held.
  3406. */
  3407. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3408. {
  3409. unsigned long flags;
  3410. struct rq *rq;
  3411. unsigned int dest_cpu;
  3412. int ret = 0;
  3413. rq = task_rq_lock(p, &flags);
  3414. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3415. goto out;
  3416. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3417. ret = -EINVAL;
  3418. goto out;
  3419. }
  3420. do_set_cpus_allowed(p, new_mask);
  3421. /* Can the task run on the task's current CPU? If so, we're done */
  3422. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3423. goto out;
  3424. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3425. if (p->on_rq) {
  3426. struct migration_arg arg = { p, dest_cpu };
  3427. /* Need help from migration thread: drop lock and wait. */
  3428. task_rq_unlock(rq, p, &flags);
  3429. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3430. tlb_migrate_finish(p->mm);
  3431. return 0;
  3432. }
  3433. out:
  3434. task_rq_unlock(rq, p, &flags);
  3435. return ret;
  3436. }
  3437. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3438. /*
  3439. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3440. * this because either it can't run here any more (set_cpus_allowed()
  3441. * away from this CPU, or CPU going down), or because we're
  3442. * attempting to rebalance this task on exec (sched_exec).
  3443. *
  3444. * So we race with normal scheduler movements, but that's OK, as long
  3445. * as the task is no longer on this CPU.
  3446. *
  3447. * Returns non-zero if task was successfully migrated.
  3448. */
  3449. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3450. {
  3451. struct rq *rq_dest, *rq_src;
  3452. int ret = 0;
  3453. if (unlikely(!cpu_active(dest_cpu)))
  3454. return ret;
  3455. rq_src = cpu_rq(src_cpu);
  3456. rq_dest = cpu_rq(dest_cpu);
  3457. raw_spin_lock(&p->pi_lock);
  3458. double_rq_lock(rq_src, rq_dest);
  3459. /* Already moved. */
  3460. if (task_cpu(p) != src_cpu)
  3461. goto done;
  3462. /* Affinity changed (again). */
  3463. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3464. goto fail;
  3465. /*
  3466. * If we're not on a rq, the next wake-up will ensure we're
  3467. * placed properly.
  3468. */
  3469. if (p->on_rq) {
  3470. dequeue_task(rq_src, p, 0);
  3471. set_task_cpu(p, dest_cpu);
  3472. enqueue_task(rq_dest, p, 0);
  3473. check_preempt_curr(rq_dest, p, 0);
  3474. }
  3475. done:
  3476. ret = 1;
  3477. fail:
  3478. double_rq_unlock(rq_src, rq_dest);
  3479. raw_spin_unlock(&p->pi_lock);
  3480. return ret;
  3481. }
  3482. #ifdef CONFIG_NUMA_BALANCING
  3483. /* Migrate current task p to target_cpu */
  3484. int migrate_task_to(struct task_struct *p, int target_cpu)
  3485. {
  3486. struct migration_arg arg = { p, target_cpu };
  3487. int curr_cpu = task_cpu(p);
  3488. if (curr_cpu == target_cpu)
  3489. return 0;
  3490. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3491. return -EINVAL;
  3492. /* TODO: This is not properly updating schedstats */
  3493. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3494. }
  3495. /*
  3496. * Requeue a task on a given node and accurately track the number of NUMA
  3497. * tasks on the runqueues
  3498. */
  3499. void sched_setnuma(struct task_struct *p, int nid)
  3500. {
  3501. struct rq *rq;
  3502. unsigned long flags;
  3503. bool on_rq, running;
  3504. rq = task_rq_lock(p, &flags);
  3505. on_rq = p->on_rq;
  3506. running = task_current(rq, p);
  3507. if (on_rq)
  3508. dequeue_task(rq, p, 0);
  3509. if (running)
  3510. p->sched_class->put_prev_task(rq, p);
  3511. p->numa_preferred_nid = nid;
  3512. if (running)
  3513. p->sched_class->set_curr_task(rq);
  3514. if (on_rq)
  3515. enqueue_task(rq, p, 0);
  3516. task_rq_unlock(rq, p, &flags);
  3517. }
  3518. #endif
  3519. /*
  3520. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3521. * and performs thread migration by bumping thread off CPU then
  3522. * 'pushing' onto another runqueue.
  3523. */
  3524. static int migration_cpu_stop(void *data)
  3525. {
  3526. struct migration_arg *arg = data;
  3527. /*
  3528. * The original target cpu might have gone down and we might
  3529. * be on another cpu but it doesn't matter.
  3530. */
  3531. local_irq_disable();
  3532. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3533. local_irq_enable();
  3534. return 0;
  3535. }
  3536. #ifdef CONFIG_HOTPLUG_CPU
  3537. /*
  3538. * Ensures that the idle task is using init_mm right before its cpu goes
  3539. * offline.
  3540. */
  3541. void idle_task_exit(void)
  3542. {
  3543. struct mm_struct *mm = current->active_mm;
  3544. BUG_ON(cpu_online(smp_processor_id()));
  3545. if (mm != &init_mm)
  3546. switch_mm(mm, &init_mm, current);
  3547. mmdrop(mm);
  3548. }
  3549. /*
  3550. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3551. * we might have. Assumes we're called after migrate_tasks() so that the
  3552. * nr_active count is stable.
  3553. *
  3554. * Also see the comment "Global load-average calculations".
  3555. */
  3556. static void calc_load_migrate(struct rq *rq)
  3557. {
  3558. long delta = calc_load_fold_active(rq);
  3559. if (delta)
  3560. atomic_long_add(delta, &calc_load_tasks);
  3561. }
  3562. /*
  3563. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3564. * try_to_wake_up()->select_task_rq().
  3565. *
  3566. * Called with rq->lock held even though we'er in stop_machine() and
  3567. * there's no concurrency possible, we hold the required locks anyway
  3568. * because of lock validation efforts.
  3569. */
  3570. static void migrate_tasks(unsigned int dead_cpu)
  3571. {
  3572. struct rq *rq = cpu_rq(dead_cpu);
  3573. struct task_struct *next, *stop = rq->stop;
  3574. int dest_cpu;
  3575. /*
  3576. * Fudge the rq selection such that the below task selection loop
  3577. * doesn't get stuck on the currently eligible stop task.
  3578. *
  3579. * We're currently inside stop_machine() and the rq is either stuck
  3580. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3581. * either way we should never end up calling schedule() until we're
  3582. * done here.
  3583. */
  3584. rq->stop = NULL;
  3585. /*
  3586. * put_prev_task() and pick_next_task() sched
  3587. * class method both need to have an up-to-date
  3588. * value of rq->clock[_task]
  3589. */
  3590. update_rq_clock(rq);
  3591. for ( ; ; ) {
  3592. /*
  3593. * There's this thread running, bail when that's the only
  3594. * remaining thread.
  3595. */
  3596. if (rq->nr_running == 1)
  3597. break;
  3598. next = pick_next_task(rq);
  3599. BUG_ON(!next);
  3600. next->sched_class->put_prev_task(rq, next);
  3601. /* Find suitable destination for @next, with force if needed. */
  3602. dest_cpu = select_fallback_rq(dead_cpu, next);
  3603. raw_spin_unlock(&rq->lock);
  3604. __migrate_task(next, dead_cpu, dest_cpu);
  3605. raw_spin_lock(&rq->lock);
  3606. }
  3607. rq->stop = stop;
  3608. }
  3609. #endif /* CONFIG_HOTPLUG_CPU */
  3610. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3611. static struct ctl_table sd_ctl_dir[] = {
  3612. {
  3613. .procname = "sched_domain",
  3614. .mode = 0555,
  3615. },
  3616. {}
  3617. };
  3618. static struct ctl_table sd_ctl_root[] = {
  3619. {
  3620. .procname = "kernel",
  3621. .mode = 0555,
  3622. .child = sd_ctl_dir,
  3623. },
  3624. {}
  3625. };
  3626. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3627. {
  3628. struct ctl_table *entry =
  3629. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3630. return entry;
  3631. }
  3632. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3633. {
  3634. struct ctl_table *entry;
  3635. /*
  3636. * In the intermediate directories, both the child directory and
  3637. * procname are dynamically allocated and could fail but the mode
  3638. * will always be set. In the lowest directory the names are
  3639. * static strings and all have proc handlers.
  3640. */
  3641. for (entry = *tablep; entry->mode; entry++) {
  3642. if (entry->child)
  3643. sd_free_ctl_entry(&entry->child);
  3644. if (entry->proc_handler == NULL)
  3645. kfree(entry->procname);
  3646. }
  3647. kfree(*tablep);
  3648. *tablep = NULL;
  3649. }
  3650. static int min_load_idx = 0;
  3651. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3652. static void
  3653. set_table_entry(struct ctl_table *entry,
  3654. const char *procname, void *data, int maxlen,
  3655. umode_t mode, proc_handler *proc_handler,
  3656. bool load_idx)
  3657. {
  3658. entry->procname = procname;
  3659. entry->data = data;
  3660. entry->maxlen = maxlen;
  3661. entry->mode = mode;
  3662. entry->proc_handler = proc_handler;
  3663. if (load_idx) {
  3664. entry->extra1 = &min_load_idx;
  3665. entry->extra2 = &max_load_idx;
  3666. }
  3667. }
  3668. static struct ctl_table *
  3669. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  3670. {
  3671. struct ctl_table *table = sd_alloc_ctl_entry(13);
  3672. if (table == NULL)
  3673. return NULL;
  3674. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  3675. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3676. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  3677. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3678. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  3679. sizeof(int), 0644, proc_dointvec_minmax, true);
  3680. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  3681. sizeof(int), 0644, proc_dointvec_minmax, true);
  3682. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  3683. sizeof(int), 0644, proc_dointvec_minmax, true);
  3684. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  3685. sizeof(int), 0644, proc_dointvec_minmax, true);
  3686. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  3687. sizeof(int), 0644, proc_dointvec_minmax, true);
  3688. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  3689. sizeof(int), 0644, proc_dointvec_minmax, false);
  3690. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  3691. sizeof(int), 0644, proc_dointvec_minmax, false);
  3692. set_table_entry(&table[9], "cache_nice_tries",
  3693. &sd->cache_nice_tries,
  3694. sizeof(int), 0644, proc_dointvec_minmax, false);
  3695. set_table_entry(&table[10], "flags", &sd->flags,
  3696. sizeof(int), 0644, proc_dointvec_minmax, false);
  3697. set_table_entry(&table[11], "name", sd->name,
  3698. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  3699. /* &table[12] is terminator */
  3700. return table;
  3701. }
  3702. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  3703. {
  3704. struct ctl_table *entry, *table;
  3705. struct sched_domain *sd;
  3706. int domain_num = 0, i;
  3707. char buf[32];
  3708. for_each_domain(cpu, sd)
  3709. domain_num++;
  3710. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  3711. if (table == NULL)
  3712. return NULL;
  3713. i = 0;
  3714. for_each_domain(cpu, sd) {
  3715. snprintf(buf, 32, "domain%d", i);
  3716. entry->procname = kstrdup(buf, GFP_KERNEL);
  3717. entry->mode = 0555;
  3718. entry->child = sd_alloc_ctl_domain_table(sd);
  3719. entry++;
  3720. i++;
  3721. }
  3722. return table;
  3723. }
  3724. static struct ctl_table_header *sd_sysctl_header;
  3725. static void register_sched_domain_sysctl(void)
  3726. {
  3727. int i, cpu_num = num_possible_cpus();
  3728. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  3729. char buf[32];
  3730. WARN_ON(sd_ctl_dir[0].child);
  3731. sd_ctl_dir[0].child = entry;
  3732. if (entry == NULL)
  3733. return;
  3734. for_each_possible_cpu(i) {
  3735. snprintf(buf, 32, "cpu%d", i);
  3736. entry->procname = kstrdup(buf, GFP_KERNEL);
  3737. entry->mode = 0555;
  3738. entry->child = sd_alloc_ctl_cpu_table(i);
  3739. entry++;
  3740. }
  3741. WARN_ON(sd_sysctl_header);
  3742. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  3743. }
  3744. /* may be called multiple times per register */
  3745. static void unregister_sched_domain_sysctl(void)
  3746. {
  3747. if (sd_sysctl_header)
  3748. unregister_sysctl_table(sd_sysctl_header);
  3749. sd_sysctl_header = NULL;
  3750. if (sd_ctl_dir[0].child)
  3751. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  3752. }
  3753. #else
  3754. static void register_sched_domain_sysctl(void)
  3755. {
  3756. }
  3757. static void unregister_sched_domain_sysctl(void)
  3758. {
  3759. }
  3760. #endif
  3761. static void set_rq_online(struct rq *rq)
  3762. {
  3763. if (!rq->online) {
  3764. const struct sched_class *class;
  3765. cpumask_set_cpu(rq->cpu, rq->rd->online);
  3766. rq->online = 1;
  3767. for_each_class(class) {
  3768. if (class->rq_online)
  3769. class->rq_online(rq);
  3770. }
  3771. }
  3772. }
  3773. static void set_rq_offline(struct rq *rq)
  3774. {
  3775. if (rq->online) {
  3776. const struct sched_class *class;
  3777. for_each_class(class) {
  3778. if (class->rq_offline)
  3779. class->rq_offline(rq);
  3780. }
  3781. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  3782. rq->online = 0;
  3783. }
  3784. }
  3785. /*
  3786. * migration_call - callback that gets triggered when a CPU is added.
  3787. * Here we can start up the necessary migration thread for the new CPU.
  3788. */
  3789. static int
  3790. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  3791. {
  3792. int cpu = (long)hcpu;
  3793. unsigned long flags;
  3794. struct rq *rq = cpu_rq(cpu);
  3795. switch (action & ~CPU_TASKS_FROZEN) {
  3796. case CPU_UP_PREPARE:
  3797. rq->calc_load_update = calc_load_update;
  3798. break;
  3799. case CPU_ONLINE:
  3800. /* Update our root-domain */
  3801. raw_spin_lock_irqsave(&rq->lock, flags);
  3802. if (rq->rd) {
  3803. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  3804. set_rq_online(rq);
  3805. }
  3806. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3807. break;
  3808. #ifdef CONFIG_HOTPLUG_CPU
  3809. case CPU_DYING:
  3810. sched_ttwu_pending();
  3811. /* Update our root-domain */
  3812. raw_spin_lock_irqsave(&rq->lock, flags);
  3813. if (rq->rd) {
  3814. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  3815. set_rq_offline(rq);
  3816. }
  3817. migrate_tasks(cpu);
  3818. BUG_ON(rq->nr_running != 1); /* the migration thread */
  3819. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3820. break;
  3821. case CPU_DEAD:
  3822. calc_load_migrate(rq);
  3823. break;
  3824. #endif
  3825. }
  3826. update_max_interval();
  3827. return NOTIFY_OK;
  3828. }
  3829. /*
  3830. * Register at high priority so that task migration (migrate_all_tasks)
  3831. * happens before everything else. This has to be lower priority than
  3832. * the notifier in the perf_event subsystem, though.
  3833. */
  3834. static struct notifier_block migration_notifier = {
  3835. .notifier_call = migration_call,
  3836. .priority = CPU_PRI_MIGRATION,
  3837. };
  3838. static int sched_cpu_active(struct notifier_block *nfb,
  3839. unsigned long action, void *hcpu)
  3840. {
  3841. switch (action & ~CPU_TASKS_FROZEN) {
  3842. case CPU_STARTING:
  3843. case CPU_DOWN_FAILED:
  3844. set_cpu_active((long)hcpu, true);
  3845. return NOTIFY_OK;
  3846. default:
  3847. return NOTIFY_DONE;
  3848. }
  3849. }
  3850. static int sched_cpu_inactive(struct notifier_block *nfb,
  3851. unsigned long action, void *hcpu)
  3852. {
  3853. switch (action & ~CPU_TASKS_FROZEN) {
  3854. case CPU_DOWN_PREPARE:
  3855. set_cpu_active((long)hcpu, false);
  3856. return NOTIFY_OK;
  3857. default:
  3858. return NOTIFY_DONE;
  3859. }
  3860. }
  3861. static int __init migration_init(void)
  3862. {
  3863. void *cpu = (void *)(long)smp_processor_id();
  3864. int err;
  3865. /* Initialize migration for the boot CPU */
  3866. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  3867. BUG_ON(err == NOTIFY_BAD);
  3868. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  3869. register_cpu_notifier(&migration_notifier);
  3870. /* Register cpu active notifiers */
  3871. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  3872. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  3873. return 0;
  3874. }
  3875. early_initcall(migration_init);
  3876. #endif
  3877. #ifdef CONFIG_SMP
  3878. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  3879. #ifdef CONFIG_SCHED_DEBUG
  3880. static __read_mostly int sched_debug_enabled;
  3881. static int __init sched_debug_setup(char *str)
  3882. {
  3883. sched_debug_enabled = 1;
  3884. return 0;
  3885. }
  3886. early_param("sched_debug", sched_debug_setup);
  3887. static inline bool sched_debug(void)
  3888. {
  3889. return sched_debug_enabled;
  3890. }
  3891. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  3892. struct cpumask *groupmask)
  3893. {
  3894. struct sched_group *group = sd->groups;
  3895. char str[256];
  3896. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  3897. cpumask_clear(groupmask);
  3898. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  3899. if (!(sd->flags & SD_LOAD_BALANCE)) {
  3900. printk("does not load-balance\n");
  3901. if (sd->parent)
  3902. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  3903. " has parent");
  3904. return -1;
  3905. }
  3906. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  3907. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  3908. printk(KERN_ERR "ERROR: domain->span does not contain "
  3909. "CPU%d\n", cpu);
  3910. }
  3911. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  3912. printk(KERN_ERR "ERROR: domain->groups does not contain"
  3913. " CPU%d\n", cpu);
  3914. }
  3915. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  3916. do {
  3917. if (!group) {
  3918. printk("\n");
  3919. printk(KERN_ERR "ERROR: group is NULL\n");
  3920. break;
  3921. }
  3922. /*
  3923. * Even though we initialize ->power to something semi-sane,
  3924. * we leave power_orig unset. This allows us to detect if
  3925. * domain iteration is still funny without causing /0 traps.
  3926. */
  3927. if (!group->sgp->power_orig) {
  3928. printk(KERN_CONT "\n");
  3929. printk(KERN_ERR "ERROR: domain->cpu_power not "
  3930. "set\n");
  3931. break;
  3932. }
  3933. if (!cpumask_weight(sched_group_cpus(group))) {
  3934. printk(KERN_CONT "\n");
  3935. printk(KERN_ERR "ERROR: empty group\n");
  3936. break;
  3937. }
  3938. if (!(sd->flags & SD_OVERLAP) &&
  3939. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  3940. printk(KERN_CONT "\n");
  3941. printk(KERN_ERR "ERROR: repeated CPUs\n");
  3942. break;
  3943. }
  3944. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  3945. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  3946. printk(KERN_CONT " %s", str);
  3947. if (group->sgp->power != SCHED_POWER_SCALE) {
  3948. printk(KERN_CONT " (cpu_power = %d)",
  3949. group->sgp->power);
  3950. }
  3951. group = group->next;
  3952. } while (group != sd->groups);
  3953. printk(KERN_CONT "\n");
  3954. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  3955. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  3956. if (sd->parent &&
  3957. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  3958. printk(KERN_ERR "ERROR: parent span is not a superset "
  3959. "of domain->span\n");
  3960. return 0;
  3961. }
  3962. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  3963. {
  3964. int level = 0;
  3965. if (!sched_debug_enabled)
  3966. return;
  3967. if (!sd) {
  3968. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  3969. return;
  3970. }
  3971. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  3972. for (;;) {
  3973. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  3974. break;
  3975. level++;
  3976. sd = sd->parent;
  3977. if (!sd)
  3978. break;
  3979. }
  3980. }
  3981. #else /* !CONFIG_SCHED_DEBUG */
  3982. # define sched_domain_debug(sd, cpu) do { } while (0)
  3983. static inline bool sched_debug(void)
  3984. {
  3985. return false;
  3986. }
  3987. #endif /* CONFIG_SCHED_DEBUG */
  3988. static int sd_degenerate(struct sched_domain *sd)
  3989. {
  3990. if (cpumask_weight(sched_domain_span(sd)) == 1)
  3991. return 1;
  3992. /* Following flags need at least 2 groups */
  3993. if (sd->flags & (SD_LOAD_BALANCE |
  3994. SD_BALANCE_NEWIDLE |
  3995. SD_BALANCE_FORK |
  3996. SD_BALANCE_EXEC |
  3997. SD_SHARE_CPUPOWER |
  3998. SD_SHARE_PKG_RESOURCES)) {
  3999. if (sd->groups != sd->groups->next)
  4000. return 0;
  4001. }
  4002. /* Following flags don't use groups */
  4003. if (sd->flags & (SD_WAKE_AFFINE))
  4004. return 0;
  4005. return 1;
  4006. }
  4007. static int
  4008. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4009. {
  4010. unsigned long cflags = sd->flags, pflags = parent->flags;
  4011. if (sd_degenerate(parent))
  4012. return 1;
  4013. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4014. return 0;
  4015. /* Flags needing groups don't count if only 1 group in parent */
  4016. if (parent->groups == parent->groups->next) {
  4017. pflags &= ~(SD_LOAD_BALANCE |
  4018. SD_BALANCE_NEWIDLE |
  4019. SD_BALANCE_FORK |
  4020. SD_BALANCE_EXEC |
  4021. SD_SHARE_CPUPOWER |
  4022. SD_SHARE_PKG_RESOURCES |
  4023. SD_PREFER_SIBLING);
  4024. if (nr_node_ids == 1)
  4025. pflags &= ~SD_SERIALIZE;
  4026. }
  4027. if (~cflags & pflags)
  4028. return 0;
  4029. return 1;
  4030. }
  4031. static void free_rootdomain(struct rcu_head *rcu)
  4032. {
  4033. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4034. cpupri_cleanup(&rd->cpupri);
  4035. free_cpumask_var(rd->rto_mask);
  4036. free_cpumask_var(rd->online);
  4037. free_cpumask_var(rd->span);
  4038. kfree(rd);
  4039. }
  4040. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4041. {
  4042. struct root_domain *old_rd = NULL;
  4043. unsigned long flags;
  4044. raw_spin_lock_irqsave(&rq->lock, flags);
  4045. if (rq->rd) {
  4046. old_rd = rq->rd;
  4047. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4048. set_rq_offline(rq);
  4049. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4050. /*
  4051. * If we dont want to free the old_rt yet then
  4052. * set old_rd to NULL to skip the freeing later
  4053. * in this function:
  4054. */
  4055. if (!atomic_dec_and_test(&old_rd->refcount))
  4056. old_rd = NULL;
  4057. }
  4058. atomic_inc(&rd->refcount);
  4059. rq->rd = rd;
  4060. cpumask_set_cpu(rq->cpu, rd->span);
  4061. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4062. set_rq_online(rq);
  4063. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4064. if (old_rd)
  4065. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4066. }
  4067. static int init_rootdomain(struct root_domain *rd)
  4068. {
  4069. memset(rd, 0, sizeof(*rd));
  4070. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4071. goto out;
  4072. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4073. goto free_span;
  4074. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4075. goto free_online;
  4076. if (cpupri_init(&rd->cpupri) != 0)
  4077. goto free_rto_mask;
  4078. return 0;
  4079. free_rto_mask:
  4080. free_cpumask_var(rd->rto_mask);
  4081. free_online:
  4082. free_cpumask_var(rd->online);
  4083. free_span:
  4084. free_cpumask_var(rd->span);
  4085. out:
  4086. return -ENOMEM;
  4087. }
  4088. /*
  4089. * By default the system creates a single root-domain with all cpus as
  4090. * members (mimicking the global state we have today).
  4091. */
  4092. struct root_domain def_root_domain;
  4093. static void init_defrootdomain(void)
  4094. {
  4095. init_rootdomain(&def_root_domain);
  4096. atomic_set(&def_root_domain.refcount, 1);
  4097. }
  4098. static struct root_domain *alloc_rootdomain(void)
  4099. {
  4100. struct root_domain *rd;
  4101. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4102. if (!rd)
  4103. return NULL;
  4104. if (init_rootdomain(rd) != 0) {
  4105. kfree(rd);
  4106. return NULL;
  4107. }
  4108. return rd;
  4109. }
  4110. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4111. {
  4112. struct sched_group *tmp, *first;
  4113. if (!sg)
  4114. return;
  4115. first = sg;
  4116. do {
  4117. tmp = sg->next;
  4118. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4119. kfree(sg->sgp);
  4120. kfree(sg);
  4121. sg = tmp;
  4122. } while (sg != first);
  4123. }
  4124. static void free_sched_domain(struct rcu_head *rcu)
  4125. {
  4126. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4127. /*
  4128. * If its an overlapping domain it has private groups, iterate and
  4129. * nuke them all.
  4130. */
  4131. if (sd->flags & SD_OVERLAP) {
  4132. free_sched_groups(sd->groups, 1);
  4133. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4134. kfree(sd->groups->sgp);
  4135. kfree(sd->groups);
  4136. }
  4137. kfree(sd);
  4138. }
  4139. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4140. {
  4141. call_rcu(&sd->rcu, free_sched_domain);
  4142. }
  4143. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4144. {
  4145. for (; sd; sd = sd->parent)
  4146. destroy_sched_domain(sd, cpu);
  4147. }
  4148. /*
  4149. * Keep a special pointer to the highest sched_domain that has
  4150. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4151. * allows us to avoid some pointer chasing select_idle_sibling().
  4152. *
  4153. * Also keep a unique ID per domain (we use the first cpu number in
  4154. * the cpumask of the domain), this allows us to quickly tell if
  4155. * two cpus are in the same cache domain, see cpus_share_cache().
  4156. */
  4157. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4158. DEFINE_PER_CPU(int, sd_llc_size);
  4159. DEFINE_PER_CPU(int, sd_llc_id);
  4160. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4161. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4162. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4163. static void update_top_cache_domain(int cpu)
  4164. {
  4165. struct sched_domain *sd;
  4166. int id = cpu;
  4167. int size = 1;
  4168. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4169. if (sd) {
  4170. id = cpumask_first(sched_domain_span(sd));
  4171. size = cpumask_weight(sched_domain_span(sd));
  4172. rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent);
  4173. }
  4174. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4175. per_cpu(sd_llc_size, cpu) = size;
  4176. per_cpu(sd_llc_id, cpu) = id;
  4177. sd = lowest_flag_domain(cpu, SD_NUMA);
  4178. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4179. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4180. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4181. }
  4182. /*
  4183. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4184. * hold the hotplug lock.
  4185. */
  4186. static void
  4187. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4188. {
  4189. struct rq *rq = cpu_rq(cpu);
  4190. struct sched_domain *tmp;
  4191. /* Remove the sched domains which do not contribute to scheduling. */
  4192. for (tmp = sd; tmp; ) {
  4193. struct sched_domain *parent = tmp->parent;
  4194. if (!parent)
  4195. break;
  4196. if (sd_parent_degenerate(tmp, parent)) {
  4197. tmp->parent = parent->parent;
  4198. if (parent->parent)
  4199. parent->parent->child = tmp;
  4200. /*
  4201. * Transfer SD_PREFER_SIBLING down in case of a
  4202. * degenerate parent; the spans match for this
  4203. * so the property transfers.
  4204. */
  4205. if (parent->flags & SD_PREFER_SIBLING)
  4206. tmp->flags |= SD_PREFER_SIBLING;
  4207. destroy_sched_domain(parent, cpu);
  4208. } else
  4209. tmp = tmp->parent;
  4210. }
  4211. if (sd && sd_degenerate(sd)) {
  4212. tmp = sd;
  4213. sd = sd->parent;
  4214. destroy_sched_domain(tmp, cpu);
  4215. if (sd)
  4216. sd->child = NULL;
  4217. }
  4218. sched_domain_debug(sd, cpu);
  4219. rq_attach_root(rq, rd);
  4220. tmp = rq->sd;
  4221. rcu_assign_pointer(rq->sd, sd);
  4222. destroy_sched_domains(tmp, cpu);
  4223. update_top_cache_domain(cpu);
  4224. }
  4225. /* cpus with isolated domains */
  4226. static cpumask_var_t cpu_isolated_map;
  4227. /* Setup the mask of cpus configured for isolated domains */
  4228. static int __init isolated_cpu_setup(char *str)
  4229. {
  4230. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4231. cpulist_parse(str, cpu_isolated_map);
  4232. return 1;
  4233. }
  4234. __setup("isolcpus=", isolated_cpu_setup);
  4235. static const struct cpumask *cpu_cpu_mask(int cpu)
  4236. {
  4237. return cpumask_of_node(cpu_to_node(cpu));
  4238. }
  4239. struct sd_data {
  4240. struct sched_domain **__percpu sd;
  4241. struct sched_group **__percpu sg;
  4242. struct sched_group_power **__percpu sgp;
  4243. };
  4244. struct s_data {
  4245. struct sched_domain ** __percpu sd;
  4246. struct root_domain *rd;
  4247. };
  4248. enum s_alloc {
  4249. sa_rootdomain,
  4250. sa_sd,
  4251. sa_sd_storage,
  4252. sa_none,
  4253. };
  4254. struct sched_domain_topology_level;
  4255. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4256. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4257. #define SDTL_OVERLAP 0x01
  4258. struct sched_domain_topology_level {
  4259. sched_domain_init_f init;
  4260. sched_domain_mask_f mask;
  4261. int flags;
  4262. int numa_level;
  4263. struct sd_data data;
  4264. };
  4265. /*
  4266. * Build an iteration mask that can exclude certain CPUs from the upwards
  4267. * domain traversal.
  4268. *
  4269. * Asymmetric node setups can result in situations where the domain tree is of
  4270. * unequal depth, make sure to skip domains that already cover the entire
  4271. * range.
  4272. *
  4273. * In that case build_sched_domains() will have terminated the iteration early
  4274. * and our sibling sd spans will be empty. Domains should always include the
  4275. * cpu they're built on, so check that.
  4276. *
  4277. */
  4278. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4279. {
  4280. const struct cpumask *span = sched_domain_span(sd);
  4281. struct sd_data *sdd = sd->private;
  4282. struct sched_domain *sibling;
  4283. int i;
  4284. for_each_cpu(i, span) {
  4285. sibling = *per_cpu_ptr(sdd->sd, i);
  4286. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4287. continue;
  4288. cpumask_set_cpu(i, sched_group_mask(sg));
  4289. }
  4290. }
  4291. /*
  4292. * Return the canonical balance cpu for this group, this is the first cpu
  4293. * of this group that's also in the iteration mask.
  4294. */
  4295. int group_balance_cpu(struct sched_group *sg)
  4296. {
  4297. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4298. }
  4299. static int
  4300. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4301. {
  4302. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4303. const struct cpumask *span = sched_domain_span(sd);
  4304. struct cpumask *covered = sched_domains_tmpmask;
  4305. struct sd_data *sdd = sd->private;
  4306. struct sched_domain *child;
  4307. int i;
  4308. cpumask_clear(covered);
  4309. for_each_cpu(i, span) {
  4310. struct cpumask *sg_span;
  4311. if (cpumask_test_cpu(i, covered))
  4312. continue;
  4313. child = *per_cpu_ptr(sdd->sd, i);
  4314. /* See the comment near build_group_mask(). */
  4315. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4316. continue;
  4317. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4318. GFP_KERNEL, cpu_to_node(cpu));
  4319. if (!sg)
  4320. goto fail;
  4321. sg_span = sched_group_cpus(sg);
  4322. if (child->child) {
  4323. child = child->child;
  4324. cpumask_copy(sg_span, sched_domain_span(child));
  4325. } else
  4326. cpumask_set_cpu(i, sg_span);
  4327. cpumask_or(covered, covered, sg_span);
  4328. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4329. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4330. build_group_mask(sd, sg);
  4331. /*
  4332. * Initialize sgp->power such that even if we mess up the
  4333. * domains and no possible iteration will get us here, we won't
  4334. * die on a /0 trap.
  4335. */
  4336. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4337. /*
  4338. * Make sure the first group of this domain contains the
  4339. * canonical balance cpu. Otherwise the sched_domain iteration
  4340. * breaks. See update_sg_lb_stats().
  4341. */
  4342. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4343. group_balance_cpu(sg) == cpu)
  4344. groups = sg;
  4345. if (!first)
  4346. first = sg;
  4347. if (last)
  4348. last->next = sg;
  4349. last = sg;
  4350. last->next = first;
  4351. }
  4352. sd->groups = groups;
  4353. return 0;
  4354. fail:
  4355. free_sched_groups(first, 0);
  4356. return -ENOMEM;
  4357. }
  4358. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4359. {
  4360. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4361. struct sched_domain *child = sd->child;
  4362. if (child)
  4363. cpu = cpumask_first(sched_domain_span(child));
  4364. if (sg) {
  4365. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4366. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4367. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4368. }
  4369. return cpu;
  4370. }
  4371. /*
  4372. * build_sched_groups will build a circular linked list of the groups
  4373. * covered by the given span, and will set each group's ->cpumask correctly,
  4374. * and ->cpu_power to 0.
  4375. *
  4376. * Assumes the sched_domain tree is fully constructed
  4377. */
  4378. static int
  4379. build_sched_groups(struct sched_domain *sd, int cpu)
  4380. {
  4381. struct sched_group *first = NULL, *last = NULL;
  4382. struct sd_data *sdd = sd->private;
  4383. const struct cpumask *span = sched_domain_span(sd);
  4384. struct cpumask *covered;
  4385. int i;
  4386. get_group(cpu, sdd, &sd->groups);
  4387. atomic_inc(&sd->groups->ref);
  4388. if (cpu != cpumask_first(span))
  4389. return 0;
  4390. lockdep_assert_held(&sched_domains_mutex);
  4391. covered = sched_domains_tmpmask;
  4392. cpumask_clear(covered);
  4393. for_each_cpu(i, span) {
  4394. struct sched_group *sg;
  4395. int group, j;
  4396. if (cpumask_test_cpu(i, covered))
  4397. continue;
  4398. group = get_group(i, sdd, &sg);
  4399. cpumask_clear(sched_group_cpus(sg));
  4400. sg->sgp->power = 0;
  4401. cpumask_setall(sched_group_mask(sg));
  4402. for_each_cpu(j, span) {
  4403. if (get_group(j, sdd, NULL) != group)
  4404. continue;
  4405. cpumask_set_cpu(j, covered);
  4406. cpumask_set_cpu(j, sched_group_cpus(sg));
  4407. }
  4408. if (!first)
  4409. first = sg;
  4410. if (last)
  4411. last->next = sg;
  4412. last = sg;
  4413. }
  4414. last->next = first;
  4415. return 0;
  4416. }
  4417. /*
  4418. * Initialize sched groups cpu_power.
  4419. *
  4420. * cpu_power indicates the capacity of sched group, which is used while
  4421. * distributing the load between different sched groups in a sched domain.
  4422. * Typically cpu_power for all the groups in a sched domain will be same unless
  4423. * there are asymmetries in the topology. If there are asymmetries, group
  4424. * having more cpu_power will pickup more load compared to the group having
  4425. * less cpu_power.
  4426. */
  4427. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4428. {
  4429. struct sched_group *sg = sd->groups;
  4430. WARN_ON(!sg);
  4431. do {
  4432. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4433. sg = sg->next;
  4434. } while (sg != sd->groups);
  4435. if (cpu != group_balance_cpu(sg))
  4436. return;
  4437. update_group_power(sd, cpu);
  4438. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4439. }
  4440. int __weak arch_sd_sibling_asym_packing(void)
  4441. {
  4442. return 0*SD_ASYM_PACKING;
  4443. }
  4444. /*
  4445. * Initializers for schedule domains
  4446. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4447. */
  4448. #ifdef CONFIG_SCHED_DEBUG
  4449. # define SD_INIT_NAME(sd, type) sd->name = #type
  4450. #else
  4451. # define SD_INIT_NAME(sd, type) do { } while (0)
  4452. #endif
  4453. #define SD_INIT_FUNC(type) \
  4454. static noinline struct sched_domain * \
  4455. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4456. { \
  4457. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4458. *sd = SD_##type##_INIT; \
  4459. SD_INIT_NAME(sd, type); \
  4460. sd->private = &tl->data; \
  4461. return sd; \
  4462. }
  4463. SD_INIT_FUNC(CPU)
  4464. #ifdef CONFIG_SCHED_SMT
  4465. SD_INIT_FUNC(SIBLING)
  4466. #endif
  4467. #ifdef CONFIG_SCHED_MC
  4468. SD_INIT_FUNC(MC)
  4469. #endif
  4470. #ifdef CONFIG_SCHED_BOOK
  4471. SD_INIT_FUNC(BOOK)
  4472. #endif
  4473. static int default_relax_domain_level = -1;
  4474. int sched_domain_level_max;
  4475. static int __init setup_relax_domain_level(char *str)
  4476. {
  4477. if (kstrtoint(str, 0, &default_relax_domain_level))
  4478. pr_warn("Unable to set relax_domain_level\n");
  4479. return 1;
  4480. }
  4481. __setup("relax_domain_level=", setup_relax_domain_level);
  4482. static void set_domain_attribute(struct sched_domain *sd,
  4483. struct sched_domain_attr *attr)
  4484. {
  4485. int request;
  4486. if (!attr || attr->relax_domain_level < 0) {
  4487. if (default_relax_domain_level < 0)
  4488. return;
  4489. else
  4490. request = default_relax_domain_level;
  4491. } else
  4492. request = attr->relax_domain_level;
  4493. if (request < sd->level) {
  4494. /* turn off idle balance on this domain */
  4495. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4496. } else {
  4497. /* turn on idle balance on this domain */
  4498. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4499. }
  4500. }
  4501. static void __sdt_free(const struct cpumask *cpu_map);
  4502. static int __sdt_alloc(const struct cpumask *cpu_map);
  4503. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4504. const struct cpumask *cpu_map)
  4505. {
  4506. switch (what) {
  4507. case sa_rootdomain:
  4508. if (!atomic_read(&d->rd->refcount))
  4509. free_rootdomain(&d->rd->rcu); /* fall through */
  4510. case sa_sd:
  4511. free_percpu(d->sd); /* fall through */
  4512. case sa_sd_storage:
  4513. __sdt_free(cpu_map); /* fall through */
  4514. case sa_none:
  4515. break;
  4516. }
  4517. }
  4518. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4519. const struct cpumask *cpu_map)
  4520. {
  4521. memset(d, 0, sizeof(*d));
  4522. if (__sdt_alloc(cpu_map))
  4523. return sa_sd_storage;
  4524. d->sd = alloc_percpu(struct sched_domain *);
  4525. if (!d->sd)
  4526. return sa_sd_storage;
  4527. d->rd = alloc_rootdomain();
  4528. if (!d->rd)
  4529. return sa_sd;
  4530. return sa_rootdomain;
  4531. }
  4532. /*
  4533. * NULL the sd_data elements we've used to build the sched_domain and
  4534. * sched_group structure so that the subsequent __free_domain_allocs()
  4535. * will not free the data we're using.
  4536. */
  4537. static void claim_allocations(int cpu, struct sched_domain *sd)
  4538. {
  4539. struct sd_data *sdd = sd->private;
  4540. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4541. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4542. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4543. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4544. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4545. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4546. }
  4547. #ifdef CONFIG_SCHED_SMT
  4548. static const struct cpumask *cpu_smt_mask(int cpu)
  4549. {
  4550. return topology_thread_cpumask(cpu);
  4551. }
  4552. #endif
  4553. /*
  4554. * Topology list, bottom-up.
  4555. */
  4556. static struct sched_domain_topology_level default_topology[] = {
  4557. #ifdef CONFIG_SCHED_SMT
  4558. { sd_init_SIBLING, cpu_smt_mask, },
  4559. #endif
  4560. #ifdef CONFIG_SCHED_MC
  4561. { sd_init_MC, cpu_coregroup_mask, },
  4562. #endif
  4563. #ifdef CONFIG_SCHED_BOOK
  4564. { sd_init_BOOK, cpu_book_mask, },
  4565. #endif
  4566. { sd_init_CPU, cpu_cpu_mask, },
  4567. { NULL, },
  4568. };
  4569. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4570. #define for_each_sd_topology(tl) \
  4571. for (tl = sched_domain_topology; tl->init; tl++)
  4572. #ifdef CONFIG_NUMA
  4573. static int sched_domains_numa_levels;
  4574. static int *sched_domains_numa_distance;
  4575. static struct cpumask ***sched_domains_numa_masks;
  4576. static int sched_domains_curr_level;
  4577. static inline int sd_local_flags(int level)
  4578. {
  4579. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4580. return 0;
  4581. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4582. }
  4583. static struct sched_domain *
  4584. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4585. {
  4586. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4587. int level = tl->numa_level;
  4588. int sd_weight = cpumask_weight(
  4589. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4590. *sd = (struct sched_domain){
  4591. .min_interval = sd_weight,
  4592. .max_interval = 2*sd_weight,
  4593. .busy_factor = 32,
  4594. .imbalance_pct = 125,
  4595. .cache_nice_tries = 2,
  4596. .busy_idx = 3,
  4597. .idle_idx = 2,
  4598. .newidle_idx = 0,
  4599. .wake_idx = 0,
  4600. .forkexec_idx = 0,
  4601. .flags = 1*SD_LOAD_BALANCE
  4602. | 1*SD_BALANCE_NEWIDLE
  4603. | 0*SD_BALANCE_EXEC
  4604. | 0*SD_BALANCE_FORK
  4605. | 0*SD_BALANCE_WAKE
  4606. | 0*SD_WAKE_AFFINE
  4607. | 0*SD_SHARE_CPUPOWER
  4608. | 0*SD_SHARE_PKG_RESOURCES
  4609. | 1*SD_SERIALIZE
  4610. | 0*SD_PREFER_SIBLING
  4611. | 1*SD_NUMA
  4612. | sd_local_flags(level)
  4613. ,
  4614. .last_balance = jiffies,
  4615. .balance_interval = sd_weight,
  4616. };
  4617. SD_INIT_NAME(sd, NUMA);
  4618. sd->private = &tl->data;
  4619. /*
  4620. * Ugly hack to pass state to sd_numa_mask()...
  4621. */
  4622. sched_domains_curr_level = tl->numa_level;
  4623. return sd;
  4624. }
  4625. static const struct cpumask *sd_numa_mask(int cpu)
  4626. {
  4627. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4628. }
  4629. static void sched_numa_warn(const char *str)
  4630. {
  4631. static int done = false;
  4632. int i,j;
  4633. if (done)
  4634. return;
  4635. done = true;
  4636. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4637. for (i = 0; i < nr_node_ids; i++) {
  4638. printk(KERN_WARNING " ");
  4639. for (j = 0; j < nr_node_ids; j++)
  4640. printk(KERN_CONT "%02d ", node_distance(i,j));
  4641. printk(KERN_CONT "\n");
  4642. }
  4643. printk(KERN_WARNING "\n");
  4644. }
  4645. static bool find_numa_distance(int distance)
  4646. {
  4647. int i;
  4648. if (distance == node_distance(0, 0))
  4649. return true;
  4650. for (i = 0; i < sched_domains_numa_levels; i++) {
  4651. if (sched_domains_numa_distance[i] == distance)
  4652. return true;
  4653. }
  4654. return false;
  4655. }
  4656. static void sched_init_numa(void)
  4657. {
  4658. int next_distance, curr_distance = node_distance(0, 0);
  4659. struct sched_domain_topology_level *tl;
  4660. int level = 0;
  4661. int i, j, k;
  4662. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4663. if (!sched_domains_numa_distance)
  4664. return;
  4665. /*
  4666. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  4667. * unique distances in the node_distance() table.
  4668. *
  4669. * Assumes node_distance(0,j) includes all distances in
  4670. * node_distance(i,j) in order to avoid cubic time.
  4671. */
  4672. next_distance = curr_distance;
  4673. for (i = 0; i < nr_node_ids; i++) {
  4674. for (j = 0; j < nr_node_ids; j++) {
  4675. for (k = 0; k < nr_node_ids; k++) {
  4676. int distance = node_distance(i, k);
  4677. if (distance > curr_distance &&
  4678. (distance < next_distance ||
  4679. next_distance == curr_distance))
  4680. next_distance = distance;
  4681. /*
  4682. * While not a strong assumption it would be nice to know
  4683. * about cases where if node A is connected to B, B is not
  4684. * equally connected to A.
  4685. */
  4686. if (sched_debug() && node_distance(k, i) != distance)
  4687. sched_numa_warn("Node-distance not symmetric");
  4688. if (sched_debug() && i && !find_numa_distance(distance))
  4689. sched_numa_warn("Node-0 not representative");
  4690. }
  4691. if (next_distance != curr_distance) {
  4692. sched_domains_numa_distance[level++] = next_distance;
  4693. sched_domains_numa_levels = level;
  4694. curr_distance = next_distance;
  4695. } else break;
  4696. }
  4697. /*
  4698. * In case of sched_debug() we verify the above assumption.
  4699. */
  4700. if (!sched_debug())
  4701. break;
  4702. }
  4703. /*
  4704. * 'level' contains the number of unique distances, excluding the
  4705. * identity distance node_distance(i,i).
  4706. *
  4707. * The sched_domains_numa_distance[] array includes the actual distance
  4708. * numbers.
  4709. */
  4710. /*
  4711. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  4712. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  4713. * the array will contain less then 'level' members. This could be
  4714. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  4715. * in other functions.
  4716. *
  4717. * We reset it to 'level' at the end of this function.
  4718. */
  4719. sched_domains_numa_levels = 0;
  4720. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  4721. if (!sched_domains_numa_masks)
  4722. return;
  4723. /*
  4724. * Now for each level, construct a mask per node which contains all
  4725. * cpus of nodes that are that many hops away from us.
  4726. */
  4727. for (i = 0; i < level; i++) {
  4728. sched_domains_numa_masks[i] =
  4729. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  4730. if (!sched_domains_numa_masks[i])
  4731. return;
  4732. for (j = 0; j < nr_node_ids; j++) {
  4733. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  4734. if (!mask)
  4735. return;
  4736. sched_domains_numa_masks[i][j] = mask;
  4737. for (k = 0; k < nr_node_ids; k++) {
  4738. if (node_distance(j, k) > sched_domains_numa_distance[i])
  4739. continue;
  4740. cpumask_or(mask, mask, cpumask_of_node(k));
  4741. }
  4742. }
  4743. }
  4744. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  4745. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  4746. if (!tl)
  4747. return;
  4748. /*
  4749. * Copy the default topology bits..
  4750. */
  4751. for (i = 0; default_topology[i].init; i++)
  4752. tl[i] = default_topology[i];
  4753. /*
  4754. * .. and append 'j' levels of NUMA goodness.
  4755. */
  4756. for (j = 0; j < level; i++, j++) {
  4757. tl[i] = (struct sched_domain_topology_level){
  4758. .init = sd_numa_init,
  4759. .mask = sd_numa_mask,
  4760. .flags = SDTL_OVERLAP,
  4761. .numa_level = j,
  4762. };
  4763. }
  4764. sched_domain_topology = tl;
  4765. sched_domains_numa_levels = level;
  4766. }
  4767. static void sched_domains_numa_masks_set(int cpu)
  4768. {
  4769. int i, j;
  4770. int node = cpu_to_node(cpu);
  4771. for (i = 0; i < sched_domains_numa_levels; i++) {
  4772. for (j = 0; j < nr_node_ids; j++) {
  4773. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  4774. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  4775. }
  4776. }
  4777. }
  4778. static void sched_domains_numa_masks_clear(int cpu)
  4779. {
  4780. int i, j;
  4781. for (i = 0; i < sched_domains_numa_levels; i++) {
  4782. for (j = 0; j < nr_node_ids; j++)
  4783. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  4784. }
  4785. }
  4786. /*
  4787. * Update sched_domains_numa_masks[level][node] array when new cpus
  4788. * are onlined.
  4789. */
  4790. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  4791. unsigned long action,
  4792. void *hcpu)
  4793. {
  4794. int cpu = (long)hcpu;
  4795. switch (action & ~CPU_TASKS_FROZEN) {
  4796. case CPU_ONLINE:
  4797. sched_domains_numa_masks_set(cpu);
  4798. break;
  4799. case CPU_DEAD:
  4800. sched_domains_numa_masks_clear(cpu);
  4801. break;
  4802. default:
  4803. return NOTIFY_DONE;
  4804. }
  4805. return NOTIFY_OK;
  4806. }
  4807. #else
  4808. static inline void sched_init_numa(void)
  4809. {
  4810. }
  4811. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  4812. unsigned long action,
  4813. void *hcpu)
  4814. {
  4815. return 0;
  4816. }
  4817. #endif /* CONFIG_NUMA */
  4818. static int __sdt_alloc(const struct cpumask *cpu_map)
  4819. {
  4820. struct sched_domain_topology_level *tl;
  4821. int j;
  4822. for_each_sd_topology(tl) {
  4823. struct sd_data *sdd = &tl->data;
  4824. sdd->sd = alloc_percpu(struct sched_domain *);
  4825. if (!sdd->sd)
  4826. return -ENOMEM;
  4827. sdd->sg = alloc_percpu(struct sched_group *);
  4828. if (!sdd->sg)
  4829. return -ENOMEM;
  4830. sdd->sgp = alloc_percpu(struct sched_group_power *);
  4831. if (!sdd->sgp)
  4832. return -ENOMEM;
  4833. for_each_cpu(j, cpu_map) {
  4834. struct sched_domain *sd;
  4835. struct sched_group *sg;
  4836. struct sched_group_power *sgp;
  4837. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  4838. GFP_KERNEL, cpu_to_node(j));
  4839. if (!sd)
  4840. return -ENOMEM;
  4841. *per_cpu_ptr(sdd->sd, j) = sd;
  4842. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4843. GFP_KERNEL, cpu_to_node(j));
  4844. if (!sg)
  4845. return -ENOMEM;
  4846. sg->next = sg;
  4847. *per_cpu_ptr(sdd->sg, j) = sg;
  4848. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  4849. GFP_KERNEL, cpu_to_node(j));
  4850. if (!sgp)
  4851. return -ENOMEM;
  4852. *per_cpu_ptr(sdd->sgp, j) = sgp;
  4853. }
  4854. }
  4855. return 0;
  4856. }
  4857. static void __sdt_free(const struct cpumask *cpu_map)
  4858. {
  4859. struct sched_domain_topology_level *tl;
  4860. int j;
  4861. for_each_sd_topology(tl) {
  4862. struct sd_data *sdd = &tl->data;
  4863. for_each_cpu(j, cpu_map) {
  4864. struct sched_domain *sd;
  4865. if (sdd->sd) {
  4866. sd = *per_cpu_ptr(sdd->sd, j);
  4867. if (sd && (sd->flags & SD_OVERLAP))
  4868. free_sched_groups(sd->groups, 0);
  4869. kfree(*per_cpu_ptr(sdd->sd, j));
  4870. }
  4871. if (sdd->sg)
  4872. kfree(*per_cpu_ptr(sdd->sg, j));
  4873. if (sdd->sgp)
  4874. kfree(*per_cpu_ptr(sdd->sgp, j));
  4875. }
  4876. free_percpu(sdd->sd);
  4877. sdd->sd = NULL;
  4878. free_percpu(sdd->sg);
  4879. sdd->sg = NULL;
  4880. free_percpu(sdd->sgp);
  4881. sdd->sgp = NULL;
  4882. }
  4883. }
  4884. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  4885. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  4886. struct sched_domain *child, int cpu)
  4887. {
  4888. struct sched_domain *sd = tl->init(tl, cpu);
  4889. if (!sd)
  4890. return child;
  4891. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  4892. if (child) {
  4893. sd->level = child->level + 1;
  4894. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  4895. child->parent = sd;
  4896. sd->child = child;
  4897. }
  4898. set_domain_attribute(sd, attr);
  4899. return sd;
  4900. }
  4901. /*
  4902. * Build sched domains for a given set of cpus and attach the sched domains
  4903. * to the individual cpus
  4904. */
  4905. static int build_sched_domains(const struct cpumask *cpu_map,
  4906. struct sched_domain_attr *attr)
  4907. {
  4908. enum s_alloc alloc_state;
  4909. struct sched_domain *sd;
  4910. struct s_data d;
  4911. int i, ret = -ENOMEM;
  4912. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  4913. if (alloc_state != sa_rootdomain)
  4914. goto error;
  4915. /* Set up domains for cpus specified by the cpu_map. */
  4916. for_each_cpu(i, cpu_map) {
  4917. struct sched_domain_topology_level *tl;
  4918. sd = NULL;
  4919. for_each_sd_topology(tl) {
  4920. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  4921. if (tl == sched_domain_topology)
  4922. *per_cpu_ptr(d.sd, i) = sd;
  4923. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  4924. sd->flags |= SD_OVERLAP;
  4925. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  4926. break;
  4927. }
  4928. }
  4929. /* Build the groups for the domains */
  4930. for_each_cpu(i, cpu_map) {
  4931. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  4932. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  4933. if (sd->flags & SD_OVERLAP) {
  4934. if (build_overlap_sched_groups(sd, i))
  4935. goto error;
  4936. } else {
  4937. if (build_sched_groups(sd, i))
  4938. goto error;
  4939. }
  4940. }
  4941. }
  4942. /* Calculate CPU power for physical packages and nodes */
  4943. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  4944. if (!cpumask_test_cpu(i, cpu_map))
  4945. continue;
  4946. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  4947. claim_allocations(i, sd);
  4948. init_sched_groups_power(i, sd);
  4949. }
  4950. }
  4951. /* Attach the domains */
  4952. rcu_read_lock();
  4953. for_each_cpu(i, cpu_map) {
  4954. sd = *per_cpu_ptr(d.sd, i);
  4955. cpu_attach_domain(sd, d.rd, i);
  4956. }
  4957. rcu_read_unlock();
  4958. ret = 0;
  4959. error:
  4960. __free_domain_allocs(&d, alloc_state, cpu_map);
  4961. return ret;
  4962. }
  4963. static cpumask_var_t *doms_cur; /* current sched domains */
  4964. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  4965. static struct sched_domain_attr *dattr_cur;
  4966. /* attribues of custom domains in 'doms_cur' */
  4967. /*
  4968. * Special case: If a kmalloc of a doms_cur partition (array of
  4969. * cpumask) fails, then fallback to a single sched domain,
  4970. * as determined by the single cpumask fallback_doms.
  4971. */
  4972. static cpumask_var_t fallback_doms;
  4973. /*
  4974. * arch_update_cpu_topology lets virtualized architectures update the
  4975. * cpu core maps. It is supposed to return 1 if the topology changed
  4976. * or 0 if it stayed the same.
  4977. */
  4978. int __attribute__((weak)) arch_update_cpu_topology(void)
  4979. {
  4980. return 0;
  4981. }
  4982. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  4983. {
  4984. int i;
  4985. cpumask_var_t *doms;
  4986. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  4987. if (!doms)
  4988. return NULL;
  4989. for (i = 0; i < ndoms; i++) {
  4990. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  4991. free_sched_domains(doms, i);
  4992. return NULL;
  4993. }
  4994. }
  4995. return doms;
  4996. }
  4997. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  4998. {
  4999. unsigned int i;
  5000. for (i = 0; i < ndoms; i++)
  5001. free_cpumask_var(doms[i]);
  5002. kfree(doms);
  5003. }
  5004. /*
  5005. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5006. * For now this just excludes isolated cpus, but could be used to
  5007. * exclude other special cases in the future.
  5008. */
  5009. static int init_sched_domains(const struct cpumask *cpu_map)
  5010. {
  5011. int err;
  5012. arch_update_cpu_topology();
  5013. ndoms_cur = 1;
  5014. doms_cur = alloc_sched_domains(ndoms_cur);
  5015. if (!doms_cur)
  5016. doms_cur = &fallback_doms;
  5017. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5018. err = build_sched_domains(doms_cur[0], NULL);
  5019. register_sched_domain_sysctl();
  5020. return err;
  5021. }
  5022. /*
  5023. * Detach sched domains from a group of cpus specified in cpu_map
  5024. * These cpus will now be attached to the NULL domain
  5025. */
  5026. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5027. {
  5028. int i;
  5029. rcu_read_lock();
  5030. for_each_cpu(i, cpu_map)
  5031. cpu_attach_domain(NULL, &def_root_domain, i);
  5032. rcu_read_unlock();
  5033. }
  5034. /* handle null as "default" */
  5035. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5036. struct sched_domain_attr *new, int idx_new)
  5037. {
  5038. struct sched_domain_attr tmp;
  5039. /* fast path */
  5040. if (!new && !cur)
  5041. return 1;
  5042. tmp = SD_ATTR_INIT;
  5043. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5044. new ? (new + idx_new) : &tmp,
  5045. sizeof(struct sched_domain_attr));
  5046. }
  5047. /*
  5048. * Partition sched domains as specified by the 'ndoms_new'
  5049. * cpumasks in the array doms_new[] of cpumasks. This compares
  5050. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5051. * It destroys each deleted domain and builds each new domain.
  5052. *
  5053. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5054. * The masks don't intersect (don't overlap.) We should setup one
  5055. * sched domain for each mask. CPUs not in any of the cpumasks will
  5056. * not be load balanced. If the same cpumask appears both in the
  5057. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5058. * it as it is.
  5059. *
  5060. * The passed in 'doms_new' should be allocated using
  5061. * alloc_sched_domains. This routine takes ownership of it and will
  5062. * free_sched_domains it when done with it. If the caller failed the
  5063. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5064. * and partition_sched_domains() will fallback to the single partition
  5065. * 'fallback_doms', it also forces the domains to be rebuilt.
  5066. *
  5067. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5068. * ndoms_new == 0 is a special case for destroying existing domains,
  5069. * and it will not create the default domain.
  5070. *
  5071. * Call with hotplug lock held
  5072. */
  5073. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5074. struct sched_domain_attr *dattr_new)
  5075. {
  5076. int i, j, n;
  5077. int new_topology;
  5078. mutex_lock(&sched_domains_mutex);
  5079. /* always unregister in case we don't destroy any domains */
  5080. unregister_sched_domain_sysctl();
  5081. /* Let architecture update cpu core mappings. */
  5082. new_topology = arch_update_cpu_topology();
  5083. n = doms_new ? ndoms_new : 0;
  5084. /* Destroy deleted domains */
  5085. for (i = 0; i < ndoms_cur; i++) {
  5086. for (j = 0; j < n && !new_topology; j++) {
  5087. if (cpumask_equal(doms_cur[i], doms_new[j])
  5088. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5089. goto match1;
  5090. }
  5091. /* no match - a current sched domain not in new doms_new[] */
  5092. detach_destroy_domains(doms_cur[i]);
  5093. match1:
  5094. ;
  5095. }
  5096. n = ndoms_cur;
  5097. if (doms_new == NULL) {
  5098. n = 0;
  5099. doms_new = &fallback_doms;
  5100. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5101. WARN_ON_ONCE(dattr_new);
  5102. }
  5103. /* Build new domains */
  5104. for (i = 0; i < ndoms_new; i++) {
  5105. for (j = 0; j < n && !new_topology; j++) {
  5106. if (cpumask_equal(doms_new[i], doms_cur[j])
  5107. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5108. goto match2;
  5109. }
  5110. /* no match - add a new doms_new */
  5111. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5112. match2:
  5113. ;
  5114. }
  5115. /* Remember the new sched domains */
  5116. if (doms_cur != &fallback_doms)
  5117. free_sched_domains(doms_cur, ndoms_cur);
  5118. kfree(dattr_cur); /* kfree(NULL) is safe */
  5119. doms_cur = doms_new;
  5120. dattr_cur = dattr_new;
  5121. ndoms_cur = ndoms_new;
  5122. register_sched_domain_sysctl();
  5123. mutex_unlock(&sched_domains_mutex);
  5124. }
  5125. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5126. /*
  5127. * Update cpusets according to cpu_active mask. If cpusets are
  5128. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5129. * around partition_sched_domains().
  5130. *
  5131. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5132. * want to restore it back to its original state upon resume anyway.
  5133. */
  5134. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5135. void *hcpu)
  5136. {
  5137. switch (action) {
  5138. case CPU_ONLINE_FROZEN:
  5139. case CPU_DOWN_FAILED_FROZEN:
  5140. /*
  5141. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5142. * resume sequence. As long as this is not the last online
  5143. * operation in the resume sequence, just build a single sched
  5144. * domain, ignoring cpusets.
  5145. */
  5146. num_cpus_frozen--;
  5147. if (likely(num_cpus_frozen)) {
  5148. partition_sched_domains(1, NULL, NULL);
  5149. break;
  5150. }
  5151. /*
  5152. * This is the last CPU online operation. So fall through and
  5153. * restore the original sched domains by considering the
  5154. * cpuset configurations.
  5155. */
  5156. case CPU_ONLINE:
  5157. case CPU_DOWN_FAILED:
  5158. cpuset_update_active_cpus(true);
  5159. break;
  5160. default:
  5161. return NOTIFY_DONE;
  5162. }
  5163. return NOTIFY_OK;
  5164. }
  5165. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5166. void *hcpu)
  5167. {
  5168. switch (action) {
  5169. case CPU_DOWN_PREPARE:
  5170. cpuset_update_active_cpus(false);
  5171. break;
  5172. case CPU_DOWN_PREPARE_FROZEN:
  5173. num_cpus_frozen++;
  5174. partition_sched_domains(1, NULL, NULL);
  5175. break;
  5176. default:
  5177. return NOTIFY_DONE;
  5178. }
  5179. return NOTIFY_OK;
  5180. }
  5181. void __init sched_init_smp(void)
  5182. {
  5183. cpumask_var_t non_isolated_cpus;
  5184. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5185. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5186. sched_init_numa();
  5187. /*
  5188. * There's no userspace yet to cause hotplug operations; hence all the
  5189. * cpu masks are stable and all blatant races in the below code cannot
  5190. * happen.
  5191. */
  5192. mutex_lock(&sched_domains_mutex);
  5193. init_sched_domains(cpu_active_mask);
  5194. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5195. if (cpumask_empty(non_isolated_cpus))
  5196. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5197. mutex_unlock(&sched_domains_mutex);
  5198. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5199. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5200. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5201. init_hrtick();
  5202. /* Move init over to a non-isolated CPU */
  5203. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5204. BUG();
  5205. sched_init_granularity();
  5206. free_cpumask_var(non_isolated_cpus);
  5207. init_sched_rt_class();
  5208. }
  5209. #else
  5210. void __init sched_init_smp(void)
  5211. {
  5212. sched_init_granularity();
  5213. }
  5214. #endif /* CONFIG_SMP */
  5215. const_debug unsigned int sysctl_timer_migration = 1;
  5216. int in_sched_functions(unsigned long addr)
  5217. {
  5218. return in_lock_functions(addr) ||
  5219. (addr >= (unsigned long)__sched_text_start
  5220. && addr < (unsigned long)__sched_text_end);
  5221. }
  5222. #ifdef CONFIG_CGROUP_SCHED
  5223. /*
  5224. * Default task group.
  5225. * Every task in system belongs to this group at bootup.
  5226. */
  5227. struct task_group root_task_group;
  5228. LIST_HEAD(task_groups);
  5229. #endif
  5230. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5231. void __init sched_init(void)
  5232. {
  5233. int i, j;
  5234. unsigned long alloc_size = 0, ptr;
  5235. #ifdef CONFIG_FAIR_GROUP_SCHED
  5236. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5237. #endif
  5238. #ifdef CONFIG_RT_GROUP_SCHED
  5239. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5240. #endif
  5241. #ifdef CONFIG_CPUMASK_OFFSTACK
  5242. alloc_size += num_possible_cpus() * cpumask_size();
  5243. #endif
  5244. if (alloc_size) {
  5245. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5246. #ifdef CONFIG_FAIR_GROUP_SCHED
  5247. root_task_group.se = (struct sched_entity **)ptr;
  5248. ptr += nr_cpu_ids * sizeof(void **);
  5249. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5250. ptr += nr_cpu_ids * sizeof(void **);
  5251. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5252. #ifdef CONFIG_RT_GROUP_SCHED
  5253. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5254. ptr += nr_cpu_ids * sizeof(void **);
  5255. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5256. ptr += nr_cpu_ids * sizeof(void **);
  5257. #endif /* CONFIG_RT_GROUP_SCHED */
  5258. #ifdef CONFIG_CPUMASK_OFFSTACK
  5259. for_each_possible_cpu(i) {
  5260. per_cpu(load_balance_mask, i) = (void *)ptr;
  5261. ptr += cpumask_size();
  5262. }
  5263. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5264. }
  5265. #ifdef CONFIG_SMP
  5266. init_defrootdomain();
  5267. #endif
  5268. init_rt_bandwidth(&def_rt_bandwidth,
  5269. global_rt_period(), global_rt_runtime());
  5270. #ifdef CONFIG_RT_GROUP_SCHED
  5271. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5272. global_rt_period(), global_rt_runtime());
  5273. #endif /* CONFIG_RT_GROUP_SCHED */
  5274. #ifdef CONFIG_CGROUP_SCHED
  5275. list_add(&root_task_group.list, &task_groups);
  5276. INIT_LIST_HEAD(&root_task_group.children);
  5277. INIT_LIST_HEAD(&root_task_group.siblings);
  5278. autogroup_init(&init_task);
  5279. #endif /* CONFIG_CGROUP_SCHED */
  5280. for_each_possible_cpu(i) {
  5281. struct rq *rq;
  5282. rq = cpu_rq(i);
  5283. raw_spin_lock_init(&rq->lock);
  5284. rq->nr_running = 0;
  5285. rq->calc_load_active = 0;
  5286. rq->calc_load_update = jiffies + LOAD_FREQ;
  5287. init_cfs_rq(&rq->cfs);
  5288. init_rt_rq(&rq->rt, rq);
  5289. #ifdef CONFIG_FAIR_GROUP_SCHED
  5290. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5291. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5292. /*
  5293. * How much cpu bandwidth does root_task_group get?
  5294. *
  5295. * In case of task-groups formed thr' the cgroup filesystem, it
  5296. * gets 100% of the cpu resources in the system. This overall
  5297. * system cpu resource is divided among the tasks of
  5298. * root_task_group and its child task-groups in a fair manner,
  5299. * based on each entity's (task or task-group's) weight
  5300. * (se->load.weight).
  5301. *
  5302. * In other words, if root_task_group has 10 tasks of weight
  5303. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5304. * then A0's share of the cpu resource is:
  5305. *
  5306. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5307. *
  5308. * We achieve this by letting root_task_group's tasks sit
  5309. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5310. */
  5311. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5312. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5313. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5314. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5315. #ifdef CONFIG_RT_GROUP_SCHED
  5316. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5317. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5318. #endif
  5319. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5320. rq->cpu_load[j] = 0;
  5321. rq->last_load_update_tick = jiffies;
  5322. #ifdef CONFIG_SMP
  5323. rq->sd = NULL;
  5324. rq->rd = NULL;
  5325. rq->cpu_power = SCHED_POWER_SCALE;
  5326. rq->post_schedule = 0;
  5327. rq->active_balance = 0;
  5328. rq->next_balance = jiffies;
  5329. rq->push_cpu = 0;
  5330. rq->cpu = i;
  5331. rq->online = 0;
  5332. rq->idle_stamp = 0;
  5333. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5334. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5335. INIT_LIST_HEAD(&rq->cfs_tasks);
  5336. rq_attach_root(rq, &def_root_domain);
  5337. #ifdef CONFIG_NO_HZ_COMMON
  5338. rq->nohz_flags = 0;
  5339. #endif
  5340. #ifdef CONFIG_NO_HZ_FULL
  5341. rq->last_sched_tick = 0;
  5342. #endif
  5343. #endif
  5344. init_rq_hrtick(rq);
  5345. atomic_set(&rq->nr_iowait, 0);
  5346. }
  5347. set_load_weight(&init_task);
  5348. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5349. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5350. #endif
  5351. #ifdef CONFIG_RT_MUTEXES
  5352. plist_head_init(&init_task.pi_waiters);
  5353. #endif
  5354. /*
  5355. * The boot idle thread does lazy MMU switching as well:
  5356. */
  5357. atomic_inc(&init_mm.mm_count);
  5358. enter_lazy_tlb(&init_mm, current);
  5359. /*
  5360. * Make us the idle thread. Technically, schedule() should not be
  5361. * called from this thread, however somewhere below it might be,
  5362. * but because we are the idle thread, we just pick up running again
  5363. * when this runqueue becomes "idle".
  5364. */
  5365. init_idle(current, smp_processor_id());
  5366. calc_load_update = jiffies + LOAD_FREQ;
  5367. /*
  5368. * During early bootup we pretend to be a normal task:
  5369. */
  5370. current->sched_class = &fair_sched_class;
  5371. #ifdef CONFIG_SMP
  5372. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5373. /* May be allocated at isolcpus cmdline parse time */
  5374. if (cpu_isolated_map == NULL)
  5375. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5376. idle_thread_set_boot_cpu();
  5377. #endif
  5378. init_sched_fair_class();
  5379. scheduler_running = 1;
  5380. }
  5381. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5382. static inline int preempt_count_equals(int preempt_offset)
  5383. {
  5384. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5385. return (nested == preempt_offset);
  5386. }
  5387. void __might_sleep(const char *file, int line, int preempt_offset)
  5388. {
  5389. static unsigned long prev_jiffy; /* ratelimiting */
  5390. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5391. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5392. system_state != SYSTEM_RUNNING || oops_in_progress)
  5393. return;
  5394. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5395. return;
  5396. prev_jiffy = jiffies;
  5397. printk(KERN_ERR
  5398. "BUG: sleeping function called from invalid context at %s:%d\n",
  5399. file, line);
  5400. printk(KERN_ERR
  5401. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5402. in_atomic(), irqs_disabled(),
  5403. current->pid, current->comm);
  5404. debug_show_held_locks(current);
  5405. if (irqs_disabled())
  5406. print_irqtrace_events(current);
  5407. dump_stack();
  5408. }
  5409. EXPORT_SYMBOL(__might_sleep);
  5410. #endif
  5411. #ifdef CONFIG_MAGIC_SYSRQ
  5412. static void normalize_task(struct rq *rq, struct task_struct *p)
  5413. {
  5414. const struct sched_class *prev_class = p->sched_class;
  5415. int old_prio = p->prio;
  5416. int on_rq;
  5417. on_rq = p->on_rq;
  5418. if (on_rq)
  5419. dequeue_task(rq, p, 0);
  5420. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5421. if (on_rq) {
  5422. enqueue_task(rq, p, 0);
  5423. resched_task(rq->curr);
  5424. }
  5425. check_class_changed(rq, p, prev_class, old_prio);
  5426. }
  5427. void normalize_rt_tasks(void)
  5428. {
  5429. struct task_struct *g, *p;
  5430. unsigned long flags;
  5431. struct rq *rq;
  5432. read_lock_irqsave(&tasklist_lock, flags);
  5433. do_each_thread(g, p) {
  5434. /*
  5435. * Only normalize user tasks:
  5436. */
  5437. if (!p->mm)
  5438. continue;
  5439. p->se.exec_start = 0;
  5440. #ifdef CONFIG_SCHEDSTATS
  5441. p->se.statistics.wait_start = 0;
  5442. p->se.statistics.sleep_start = 0;
  5443. p->se.statistics.block_start = 0;
  5444. #endif
  5445. if (!rt_task(p)) {
  5446. /*
  5447. * Renice negative nice level userspace
  5448. * tasks back to 0:
  5449. */
  5450. if (TASK_NICE(p) < 0 && p->mm)
  5451. set_user_nice(p, 0);
  5452. continue;
  5453. }
  5454. raw_spin_lock(&p->pi_lock);
  5455. rq = __task_rq_lock(p);
  5456. normalize_task(rq, p);
  5457. __task_rq_unlock(rq);
  5458. raw_spin_unlock(&p->pi_lock);
  5459. } while_each_thread(g, p);
  5460. read_unlock_irqrestore(&tasklist_lock, flags);
  5461. }
  5462. #endif /* CONFIG_MAGIC_SYSRQ */
  5463. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5464. /*
  5465. * These functions are only useful for the IA64 MCA handling, or kdb.
  5466. *
  5467. * They can only be called when the whole system has been
  5468. * stopped - every CPU needs to be quiescent, and no scheduling
  5469. * activity can take place. Using them for anything else would
  5470. * be a serious bug, and as a result, they aren't even visible
  5471. * under any other configuration.
  5472. */
  5473. /**
  5474. * curr_task - return the current task for a given cpu.
  5475. * @cpu: the processor in question.
  5476. *
  5477. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5478. *
  5479. * Return: The current task for @cpu.
  5480. */
  5481. struct task_struct *curr_task(int cpu)
  5482. {
  5483. return cpu_curr(cpu);
  5484. }
  5485. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5486. #ifdef CONFIG_IA64
  5487. /**
  5488. * set_curr_task - set the current task for a given cpu.
  5489. * @cpu: the processor in question.
  5490. * @p: the task pointer to set.
  5491. *
  5492. * Description: This function must only be used when non-maskable interrupts
  5493. * are serviced on a separate stack. It allows the architecture to switch the
  5494. * notion of the current task on a cpu in a non-blocking manner. This function
  5495. * must be called with all CPU's synchronized, and interrupts disabled, the
  5496. * and caller must save the original value of the current task (see
  5497. * curr_task() above) and restore that value before reenabling interrupts and
  5498. * re-starting the system.
  5499. *
  5500. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5501. */
  5502. void set_curr_task(int cpu, struct task_struct *p)
  5503. {
  5504. cpu_curr(cpu) = p;
  5505. }
  5506. #endif
  5507. #ifdef CONFIG_CGROUP_SCHED
  5508. /* task_group_lock serializes the addition/removal of task groups */
  5509. static DEFINE_SPINLOCK(task_group_lock);
  5510. static void free_sched_group(struct task_group *tg)
  5511. {
  5512. free_fair_sched_group(tg);
  5513. free_rt_sched_group(tg);
  5514. autogroup_free(tg);
  5515. kfree(tg);
  5516. }
  5517. /* allocate runqueue etc for a new task group */
  5518. struct task_group *sched_create_group(struct task_group *parent)
  5519. {
  5520. struct task_group *tg;
  5521. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5522. if (!tg)
  5523. return ERR_PTR(-ENOMEM);
  5524. if (!alloc_fair_sched_group(tg, parent))
  5525. goto err;
  5526. if (!alloc_rt_sched_group(tg, parent))
  5527. goto err;
  5528. return tg;
  5529. err:
  5530. free_sched_group(tg);
  5531. return ERR_PTR(-ENOMEM);
  5532. }
  5533. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5534. {
  5535. unsigned long flags;
  5536. spin_lock_irqsave(&task_group_lock, flags);
  5537. list_add_rcu(&tg->list, &task_groups);
  5538. WARN_ON(!parent); /* root should already exist */
  5539. tg->parent = parent;
  5540. INIT_LIST_HEAD(&tg->children);
  5541. list_add_rcu(&tg->siblings, &parent->children);
  5542. spin_unlock_irqrestore(&task_group_lock, flags);
  5543. }
  5544. /* rcu callback to free various structures associated with a task group */
  5545. static void free_sched_group_rcu(struct rcu_head *rhp)
  5546. {
  5547. /* now it should be safe to free those cfs_rqs */
  5548. free_sched_group(container_of(rhp, struct task_group, rcu));
  5549. }
  5550. /* Destroy runqueue etc associated with a task group */
  5551. void sched_destroy_group(struct task_group *tg)
  5552. {
  5553. /* wait for possible concurrent references to cfs_rqs complete */
  5554. call_rcu(&tg->rcu, free_sched_group_rcu);
  5555. }
  5556. void sched_offline_group(struct task_group *tg)
  5557. {
  5558. unsigned long flags;
  5559. int i;
  5560. /* end participation in shares distribution */
  5561. for_each_possible_cpu(i)
  5562. unregister_fair_sched_group(tg, i);
  5563. spin_lock_irqsave(&task_group_lock, flags);
  5564. list_del_rcu(&tg->list);
  5565. list_del_rcu(&tg->siblings);
  5566. spin_unlock_irqrestore(&task_group_lock, flags);
  5567. }
  5568. /* change task's runqueue when it moves between groups.
  5569. * The caller of this function should have put the task in its new group
  5570. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5571. * reflect its new group.
  5572. */
  5573. void sched_move_task(struct task_struct *tsk)
  5574. {
  5575. struct task_group *tg;
  5576. int on_rq, running;
  5577. unsigned long flags;
  5578. struct rq *rq;
  5579. rq = task_rq_lock(tsk, &flags);
  5580. running = task_current(rq, tsk);
  5581. on_rq = tsk->on_rq;
  5582. if (on_rq)
  5583. dequeue_task(rq, tsk, 0);
  5584. if (unlikely(running))
  5585. tsk->sched_class->put_prev_task(rq, tsk);
  5586. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  5587. lockdep_is_held(&tsk->sighand->siglock)),
  5588. struct task_group, css);
  5589. tg = autogroup_task_group(tsk, tg);
  5590. tsk->sched_task_group = tg;
  5591. #ifdef CONFIG_FAIR_GROUP_SCHED
  5592. if (tsk->sched_class->task_move_group)
  5593. tsk->sched_class->task_move_group(tsk, on_rq);
  5594. else
  5595. #endif
  5596. set_task_rq(tsk, task_cpu(tsk));
  5597. if (unlikely(running))
  5598. tsk->sched_class->set_curr_task(rq);
  5599. if (on_rq)
  5600. enqueue_task(rq, tsk, 0);
  5601. task_rq_unlock(rq, tsk, &flags);
  5602. }
  5603. #endif /* CONFIG_CGROUP_SCHED */
  5604. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5605. static unsigned long to_ratio(u64 period, u64 runtime)
  5606. {
  5607. if (runtime == RUNTIME_INF)
  5608. return 1ULL << 20;
  5609. return div64_u64(runtime << 20, period);
  5610. }
  5611. #endif
  5612. #ifdef CONFIG_RT_GROUP_SCHED
  5613. /*
  5614. * Ensure that the real time constraints are schedulable.
  5615. */
  5616. static DEFINE_MUTEX(rt_constraints_mutex);
  5617. /* Must be called with tasklist_lock held */
  5618. static inline int tg_has_rt_tasks(struct task_group *tg)
  5619. {
  5620. struct task_struct *g, *p;
  5621. do_each_thread(g, p) {
  5622. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5623. return 1;
  5624. } while_each_thread(g, p);
  5625. return 0;
  5626. }
  5627. struct rt_schedulable_data {
  5628. struct task_group *tg;
  5629. u64 rt_period;
  5630. u64 rt_runtime;
  5631. };
  5632. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5633. {
  5634. struct rt_schedulable_data *d = data;
  5635. struct task_group *child;
  5636. unsigned long total, sum = 0;
  5637. u64 period, runtime;
  5638. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5639. runtime = tg->rt_bandwidth.rt_runtime;
  5640. if (tg == d->tg) {
  5641. period = d->rt_period;
  5642. runtime = d->rt_runtime;
  5643. }
  5644. /*
  5645. * Cannot have more runtime than the period.
  5646. */
  5647. if (runtime > period && runtime != RUNTIME_INF)
  5648. return -EINVAL;
  5649. /*
  5650. * Ensure we don't starve existing RT tasks.
  5651. */
  5652. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5653. return -EBUSY;
  5654. total = to_ratio(period, runtime);
  5655. /*
  5656. * Nobody can have more than the global setting allows.
  5657. */
  5658. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5659. return -EINVAL;
  5660. /*
  5661. * The sum of our children's runtime should not exceed our own.
  5662. */
  5663. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5664. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5665. runtime = child->rt_bandwidth.rt_runtime;
  5666. if (child == d->tg) {
  5667. period = d->rt_period;
  5668. runtime = d->rt_runtime;
  5669. }
  5670. sum += to_ratio(period, runtime);
  5671. }
  5672. if (sum > total)
  5673. return -EINVAL;
  5674. return 0;
  5675. }
  5676. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  5677. {
  5678. int ret;
  5679. struct rt_schedulable_data data = {
  5680. .tg = tg,
  5681. .rt_period = period,
  5682. .rt_runtime = runtime,
  5683. };
  5684. rcu_read_lock();
  5685. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  5686. rcu_read_unlock();
  5687. return ret;
  5688. }
  5689. static int tg_set_rt_bandwidth(struct task_group *tg,
  5690. u64 rt_period, u64 rt_runtime)
  5691. {
  5692. int i, err = 0;
  5693. mutex_lock(&rt_constraints_mutex);
  5694. read_lock(&tasklist_lock);
  5695. err = __rt_schedulable(tg, rt_period, rt_runtime);
  5696. if (err)
  5697. goto unlock;
  5698. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5699. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  5700. tg->rt_bandwidth.rt_runtime = rt_runtime;
  5701. for_each_possible_cpu(i) {
  5702. struct rt_rq *rt_rq = tg->rt_rq[i];
  5703. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5704. rt_rq->rt_runtime = rt_runtime;
  5705. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5706. }
  5707. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5708. unlock:
  5709. read_unlock(&tasklist_lock);
  5710. mutex_unlock(&rt_constraints_mutex);
  5711. return err;
  5712. }
  5713. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  5714. {
  5715. u64 rt_runtime, rt_period;
  5716. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5717. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  5718. if (rt_runtime_us < 0)
  5719. rt_runtime = RUNTIME_INF;
  5720. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5721. }
  5722. static long sched_group_rt_runtime(struct task_group *tg)
  5723. {
  5724. u64 rt_runtime_us;
  5725. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  5726. return -1;
  5727. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  5728. do_div(rt_runtime_us, NSEC_PER_USEC);
  5729. return rt_runtime_us;
  5730. }
  5731. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  5732. {
  5733. u64 rt_runtime, rt_period;
  5734. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  5735. rt_runtime = tg->rt_bandwidth.rt_runtime;
  5736. if (rt_period == 0)
  5737. return -EINVAL;
  5738. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5739. }
  5740. static long sched_group_rt_period(struct task_group *tg)
  5741. {
  5742. u64 rt_period_us;
  5743. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5744. do_div(rt_period_us, NSEC_PER_USEC);
  5745. return rt_period_us;
  5746. }
  5747. static int sched_rt_global_constraints(void)
  5748. {
  5749. u64 runtime, period;
  5750. int ret = 0;
  5751. if (sysctl_sched_rt_period <= 0)
  5752. return -EINVAL;
  5753. runtime = global_rt_runtime();
  5754. period = global_rt_period();
  5755. /*
  5756. * Sanity check on the sysctl variables.
  5757. */
  5758. if (runtime > period && runtime != RUNTIME_INF)
  5759. return -EINVAL;
  5760. mutex_lock(&rt_constraints_mutex);
  5761. read_lock(&tasklist_lock);
  5762. ret = __rt_schedulable(NULL, 0, 0);
  5763. read_unlock(&tasklist_lock);
  5764. mutex_unlock(&rt_constraints_mutex);
  5765. return ret;
  5766. }
  5767. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  5768. {
  5769. /* Don't accept realtime tasks when there is no way for them to run */
  5770. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  5771. return 0;
  5772. return 1;
  5773. }
  5774. #else /* !CONFIG_RT_GROUP_SCHED */
  5775. static int sched_rt_global_constraints(void)
  5776. {
  5777. unsigned long flags;
  5778. int i;
  5779. if (sysctl_sched_rt_period <= 0)
  5780. return -EINVAL;
  5781. /*
  5782. * There's always some RT tasks in the root group
  5783. * -- migration, kstopmachine etc..
  5784. */
  5785. if (sysctl_sched_rt_runtime == 0)
  5786. return -EBUSY;
  5787. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  5788. for_each_possible_cpu(i) {
  5789. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  5790. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5791. rt_rq->rt_runtime = global_rt_runtime();
  5792. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5793. }
  5794. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  5795. return 0;
  5796. }
  5797. #endif /* CONFIG_RT_GROUP_SCHED */
  5798. int sched_rr_handler(struct ctl_table *table, int write,
  5799. void __user *buffer, size_t *lenp,
  5800. loff_t *ppos)
  5801. {
  5802. int ret;
  5803. static DEFINE_MUTEX(mutex);
  5804. mutex_lock(&mutex);
  5805. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  5806. /* make sure that internally we keep jiffies */
  5807. /* also, writing zero resets timeslice to default */
  5808. if (!ret && write) {
  5809. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  5810. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  5811. }
  5812. mutex_unlock(&mutex);
  5813. return ret;
  5814. }
  5815. int sched_rt_handler(struct ctl_table *table, int write,
  5816. void __user *buffer, size_t *lenp,
  5817. loff_t *ppos)
  5818. {
  5819. int ret;
  5820. int old_period, old_runtime;
  5821. static DEFINE_MUTEX(mutex);
  5822. mutex_lock(&mutex);
  5823. old_period = sysctl_sched_rt_period;
  5824. old_runtime = sysctl_sched_rt_runtime;
  5825. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  5826. if (!ret && write) {
  5827. ret = sched_rt_global_constraints();
  5828. if (ret) {
  5829. sysctl_sched_rt_period = old_period;
  5830. sysctl_sched_rt_runtime = old_runtime;
  5831. } else {
  5832. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  5833. def_rt_bandwidth.rt_period =
  5834. ns_to_ktime(global_rt_period());
  5835. }
  5836. }
  5837. mutex_unlock(&mutex);
  5838. return ret;
  5839. }
  5840. #ifdef CONFIG_CGROUP_SCHED
  5841. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  5842. {
  5843. return css ? container_of(css, struct task_group, css) : NULL;
  5844. }
  5845. static struct cgroup_subsys_state *
  5846. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  5847. {
  5848. struct task_group *parent = css_tg(parent_css);
  5849. struct task_group *tg;
  5850. if (!parent) {
  5851. /* This is early initialization for the top cgroup */
  5852. return &root_task_group.css;
  5853. }
  5854. tg = sched_create_group(parent);
  5855. if (IS_ERR(tg))
  5856. return ERR_PTR(-ENOMEM);
  5857. return &tg->css;
  5858. }
  5859. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  5860. {
  5861. struct task_group *tg = css_tg(css);
  5862. struct task_group *parent = css_tg(css_parent(css));
  5863. if (parent)
  5864. sched_online_group(tg, parent);
  5865. return 0;
  5866. }
  5867. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  5868. {
  5869. struct task_group *tg = css_tg(css);
  5870. sched_destroy_group(tg);
  5871. }
  5872. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  5873. {
  5874. struct task_group *tg = css_tg(css);
  5875. sched_offline_group(tg);
  5876. }
  5877. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  5878. struct cgroup_taskset *tset)
  5879. {
  5880. struct task_struct *task;
  5881. cgroup_taskset_for_each(task, css, tset) {
  5882. #ifdef CONFIG_RT_GROUP_SCHED
  5883. if (!sched_rt_can_attach(css_tg(css), task))
  5884. return -EINVAL;
  5885. #else
  5886. /* We don't support RT-tasks being in separate groups */
  5887. if (task->sched_class != &fair_sched_class)
  5888. return -EINVAL;
  5889. #endif
  5890. }
  5891. return 0;
  5892. }
  5893. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  5894. struct cgroup_taskset *tset)
  5895. {
  5896. struct task_struct *task;
  5897. cgroup_taskset_for_each(task, css, tset)
  5898. sched_move_task(task);
  5899. }
  5900. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  5901. struct cgroup_subsys_state *old_css,
  5902. struct task_struct *task)
  5903. {
  5904. /*
  5905. * cgroup_exit() is called in the copy_process() failure path.
  5906. * Ignore this case since the task hasn't ran yet, this avoids
  5907. * trying to poke a half freed task state from generic code.
  5908. */
  5909. if (!(task->flags & PF_EXITING))
  5910. return;
  5911. sched_move_task(task);
  5912. }
  5913. #ifdef CONFIG_FAIR_GROUP_SCHED
  5914. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  5915. struct cftype *cftype, u64 shareval)
  5916. {
  5917. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  5918. }
  5919. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  5920. struct cftype *cft)
  5921. {
  5922. struct task_group *tg = css_tg(css);
  5923. return (u64) scale_load_down(tg->shares);
  5924. }
  5925. #ifdef CONFIG_CFS_BANDWIDTH
  5926. static DEFINE_MUTEX(cfs_constraints_mutex);
  5927. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  5928. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  5929. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  5930. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  5931. {
  5932. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  5933. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5934. if (tg == &root_task_group)
  5935. return -EINVAL;
  5936. /*
  5937. * Ensure we have at some amount of bandwidth every period. This is
  5938. * to prevent reaching a state of large arrears when throttled via
  5939. * entity_tick() resulting in prolonged exit starvation.
  5940. */
  5941. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  5942. return -EINVAL;
  5943. /*
  5944. * Likewise, bound things on the otherside by preventing insane quota
  5945. * periods. This also allows us to normalize in computing quota
  5946. * feasibility.
  5947. */
  5948. if (period > max_cfs_quota_period)
  5949. return -EINVAL;
  5950. mutex_lock(&cfs_constraints_mutex);
  5951. ret = __cfs_schedulable(tg, period, quota);
  5952. if (ret)
  5953. goto out_unlock;
  5954. runtime_enabled = quota != RUNTIME_INF;
  5955. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  5956. /*
  5957. * If we need to toggle cfs_bandwidth_used, off->on must occur
  5958. * before making related changes, and on->off must occur afterwards
  5959. */
  5960. if (runtime_enabled && !runtime_was_enabled)
  5961. cfs_bandwidth_usage_inc();
  5962. raw_spin_lock_irq(&cfs_b->lock);
  5963. cfs_b->period = ns_to_ktime(period);
  5964. cfs_b->quota = quota;
  5965. __refill_cfs_bandwidth_runtime(cfs_b);
  5966. /* restart the period timer (if active) to handle new period expiry */
  5967. if (runtime_enabled && cfs_b->timer_active) {
  5968. /* force a reprogram */
  5969. cfs_b->timer_active = 0;
  5970. __start_cfs_bandwidth(cfs_b);
  5971. }
  5972. raw_spin_unlock_irq(&cfs_b->lock);
  5973. for_each_possible_cpu(i) {
  5974. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  5975. struct rq *rq = cfs_rq->rq;
  5976. raw_spin_lock_irq(&rq->lock);
  5977. cfs_rq->runtime_enabled = runtime_enabled;
  5978. cfs_rq->runtime_remaining = 0;
  5979. if (cfs_rq->throttled)
  5980. unthrottle_cfs_rq(cfs_rq);
  5981. raw_spin_unlock_irq(&rq->lock);
  5982. }
  5983. if (runtime_was_enabled && !runtime_enabled)
  5984. cfs_bandwidth_usage_dec();
  5985. out_unlock:
  5986. mutex_unlock(&cfs_constraints_mutex);
  5987. return ret;
  5988. }
  5989. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  5990. {
  5991. u64 quota, period;
  5992. period = ktime_to_ns(tg->cfs_bandwidth.period);
  5993. if (cfs_quota_us < 0)
  5994. quota = RUNTIME_INF;
  5995. else
  5996. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  5997. return tg_set_cfs_bandwidth(tg, period, quota);
  5998. }
  5999. long tg_get_cfs_quota(struct task_group *tg)
  6000. {
  6001. u64 quota_us;
  6002. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6003. return -1;
  6004. quota_us = tg->cfs_bandwidth.quota;
  6005. do_div(quota_us, NSEC_PER_USEC);
  6006. return quota_us;
  6007. }
  6008. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6009. {
  6010. u64 quota, period;
  6011. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6012. quota = tg->cfs_bandwidth.quota;
  6013. return tg_set_cfs_bandwidth(tg, period, quota);
  6014. }
  6015. long tg_get_cfs_period(struct task_group *tg)
  6016. {
  6017. u64 cfs_period_us;
  6018. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6019. do_div(cfs_period_us, NSEC_PER_USEC);
  6020. return cfs_period_us;
  6021. }
  6022. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6023. struct cftype *cft)
  6024. {
  6025. return tg_get_cfs_quota(css_tg(css));
  6026. }
  6027. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6028. struct cftype *cftype, s64 cfs_quota_us)
  6029. {
  6030. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6031. }
  6032. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6033. struct cftype *cft)
  6034. {
  6035. return tg_get_cfs_period(css_tg(css));
  6036. }
  6037. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6038. struct cftype *cftype, u64 cfs_period_us)
  6039. {
  6040. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6041. }
  6042. struct cfs_schedulable_data {
  6043. struct task_group *tg;
  6044. u64 period, quota;
  6045. };
  6046. /*
  6047. * normalize group quota/period to be quota/max_period
  6048. * note: units are usecs
  6049. */
  6050. static u64 normalize_cfs_quota(struct task_group *tg,
  6051. struct cfs_schedulable_data *d)
  6052. {
  6053. u64 quota, period;
  6054. if (tg == d->tg) {
  6055. period = d->period;
  6056. quota = d->quota;
  6057. } else {
  6058. period = tg_get_cfs_period(tg);
  6059. quota = tg_get_cfs_quota(tg);
  6060. }
  6061. /* note: these should typically be equivalent */
  6062. if (quota == RUNTIME_INF || quota == -1)
  6063. return RUNTIME_INF;
  6064. return to_ratio(period, quota);
  6065. }
  6066. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6067. {
  6068. struct cfs_schedulable_data *d = data;
  6069. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6070. s64 quota = 0, parent_quota = -1;
  6071. if (!tg->parent) {
  6072. quota = RUNTIME_INF;
  6073. } else {
  6074. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6075. quota = normalize_cfs_quota(tg, d);
  6076. parent_quota = parent_b->hierarchal_quota;
  6077. /*
  6078. * ensure max(child_quota) <= parent_quota, inherit when no
  6079. * limit is set
  6080. */
  6081. if (quota == RUNTIME_INF)
  6082. quota = parent_quota;
  6083. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6084. return -EINVAL;
  6085. }
  6086. cfs_b->hierarchal_quota = quota;
  6087. return 0;
  6088. }
  6089. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6090. {
  6091. int ret;
  6092. struct cfs_schedulable_data data = {
  6093. .tg = tg,
  6094. .period = period,
  6095. .quota = quota,
  6096. };
  6097. if (quota != RUNTIME_INF) {
  6098. do_div(data.period, NSEC_PER_USEC);
  6099. do_div(data.quota, NSEC_PER_USEC);
  6100. }
  6101. rcu_read_lock();
  6102. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6103. rcu_read_unlock();
  6104. return ret;
  6105. }
  6106. static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
  6107. struct cgroup_map_cb *cb)
  6108. {
  6109. struct task_group *tg = css_tg(css);
  6110. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6111. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6112. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6113. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6114. return 0;
  6115. }
  6116. #endif /* CONFIG_CFS_BANDWIDTH */
  6117. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6118. #ifdef CONFIG_RT_GROUP_SCHED
  6119. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6120. struct cftype *cft, s64 val)
  6121. {
  6122. return sched_group_set_rt_runtime(css_tg(css), val);
  6123. }
  6124. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6125. struct cftype *cft)
  6126. {
  6127. return sched_group_rt_runtime(css_tg(css));
  6128. }
  6129. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6130. struct cftype *cftype, u64 rt_period_us)
  6131. {
  6132. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6133. }
  6134. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6135. struct cftype *cft)
  6136. {
  6137. return sched_group_rt_period(css_tg(css));
  6138. }
  6139. #endif /* CONFIG_RT_GROUP_SCHED */
  6140. static struct cftype cpu_files[] = {
  6141. #ifdef CONFIG_FAIR_GROUP_SCHED
  6142. {
  6143. .name = "shares",
  6144. .read_u64 = cpu_shares_read_u64,
  6145. .write_u64 = cpu_shares_write_u64,
  6146. },
  6147. #endif
  6148. #ifdef CONFIG_CFS_BANDWIDTH
  6149. {
  6150. .name = "cfs_quota_us",
  6151. .read_s64 = cpu_cfs_quota_read_s64,
  6152. .write_s64 = cpu_cfs_quota_write_s64,
  6153. },
  6154. {
  6155. .name = "cfs_period_us",
  6156. .read_u64 = cpu_cfs_period_read_u64,
  6157. .write_u64 = cpu_cfs_period_write_u64,
  6158. },
  6159. {
  6160. .name = "stat",
  6161. .read_map = cpu_stats_show,
  6162. },
  6163. #endif
  6164. #ifdef CONFIG_RT_GROUP_SCHED
  6165. {
  6166. .name = "rt_runtime_us",
  6167. .read_s64 = cpu_rt_runtime_read,
  6168. .write_s64 = cpu_rt_runtime_write,
  6169. },
  6170. {
  6171. .name = "rt_period_us",
  6172. .read_u64 = cpu_rt_period_read_uint,
  6173. .write_u64 = cpu_rt_period_write_uint,
  6174. },
  6175. #endif
  6176. { } /* terminate */
  6177. };
  6178. struct cgroup_subsys cpu_cgroup_subsys = {
  6179. .name = "cpu",
  6180. .css_alloc = cpu_cgroup_css_alloc,
  6181. .css_free = cpu_cgroup_css_free,
  6182. .css_online = cpu_cgroup_css_online,
  6183. .css_offline = cpu_cgroup_css_offline,
  6184. .can_attach = cpu_cgroup_can_attach,
  6185. .attach = cpu_cgroup_attach,
  6186. .exit = cpu_cgroup_exit,
  6187. .subsys_id = cpu_cgroup_subsys_id,
  6188. .base_cftypes = cpu_files,
  6189. .early_init = 1,
  6190. };
  6191. #endif /* CONFIG_CGROUP_SCHED */
  6192. void dump_cpu_task(int cpu)
  6193. {
  6194. pr_info("Task dump for CPU %d:\n", cpu);
  6195. sched_show_task(cpu_curr(cpu));
  6196. }