ring_buffer.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include <linux/circ_buf.h>
  15. #include "internal.h"
  16. static void perf_output_wakeup(struct perf_output_handle *handle)
  17. {
  18. atomic_set(&handle->rb->poll, POLL_IN);
  19. handle->event->pending_wakeup = 1;
  20. irq_work_queue(&handle->event->pending);
  21. }
  22. /*
  23. * We need to ensure a later event_id doesn't publish a head when a former
  24. * event isn't done writing. However since we need to deal with NMIs we
  25. * cannot fully serialize things.
  26. *
  27. * We only publish the head (and generate a wakeup) when the outer-most
  28. * event completes.
  29. */
  30. static void perf_output_get_handle(struct perf_output_handle *handle)
  31. {
  32. struct ring_buffer *rb = handle->rb;
  33. preempt_disable();
  34. local_inc(&rb->nest);
  35. handle->wakeup = local_read(&rb->wakeup);
  36. }
  37. static void perf_output_put_handle(struct perf_output_handle *handle)
  38. {
  39. struct ring_buffer *rb = handle->rb;
  40. unsigned long head;
  41. again:
  42. head = local_read(&rb->head);
  43. /*
  44. * IRQ/NMI can happen here, which means we can miss a head update.
  45. */
  46. if (!local_dec_and_test(&rb->nest))
  47. goto out;
  48. /*
  49. * Since the mmap() consumer (userspace) can run on a different CPU:
  50. *
  51. * kernel user
  52. *
  53. * READ ->data_tail READ ->data_head
  54. * smp_mb() (A) smp_rmb() (C)
  55. * WRITE $data READ $data
  56. * smp_wmb() (B) smp_mb() (D)
  57. * STORE ->data_head WRITE ->data_tail
  58. *
  59. * Where A pairs with D, and B pairs with C.
  60. *
  61. * I don't think A needs to be a full barrier because we won't in fact
  62. * write data until we see the store from userspace. So we simply don't
  63. * issue the data WRITE until we observe it. Be conservative for now.
  64. *
  65. * OTOH, D needs to be a full barrier since it separates the data READ
  66. * from the tail WRITE.
  67. *
  68. * For B a WMB is sufficient since it separates two WRITEs, and for C
  69. * an RMB is sufficient since it separates two READs.
  70. *
  71. * See perf_output_begin().
  72. */
  73. smp_wmb();
  74. rb->user_page->data_head = head;
  75. /*
  76. * Now check if we missed an update -- rely on previous implied
  77. * compiler barriers to force a re-read.
  78. */
  79. if (unlikely(head != local_read(&rb->head))) {
  80. local_inc(&rb->nest);
  81. goto again;
  82. }
  83. if (handle->wakeup != local_read(&rb->wakeup))
  84. perf_output_wakeup(handle);
  85. out:
  86. preempt_enable();
  87. }
  88. int perf_output_begin(struct perf_output_handle *handle,
  89. struct perf_event *event, unsigned int size)
  90. {
  91. struct ring_buffer *rb;
  92. unsigned long tail, offset, head;
  93. int have_lost, page_shift;
  94. struct {
  95. struct perf_event_header header;
  96. u64 id;
  97. u64 lost;
  98. } lost_event;
  99. rcu_read_lock();
  100. /*
  101. * For inherited events we send all the output towards the parent.
  102. */
  103. if (event->parent)
  104. event = event->parent;
  105. rb = rcu_dereference(event->rb);
  106. if (unlikely(!rb))
  107. goto out;
  108. if (unlikely(!rb->nr_pages))
  109. goto out;
  110. handle->rb = rb;
  111. handle->event = event;
  112. have_lost = local_read(&rb->lost);
  113. if (unlikely(have_lost)) {
  114. size += sizeof(lost_event);
  115. if (event->attr.sample_id_all)
  116. size += event->id_header_size;
  117. }
  118. perf_output_get_handle(handle);
  119. do {
  120. tail = ACCESS_ONCE(rb->user_page->data_tail);
  121. offset = head = local_read(&rb->head);
  122. if (!rb->overwrite &&
  123. unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
  124. goto fail;
  125. head += size;
  126. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  127. /*
  128. * Separate the userpage->tail read from the data stores below.
  129. * Matches the MB userspace SHOULD issue after reading the data
  130. * and before storing the new tail position.
  131. *
  132. * See perf_output_put_handle().
  133. */
  134. smp_mb();
  135. if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
  136. local_add(rb->watermark, &rb->wakeup);
  137. page_shift = PAGE_SHIFT + page_order(rb);
  138. handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
  139. offset &= (1UL << page_shift) - 1;
  140. handle->addr = rb->data_pages[handle->page] + offset;
  141. handle->size = (1UL << page_shift) - offset;
  142. if (unlikely(have_lost)) {
  143. struct perf_sample_data sample_data;
  144. lost_event.header.size = sizeof(lost_event);
  145. lost_event.header.type = PERF_RECORD_LOST;
  146. lost_event.header.misc = 0;
  147. lost_event.id = event->id;
  148. lost_event.lost = local_xchg(&rb->lost, 0);
  149. perf_event_header__init_id(&lost_event.header,
  150. &sample_data, event);
  151. perf_output_put(handle, lost_event);
  152. perf_event__output_id_sample(event, handle, &sample_data);
  153. }
  154. return 0;
  155. fail:
  156. local_inc(&rb->lost);
  157. perf_output_put_handle(handle);
  158. out:
  159. rcu_read_unlock();
  160. return -ENOSPC;
  161. }
  162. unsigned int perf_output_copy(struct perf_output_handle *handle,
  163. const void *buf, unsigned int len)
  164. {
  165. return __output_copy(handle, buf, len);
  166. }
  167. unsigned int perf_output_skip(struct perf_output_handle *handle,
  168. unsigned int len)
  169. {
  170. return __output_skip(handle, NULL, len);
  171. }
  172. void perf_output_end(struct perf_output_handle *handle)
  173. {
  174. perf_output_put_handle(handle);
  175. rcu_read_unlock();
  176. }
  177. static void
  178. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  179. {
  180. long max_size = perf_data_size(rb);
  181. if (watermark)
  182. rb->watermark = min(max_size, watermark);
  183. if (!rb->watermark)
  184. rb->watermark = max_size / 2;
  185. if (flags & RING_BUFFER_WRITABLE)
  186. rb->overwrite = 0;
  187. else
  188. rb->overwrite = 1;
  189. atomic_set(&rb->refcount, 1);
  190. INIT_LIST_HEAD(&rb->event_list);
  191. spin_lock_init(&rb->event_lock);
  192. }
  193. #ifndef CONFIG_PERF_USE_VMALLOC
  194. /*
  195. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  196. */
  197. struct page *
  198. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  199. {
  200. if (pgoff > rb->nr_pages)
  201. return NULL;
  202. if (pgoff == 0)
  203. return virt_to_page(rb->user_page);
  204. return virt_to_page(rb->data_pages[pgoff - 1]);
  205. }
  206. static void *perf_mmap_alloc_page(int cpu)
  207. {
  208. struct page *page;
  209. int node;
  210. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  211. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  212. if (!page)
  213. return NULL;
  214. return page_address(page);
  215. }
  216. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  217. {
  218. struct ring_buffer *rb;
  219. unsigned long size;
  220. int i;
  221. size = sizeof(struct ring_buffer);
  222. size += nr_pages * sizeof(void *);
  223. rb = kzalloc(size, GFP_KERNEL);
  224. if (!rb)
  225. goto fail;
  226. rb->user_page = perf_mmap_alloc_page(cpu);
  227. if (!rb->user_page)
  228. goto fail_user_page;
  229. for (i = 0; i < nr_pages; i++) {
  230. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  231. if (!rb->data_pages[i])
  232. goto fail_data_pages;
  233. }
  234. rb->nr_pages = nr_pages;
  235. ring_buffer_init(rb, watermark, flags);
  236. return rb;
  237. fail_data_pages:
  238. for (i--; i >= 0; i--)
  239. free_page((unsigned long)rb->data_pages[i]);
  240. free_page((unsigned long)rb->user_page);
  241. fail_user_page:
  242. kfree(rb);
  243. fail:
  244. return NULL;
  245. }
  246. static void perf_mmap_free_page(unsigned long addr)
  247. {
  248. struct page *page = virt_to_page((void *)addr);
  249. page->mapping = NULL;
  250. __free_page(page);
  251. }
  252. void rb_free(struct ring_buffer *rb)
  253. {
  254. int i;
  255. perf_mmap_free_page((unsigned long)rb->user_page);
  256. for (i = 0; i < rb->nr_pages; i++)
  257. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  258. kfree(rb);
  259. }
  260. #else
  261. static int data_page_nr(struct ring_buffer *rb)
  262. {
  263. return rb->nr_pages << page_order(rb);
  264. }
  265. struct page *
  266. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  267. {
  268. /* The '>' counts in the user page. */
  269. if (pgoff > data_page_nr(rb))
  270. return NULL;
  271. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  272. }
  273. static void perf_mmap_unmark_page(void *addr)
  274. {
  275. struct page *page = vmalloc_to_page(addr);
  276. page->mapping = NULL;
  277. }
  278. static void rb_free_work(struct work_struct *work)
  279. {
  280. struct ring_buffer *rb;
  281. void *base;
  282. int i, nr;
  283. rb = container_of(work, struct ring_buffer, work);
  284. nr = data_page_nr(rb);
  285. base = rb->user_page;
  286. /* The '<=' counts in the user page. */
  287. for (i = 0; i <= nr; i++)
  288. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  289. vfree(base);
  290. kfree(rb);
  291. }
  292. void rb_free(struct ring_buffer *rb)
  293. {
  294. schedule_work(&rb->work);
  295. }
  296. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  297. {
  298. struct ring_buffer *rb;
  299. unsigned long size;
  300. void *all_buf;
  301. size = sizeof(struct ring_buffer);
  302. size += sizeof(void *);
  303. rb = kzalloc(size, GFP_KERNEL);
  304. if (!rb)
  305. goto fail;
  306. INIT_WORK(&rb->work, rb_free_work);
  307. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  308. if (!all_buf)
  309. goto fail_all_buf;
  310. rb->user_page = all_buf;
  311. rb->data_pages[0] = all_buf + PAGE_SIZE;
  312. rb->page_order = ilog2(nr_pages);
  313. rb->nr_pages = !!nr_pages;
  314. ring_buffer_init(rb, watermark, flags);
  315. return rb;
  316. fail_all_buf:
  317. kfree(rb);
  318. fail:
  319. return NULL;
  320. }
  321. #endif