xfs_log_recover.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_bit.h"
  25. #include "xfs_inum.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_da_format.h"
  30. #include "xfs_inode.h"
  31. #include "xfs_trans.h"
  32. #include "xfs_log.h"
  33. #include "xfs_log_priv.h"
  34. #include "xfs_log_recover.h"
  35. #include "xfs_inode_item.h"
  36. #include "xfs_extfree_item.h"
  37. #include "xfs_trans_priv.h"
  38. #include "xfs_alloc.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_quota.h"
  41. #include "xfs_cksum.h"
  42. #include "xfs_trace.h"
  43. #include "xfs_icache.h"
  44. #include "xfs_bmap_btree.h"
  45. #include "xfs_dinode.h"
  46. #include "xfs_error.h"
  47. #include "xfs_dir2.h"
  48. #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
  49. STATIC int
  50. xlog_find_zeroed(
  51. struct xlog *,
  52. xfs_daddr_t *);
  53. STATIC int
  54. xlog_clear_stale_blocks(
  55. struct xlog *,
  56. xfs_lsn_t);
  57. #if defined(DEBUG)
  58. STATIC void
  59. xlog_recover_check_summary(
  60. struct xlog *);
  61. #else
  62. #define xlog_recover_check_summary(log)
  63. #endif
  64. /*
  65. * This structure is used during recovery to record the buf log items which
  66. * have been canceled and should not be replayed.
  67. */
  68. struct xfs_buf_cancel {
  69. xfs_daddr_t bc_blkno;
  70. uint bc_len;
  71. int bc_refcount;
  72. struct list_head bc_list;
  73. };
  74. /*
  75. * Sector aligned buffer routines for buffer create/read/write/access
  76. */
  77. /*
  78. * Verify the given count of basic blocks is valid number of blocks
  79. * to specify for an operation involving the given XFS log buffer.
  80. * Returns nonzero if the count is valid, 0 otherwise.
  81. */
  82. static inline int
  83. xlog_buf_bbcount_valid(
  84. struct xlog *log,
  85. int bbcount)
  86. {
  87. return bbcount > 0 && bbcount <= log->l_logBBsize;
  88. }
  89. /*
  90. * Allocate a buffer to hold log data. The buffer needs to be able
  91. * to map to a range of nbblks basic blocks at any valid (basic
  92. * block) offset within the log.
  93. */
  94. STATIC xfs_buf_t *
  95. xlog_get_bp(
  96. struct xlog *log,
  97. int nbblks)
  98. {
  99. struct xfs_buf *bp;
  100. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  101. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  102. nbblks);
  103. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  104. return NULL;
  105. }
  106. /*
  107. * We do log I/O in units of log sectors (a power-of-2
  108. * multiple of the basic block size), so we round up the
  109. * requested size to accommodate the basic blocks required
  110. * for complete log sectors.
  111. *
  112. * In addition, the buffer may be used for a non-sector-
  113. * aligned block offset, in which case an I/O of the
  114. * requested size could extend beyond the end of the
  115. * buffer. If the requested size is only 1 basic block it
  116. * will never straddle a sector boundary, so this won't be
  117. * an issue. Nor will this be a problem if the log I/O is
  118. * done in basic blocks (sector size 1). But otherwise we
  119. * extend the buffer by one extra log sector to ensure
  120. * there's space to accommodate this possibility.
  121. */
  122. if (nbblks > 1 && log->l_sectBBsize > 1)
  123. nbblks += log->l_sectBBsize;
  124. nbblks = round_up(nbblks, log->l_sectBBsize);
  125. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  126. if (bp)
  127. xfs_buf_unlock(bp);
  128. return bp;
  129. }
  130. STATIC void
  131. xlog_put_bp(
  132. xfs_buf_t *bp)
  133. {
  134. xfs_buf_free(bp);
  135. }
  136. /*
  137. * Return the address of the start of the given block number's data
  138. * in a log buffer. The buffer covers a log sector-aligned region.
  139. */
  140. STATIC xfs_caddr_t
  141. xlog_align(
  142. struct xlog *log,
  143. xfs_daddr_t blk_no,
  144. int nbblks,
  145. struct xfs_buf *bp)
  146. {
  147. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  148. ASSERT(offset + nbblks <= bp->b_length);
  149. return bp->b_addr + BBTOB(offset);
  150. }
  151. /*
  152. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  153. */
  154. STATIC int
  155. xlog_bread_noalign(
  156. struct xlog *log,
  157. xfs_daddr_t blk_no,
  158. int nbblks,
  159. struct xfs_buf *bp)
  160. {
  161. int error;
  162. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  163. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  164. nbblks);
  165. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  166. return EFSCORRUPTED;
  167. }
  168. blk_no = round_down(blk_no, log->l_sectBBsize);
  169. nbblks = round_up(nbblks, log->l_sectBBsize);
  170. ASSERT(nbblks > 0);
  171. ASSERT(nbblks <= bp->b_length);
  172. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  173. XFS_BUF_READ(bp);
  174. bp->b_io_length = nbblks;
  175. bp->b_error = 0;
  176. xfsbdstrat(log->l_mp, bp);
  177. error = xfs_buf_iowait(bp);
  178. if (error)
  179. xfs_buf_ioerror_alert(bp, __func__);
  180. return error;
  181. }
  182. STATIC int
  183. xlog_bread(
  184. struct xlog *log,
  185. xfs_daddr_t blk_no,
  186. int nbblks,
  187. struct xfs_buf *bp,
  188. xfs_caddr_t *offset)
  189. {
  190. int error;
  191. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  192. if (error)
  193. return error;
  194. *offset = xlog_align(log, blk_no, nbblks, bp);
  195. return 0;
  196. }
  197. /*
  198. * Read at an offset into the buffer. Returns with the buffer in it's original
  199. * state regardless of the result of the read.
  200. */
  201. STATIC int
  202. xlog_bread_offset(
  203. struct xlog *log,
  204. xfs_daddr_t blk_no, /* block to read from */
  205. int nbblks, /* blocks to read */
  206. struct xfs_buf *bp,
  207. xfs_caddr_t offset)
  208. {
  209. xfs_caddr_t orig_offset = bp->b_addr;
  210. int orig_len = BBTOB(bp->b_length);
  211. int error, error2;
  212. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  213. if (error)
  214. return error;
  215. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  216. /* must reset buffer pointer even on error */
  217. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  218. if (error)
  219. return error;
  220. return error2;
  221. }
  222. /*
  223. * Write out the buffer at the given block for the given number of blocks.
  224. * The buffer is kept locked across the write and is returned locked.
  225. * This can only be used for synchronous log writes.
  226. */
  227. STATIC int
  228. xlog_bwrite(
  229. struct xlog *log,
  230. xfs_daddr_t blk_no,
  231. int nbblks,
  232. struct xfs_buf *bp)
  233. {
  234. int error;
  235. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  236. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  237. nbblks);
  238. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  239. return EFSCORRUPTED;
  240. }
  241. blk_no = round_down(blk_no, log->l_sectBBsize);
  242. nbblks = round_up(nbblks, log->l_sectBBsize);
  243. ASSERT(nbblks > 0);
  244. ASSERT(nbblks <= bp->b_length);
  245. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  246. XFS_BUF_ZEROFLAGS(bp);
  247. xfs_buf_hold(bp);
  248. xfs_buf_lock(bp);
  249. bp->b_io_length = nbblks;
  250. bp->b_error = 0;
  251. error = xfs_bwrite(bp);
  252. if (error)
  253. xfs_buf_ioerror_alert(bp, __func__);
  254. xfs_buf_relse(bp);
  255. return error;
  256. }
  257. #ifdef DEBUG
  258. /*
  259. * dump debug superblock and log record information
  260. */
  261. STATIC void
  262. xlog_header_check_dump(
  263. xfs_mount_t *mp,
  264. xlog_rec_header_t *head)
  265. {
  266. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
  267. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  268. xfs_debug(mp, " log : uuid = %pU, fmt = %d",
  269. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  270. }
  271. #else
  272. #define xlog_header_check_dump(mp, head)
  273. #endif
  274. /*
  275. * check log record header for recovery
  276. */
  277. STATIC int
  278. xlog_header_check_recover(
  279. xfs_mount_t *mp,
  280. xlog_rec_header_t *head)
  281. {
  282. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  283. /*
  284. * IRIX doesn't write the h_fmt field and leaves it zeroed
  285. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  286. * a dirty log created in IRIX.
  287. */
  288. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  289. xfs_warn(mp,
  290. "dirty log written in incompatible format - can't recover");
  291. xlog_header_check_dump(mp, head);
  292. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  293. XFS_ERRLEVEL_HIGH, mp);
  294. return XFS_ERROR(EFSCORRUPTED);
  295. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  296. xfs_warn(mp,
  297. "dirty log entry has mismatched uuid - can't recover");
  298. xlog_header_check_dump(mp, head);
  299. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  300. XFS_ERRLEVEL_HIGH, mp);
  301. return XFS_ERROR(EFSCORRUPTED);
  302. }
  303. return 0;
  304. }
  305. /*
  306. * read the head block of the log and check the header
  307. */
  308. STATIC int
  309. xlog_header_check_mount(
  310. xfs_mount_t *mp,
  311. xlog_rec_header_t *head)
  312. {
  313. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  314. if (uuid_is_nil(&head->h_fs_uuid)) {
  315. /*
  316. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  317. * h_fs_uuid is nil, we assume this log was last mounted
  318. * by IRIX and continue.
  319. */
  320. xfs_warn(mp, "nil uuid in log - IRIX style log");
  321. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  322. xfs_warn(mp, "log has mismatched uuid - can't recover");
  323. xlog_header_check_dump(mp, head);
  324. XFS_ERROR_REPORT("xlog_header_check_mount",
  325. XFS_ERRLEVEL_HIGH, mp);
  326. return XFS_ERROR(EFSCORRUPTED);
  327. }
  328. return 0;
  329. }
  330. STATIC void
  331. xlog_recover_iodone(
  332. struct xfs_buf *bp)
  333. {
  334. if (bp->b_error) {
  335. /*
  336. * We're not going to bother about retrying
  337. * this during recovery. One strike!
  338. */
  339. xfs_buf_ioerror_alert(bp, __func__);
  340. xfs_force_shutdown(bp->b_target->bt_mount,
  341. SHUTDOWN_META_IO_ERROR);
  342. }
  343. bp->b_iodone = NULL;
  344. xfs_buf_ioend(bp, 0);
  345. }
  346. /*
  347. * This routine finds (to an approximation) the first block in the physical
  348. * log which contains the given cycle. It uses a binary search algorithm.
  349. * Note that the algorithm can not be perfect because the disk will not
  350. * necessarily be perfect.
  351. */
  352. STATIC int
  353. xlog_find_cycle_start(
  354. struct xlog *log,
  355. struct xfs_buf *bp,
  356. xfs_daddr_t first_blk,
  357. xfs_daddr_t *last_blk,
  358. uint cycle)
  359. {
  360. xfs_caddr_t offset;
  361. xfs_daddr_t mid_blk;
  362. xfs_daddr_t end_blk;
  363. uint mid_cycle;
  364. int error;
  365. end_blk = *last_blk;
  366. mid_blk = BLK_AVG(first_blk, end_blk);
  367. while (mid_blk != first_blk && mid_blk != end_blk) {
  368. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  369. if (error)
  370. return error;
  371. mid_cycle = xlog_get_cycle(offset);
  372. if (mid_cycle == cycle)
  373. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  374. else
  375. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  376. mid_blk = BLK_AVG(first_blk, end_blk);
  377. }
  378. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  379. (mid_blk == end_blk && mid_blk-1 == first_blk));
  380. *last_blk = end_blk;
  381. return 0;
  382. }
  383. /*
  384. * Check that a range of blocks does not contain stop_on_cycle_no.
  385. * Fill in *new_blk with the block offset where such a block is
  386. * found, or with -1 (an invalid block number) if there is no such
  387. * block in the range. The scan needs to occur from front to back
  388. * and the pointer into the region must be updated since a later
  389. * routine will need to perform another test.
  390. */
  391. STATIC int
  392. xlog_find_verify_cycle(
  393. struct xlog *log,
  394. xfs_daddr_t start_blk,
  395. int nbblks,
  396. uint stop_on_cycle_no,
  397. xfs_daddr_t *new_blk)
  398. {
  399. xfs_daddr_t i, j;
  400. uint cycle;
  401. xfs_buf_t *bp;
  402. xfs_daddr_t bufblks;
  403. xfs_caddr_t buf = NULL;
  404. int error = 0;
  405. /*
  406. * Greedily allocate a buffer big enough to handle the full
  407. * range of basic blocks we'll be examining. If that fails,
  408. * try a smaller size. We need to be able to read at least
  409. * a log sector, or we're out of luck.
  410. */
  411. bufblks = 1 << ffs(nbblks);
  412. while (bufblks > log->l_logBBsize)
  413. bufblks >>= 1;
  414. while (!(bp = xlog_get_bp(log, bufblks))) {
  415. bufblks >>= 1;
  416. if (bufblks < log->l_sectBBsize)
  417. return ENOMEM;
  418. }
  419. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  420. int bcount;
  421. bcount = min(bufblks, (start_blk + nbblks - i));
  422. error = xlog_bread(log, i, bcount, bp, &buf);
  423. if (error)
  424. goto out;
  425. for (j = 0; j < bcount; j++) {
  426. cycle = xlog_get_cycle(buf);
  427. if (cycle == stop_on_cycle_no) {
  428. *new_blk = i+j;
  429. goto out;
  430. }
  431. buf += BBSIZE;
  432. }
  433. }
  434. *new_blk = -1;
  435. out:
  436. xlog_put_bp(bp);
  437. return error;
  438. }
  439. /*
  440. * Potentially backup over partial log record write.
  441. *
  442. * In the typical case, last_blk is the number of the block directly after
  443. * a good log record. Therefore, we subtract one to get the block number
  444. * of the last block in the given buffer. extra_bblks contains the number
  445. * of blocks we would have read on a previous read. This happens when the
  446. * last log record is split over the end of the physical log.
  447. *
  448. * extra_bblks is the number of blocks potentially verified on a previous
  449. * call to this routine.
  450. */
  451. STATIC int
  452. xlog_find_verify_log_record(
  453. struct xlog *log,
  454. xfs_daddr_t start_blk,
  455. xfs_daddr_t *last_blk,
  456. int extra_bblks)
  457. {
  458. xfs_daddr_t i;
  459. xfs_buf_t *bp;
  460. xfs_caddr_t offset = NULL;
  461. xlog_rec_header_t *head = NULL;
  462. int error = 0;
  463. int smallmem = 0;
  464. int num_blks = *last_blk - start_blk;
  465. int xhdrs;
  466. ASSERT(start_blk != 0 || *last_blk != start_blk);
  467. if (!(bp = xlog_get_bp(log, num_blks))) {
  468. if (!(bp = xlog_get_bp(log, 1)))
  469. return ENOMEM;
  470. smallmem = 1;
  471. } else {
  472. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  473. if (error)
  474. goto out;
  475. offset += ((num_blks - 1) << BBSHIFT);
  476. }
  477. for (i = (*last_blk) - 1; i >= 0; i--) {
  478. if (i < start_blk) {
  479. /* valid log record not found */
  480. xfs_warn(log->l_mp,
  481. "Log inconsistent (didn't find previous header)");
  482. ASSERT(0);
  483. error = XFS_ERROR(EIO);
  484. goto out;
  485. }
  486. if (smallmem) {
  487. error = xlog_bread(log, i, 1, bp, &offset);
  488. if (error)
  489. goto out;
  490. }
  491. head = (xlog_rec_header_t *)offset;
  492. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  493. break;
  494. if (!smallmem)
  495. offset -= BBSIZE;
  496. }
  497. /*
  498. * We hit the beginning of the physical log & still no header. Return
  499. * to caller. If caller can handle a return of -1, then this routine
  500. * will be called again for the end of the physical log.
  501. */
  502. if (i == -1) {
  503. error = -1;
  504. goto out;
  505. }
  506. /*
  507. * We have the final block of the good log (the first block
  508. * of the log record _before_ the head. So we check the uuid.
  509. */
  510. if ((error = xlog_header_check_mount(log->l_mp, head)))
  511. goto out;
  512. /*
  513. * We may have found a log record header before we expected one.
  514. * last_blk will be the 1st block # with a given cycle #. We may end
  515. * up reading an entire log record. In this case, we don't want to
  516. * reset last_blk. Only when last_blk points in the middle of a log
  517. * record do we update last_blk.
  518. */
  519. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  520. uint h_size = be32_to_cpu(head->h_size);
  521. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  522. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  523. xhdrs++;
  524. } else {
  525. xhdrs = 1;
  526. }
  527. if (*last_blk - i + extra_bblks !=
  528. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  529. *last_blk = i;
  530. out:
  531. xlog_put_bp(bp);
  532. return error;
  533. }
  534. /*
  535. * Head is defined to be the point of the log where the next log write
  536. * could go. This means that incomplete LR writes at the end are
  537. * eliminated when calculating the head. We aren't guaranteed that previous
  538. * LR have complete transactions. We only know that a cycle number of
  539. * current cycle number -1 won't be present in the log if we start writing
  540. * from our current block number.
  541. *
  542. * last_blk contains the block number of the first block with a given
  543. * cycle number.
  544. *
  545. * Return: zero if normal, non-zero if error.
  546. */
  547. STATIC int
  548. xlog_find_head(
  549. struct xlog *log,
  550. xfs_daddr_t *return_head_blk)
  551. {
  552. xfs_buf_t *bp;
  553. xfs_caddr_t offset;
  554. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  555. int num_scan_bblks;
  556. uint first_half_cycle, last_half_cycle;
  557. uint stop_on_cycle;
  558. int error, log_bbnum = log->l_logBBsize;
  559. /* Is the end of the log device zeroed? */
  560. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  561. *return_head_blk = first_blk;
  562. /* Is the whole lot zeroed? */
  563. if (!first_blk) {
  564. /* Linux XFS shouldn't generate totally zeroed logs -
  565. * mkfs etc write a dummy unmount record to a fresh
  566. * log so we can store the uuid in there
  567. */
  568. xfs_warn(log->l_mp, "totally zeroed log");
  569. }
  570. return 0;
  571. } else if (error) {
  572. xfs_warn(log->l_mp, "empty log check failed");
  573. return error;
  574. }
  575. first_blk = 0; /* get cycle # of 1st block */
  576. bp = xlog_get_bp(log, 1);
  577. if (!bp)
  578. return ENOMEM;
  579. error = xlog_bread(log, 0, 1, bp, &offset);
  580. if (error)
  581. goto bp_err;
  582. first_half_cycle = xlog_get_cycle(offset);
  583. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  584. error = xlog_bread(log, last_blk, 1, bp, &offset);
  585. if (error)
  586. goto bp_err;
  587. last_half_cycle = xlog_get_cycle(offset);
  588. ASSERT(last_half_cycle != 0);
  589. /*
  590. * If the 1st half cycle number is equal to the last half cycle number,
  591. * then the entire log is stamped with the same cycle number. In this
  592. * case, head_blk can't be set to zero (which makes sense). The below
  593. * math doesn't work out properly with head_blk equal to zero. Instead,
  594. * we set it to log_bbnum which is an invalid block number, but this
  595. * value makes the math correct. If head_blk doesn't changed through
  596. * all the tests below, *head_blk is set to zero at the very end rather
  597. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  598. * in a circular file.
  599. */
  600. if (first_half_cycle == last_half_cycle) {
  601. /*
  602. * In this case we believe that the entire log should have
  603. * cycle number last_half_cycle. We need to scan backwards
  604. * from the end verifying that there are no holes still
  605. * containing last_half_cycle - 1. If we find such a hole,
  606. * then the start of that hole will be the new head. The
  607. * simple case looks like
  608. * x | x ... | x - 1 | x
  609. * Another case that fits this picture would be
  610. * x | x + 1 | x ... | x
  611. * In this case the head really is somewhere at the end of the
  612. * log, as one of the latest writes at the beginning was
  613. * incomplete.
  614. * One more case is
  615. * x | x + 1 | x ... | x - 1 | x
  616. * This is really the combination of the above two cases, and
  617. * the head has to end up at the start of the x-1 hole at the
  618. * end of the log.
  619. *
  620. * In the 256k log case, we will read from the beginning to the
  621. * end of the log and search for cycle numbers equal to x-1.
  622. * We don't worry about the x+1 blocks that we encounter,
  623. * because we know that they cannot be the head since the log
  624. * started with x.
  625. */
  626. head_blk = log_bbnum;
  627. stop_on_cycle = last_half_cycle - 1;
  628. } else {
  629. /*
  630. * In this case we want to find the first block with cycle
  631. * number matching last_half_cycle. We expect the log to be
  632. * some variation on
  633. * x + 1 ... | x ... | x
  634. * The first block with cycle number x (last_half_cycle) will
  635. * be where the new head belongs. First we do a binary search
  636. * for the first occurrence of last_half_cycle. The binary
  637. * search may not be totally accurate, so then we scan back
  638. * from there looking for occurrences of last_half_cycle before
  639. * us. If that backwards scan wraps around the beginning of
  640. * the log, then we look for occurrences of last_half_cycle - 1
  641. * at the end of the log. The cases we're looking for look
  642. * like
  643. * v binary search stopped here
  644. * x + 1 ... | x | x + 1 | x ... | x
  645. * ^ but we want to locate this spot
  646. * or
  647. * <---------> less than scan distance
  648. * x + 1 ... | x ... | x - 1 | x
  649. * ^ we want to locate this spot
  650. */
  651. stop_on_cycle = last_half_cycle;
  652. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  653. &head_blk, last_half_cycle)))
  654. goto bp_err;
  655. }
  656. /*
  657. * Now validate the answer. Scan back some number of maximum possible
  658. * blocks and make sure each one has the expected cycle number. The
  659. * maximum is determined by the total possible amount of buffering
  660. * in the in-core log. The following number can be made tighter if
  661. * we actually look at the block size of the filesystem.
  662. */
  663. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  664. if (head_blk >= num_scan_bblks) {
  665. /*
  666. * We are guaranteed that the entire check can be performed
  667. * in one buffer.
  668. */
  669. start_blk = head_blk - num_scan_bblks;
  670. if ((error = xlog_find_verify_cycle(log,
  671. start_blk, num_scan_bblks,
  672. stop_on_cycle, &new_blk)))
  673. goto bp_err;
  674. if (new_blk != -1)
  675. head_blk = new_blk;
  676. } else { /* need to read 2 parts of log */
  677. /*
  678. * We are going to scan backwards in the log in two parts.
  679. * First we scan the physical end of the log. In this part
  680. * of the log, we are looking for blocks with cycle number
  681. * last_half_cycle - 1.
  682. * If we find one, then we know that the log starts there, as
  683. * we've found a hole that didn't get written in going around
  684. * the end of the physical log. The simple case for this is
  685. * x + 1 ... | x ... | x - 1 | x
  686. * <---------> less than scan distance
  687. * If all of the blocks at the end of the log have cycle number
  688. * last_half_cycle, then we check the blocks at the start of
  689. * the log looking for occurrences of last_half_cycle. If we
  690. * find one, then our current estimate for the location of the
  691. * first occurrence of last_half_cycle is wrong and we move
  692. * back to the hole we've found. This case looks like
  693. * x + 1 ... | x | x + 1 | x ...
  694. * ^ binary search stopped here
  695. * Another case we need to handle that only occurs in 256k
  696. * logs is
  697. * x + 1 ... | x ... | x+1 | x ...
  698. * ^ binary search stops here
  699. * In a 256k log, the scan at the end of the log will see the
  700. * x + 1 blocks. We need to skip past those since that is
  701. * certainly not the head of the log. By searching for
  702. * last_half_cycle-1 we accomplish that.
  703. */
  704. ASSERT(head_blk <= INT_MAX &&
  705. (xfs_daddr_t) num_scan_bblks >= head_blk);
  706. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  707. if ((error = xlog_find_verify_cycle(log, start_blk,
  708. num_scan_bblks - (int)head_blk,
  709. (stop_on_cycle - 1), &new_blk)))
  710. goto bp_err;
  711. if (new_blk != -1) {
  712. head_blk = new_blk;
  713. goto validate_head;
  714. }
  715. /*
  716. * Scan beginning of log now. The last part of the physical
  717. * log is good. This scan needs to verify that it doesn't find
  718. * the last_half_cycle.
  719. */
  720. start_blk = 0;
  721. ASSERT(head_blk <= INT_MAX);
  722. if ((error = xlog_find_verify_cycle(log,
  723. start_blk, (int)head_blk,
  724. stop_on_cycle, &new_blk)))
  725. goto bp_err;
  726. if (new_blk != -1)
  727. head_blk = new_blk;
  728. }
  729. validate_head:
  730. /*
  731. * Now we need to make sure head_blk is not pointing to a block in
  732. * the middle of a log record.
  733. */
  734. num_scan_bblks = XLOG_REC_SHIFT(log);
  735. if (head_blk >= num_scan_bblks) {
  736. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  737. /* start ptr at last block ptr before head_blk */
  738. if ((error = xlog_find_verify_log_record(log, start_blk,
  739. &head_blk, 0)) == -1) {
  740. error = XFS_ERROR(EIO);
  741. goto bp_err;
  742. } else if (error)
  743. goto bp_err;
  744. } else {
  745. start_blk = 0;
  746. ASSERT(head_blk <= INT_MAX);
  747. if ((error = xlog_find_verify_log_record(log, start_blk,
  748. &head_blk, 0)) == -1) {
  749. /* We hit the beginning of the log during our search */
  750. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  751. new_blk = log_bbnum;
  752. ASSERT(start_blk <= INT_MAX &&
  753. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  754. ASSERT(head_blk <= INT_MAX);
  755. if ((error = xlog_find_verify_log_record(log,
  756. start_blk, &new_blk,
  757. (int)head_blk)) == -1) {
  758. error = XFS_ERROR(EIO);
  759. goto bp_err;
  760. } else if (error)
  761. goto bp_err;
  762. if (new_blk != log_bbnum)
  763. head_blk = new_blk;
  764. } else if (error)
  765. goto bp_err;
  766. }
  767. xlog_put_bp(bp);
  768. if (head_blk == log_bbnum)
  769. *return_head_blk = 0;
  770. else
  771. *return_head_blk = head_blk;
  772. /*
  773. * When returning here, we have a good block number. Bad block
  774. * means that during a previous crash, we didn't have a clean break
  775. * from cycle number N to cycle number N-1. In this case, we need
  776. * to find the first block with cycle number N-1.
  777. */
  778. return 0;
  779. bp_err:
  780. xlog_put_bp(bp);
  781. if (error)
  782. xfs_warn(log->l_mp, "failed to find log head");
  783. return error;
  784. }
  785. /*
  786. * Find the sync block number or the tail of the log.
  787. *
  788. * This will be the block number of the last record to have its
  789. * associated buffers synced to disk. Every log record header has
  790. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  791. * to get a sync block number. The only concern is to figure out which
  792. * log record header to believe.
  793. *
  794. * The following algorithm uses the log record header with the largest
  795. * lsn. The entire log record does not need to be valid. We only care
  796. * that the header is valid.
  797. *
  798. * We could speed up search by using current head_blk buffer, but it is not
  799. * available.
  800. */
  801. STATIC int
  802. xlog_find_tail(
  803. struct xlog *log,
  804. xfs_daddr_t *head_blk,
  805. xfs_daddr_t *tail_blk)
  806. {
  807. xlog_rec_header_t *rhead;
  808. xlog_op_header_t *op_head;
  809. xfs_caddr_t offset = NULL;
  810. xfs_buf_t *bp;
  811. int error, i, found;
  812. xfs_daddr_t umount_data_blk;
  813. xfs_daddr_t after_umount_blk;
  814. xfs_lsn_t tail_lsn;
  815. int hblks;
  816. found = 0;
  817. /*
  818. * Find previous log record
  819. */
  820. if ((error = xlog_find_head(log, head_blk)))
  821. return error;
  822. bp = xlog_get_bp(log, 1);
  823. if (!bp)
  824. return ENOMEM;
  825. if (*head_blk == 0) { /* special case */
  826. error = xlog_bread(log, 0, 1, bp, &offset);
  827. if (error)
  828. goto done;
  829. if (xlog_get_cycle(offset) == 0) {
  830. *tail_blk = 0;
  831. /* leave all other log inited values alone */
  832. goto done;
  833. }
  834. }
  835. /*
  836. * Search backwards looking for log record header block
  837. */
  838. ASSERT(*head_blk < INT_MAX);
  839. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  840. error = xlog_bread(log, i, 1, bp, &offset);
  841. if (error)
  842. goto done;
  843. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  844. found = 1;
  845. break;
  846. }
  847. }
  848. /*
  849. * If we haven't found the log record header block, start looking
  850. * again from the end of the physical log. XXXmiken: There should be
  851. * a check here to make sure we didn't search more than N blocks in
  852. * the previous code.
  853. */
  854. if (!found) {
  855. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  856. error = xlog_bread(log, i, 1, bp, &offset);
  857. if (error)
  858. goto done;
  859. if (*(__be32 *)offset ==
  860. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  861. found = 2;
  862. break;
  863. }
  864. }
  865. }
  866. if (!found) {
  867. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  868. xlog_put_bp(bp);
  869. ASSERT(0);
  870. return XFS_ERROR(EIO);
  871. }
  872. /* find blk_no of tail of log */
  873. rhead = (xlog_rec_header_t *)offset;
  874. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  875. /*
  876. * Reset log values according to the state of the log when we
  877. * crashed. In the case where head_blk == 0, we bump curr_cycle
  878. * one because the next write starts a new cycle rather than
  879. * continuing the cycle of the last good log record. At this
  880. * point we have guaranteed that all partial log records have been
  881. * accounted for. Therefore, we know that the last good log record
  882. * written was complete and ended exactly on the end boundary
  883. * of the physical log.
  884. */
  885. log->l_prev_block = i;
  886. log->l_curr_block = (int)*head_blk;
  887. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  888. if (found == 2)
  889. log->l_curr_cycle++;
  890. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  891. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  892. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  893. BBTOB(log->l_curr_block));
  894. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  895. BBTOB(log->l_curr_block));
  896. /*
  897. * Look for unmount record. If we find it, then we know there
  898. * was a clean unmount. Since 'i' could be the last block in
  899. * the physical log, we convert to a log block before comparing
  900. * to the head_blk.
  901. *
  902. * Save the current tail lsn to use to pass to
  903. * xlog_clear_stale_blocks() below. We won't want to clear the
  904. * unmount record if there is one, so we pass the lsn of the
  905. * unmount record rather than the block after it.
  906. */
  907. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  908. int h_size = be32_to_cpu(rhead->h_size);
  909. int h_version = be32_to_cpu(rhead->h_version);
  910. if ((h_version & XLOG_VERSION_2) &&
  911. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  912. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  913. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  914. hblks++;
  915. } else {
  916. hblks = 1;
  917. }
  918. } else {
  919. hblks = 1;
  920. }
  921. after_umount_blk = (i + hblks + (int)
  922. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  923. tail_lsn = atomic64_read(&log->l_tail_lsn);
  924. if (*head_blk == after_umount_blk &&
  925. be32_to_cpu(rhead->h_num_logops) == 1) {
  926. umount_data_blk = (i + hblks) % log->l_logBBsize;
  927. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  928. if (error)
  929. goto done;
  930. op_head = (xlog_op_header_t *)offset;
  931. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  932. /*
  933. * Set tail and last sync so that newly written
  934. * log records will point recovery to after the
  935. * current unmount record.
  936. */
  937. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  938. log->l_curr_cycle, after_umount_blk);
  939. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  940. log->l_curr_cycle, after_umount_blk);
  941. *tail_blk = after_umount_blk;
  942. /*
  943. * Note that the unmount was clean. If the unmount
  944. * was not clean, we need to know this to rebuild the
  945. * superblock counters from the perag headers if we
  946. * have a filesystem using non-persistent counters.
  947. */
  948. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  949. }
  950. }
  951. /*
  952. * Make sure that there are no blocks in front of the head
  953. * with the same cycle number as the head. This can happen
  954. * because we allow multiple outstanding log writes concurrently,
  955. * and the later writes might make it out before earlier ones.
  956. *
  957. * We use the lsn from before modifying it so that we'll never
  958. * overwrite the unmount record after a clean unmount.
  959. *
  960. * Do this only if we are going to recover the filesystem
  961. *
  962. * NOTE: This used to say "if (!readonly)"
  963. * However on Linux, we can & do recover a read-only filesystem.
  964. * We only skip recovery if NORECOVERY is specified on mount,
  965. * in which case we would not be here.
  966. *
  967. * But... if the -device- itself is readonly, just skip this.
  968. * We can't recover this device anyway, so it won't matter.
  969. */
  970. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  971. error = xlog_clear_stale_blocks(log, tail_lsn);
  972. done:
  973. xlog_put_bp(bp);
  974. if (error)
  975. xfs_warn(log->l_mp, "failed to locate log tail");
  976. return error;
  977. }
  978. /*
  979. * Is the log zeroed at all?
  980. *
  981. * The last binary search should be changed to perform an X block read
  982. * once X becomes small enough. You can then search linearly through
  983. * the X blocks. This will cut down on the number of reads we need to do.
  984. *
  985. * If the log is partially zeroed, this routine will pass back the blkno
  986. * of the first block with cycle number 0. It won't have a complete LR
  987. * preceding it.
  988. *
  989. * Return:
  990. * 0 => the log is completely written to
  991. * -1 => use *blk_no as the first block of the log
  992. * >0 => error has occurred
  993. */
  994. STATIC int
  995. xlog_find_zeroed(
  996. struct xlog *log,
  997. xfs_daddr_t *blk_no)
  998. {
  999. xfs_buf_t *bp;
  1000. xfs_caddr_t offset;
  1001. uint first_cycle, last_cycle;
  1002. xfs_daddr_t new_blk, last_blk, start_blk;
  1003. xfs_daddr_t num_scan_bblks;
  1004. int error, log_bbnum = log->l_logBBsize;
  1005. *blk_no = 0;
  1006. /* check totally zeroed log */
  1007. bp = xlog_get_bp(log, 1);
  1008. if (!bp)
  1009. return ENOMEM;
  1010. error = xlog_bread(log, 0, 1, bp, &offset);
  1011. if (error)
  1012. goto bp_err;
  1013. first_cycle = xlog_get_cycle(offset);
  1014. if (first_cycle == 0) { /* completely zeroed log */
  1015. *blk_no = 0;
  1016. xlog_put_bp(bp);
  1017. return -1;
  1018. }
  1019. /* check partially zeroed log */
  1020. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1021. if (error)
  1022. goto bp_err;
  1023. last_cycle = xlog_get_cycle(offset);
  1024. if (last_cycle != 0) { /* log completely written to */
  1025. xlog_put_bp(bp);
  1026. return 0;
  1027. } else if (first_cycle != 1) {
  1028. /*
  1029. * If the cycle of the last block is zero, the cycle of
  1030. * the first block must be 1. If it's not, maybe we're
  1031. * not looking at a log... Bail out.
  1032. */
  1033. xfs_warn(log->l_mp,
  1034. "Log inconsistent or not a log (last==0, first!=1)");
  1035. error = XFS_ERROR(EINVAL);
  1036. goto bp_err;
  1037. }
  1038. /* we have a partially zeroed log */
  1039. last_blk = log_bbnum-1;
  1040. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1041. goto bp_err;
  1042. /*
  1043. * Validate the answer. Because there is no way to guarantee that
  1044. * the entire log is made up of log records which are the same size,
  1045. * we scan over the defined maximum blocks. At this point, the maximum
  1046. * is not chosen to mean anything special. XXXmiken
  1047. */
  1048. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1049. ASSERT(num_scan_bblks <= INT_MAX);
  1050. if (last_blk < num_scan_bblks)
  1051. num_scan_bblks = last_blk;
  1052. start_blk = last_blk - num_scan_bblks;
  1053. /*
  1054. * We search for any instances of cycle number 0 that occur before
  1055. * our current estimate of the head. What we're trying to detect is
  1056. * 1 ... | 0 | 1 | 0...
  1057. * ^ binary search ends here
  1058. */
  1059. if ((error = xlog_find_verify_cycle(log, start_blk,
  1060. (int)num_scan_bblks, 0, &new_blk)))
  1061. goto bp_err;
  1062. if (new_blk != -1)
  1063. last_blk = new_blk;
  1064. /*
  1065. * Potentially backup over partial log record write. We don't need
  1066. * to search the end of the log because we know it is zero.
  1067. */
  1068. if ((error = xlog_find_verify_log_record(log, start_blk,
  1069. &last_blk, 0)) == -1) {
  1070. error = XFS_ERROR(EIO);
  1071. goto bp_err;
  1072. } else if (error)
  1073. goto bp_err;
  1074. *blk_no = last_blk;
  1075. bp_err:
  1076. xlog_put_bp(bp);
  1077. if (error)
  1078. return error;
  1079. return -1;
  1080. }
  1081. /*
  1082. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1083. * to initialize a buffer full of empty log record headers and write
  1084. * them into the log.
  1085. */
  1086. STATIC void
  1087. xlog_add_record(
  1088. struct xlog *log,
  1089. xfs_caddr_t buf,
  1090. int cycle,
  1091. int block,
  1092. int tail_cycle,
  1093. int tail_block)
  1094. {
  1095. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1096. memset(buf, 0, BBSIZE);
  1097. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1098. recp->h_cycle = cpu_to_be32(cycle);
  1099. recp->h_version = cpu_to_be32(
  1100. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1101. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1102. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1103. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1104. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1105. }
  1106. STATIC int
  1107. xlog_write_log_records(
  1108. struct xlog *log,
  1109. int cycle,
  1110. int start_block,
  1111. int blocks,
  1112. int tail_cycle,
  1113. int tail_block)
  1114. {
  1115. xfs_caddr_t offset;
  1116. xfs_buf_t *bp;
  1117. int balign, ealign;
  1118. int sectbb = log->l_sectBBsize;
  1119. int end_block = start_block + blocks;
  1120. int bufblks;
  1121. int error = 0;
  1122. int i, j = 0;
  1123. /*
  1124. * Greedily allocate a buffer big enough to handle the full
  1125. * range of basic blocks to be written. If that fails, try
  1126. * a smaller size. We need to be able to write at least a
  1127. * log sector, or we're out of luck.
  1128. */
  1129. bufblks = 1 << ffs(blocks);
  1130. while (bufblks > log->l_logBBsize)
  1131. bufblks >>= 1;
  1132. while (!(bp = xlog_get_bp(log, bufblks))) {
  1133. bufblks >>= 1;
  1134. if (bufblks < sectbb)
  1135. return ENOMEM;
  1136. }
  1137. /* We may need to do a read at the start to fill in part of
  1138. * the buffer in the starting sector not covered by the first
  1139. * write below.
  1140. */
  1141. balign = round_down(start_block, sectbb);
  1142. if (balign != start_block) {
  1143. error = xlog_bread_noalign(log, start_block, 1, bp);
  1144. if (error)
  1145. goto out_put_bp;
  1146. j = start_block - balign;
  1147. }
  1148. for (i = start_block; i < end_block; i += bufblks) {
  1149. int bcount, endcount;
  1150. bcount = min(bufblks, end_block - start_block);
  1151. endcount = bcount - j;
  1152. /* We may need to do a read at the end to fill in part of
  1153. * the buffer in the final sector not covered by the write.
  1154. * If this is the same sector as the above read, skip it.
  1155. */
  1156. ealign = round_down(end_block, sectbb);
  1157. if (j == 0 && (start_block + endcount > ealign)) {
  1158. offset = bp->b_addr + BBTOB(ealign - start_block);
  1159. error = xlog_bread_offset(log, ealign, sectbb,
  1160. bp, offset);
  1161. if (error)
  1162. break;
  1163. }
  1164. offset = xlog_align(log, start_block, endcount, bp);
  1165. for (; j < endcount; j++) {
  1166. xlog_add_record(log, offset, cycle, i+j,
  1167. tail_cycle, tail_block);
  1168. offset += BBSIZE;
  1169. }
  1170. error = xlog_bwrite(log, start_block, endcount, bp);
  1171. if (error)
  1172. break;
  1173. start_block += endcount;
  1174. j = 0;
  1175. }
  1176. out_put_bp:
  1177. xlog_put_bp(bp);
  1178. return error;
  1179. }
  1180. /*
  1181. * This routine is called to blow away any incomplete log writes out
  1182. * in front of the log head. We do this so that we won't become confused
  1183. * if we come up, write only a little bit more, and then crash again.
  1184. * If we leave the partial log records out there, this situation could
  1185. * cause us to think those partial writes are valid blocks since they
  1186. * have the current cycle number. We get rid of them by overwriting them
  1187. * with empty log records with the old cycle number rather than the
  1188. * current one.
  1189. *
  1190. * The tail lsn is passed in rather than taken from
  1191. * the log so that we will not write over the unmount record after a
  1192. * clean unmount in a 512 block log. Doing so would leave the log without
  1193. * any valid log records in it until a new one was written. If we crashed
  1194. * during that time we would not be able to recover.
  1195. */
  1196. STATIC int
  1197. xlog_clear_stale_blocks(
  1198. struct xlog *log,
  1199. xfs_lsn_t tail_lsn)
  1200. {
  1201. int tail_cycle, head_cycle;
  1202. int tail_block, head_block;
  1203. int tail_distance, max_distance;
  1204. int distance;
  1205. int error;
  1206. tail_cycle = CYCLE_LSN(tail_lsn);
  1207. tail_block = BLOCK_LSN(tail_lsn);
  1208. head_cycle = log->l_curr_cycle;
  1209. head_block = log->l_curr_block;
  1210. /*
  1211. * Figure out the distance between the new head of the log
  1212. * and the tail. We want to write over any blocks beyond the
  1213. * head that we may have written just before the crash, but
  1214. * we don't want to overwrite the tail of the log.
  1215. */
  1216. if (head_cycle == tail_cycle) {
  1217. /*
  1218. * The tail is behind the head in the physical log,
  1219. * so the distance from the head to the tail is the
  1220. * distance from the head to the end of the log plus
  1221. * the distance from the beginning of the log to the
  1222. * tail.
  1223. */
  1224. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1225. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1226. XFS_ERRLEVEL_LOW, log->l_mp);
  1227. return XFS_ERROR(EFSCORRUPTED);
  1228. }
  1229. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1230. } else {
  1231. /*
  1232. * The head is behind the tail in the physical log,
  1233. * so the distance from the head to the tail is just
  1234. * the tail block minus the head block.
  1235. */
  1236. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1237. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1238. XFS_ERRLEVEL_LOW, log->l_mp);
  1239. return XFS_ERROR(EFSCORRUPTED);
  1240. }
  1241. tail_distance = tail_block - head_block;
  1242. }
  1243. /*
  1244. * If the head is right up against the tail, we can't clear
  1245. * anything.
  1246. */
  1247. if (tail_distance <= 0) {
  1248. ASSERT(tail_distance == 0);
  1249. return 0;
  1250. }
  1251. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1252. /*
  1253. * Take the smaller of the maximum amount of outstanding I/O
  1254. * we could have and the distance to the tail to clear out.
  1255. * We take the smaller so that we don't overwrite the tail and
  1256. * we don't waste all day writing from the head to the tail
  1257. * for no reason.
  1258. */
  1259. max_distance = MIN(max_distance, tail_distance);
  1260. if ((head_block + max_distance) <= log->l_logBBsize) {
  1261. /*
  1262. * We can stomp all the blocks we need to without
  1263. * wrapping around the end of the log. Just do it
  1264. * in a single write. Use the cycle number of the
  1265. * current cycle minus one so that the log will look like:
  1266. * n ... | n - 1 ...
  1267. */
  1268. error = xlog_write_log_records(log, (head_cycle - 1),
  1269. head_block, max_distance, tail_cycle,
  1270. tail_block);
  1271. if (error)
  1272. return error;
  1273. } else {
  1274. /*
  1275. * We need to wrap around the end of the physical log in
  1276. * order to clear all the blocks. Do it in two separate
  1277. * I/Os. The first write should be from the head to the
  1278. * end of the physical log, and it should use the current
  1279. * cycle number minus one just like above.
  1280. */
  1281. distance = log->l_logBBsize - head_block;
  1282. error = xlog_write_log_records(log, (head_cycle - 1),
  1283. head_block, distance, tail_cycle,
  1284. tail_block);
  1285. if (error)
  1286. return error;
  1287. /*
  1288. * Now write the blocks at the start of the physical log.
  1289. * This writes the remainder of the blocks we want to clear.
  1290. * It uses the current cycle number since we're now on the
  1291. * same cycle as the head so that we get:
  1292. * n ... n ... | n - 1 ...
  1293. * ^^^^^ blocks we're writing
  1294. */
  1295. distance = max_distance - (log->l_logBBsize - head_block);
  1296. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1297. tail_cycle, tail_block);
  1298. if (error)
  1299. return error;
  1300. }
  1301. return 0;
  1302. }
  1303. /******************************************************************************
  1304. *
  1305. * Log recover routines
  1306. *
  1307. ******************************************************************************
  1308. */
  1309. STATIC xlog_recover_t *
  1310. xlog_recover_find_tid(
  1311. struct hlist_head *head,
  1312. xlog_tid_t tid)
  1313. {
  1314. xlog_recover_t *trans;
  1315. hlist_for_each_entry(trans, head, r_list) {
  1316. if (trans->r_log_tid == tid)
  1317. return trans;
  1318. }
  1319. return NULL;
  1320. }
  1321. STATIC void
  1322. xlog_recover_new_tid(
  1323. struct hlist_head *head,
  1324. xlog_tid_t tid,
  1325. xfs_lsn_t lsn)
  1326. {
  1327. xlog_recover_t *trans;
  1328. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1329. trans->r_log_tid = tid;
  1330. trans->r_lsn = lsn;
  1331. INIT_LIST_HEAD(&trans->r_itemq);
  1332. INIT_HLIST_NODE(&trans->r_list);
  1333. hlist_add_head(&trans->r_list, head);
  1334. }
  1335. STATIC void
  1336. xlog_recover_add_item(
  1337. struct list_head *head)
  1338. {
  1339. xlog_recover_item_t *item;
  1340. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1341. INIT_LIST_HEAD(&item->ri_list);
  1342. list_add_tail(&item->ri_list, head);
  1343. }
  1344. STATIC int
  1345. xlog_recover_add_to_cont_trans(
  1346. struct xlog *log,
  1347. struct xlog_recover *trans,
  1348. xfs_caddr_t dp,
  1349. int len)
  1350. {
  1351. xlog_recover_item_t *item;
  1352. xfs_caddr_t ptr, old_ptr;
  1353. int old_len;
  1354. if (list_empty(&trans->r_itemq)) {
  1355. /* finish copying rest of trans header */
  1356. xlog_recover_add_item(&trans->r_itemq);
  1357. ptr = (xfs_caddr_t) &trans->r_theader +
  1358. sizeof(xfs_trans_header_t) - len;
  1359. memcpy(ptr, dp, len); /* d, s, l */
  1360. return 0;
  1361. }
  1362. /* take the tail entry */
  1363. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1364. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1365. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1366. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1367. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1368. item->ri_buf[item->ri_cnt-1].i_len += len;
  1369. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1370. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1371. return 0;
  1372. }
  1373. /*
  1374. * The next region to add is the start of a new region. It could be
  1375. * a whole region or it could be the first part of a new region. Because
  1376. * of this, the assumption here is that the type and size fields of all
  1377. * format structures fit into the first 32 bits of the structure.
  1378. *
  1379. * This works because all regions must be 32 bit aligned. Therefore, we
  1380. * either have both fields or we have neither field. In the case we have
  1381. * neither field, the data part of the region is zero length. We only have
  1382. * a log_op_header and can throw away the header since a new one will appear
  1383. * later. If we have at least 4 bytes, then we can determine how many regions
  1384. * will appear in the current log item.
  1385. */
  1386. STATIC int
  1387. xlog_recover_add_to_trans(
  1388. struct xlog *log,
  1389. struct xlog_recover *trans,
  1390. xfs_caddr_t dp,
  1391. int len)
  1392. {
  1393. xfs_inode_log_format_t *in_f; /* any will do */
  1394. xlog_recover_item_t *item;
  1395. xfs_caddr_t ptr;
  1396. if (!len)
  1397. return 0;
  1398. if (list_empty(&trans->r_itemq)) {
  1399. /* we need to catch log corruptions here */
  1400. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1401. xfs_warn(log->l_mp, "%s: bad header magic number",
  1402. __func__);
  1403. ASSERT(0);
  1404. return XFS_ERROR(EIO);
  1405. }
  1406. if (len == sizeof(xfs_trans_header_t))
  1407. xlog_recover_add_item(&trans->r_itemq);
  1408. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1409. return 0;
  1410. }
  1411. ptr = kmem_alloc(len, KM_SLEEP);
  1412. memcpy(ptr, dp, len);
  1413. in_f = (xfs_inode_log_format_t *)ptr;
  1414. /* take the tail entry */
  1415. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1416. if (item->ri_total != 0 &&
  1417. item->ri_total == item->ri_cnt) {
  1418. /* tail item is in use, get a new one */
  1419. xlog_recover_add_item(&trans->r_itemq);
  1420. item = list_entry(trans->r_itemq.prev,
  1421. xlog_recover_item_t, ri_list);
  1422. }
  1423. if (item->ri_total == 0) { /* first region to be added */
  1424. if (in_f->ilf_size == 0 ||
  1425. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1426. xfs_warn(log->l_mp,
  1427. "bad number of regions (%d) in inode log format",
  1428. in_f->ilf_size);
  1429. ASSERT(0);
  1430. kmem_free(ptr);
  1431. return XFS_ERROR(EIO);
  1432. }
  1433. item->ri_total = in_f->ilf_size;
  1434. item->ri_buf =
  1435. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1436. KM_SLEEP);
  1437. }
  1438. ASSERT(item->ri_total > item->ri_cnt);
  1439. /* Description region is ri_buf[0] */
  1440. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1441. item->ri_buf[item->ri_cnt].i_len = len;
  1442. item->ri_cnt++;
  1443. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1444. return 0;
  1445. }
  1446. /*
  1447. * Sort the log items in the transaction.
  1448. *
  1449. * The ordering constraints are defined by the inode allocation and unlink
  1450. * behaviour. The rules are:
  1451. *
  1452. * 1. Every item is only logged once in a given transaction. Hence it
  1453. * represents the last logged state of the item. Hence ordering is
  1454. * dependent on the order in which operations need to be performed so
  1455. * required initial conditions are always met.
  1456. *
  1457. * 2. Cancelled buffers are recorded in pass 1 in a separate table and
  1458. * there's nothing to replay from them so we can simply cull them
  1459. * from the transaction. However, we can't do that until after we've
  1460. * replayed all the other items because they may be dependent on the
  1461. * cancelled buffer and replaying the cancelled buffer can remove it
  1462. * form the cancelled buffer table. Hence they have tobe done last.
  1463. *
  1464. * 3. Inode allocation buffers must be replayed before inode items that
  1465. * read the buffer and replay changes into it. For filesystems using the
  1466. * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
  1467. * treated the same as inode allocation buffers as they create and
  1468. * initialise the buffers directly.
  1469. *
  1470. * 4. Inode unlink buffers must be replayed after inode items are replayed.
  1471. * This ensures that inodes are completely flushed to the inode buffer
  1472. * in a "free" state before we remove the unlinked inode list pointer.
  1473. *
  1474. * Hence the ordering needs to be inode allocation buffers first, inode items
  1475. * second, inode unlink buffers third and cancelled buffers last.
  1476. *
  1477. * But there's a problem with that - we can't tell an inode allocation buffer
  1478. * apart from a regular buffer, so we can't separate them. We can, however,
  1479. * tell an inode unlink buffer from the others, and so we can separate them out
  1480. * from all the other buffers and move them to last.
  1481. *
  1482. * Hence, 4 lists, in order from head to tail:
  1483. * - buffer_list for all buffers except cancelled/inode unlink buffers
  1484. * - item_list for all non-buffer items
  1485. * - inode_buffer_list for inode unlink buffers
  1486. * - cancel_list for the cancelled buffers
  1487. *
  1488. * Note that we add objects to the tail of the lists so that first-to-last
  1489. * ordering is preserved within the lists. Adding objects to the head of the
  1490. * list means when we traverse from the head we walk them in last-to-first
  1491. * order. For cancelled buffers and inode unlink buffers this doesn't matter,
  1492. * but for all other items there may be specific ordering that we need to
  1493. * preserve.
  1494. */
  1495. STATIC int
  1496. xlog_recover_reorder_trans(
  1497. struct xlog *log,
  1498. struct xlog_recover *trans,
  1499. int pass)
  1500. {
  1501. xlog_recover_item_t *item, *n;
  1502. LIST_HEAD(sort_list);
  1503. LIST_HEAD(cancel_list);
  1504. LIST_HEAD(buffer_list);
  1505. LIST_HEAD(inode_buffer_list);
  1506. LIST_HEAD(inode_list);
  1507. list_splice_init(&trans->r_itemq, &sort_list);
  1508. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1509. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1510. switch (ITEM_TYPE(item)) {
  1511. case XFS_LI_ICREATE:
  1512. list_move_tail(&item->ri_list, &buffer_list);
  1513. break;
  1514. case XFS_LI_BUF:
  1515. if (buf_f->blf_flags & XFS_BLF_CANCEL) {
  1516. trace_xfs_log_recover_item_reorder_head(log,
  1517. trans, item, pass);
  1518. list_move(&item->ri_list, &cancel_list);
  1519. break;
  1520. }
  1521. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1522. list_move(&item->ri_list, &inode_buffer_list);
  1523. break;
  1524. }
  1525. list_move_tail(&item->ri_list, &buffer_list);
  1526. break;
  1527. case XFS_LI_INODE:
  1528. case XFS_LI_DQUOT:
  1529. case XFS_LI_QUOTAOFF:
  1530. case XFS_LI_EFD:
  1531. case XFS_LI_EFI:
  1532. trace_xfs_log_recover_item_reorder_tail(log,
  1533. trans, item, pass);
  1534. list_move_tail(&item->ri_list, &inode_list);
  1535. break;
  1536. default:
  1537. xfs_warn(log->l_mp,
  1538. "%s: unrecognized type of log operation",
  1539. __func__);
  1540. ASSERT(0);
  1541. return XFS_ERROR(EIO);
  1542. }
  1543. }
  1544. ASSERT(list_empty(&sort_list));
  1545. if (!list_empty(&buffer_list))
  1546. list_splice(&buffer_list, &trans->r_itemq);
  1547. if (!list_empty(&inode_list))
  1548. list_splice_tail(&inode_list, &trans->r_itemq);
  1549. if (!list_empty(&inode_buffer_list))
  1550. list_splice_tail(&inode_buffer_list, &trans->r_itemq);
  1551. if (!list_empty(&cancel_list))
  1552. list_splice_tail(&cancel_list, &trans->r_itemq);
  1553. return 0;
  1554. }
  1555. /*
  1556. * Build up the table of buf cancel records so that we don't replay
  1557. * cancelled data in the second pass. For buffer records that are
  1558. * not cancel records, there is nothing to do here so we just return.
  1559. *
  1560. * If we get a cancel record which is already in the table, this indicates
  1561. * that the buffer was cancelled multiple times. In order to ensure
  1562. * that during pass 2 we keep the record in the table until we reach its
  1563. * last occurrence in the log, we keep a reference count in the cancel
  1564. * record in the table to tell us how many times we expect to see this
  1565. * record during the second pass.
  1566. */
  1567. STATIC int
  1568. xlog_recover_buffer_pass1(
  1569. struct xlog *log,
  1570. struct xlog_recover_item *item)
  1571. {
  1572. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1573. struct list_head *bucket;
  1574. struct xfs_buf_cancel *bcp;
  1575. /*
  1576. * If this isn't a cancel buffer item, then just return.
  1577. */
  1578. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1579. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1580. return 0;
  1581. }
  1582. /*
  1583. * Insert an xfs_buf_cancel record into the hash table of them.
  1584. * If there is already an identical record, bump its reference count.
  1585. */
  1586. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1587. list_for_each_entry(bcp, bucket, bc_list) {
  1588. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1589. bcp->bc_len == buf_f->blf_len) {
  1590. bcp->bc_refcount++;
  1591. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1592. return 0;
  1593. }
  1594. }
  1595. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1596. bcp->bc_blkno = buf_f->blf_blkno;
  1597. bcp->bc_len = buf_f->blf_len;
  1598. bcp->bc_refcount = 1;
  1599. list_add_tail(&bcp->bc_list, bucket);
  1600. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1601. return 0;
  1602. }
  1603. /*
  1604. * Check to see whether the buffer being recovered has a corresponding
  1605. * entry in the buffer cancel record table. If it is, return the cancel
  1606. * buffer structure to the caller.
  1607. */
  1608. STATIC struct xfs_buf_cancel *
  1609. xlog_peek_buffer_cancelled(
  1610. struct xlog *log,
  1611. xfs_daddr_t blkno,
  1612. uint len,
  1613. ushort flags)
  1614. {
  1615. struct list_head *bucket;
  1616. struct xfs_buf_cancel *bcp;
  1617. if (!log->l_buf_cancel_table) {
  1618. /* empty table means no cancelled buffers in the log */
  1619. ASSERT(!(flags & XFS_BLF_CANCEL));
  1620. return NULL;
  1621. }
  1622. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1623. list_for_each_entry(bcp, bucket, bc_list) {
  1624. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1625. return bcp;
  1626. }
  1627. /*
  1628. * We didn't find a corresponding entry in the table, so return 0 so
  1629. * that the buffer is NOT cancelled.
  1630. */
  1631. ASSERT(!(flags & XFS_BLF_CANCEL));
  1632. return NULL;
  1633. }
  1634. /*
  1635. * If the buffer is being cancelled then return 1 so that it will be cancelled,
  1636. * otherwise return 0. If the buffer is actually a buffer cancel item
  1637. * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
  1638. * table and remove it from the table if this is the last reference.
  1639. *
  1640. * We remove the cancel record from the table when we encounter its last
  1641. * occurrence in the log so that if the same buffer is re-used again after its
  1642. * last cancellation we actually replay the changes made at that point.
  1643. */
  1644. STATIC int
  1645. xlog_check_buffer_cancelled(
  1646. struct xlog *log,
  1647. xfs_daddr_t blkno,
  1648. uint len,
  1649. ushort flags)
  1650. {
  1651. struct xfs_buf_cancel *bcp;
  1652. bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
  1653. if (!bcp)
  1654. return 0;
  1655. /*
  1656. * We've go a match, so return 1 so that the recovery of this buffer
  1657. * is cancelled. If this buffer is actually a buffer cancel log
  1658. * item, then decrement the refcount on the one in the table and
  1659. * remove it if this is the last reference.
  1660. */
  1661. if (flags & XFS_BLF_CANCEL) {
  1662. if (--bcp->bc_refcount == 0) {
  1663. list_del(&bcp->bc_list);
  1664. kmem_free(bcp);
  1665. }
  1666. }
  1667. return 1;
  1668. }
  1669. /*
  1670. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1671. * data which should be recovered is that which corresponds to the
  1672. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1673. * data for the inodes is always logged through the inodes themselves rather
  1674. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1675. *
  1676. * The only time when buffers full of inodes are fully recovered is when the
  1677. * buffer is full of newly allocated inodes. In this case the buffer will
  1678. * not be marked as an inode buffer and so will be sent to
  1679. * xlog_recover_do_reg_buffer() below during recovery.
  1680. */
  1681. STATIC int
  1682. xlog_recover_do_inode_buffer(
  1683. struct xfs_mount *mp,
  1684. xlog_recover_item_t *item,
  1685. struct xfs_buf *bp,
  1686. xfs_buf_log_format_t *buf_f)
  1687. {
  1688. int i;
  1689. int item_index = 0;
  1690. int bit = 0;
  1691. int nbits = 0;
  1692. int reg_buf_offset = 0;
  1693. int reg_buf_bytes = 0;
  1694. int next_unlinked_offset;
  1695. int inodes_per_buf;
  1696. xfs_agino_t *logged_nextp;
  1697. xfs_agino_t *buffer_nextp;
  1698. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1699. /*
  1700. * Post recovery validation only works properly on CRC enabled
  1701. * filesystems.
  1702. */
  1703. if (xfs_sb_version_hascrc(&mp->m_sb))
  1704. bp->b_ops = &xfs_inode_buf_ops;
  1705. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1706. for (i = 0; i < inodes_per_buf; i++) {
  1707. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1708. offsetof(xfs_dinode_t, di_next_unlinked);
  1709. while (next_unlinked_offset >=
  1710. (reg_buf_offset + reg_buf_bytes)) {
  1711. /*
  1712. * The next di_next_unlinked field is beyond
  1713. * the current logged region. Find the next
  1714. * logged region that contains or is beyond
  1715. * the current di_next_unlinked field.
  1716. */
  1717. bit += nbits;
  1718. bit = xfs_next_bit(buf_f->blf_data_map,
  1719. buf_f->blf_map_size, bit);
  1720. /*
  1721. * If there are no more logged regions in the
  1722. * buffer, then we're done.
  1723. */
  1724. if (bit == -1)
  1725. return 0;
  1726. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1727. buf_f->blf_map_size, bit);
  1728. ASSERT(nbits > 0);
  1729. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1730. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1731. item_index++;
  1732. }
  1733. /*
  1734. * If the current logged region starts after the current
  1735. * di_next_unlinked field, then move on to the next
  1736. * di_next_unlinked field.
  1737. */
  1738. if (next_unlinked_offset < reg_buf_offset)
  1739. continue;
  1740. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1741. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1742. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1743. BBTOB(bp->b_io_length));
  1744. /*
  1745. * The current logged region contains a copy of the
  1746. * current di_next_unlinked field. Extract its value
  1747. * and copy it to the buffer copy.
  1748. */
  1749. logged_nextp = item->ri_buf[item_index].i_addr +
  1750. next_unlinked_offset - reg_buf_offset;
  1751. if (unlikely(*logged_nextp == 0)) {
  1752. xfs_alert(mp,
  1753. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1754. "Trying to replay bad (0) inode di_next_unlinked field.",
  1755. item, bp);
  1756. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1757. XFS_ERRLEVEL_LOW, mp);
  1758. return XFS_ERROR(EFSCORRUPTED);
  1759. }
  1760. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1761. next_unlinked_offset);
  1762. *buffer_nextp = *logged_nextp;
  1763. /*
  1764. * If necessary, recalculate the CRC in the on-disk inode. We
  1765. * have to leave the inode in a consistent state for whoever
  1766. * reads it next....
  1767. */
  1768. xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
  1769. xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
  1770. }
  1771. return 0;
  1772. }
  1773. /*
  1774. * V5 filesystems know the age of the buffer on disk being recovered. We can
  1775. * have newer objects on disk than we are replaying, and so for these cases we
  1776. * don't want to replay the current change as that will make the buffer contents
  1777. * temporarily invalid on disk.
  1778. *
  1779. * The magic number might not match the buffer type we are going to recover
  1780. * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
  1781. * extract the LSN of the existing object in the buffer based on it's current
  1782. * magic number. If we don't recognise the magic number in the buffer, then
  1783. * return a LSN of -1 so that the caller knows it was an unrecognised block and
  1784. * so can recover the buffer.
  1785. *
  1786. * Note: we cannot rely solely on magic number matches to determine that the
  1787. * buffer has a valid LSN - we also need to verify that it belongs to this
  1788. * filesystem, so we need to extract the object's LSN and compare it to that
  1789. * which we read from the superblock. If the UUIDs don't match, then we've got a
  1790. * stale metadata block from an old filesystem instance that we need to recover
  1791. * over the top of.
  1792. */
  1793. static xfs_lsn_t
  1794. xlog_recover_get_buf_lsn(
  1795. struct xfs_mount *mp,
  1796. struct xfs_buf *bp)
  1797. {
  1798. __uint32_t magic32;
  1799. __uint16_t magic16;
  1800. __uint16_t magicda;
  1801. void *blk = bp->b_addr;
  1802. uuid_t *uuid;
  1803. xfs_lsn_t lsn = -1;
  1804. /* v4 filesystems always recover immediately */
  1805. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1806. goto recover_immediately;
  1807. magic32 = be32_to_cpu(*(__be32 *)blk);
  1808. switch (magic32) {
  1809. case XFS_ABTB_CRC_MAGIC:
  1810. case XFS_ABTC_CRC_MAGIC:
  1811. case XFS_ABTB_MAGIC:
  1812. case XFS_ABTC_MAGIC:
  1813. case XFS_IBT_CRC_MAGIC:
  1814. case XFS_IBT_MAGIC: {
  1815. struct xfs_btree_block *btb = blk;
  1816. lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
  1817. uuid = &btb->bb_u.s.bb_uuid;
  1818. break;
  1819. }
  1820. case XFS_BMAP_CRC_MAGIC:
  1821. case XFS_BMAP_MAGIC: {
  1822. struct xfs_btree_block *btb = blk;
  1823. lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
  1824. uuid = &btb->bb_u.l.bb_uuid;
  1825. break;
  1826. }
  1827. case XFS_AGF_MAGIC:
  1828. lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
  1829. uuid = &((struct xfs_agf *)blk)->agf_uuid;
  1830. break;
  1831. case XFS_AGFL_MAGIC:
  1832. lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
  1833. uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
  1834. break;
  1835. case XFS_AGI_MAGIC:
  1836. lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
  1837. uuid = &((struct xfs_agi *)blk)->agi_uuid;
  1838. break;
  1839. case XFS_SYMLINK_MAGIC:
  1840. lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
  1841. uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
  1842. break;
  1843. case XFS_DIR3_BLOCK_MAGIC:
  1844. case XFS_DIR3_DATA_MAGIC:
  1845. case XFS_DIR3_FREE_MAGIC:
  1846. lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
  1847. uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
  1848. break;
  1849. case XFS_ATTR3_RMT_MAGIC:
  1850. lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
  1851. uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
  1852. break;
  1853. case XFS_SB_MAGIC:
  1854. lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
  1855. uuid = &((struct xfs_dsb *)blk)->sb_uuid;
  1856. break;
  1857. default:
  1858. break;
  1859. }
  1860. if (lsn != (xfs_lsn_t)-1) {
  1861. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1862. goto recover_immediately;
  1863. return lsn;
  1864. }
  1865. magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
  1866. switch (magicda) {
  1867. case XFS_DIR3_LEAF1_MAGIC:
  1868. case XFS_DIR3_LEAFN_MAGIC:
  1869. case XFS_DA3_NODE_MAGIC:
  1870. lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
  1871. uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
  1872. break;
  1873. default:
  1874. break;
  1875. }
  1876. if (lsn != (xfs_lsn_t)-1) {
  1877. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1878. goto recover_immediately;
  1879. return lsn;
  1880. }
  1881. /*
  1882. * We do individual object checks on dquot and inode buffers as they
  1883. * have their own individual LSN records. Also, we could have a stale
  1884. * buffer here, so we have to at least recognise these buffer types.
  1885. *
  1886. * A notd complexity here is inode unlinked list processing - it logs
  1887. * the inode directly in the buffer, but we don't know which inodes have
  1888. * been modified, and there is no global buffer LSN. Hence we need to
  1889. * recover all inode buffer types immediately. This problem will be
  1890. * fixed by logical logging of the unlinked list modifications.
  1891. */
  1892. magic16 = be16_to_cpu(*(__be16 *)blk);
  1893. switch (magic16) {
  1894. case XFS_DQUOT_MAGIC:
  1895. case XFS_DINODE_MAGIC:
  1896. goto recover_immediately;
  1897. default:
  1898. break;
  1899. }
  1900. /* unknown buffer contents, recover immediately */
  1901. recover_immediately:
  1902. return (xfs_lsn_t)-1;
  1903. }
  1904. /*
  1905. * Validate the recovered buffer is of the correct type and attach the
  1906. * appropriate buffer operations to them for writeback. Magic numbers are in a
  1907. * few places:
  1908. * the first 16 bits of the buffer (inode buffer, dquot buffer),
  1909. * the first 32 bits of the buffer (most blocks),
  1910. * inside a struct xfs_da_blkinfo at the start of the buffer.
  1911. */
  1912. static void
  1913. xlog_recover_validate_buf_type(
  1914. struct xfs_mount *mp,
  1915. struct xfs_buf *bp,
  1916. xfs_buf_log_format_t *buf_f)
  1917. {
  1918. struct xfs_da_blkinfo *info = bp->b_addr;
  1919. __uint32_t magic32;
  1920. __uint16_t magic16;
  1921. __uint16_t magicda;
  1922. magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
  1923. magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
  1924. magicda = be16_to_cpu(info->magic);
  1925. switch (xfs_blft_from_flags(buf_f)) {
  1926. case XFS_BLFT_BTREE_BUF:
  1927. switch (magic32) {
  1928. case XFS_ABTB_CRC_MAGIC:
  1929. case XFS_ABTC_CRC_MAGIC:
  1930. case XFS_ABTB_MAGIC:
  1931. case XFS_ABTC_MAGIC:
  1932. bp->b_ops = &xfs_allocbt_buf_ops;
  1933. break;
  1934. case XFS_IBT_CRC_MAGIC:
  1935. case XFS_IBT_MAGIC:
  1936. bp->b_ops = &xfs_inobt_buf_ops;
  1937. break;
  1938. case XFS_BMAP_CRC_MAGIC:
  1939. case XFS_BMAP_MAGIC:
  1940. bp->b_ops = &xfs_bmbt_buf_ops;
  1941. break;
  1942. default:
  1943. xfs_warn(mp, "Bad btree block magic!");
  1944. ASSERT(0);
  1945. break;
  1946. }
  1947. break;
  1948. case XFS_BLFT_AGF_BUF:
  1949. if (magic32 != XFS_AGF_MAGIC) {
  1950. xfs_warn(mp, "Bad AGF block magic!");
  1951. ASSERT(0);
  1952. break;
  1953. }
  1954. bp->b_ops = &xfs_agf_buf_ops;
  1955. break;
  1956. case XFS_BLFT_AGFL_BUF:
  1957. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1958. break;
  1959. if (magic32 != XFS_AGFL_MAGIC) {
  1960. xfs_warn(mp, "Bad AGFL block magic!");
  1961. ASSERT(0);
  1962. break;
  1963. }
  1964. bp->b_ops = &xfs_agfl_buf_ops;
  1965. break;
  1966. case XFS_BLFT_AGI_BUF:
  1967. if (magic32 != XFS_AGI_MAGIC) {
  1968. xfs_warn(mp, "Bad AGI block magic!");
  1969. ASSERT(0);
  1970. break;
  1971. }
  1972. bp->b_ops = &xfs_agi_buf_ops;
  1973. break;
  1974. case XFS_BLFT_UDQUOT_BUF:
  1975. case XFS_BLFT_PDQUOT_BUF:
  1976. case XFS_BLFT_GDQUOT_BUF:
  1977. #ifdef CONFIG_XFS_QUOTA
  1978. if (magic16 != XFS_DQUOT_MAGIC) {
  1979. xfs_warn(mp, "Bad DQUOT block magic!");
  1980. ASSERT(0);
  1981. break;
  1982. }
  1983. bp->b_ops = &xfs_dquot_buf_ops;
  1984. #else
  1985. xfs_alert(mp,
  1986. "Trying to recover dquots without QUOTA support built in!");
  1987. ASSERT(0);
  1988. #endif
  1989. break;
  1990. case XFS_BLFT_DINO_BUF:
  1991. /*
  1992. * we get here with inode allocation buffers, not buffers that
  1993. * track unlinked list changes.
  1994. */
  1995. if (magic16 != XFS_DINODE_MAGIC) {
  1996. xfs_warn(mp, "Bad INODE block magic!");
  1997. ASSERT(0);
  1998. break;
  1999. }
  2000. bp->b_ops = &xfs_inode_buf_ops;
  2001. break;
  2002. case XFS_BLFT_SYMLINK_BUF:
  2003. if (magic32 != XFS_SYMLINK_MAGIC) {
  2004. xfs_warn(mp, "Bad symlink block magic!");
  2005. ASSERT(0);
  2006. break;
  2007. }
  2008. bp->b_ops = &xfs_symlink_buf_ops;
  2009. break;
  2010. case XFS_BLFT_DIR_BLOCK_BUF:
  2011. if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
  2012. magic32 != XFS_DIR3_BLOCK_MAGIC) {
  2013. xfs_warn(mp, "Bad dir block magic!");
  2014. ASSERT(0);
  2015. break;
  2016. }
  2017. bp->b_ops = &xfs_dir3_block_buf_ops;
  2018. break;
  2019. case XFS_BLFT_DIR_DATA_BUF:
  2020. if (magic32 != XFS_DIR2_DATA_MAGIC &&
  2021. magic32 != XFS_DIR3_DATA_MAGIC) {
  2022. xfs_warn(mp, "Bad dir data magic!");
  2023. ASSERT(0);
  2024. break;
  2025. }
  2026. bp->b_ops = &xfs_dir3_data_buf_ops;
  2027. break;
  2028. case XFS_BLFT_DIR_FREE_BUF:
  2029. if (magic32 != XFS_DIR2_FREE_MAGIC &&
  2030. magic32 != XFS_DIR3_FREE_MAGIC) {
  2031. xfs_warn(mp, "Bad dir3 free magic!");
  2032. ASSERT(0);
  2033. break;
  2034. }
  2035. bp->b_ops = &xfs_dir3_free_buf_ops;
  2036. break;
  2037. case XFS_BLFT_DIR_LEAF1_BUF:
  2038. if (magicda != XFS_DIR2_LEAF1_MAGIC &&
  2039. magicda != XFS_DIR3_LEAF1_MAGIC) {
  2040. xfs_warn(mp, "Bad dir leaf1 magic!");
  2041. ASSERT(0);
  2042. break;
  2043. }
  2044. bp->b_ops = &xfs_dir3_leaf1_buf_ops;
  2045. break;
  2046. case XFS_BLFT_DIR_LEAFN_BUF:
  2047. if (magicda != XFS_DIR2_LEAFN_MAGIC &&
  2048. magicda != XFS_DIR3_LEAFN_MAGIC) {
  2049. xfs_warn(mp, "Bad dir leafn magic!");
  2050. ASSERT(0);
  2051. break;
  2052. }
  2053. bp->b_ops = &xfs_dir3_leafn_buf_ops;
  2054. break;
  2055. case XFS_BLFT_DA_NODE_BUF:
  2056. if (magicda != XFS_DA_NODE_MAGIC &&
  2057. magicda != XFS_DA3_NODE_MAGIC) {
  2058. xfs_warn(mp, "Bad da node magic!");
  2059. ASSERT(0);
  2060. break;
  2061. }
  2062. bp->b_ops = &xfs_da3_node_buf_ops;
  2063. break;
  2064. case XFS_BLFT_ATTR_LEAF_BUF:
  2065. if (magicda != XFS_ATTR_LEAF_MAGIC &&
  2066. magicda != XFS_ATTR3_LEAF_MAGIC) {
  2067. xfs_warn(mp, "Bad attr leaf magic!");
  2068. ASSERT(0);
  2069. break;
  2070. }
  2071. bp->b_ops = &xfs_attr3_leaf_buf_ops;
  2072. break;
  2073. case XFS_BLFT_ATTR_RMT_BUF:
  2074. if (!xfs_sb_version_hascrc(&mp->m_sb))
  2075. break;
  2076. if (magic32 != XFS_ATTR3_RMT_MAGIC) {
  2077. xfs_warn(mp, "Bad attr remote magic!");
  2078. ASSERT(0);
  2079. break;
  2080. }
  2081. bp->b_ops = &xfs_attr3_rmt_buf_ops;
  2082. break;
  2083. case XFS_BLFT_SB_BUF:
  2084. if (magic32 != XFS_SB_MAGIC) {
  2085. xfs_warn(mp, "Bad SB block magic!");
  2086. ASSERT(0);
  2087. break;
  2088. }
  2089. bp->b_ops = &xfs_sb_buf_ops;
  2090. break;
  2091. default:
  2092. xfs_warn(mp, "Unknown buffer type %d!",
  2093. xfs_blft_from_flags(buf_f));
  2094. break;
  2095. }
  2096. }
  2097. /*
  2098. * Perform a 'normal' buffer recovery. Each logged region of the
  2099. * buffer should be copied over the corresponding region in the
  2100. * given buffer. The bitmap in the buf log format structure indicates
  2101. * where to place the logged data.
  2102. */
  2103. STATIC void
  2104. xlog_recover_do_reg_buffer(
  2105. struct xfs_mount *mp,
  2106. xlog_recover_item_t *item,
  2107. struct xfs_buf *bp,
  2108. xfs_buf_log_format_t *buf_f)
  2109. {
  2110. int i;
  2111. int bit;
  2112. int nbits;
  2113. int error;
  2114. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  2115. bit = 0;
  2116. i = 1; /* 0 is the buf format structure */
  2117. while (1) {
  2118. bit = xfs_next_bit(buf_f->blf_data_map,
  2119. buf_f->blf_map_size, bit);
  2120. if (bit == -1)
  2121. break;
  2122. nbits = xfs_contig_bits(buf_f->blf_data_map,
  2123. buf_f->blf_map_size, bit);
  2124. ASSERT(nbits > 0);
  2125. ASSERT(item->ri_buf[i].i_addr != NULL);
  2126. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  2127. ASSERT(BBTOB(bp->b_io_length) >=
  2128. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  2129. /*
  2130. * The dirty regions logged in the buffer, even though
  2131. * contiguous, may span multiple chunks. This is because the
  2132. * dirty region may span a physical page boundary in a buffer
  2133. * and hence be split into two separate vectors for writing into
  2134. * the log. Hence we need to trim nbits back to the length of
  2135. * the current region being copied out of the log.
  2136. */
  2137. if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
  2138. nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
  2139. /*
  2140. * Do a sanity check if this is a dquot buffer. Just checking
  2141. * the first dquot in the buffer should do. XXXThis is
  2142. * probably a good thing to do for other buf types also.
  2143. */
  2144. error = 0;
  2145. if (buf_f->blf_flags &
  2146. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2147. if (item->ri_buf[i].i_addr == NULL) {
  2148. xfs_alert(mp,
  2149. "XFS: NULL dquot in %s.", __func__);
  2150. goto next;
  2151. }
  2152. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  2153. xfs_alert(mp,
  2154. "XFS: dquot too small (%d) in %s.",
  2155. item->ri_buf[i].i_len, __func__);
  2156. goto next;
  2157. }
  2158. error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
  2159. -1, 0, XFS_QMOPT_DOWARN,
  2160. "dquot_buf_recover");
  2161. if (error)
  2162. goto next;
  2163. }
  2164. memcpy(xfs_buf_offset(bp,
  2165. (uint)bit << XFS_BLF_SHIFT), /* dest */
  2166. item->ri_buf[i].i_addr, /* source */
  2167. nbits<<XFS_BLF_SHIFT); /* length */
  2168. next:
  2169. i++;
  2170. bit += nbits;
  2171. }
  2172. /* Shouldn't be any more regions */
  2173. ASSERT(i == item->ri_total);
  2174. /*
  2175. * We can only do post recovery validation on items on CRC enabled
  2176. * fielsystems as we need to know when the buffer was written to be able
  2177. * to determine if we should have replayed the item. If we replay old
  2178. * metadata over a newer buffer, then it will enter a temporarily
  2179. * inconsistent state resulting in verification failures. Hence for now
  2180. * just avoid the verification stage for non-crc filesystems
  2181. */
  2182. if (xfs_sb_version_hascrc(&mp->m_sb))
  2183. xlog_recover_validate_buf_type(mp, bp, buf_f);
  2184. }
  2185. /*
  2186. * Perform a dquot buffer recovery.
  2187. * Simple algorithm: if we have found a QUOTAOFF log item of the same type
  2188. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  2189. * Else, treat it as a regular buffer and do recovery.
  2190. */
  2191. STATIC void
  2192. xlog_recover_do_dquot_buffer(
  2193. struct xfs_mount *mp,
  2194. struct xlog *log,
  2195. struct xlog_recover_item *item,
  2196. struct xfs_buf *bp,
  2197. struct xfs_buf_log_format *buf_f)
  2198. {
  2199. uint type;
  2200. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  2201. /*
  2202. * Filesystems are required to send in quota flags at mount time.
  2203. */
  2204. if (mp->m_qflags == 0) {
  2205. return;
  2206. }
  2207. type = 0;
  2208. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  2209. type |= XFS_DQ_USER;
  2210. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  2211. type |= XFS_DQ_PROJ;
  2212. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  2213. type |= XFS_DQ_GROUP;
  2214. /*
  2215. * This type of quotas was turned off, so ignore this buffer
  2216. */
  2217. if (log->l_quotaoffs_flag & type)
  2218. return;
  2219. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2220. }
  2221. /*
  2222. * This routine replays a modification made to a buffer at runtime.
  2223. * There are actually two types of buffer, regular and inode, which
  2224. * are handled differently. Inode buffers are handled differently
  2225. * in that we only recover a specific set of data from them, namely
  2226. * the inode di_next_unlinked fields. This is because all other inode
  2227. * data is actually logged via inode records and any data we replay
  2228. * here which overlaps that may be stale.
  2229. *
  2230. * When meta-data buffers are freed at run time we log a buffer item
  2231. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  2232. * of the buffer in the log should not be replayed at recovery time.
  2233. * This is so that if the blocks covered by the buffer are reused for
  2234. * file data before we crash we don't end up replaying old, freed
  2235. * meta-data into a user's file.
  2236. *
  2237. * To handle the cancellation of buffer log items, we make two passes
  2238. * over the log during recovery. During the first we build a table of
  2239. * those buffers which have been cancelled, and during the second we
  2240. * only replay those buffers which do not have corresponding cancel
  2241. * records in the table. See xlog_recover_buffer_pass[1,2] above
  2242. * for more details on the implementation of the table of cancel records.
  2243. */
  2244. STATIC int
  2245. xlog_recover_buffer_pass2(
  2246. struct xlog *log,
  2247. struct list_head *buffer_list,
  2248. struct xlog_recover_item *item,
  2249. xfs_lsn_t current_lsn)
  2250. {
  2251. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  2252. xfs_mount_t *mp = log->l_mp;
  2253. xfs_buf_t *bp;
  2254. int error;
  2255. uint buf_flags;
  2256. xfs_lsn_t lsn;
  2257. /*
  2258. * In this pass we only want to recover all the buffers which have
  2259. * not been cancelled and are not cancellation buffers themselves.
  2260. */
  2261. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  2262. buf_f->blf_len, buf_f->blf_flags)) {
  2263. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2264. return 0;
  2265. }
  2266. trace_xfs_log_recover_buf_recover(log, buf_f);
  2267. buf_flags = 0;
  2268. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  2269. buf_flags |= XBF_UNMAPPED;
  2270. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  2271. buf_flags, NULL);
  2272. if (!bp)
  2273. return XFS_ERROR(ENOMEM);
  2274. error = bp->b_error;
  2275. if (error) {
  2276. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  2277. goto out_release;
  2278. }
  2279. /*
  2280. * recover the buffer only if we get an LSN from it and it's less than
  2281. * the lsn of the transaction we are replaying.
  2282. */
  2283. lsn = xlog_recover_get_buf_lsn(mp, bp);
  2284. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
  2285. goto out_release;
  2286. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  2287. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2288. } else if (buf_f->blf_flags &
  2289. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2290. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2291. } else {
  2292. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2293. }
  2294. if (error)
  2295. goto out_release;
  2296. /*
  2297. * Perform delayed write on the buffer. Asynchronous writes will be
  2298. * slower when taking into account all the buffers to be flushed.
  2299. *
  2300. * Also make sure that only inode buffers with good sizes stay in
  2301. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2302. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2303. * buffers in the log can be a different size if the log was generated
  2304. * by an older kernel using unclustered inode buffers or a newer kernel
  2305. * running with a different inode cluster size. Regardless, if the
  2306. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2307. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2308. * the buffer out of the buffer cache so that the buffer won't
  2309. * overlap with future reads of those inodes.
  2310. */
  2311. if (XFS_DINODE_MAGIC ==
  2312. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2313. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  2314. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2315. xfs_buf_stale(bp);
  2316. error = xfs_bwrite(bp);
  2317. } else {
  2318. ASSERT(bp->b_target->bt_mount == mp);
  2319. bp->b_iodone = xlog_recover_iodone;
  2320. xfs_buf_delwri_queue(bp, buffer_list);
  2321. }
  2322. out_release:
  2323. xfs_buf_relse(bp);
  2324. return error;
  2325. }
  2326. /*
  2327. * Inode fork owner changes
  2328. *
  2329. * If we have been told that we have to reparent the inode fork, it's because an
  2330. * extent swap operation on a CRC enabled filesystem has been done and we are
  2331. * replaying it. We need to walk the BMBT of the appropriate fork and change the
  2332. * owners of it.
  2333. *
  2334. * The complexity here is that we don't have an inode context to work with, so
  2335. * after we've replayed the inode we need to instantiate one. This is where the
  2336. * fun begins.
  2337. *
  2338. * We are in the middle of log recovery, so we can't run transactions. That
  2339. * means we cannot use cache coherent inode instantiation via xfs_iget(), as
  2340. * that will result in the corresponding iput() running the inode through
  2341. * xfs_inactive(). If we've just replayed an inode core that changes the link
  2342. * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
  2343. * transactions (bad!).
  2344. *
  2345. * So, to avoid this, we instantiate an inode directly from the inode core we've
  2346. * just recovered. We have the buffer still locked, and all we really need to
  2347. * instantiate is the inode core and the forks being modified. We can do this
  2348. * manually, then run the inode btree owner change, and then tear down the
  2349. * xfs_inode without having to run any transactions at all.
  2350. *
  2351. * Also, because we don't have a transaction context available here but need to
  2352. * gather all the buffers we modify for writeback so we pass the buffer_list
  2353. * instead for the operation to use.
  2354. */
  2355. STATIC int
  2356. xfs_recover_inode_owner_change(
  2357. struct xfs_mount *mp,
  2358. struct xfs_dinode *dip,
  2359. struct xfs_inode_log_format *in_f,
  2360. struct list_head *buffer_list)
  2361. {
  2362. struct xfs_inode *ip;
  2363. int error;
  2364. ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
  2365. ip = xfs_inode_alloc(mp, in_f->ilf_ino);
  2366. if (!ip)
  2367. return ENOMEM;
  2368. /* instantiate the inode */
  2369. xfs_dinode_from_disk(&ip->i_d, dip);
  2370. ASSERT(ip->i_d.di_version >= 3);
  2371. error = xfs_iformat_fork(ip, dip);
  2372. if (error)
  2373. goto out_free_ip;
  2374. if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
  2375. ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
  2376. error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
  2377. ip->i_ino, buffer_list);
  2378. if (error)
  2379. goto out_free_ip;
  2380. }
  2381. if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
  2382. ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
  2383. error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
  2384. ip->i_ino, buffer_list);
  2385. if (error)
  2386. goto out_free_ip;
  2387. }
  2388. out_free_ip:
  2389. xfs_inode_free(ip);
  2390. return error;
  2391. }
  2392. STATIC int
  2393. xlog_recover_inode_pass2(
  2394. struct xlog *log,
  2395. struct list_head *buffer_list,
  2396. struct xlog_recover_item *item,
  2397. xfs_lsn_t current_lsn)
  2398. {
  2399. xfs_inode_log_format_t *in_f;
  2400. xfs_mount_t *mp = log->l_mp;
  2401. xfs_buf_t *bp;
  2402. xfs_dinode_t *dip;
  2403. int len;
  2404. xfs_caddr_t src;
  2405. xfs_caddr_t dest;
  2406. int error;
  2407. int attr_index;
  2408. uint fields;
  2409. xfs_icdinode_t *dicp;
  2410. uint isize;
  2411. int need_free = 0;
  2412. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2413. in_f = item->ri_buf[0].i_addr;
  2414. } else {
  2415. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2416. need_free = 1;
  2417. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2418. if (error)
  2419. goto error;
  2420. }
  2421. /*
  2422. * Inode buffers can be freed, look out for it,
  2423. * and do not replay the inode.
  2424. */
  2425. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2426. in_f->ilf_len, 0)) {
  2427. error = 0;
  2428. trace_xfs_log_recover_inode_cancel(log, in_f);
  2429. goto error;
  2430. }
  2431. trace_xfs_log_recover_inode_recover(log, in_f);
  2432. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
  2433. &xfs_inode_buf_ops);
  2434. if (!bp) {
  2435. error = ENOMEM;
  2436. goto error;
  2437. }
  2438. error = bp->b_error;
  2439. if (error) {
  2440. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2441. goto out_release;
  2442. }
  2443. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2444. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2445. /*
  2446. * Make sure the place we're flushing out to really looks
  2447. * like an inode!
  2448. */
  2449. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2450. xfs_alert(mp,
  2451. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2452. __func__, dip, bp, in_f->ilf_ino);
  2453. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2454. XFS_ERRLEVEL_LOW, mp);
  2455. error = EFSCORRUPTED;
  2456. goto out_release;
  2457. }
  2458. dicp = item->ri_buf[1].i_addr;
  2459. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2460. xfs_alert(mp,
  2461. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2462. __func__, item, in_f->ilf_ino);
  2463. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2464. XFS_ERRLEVEL_LOW, mp);
  2465. error = EFSCORRUPTED;
  2466. goto out_release;
  2467. }
  2468. /*
  2469. * If the inode has an LSN in it, recover the inode only if it's less
  2470. * than the lsn of the transaction we are replaying. Note: we still
  2471. * need to replay an owner change even though the inode is more recent
  2472. * than the transaction as there is no guarantee that all the btree
  2473. * blocks are more recent than this transaction, too.
  2474. */
  2475. if (dip->di_version >= 3) {
  2476. xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
  2477. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2478. trace_xfs_log_recover_inode_skip(log, in_f);
  2479. error = 0;
  2480. goto out_owner_change;
  2481. }
  2482. }
  2483. /*
  2484. * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
  2485. * are transactional and if ordering is necessary we can determine that
  2486. * more accurately by the LSN field in the V3 inode core. Don't trust
  2487. * the inode versions we might be changing them here - use the
  2488. * superblock flag to determine whether we need to look at di_flushiter
  2489. * to skip replay when the on disk inode is newer than the log one
  2490. */
  2491. if (!xfs_sb_version_hascrc(&mp->m_sb) &&
  2492. dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2493. /*
  2494. * Deal with the wrap case, DI_MAX_FLUSH is less
  2495. * than smaller numbers
  2496. */
  2497. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2498. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2499. /* do nothing */
  2500. } else {
  2501. trace_xfs_log_recover_inode_skip(log, in_f);
  2502. error = 0;
  2503. goto out_release;
  2504. }
  2505. }
  2506. /* Take the opportunity to reset the flush iteration count */
  2507. dicp->di_flushiter = 0;
  2508. if (unlikely(S_ISREG(dicp->di_mode))) {
  2509. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2510. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2511. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2512. XFS_ERRLEVEL_LOW, mp, dicp);
  2513. xfs_alert(mp,
  2514. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2515. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2516. __func__, item, dip, bp, in_f->ilf_ino);
  2517. error = EFSCORRUPTED;
  2518. goto out_release;
  2519. }
  2520. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2521. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2522. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2523. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2524. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2525. XFS_ERRLEVEL_LOW, mp, dicp);
  2526. xfs_alert(mp,
  2527. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2528. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2529. __func__, item, dip, bp, in_f->ilf_ino);
  2530. error = EFSCORRUPTED;
  2531. goto out_release;
  2532. }
  2533. }
  2534. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2535. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2536. XFS_ERRLEVEL_LOW, mp, dicp);
  2537. xfs_alert(mp,
  2538. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2539. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2540. __func__, item, dip, bp, in_f->ilf_ino,
  2541. dicp->di_nextents + dicp->di_anextents,
  2542. dicp->di_nblocks);
  2543. error = EFSCORRUPTED;
  2544. goto out_release;
  2545. }
  2546. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2547. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2548. XFS_ERRLEVEL_LOW, mp, dicp);
  2549. xfs_alert(mp,
  2550. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2551. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2552. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2553. error = EFSCORRUPTED;
  2554. goto out_release;
  2555. }
  2556. isize = xfs_icdinode_size(dicp->di_version);
  2557. if (unlikely(item->ri_buf[1].i_len > isize)) {
  2558. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2559. XFS_ERRLEVEL_LOW, mp, dicp);
  2560. xfs_alert(mp,
  2561. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2562. __func__, item->ri_buf[1].i_len, item);
  2563. error = EFSCORRUPTED;
  2564. goto out_release;
  2565. }
  2566. /* The core is in in-core format */
  2567. xfs_dinode_to_disk(dip, dicp);
  2568. /* the rest is in on-disk format */
  2569. if (item->ri_buf[1].i_len > isize) {
  2570. memcpy((char *)dip + isize,
  2571. item->ri_buf[1].i_addr + isize,
  2572. item->ri_buf[1].i_len - isize);
  2573. }
  2574. fields = in_f->ilf_fields;
  2575. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2576. case XFS_ILOG_DEV:
  2577. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2578. break;
  2579. case XFS_ILOG_UUID:
  2580. memcpy(XFS_DFORK_DPTR(dip),
  2581. &in_f->ilf_u.ilfu_uuid,
  2582. sizeof(uuid_t));
  2583. break;
  2584. }
  2585. if (in_f->ilf_size == 2)
  2586. goto out_owner_change;
  2587. len = item->ri_buf[2].i_len;
  2588. src = item->ri_buf[2].i_addr;
  2589. ASSERT(in_f->ilf_size <= 4);
  2590. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2591. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2592. (len == in_f->ilf_dsize));
  2593. switch (fields & XFS_ILOG_DFORK) {
  2594. case XFS_ILOG_DDATA:
  2595. case XFS_ILOG_DEXT:
  2596. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2597. break;
  2598. case XFS_ILOG_DBROOT:
  2599. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2600. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2601. XFS_DFORK_DSIZE(dip, mp));
  2602. break;
  2603. default:
  2604. /*
  2605. * There are no data fork flags set.
  2606. */
  2607. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2608. break;
  2609. }
  2610. /*
  2611. * If we logged any attribute data, recover it. There may or
  2612. * may not have been any other non-core data logged in this
  2613. * transaction.
  2614. */
  2615. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2616. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2617. attr_index = 3;
  2618. } else {
  2619. attr_index = 2;
  2620. }
  2621. len = item->ri_buf[attr_index].i_len;
  2622. src = item->ri_buf[attr_index].i_addr;
  2623. ASSERT(len == in_f->ilf_asize);
  2624. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2625. case XFS_ILOG_ADATA:
  2626. case XFS_ILOG_AEXT:
  2627. dest = XFS_DFORK_APTR(dip);
  2628. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2629. memcpy(dest, src, len);
  2630. break;
  2631. case XFS_ILOG_ABROOT:
  2632. dest = XFS_DFORK_APTR(dip);
  2633. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2634. len, (xfs_bmdr_block_t*)dest,
  2635. XFS_DFORK_ASIZE(dip, mp));
  2636. break;
  2637. default:
  2638. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2639. ASSERT(0);
  2640. error = EIO;
  2641. goto out_release;
  2642. }
  2643. }
  2644. out_owner_change:
  2645. if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
  2646. error = xfs_recover_inode_owner_change(mp, dip, in_f,
  2647. buffer_list);
  2648. /* re-generate the checksum. */
  2649. xfs_dinode_calc_crc(log->l_mp, dip);
  2650. ASSERT(bp->b_target->bt_mount == mp);
  2651. bp->b_iodone = xlog_recover_iodone;
  2652. xfs_buf_delwri_queue(bp, buffer_list);
  2653. out_release:
  2654. xfs_buf_relse(bp);
  2655. error:
  2656. if (need_free)
  2657. kmem_free(in_f);
  2658. return XFS_ERROR(error);
  2659. }
  2660. /*
  2661. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2662. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2663. * of that type.
  2664. */
  2665. STATIC int
  2666. xlog_recover_quotaoff_pass1(
  2667. struct xlog *log,
  2668. struct xlog_recover_item *item)
  2669. {
  2670. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2671. ASSERT(qoff_f);
  2672. /*
  2673. * The logitem format's flag tells us if this was user quotaoff,
  2674. * group/project quotaoff or both.
  2675. */
  2676. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2677. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2678. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2679. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2680. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2681. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2682. return (0);
  2683. }
  2684. /*
  2685. * Recover a dquot record
  2686. */
  2687. STATIC int
  2688. xlog_recover_dquot_pass2(
  2689. struct xlog *log,
  2690. struct list_head *buffer_list,
  2691. struct xlog_recover_item *item,
  2692. xfs_lsn_t current_lsn)
  2693. {
  2694. xfs_mount_t *mp = log->l_mp;
  2695. xfs_buf_t *bp;
  2696. struct xfs_disk_dquot *ddq, *recddq;
  2697. int error;
  2698. xfs_dq_logformat_t *dq_f;
  2699. uint type;
  2700. /*
  2701. * Filesystems are required to send in quota flags at mount time.
  2702. */
  2703. if (mp->m_qflags == 0)
  2704. return (0);
  2705. recddq = item->ri_buf[1].i_addr;
  2706. if (recddq == NULL) {
  2707. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2708. return XFS_ERROR(EIO);
  2709. }
  2710. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2711. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2712. item->ri_buf[1].i_len, __func__);
  2713. return XFS_ERROR(EIO);
  2714. }
  2715. /*
  2716. * This type of quotas was turned off, so ignore this record.
  2717. */
  2718. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2719. ASSERT(type);
  2720. if (log->l_quotaoffs_flag & type)
  2721. return (0);
  2722. /*
  2723. * At this point we know that quota was _not_ turned off.
  2724. * Since the mount flags are not indicating to us otherwise, this
  2725. * must mean that quota is on, and the dquot needs to be replayed.
  2726. * Remember that we may not have fully recovered the superblock yet,
  2727. * so we can't do the usual trick of looking at the SB quota bits.
  2728. *
  2729. * The other possibility, of course, is that the quota subsystem was
  2730. * removed since the last mount - ENOSYS.
  2731. */
  2732. dq_f = item->ri_buf[0].i_addr;
  2733. ASSERT(dq_f);
  2734. error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2735. "xlog_recover_dquot_pass2 (log copy)");
  2736. if (error)
  2737. return XFS_ERROR(EIO);
  2738. ASSERT(dq_f->qlf_len == 1);
  2739. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2740. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
  2741. NULL);
  2742. if (error)
  2743. return error;
  2744. ASSERT(bp);
  2745. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2746. /*
  2747. * At least the magic num portion should be on disk because this
  2748. * was among a chunk of dquots created earlier, and we did some
  2749. * minimal initialization then.
  2750. */
  2751. error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2752. "xlog_recover_dquot_pass2");
  2753. if (error) {
  2754. xfs_buf_relse(bp);
  2755. return XFS_ERROR(EIO);
  2756. }
  2757. /*
  2758. * If the dquot has an LSN in it, recover the dquot only if it's less
  2759. * than the lsn of the transaction we are replaying.
  2760. */
  2761. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2762. struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
  2763. xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
  2764. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2765. goto out_release;
  2766. }
  2767. }
  2768. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2769. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2770. xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
  2771. XFS_DQUOT_CRC_OFF);
  2772. }
  2773. ASSERT(dq_f->qlf_size == 2);
  2774. ASSERT(bp->b_target->bt_mount == mp);
  2775. bp->b_iodone = xlog_recover_iodone;
  2776. xfs_buf_delwri_queue(bp, buffer_list);
  2777. out_release:
  2778. xfs_buf_relse(bp);
  2779. return 0;
  2780. }
  2781. /*
  2782. * This routine is called to create an in-core extent free intent
  2783. * item from the efi format structure which was logged on disk.
  2784. * It allocates an in-core efi, copies the extents from the format
  2785. * structure into it, and adds the efi to the AIL with the given
  2786. * LSN.
  2787. */
  2788. STATIC int
  2789. xlog_recover_efi_pass2(
  2790. struct xlog *log,
  2791. struct xlog_recover_item *item,
  2792. xfs_lsn_t lsn)
  2793. {
  2794. int error;
  2795. xfs_mount_t *mp = log->l_mp;
  2796. xfs_efi_log_item_t *efip;
  2797. xfs_efi_log_format_t *efi_formatp;
  2798. efi_formatp = item->ri_buf[0].i_addr;
  2799. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2800. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2801. &(efip->efi_format)))) {
  2802. xfs_efi_item_free(efip);
  2803. return error;
  2804. }
  2805. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2806. spin_lock(&log->l_ailp->xa_lock);
  2807. /*
  2808. * xfs_trans_ail_update() drops the AIL lock.
  2809. */
  2810. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2811. return 0;
  2812. }
  2813. /*
  2814. * This routine is called when an efd format structure is found in
  2815. * a committed transaction in the log. It's purpose is to cancel
  2816. * the corresponding efi if it was still in the log. To do this
  2817. * it searches the AIL for the efi with an id equal to that in the
  2818. * efd format structure. If we find it, we remove the efi from the
  2819. * AIL and free it.
  2820. */
  2821. STATIC int
  2822. xlog_recover_efd_pass2(
  2823. struct xlog *log,
  2824. struct xlog_recover_item *item)
  2825. {
  2826. xfs_efd_log_format_t *efd_formatp;
  2827. xfs_efi_log_item_t *efip = NULL;
  2828. xfs_log_item_t *lip;
  2829. __uint64_t efi_id;
  2830. struct xfs_ail_cursor cur;
  2831. struct xfs_ail *ailp = log->l_ailp;
  2832. efd_formatp = item->ri_buf[0].i_addr;
  2833. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2834. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2835. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2836. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2837. efi_id = efd_formatp->efd_efi_id;
  2838. /*
  2839. * Search for the efi with the id in the efd format structure
  2840. * in the AIL.
  2841. */
  2842. spin_lock(&ailp->xa_lock);
  2843. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2844. while (lip != NULL) {
  2845. if (lip->li_type == XFS_LI_EFI) {
  2846. efip = (xfs_efi_log_item_t *)lip;
  2847. if (efip->efi_format.efi_id == efi_id) {
  2848. /*
  2849. * xfs_trans_ail_delete() drops the
  2850. * AIL lock.
  2851. */
  2852. xfs_trans_ail_delete(ailp, lip,
  2853. SHUTDOWN_CORRUPT_INCORE);
  2854. xfs_efi_item_free(efip);
  2855. spin_lock(&ailp->xa_lock);
  2856. break;
  2857. }
  2858. }
  2859. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2860. }
  2861. xfs_trans_ail_cursor_done(ailp, &cur);
  2862. spin_unlock(&ailp->xa_lock);
  2863. return 0;
  2864. }
  2865. /*
  2866. * This routine is called when an inode create format structure is found in a
  2867. * committed transaction in the log. It's purpose is to initialise the inodes
  2868. * being allocated on disk. This requires us to get inode cluster buffers that
  2869. * match the range to be intialised, stamped with inode templates and written
  2870. * by delayed write so that subsequent modifications will hit the cached buffer
  2871. * and only need writing out at the end of recovery.
  2872. */
  2873. STATIC int
  2874. xlog_recover_do_icreate_pass2(
  2875. struct xlog *log,
  2876. struct list_head *buffer_list,
  2877. xlog_recover_item_t *item)
  2878. {
  2879. struct xfs_mount *mp = log->l_mp;
  2880. struct xfs_icreate_log *icl;
  2881. xfs_agnumber_t agno;
  2882. xfs_agblock_t agbno;
  2883. unsigned int count;
  2884. unsigned int isize;
  2885. xfs_agblock_t length;
  2886. icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
  2887. if (icl->icl_type != XFS_LI_ICREATE) {
  2888. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
  2889. return EINVAL;
  2890. }
  2891. if (icl->icl_size != 1) {
  2892. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
  2893. return EINVAL;
  2894. }
  2895. agno = be32_to_cpu(icl->icl_ag);
  2896. if (agno >= mp->m_sb.sb_agcount) {
  2897. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
  2898. return EINVAL;
  2899. }
  2900. agbno = be32_to_cpu(icl->icl_agbno);
  2901. if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
  2902. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
  2903. return EINVAL;
  2904. }
  2905. isize = be32_to_cpu(icl->icl_isize);
  2906. if (isize != mp->m_sb.sb_inodesize) {
  2907. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
  2908. return EINVAL;
  2909. }
  2910. count = be32_to_cpu(icl->icl_count);
  2911. if (!count) {
  2912. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
  2913. return EINVAL;
  2914. }
  2915. length = be32_to_cpu(icl->icl_length);
  2916. if (!length || length >= mp->m_sb.sb_agblocks) {
  2917. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
  2918. return EINVAL;
  2919. }
  2920. /* existing allocation is fixed value */
  2921. ASSERT(count == XFS_IALLOC_INODES(mp));
  2922. ASSERT(length == XFS_IALLOC_BLOCKS(mp));
  2923. if (count != XFS_IALLOC_INODES(mp) ||
  2924. length != XFS_IALLOC_BLOCKS(mp)) {
  2925. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
  2926. return EINVAL;
  2927. }
  2928. /*
  2929. * Inode buffers can be freed. Do not replay the inode initialisation as
  2930. * we could be overwriting something written after this inode buffer was
  2931. * cancelled.
  2932. *
  2933. * XXX: we need to iterate all buffers and only init those that are not
  2934. * cancelled. I think that a more fine grained factoring of
  2935. * xfs_ialloc_inode_init may be appropriate here to enable this to be
  2936. * done easily.
  2937. */
  2938. if (xlog_check_buffer_cancelled(log,
  2939. XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
  2940. return 0;
  2941. xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
  2942. be32_to_cpu(icl->icl_gen));
  2943. return 0;
  2944. }
  2945. /*
  2946. * Free up any resources allocated by the transaction
  2947. *
  2948. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2949. */
  2950. STATIC void
  2951. xlog_recover_free_trans(
  2952. struct xlog_recover *trans)
  2953. {
  2954. xlog_recover_item_t *item, *n;
  2955. int i;
  2956. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2957. /* Free the regions in the item. */
  2958. list_del(&item->ri_list);
  2959. for (i = 0; i < item->ri_cnt; i++)
  2960. kmem_free(item->ri_buf[i].i_addr);
  2961. /* Free the item itself */
  2962. kmem_free(item->ri_buf);
  2963. kmem_free(item);
  2964. }
  2965. /* Free the transaction recover structure */
  2966. kmem_free(trans);
  2967. }
  2968. STATIC void
  2969. xlog_recover_buffer_ra_pass2(
  2970. struct xlog *log,
  2971. struct xlog_recover_item *item)
  2972. {
  2973. struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
  2974. struct xfs_mount *mp = log->l_mp;
  2975. if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
  2976. buf_f->blf_len, buf_f->blf_flags)) {
  2977. return;
  2978. }
  2979. xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
  2980. buf_f->blf_len, NULL);
  2981. }
  2982. STATIC void
  2983. xlog_recover_inode_ra_pass2(
  2984. struct xlog *log,
  2985. struct xlog_recover_item *item)
  2986. {
  2987. struct xfs_inode_log_format ilf_buf;
  2988. struct xfs_inode_log_format *ilfp;
  2989. struct xfs_mount *mp = log->l_mp;
  2990. int error;
  2991. if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
  2992. ilfp = item->ri_buf[0].i_addr;
  2993. } else {
  2994. ilfp = &ilf_buf;
  2995. memset(ilfp, 0, sizeof(*ilfp));
  2996. error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
  2997. if (error)
  2998. return;
  2999. }
  3000. if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
  3001. return;
  3002. xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
  3003. ilfp->ilf_len, &xfs_inode_buf_ra_ops);
  3004. }
  3005. STATIC void
  3006. xlog_recover_dquot_ra_pass2(
  3007. struct xlog *log,
  3008. struct xlog_recover_item *item)
  3009. {
  3010. struct xfs_mount *mp = log->l_mp;
  3011. struct xfs_disk_dquot *recddq;
  3012. struct xfs_dq_logformat *dq_f;
  3013. uint type;
  3014. if (mp->m_qflags == 0)
  3015. return;
  3016. recddq = item->ri_buf[1].i_addr;
  3017. if (recddq == NULL)
  3018. return;
  3019. if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
  3020. return;
  3021. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  3022. ASSERT(type);
  3023. if (log->l_quotaoffs_flag & type)
  3024. return;
  3025. dq_f = item->ri_buf[0].i_addr;
  3026. ASSERT(dq_f);
  3027. ASSERT(dq_f->qlf_len == 1);
  3028. xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
  3029. XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
  3030. }
  3031. STATIC void
  3032. xlog_recover_ra_pass2(
  3033. struct xlog *log,
  3034. struct xlog_recover_item *item)
  3035. {
  3036. switch (ITEM_TYPE(item)) {
  3037. case XFS_LI_BUF:
  3038. xlog_recover_buffer_ra_pass2(log, item);
  3039. break;
  3040. case XFS_LI_INODE:
  3041. xlog_recover_inode_ra_pass2(log, item);
  3042. break;
  3043. case XFS_LI_DQUOT:
  3044. xlog_recover_dquot_ra_pass2(log, item);
  3045. break;
  3046. case XFS_LI_EFI:
  3047. case XFS_LI_EFD:
  3048. case XFS_LI_QUOTAOFF:
  3049. default:
  3050. break;
  3051. }
  3052. }
  3053. STATIC int
  3054. xlog_recover_commit_pass1(
  3055. struct xlog *log,
  3056. struct xlog_recover *trans,
  3057. struct xlog_recover_item *item)
  3058. {
  3059. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  3060. switch (ITEM_TYPE(item)) {
  3061. case XFS_LI_BUF:
  3062. return xlog_recover_buffer_pass1(log, item);
  3063. case XFS_LI_QUOTAOFF:
  3064. return xlog_recover_quotaoff_pass1(log, item);
  3065. case XFS_LI_INODE:
  3066. case XFS_LI_EFI:
  3067. case XFS_LI_EFD:
  3068. case XFS_LI_DQUOT:
  3069. case XFS_LI_ICREATE:
  3070. /* nothing to do in pass 1 */
  3071. return 0;
  3072. default:
  3073. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  3074. __func__, ITEM_TYPE(item));
  3075. ASSERT(0);
  3076. return XFS_ERROR(EIO);
  3077. }
  3078. }
  3079. STATIC int
  3080. xlog_recover_commit_pass2(
  3081. struct xlog *log,
  3082. struct xlog_recover *trans,
  3083. struct list_head *buffer_list,
  3084. struct xlog_recover_item *item)
  3085. {
  3086. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  3087. switch (ITEM_TYPE(item)) {
  3088. case XFS_LI_BUF:
  3089. return xlog_recover_buffer_pass2(log, buffer_list, item,
  3090. trans->r_lsn);
  3091. case XFS_LI_INODE:
  3092. return xlog_recover_inode_pass2(log, buffer_list, item,
  3093. trans->r_lsn);
  3094. case XFS_LI_EFI:
  3095. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  3096. case XFS_LI_EFD:
  3097. return xlog_recover_efd_pass2(log, item);
  3098. case XFS_LI_DQUOT:
  3099. return xlog_recover_dquot_pass2(log, buffer_list, item,
  3100. trans->r_lsn);
  3101. case XFS_LI_ICREATE:
  3102. return xlog_recover_do_icreate_pass2(log, buffer_list, item);
  3103. case XFS_LI_QUOTAOFF:
  3104. /* nothing to do in pass2 */
  3105. return 0;
  3106. default:
  3107. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  3108. __func__, ITEM_TYPE(item));
  3109. ASSERT(0);
  3110. return XFS_ERROR(EIO);
  3111. }
  3112. }
  3113. STATIC int
  3114. xlog_recover_items_pass2(
  3115. struct xlog *log,
  3116. struct xlog_recover *trans,
  3117. struct list_head *buffer_list,
  3118. struct list_head *item_list)
  3119. {
  3120. struct xlog_recover_item *item;
  3121. int error = 0;
  3122. list_for_each_entry(item, item_list, ri_list) {
  3123. error = xlog_recover_commit_pass2(log, trans,
  3124. buffer_list, item);
  3125. if (error)
  3126. return error;
  3127. }
  3128. return error;
  3129. }
  3130. /*
  3131. * Perform the transaction.
  3132. *
  3133. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  3134. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  3135. */
  3136. STATIC int
  3137. xlog_recover_commit_trans(
  3138. struct xlog *log,
  3139. struct xlog_recover *trans,
  3140. int pass)
  3141. {
  3142. int error = 0;
  3143. int error2;
  3144. int items_queued = 0;
  3145. struct xlog_recover_item *item;
  3146. struct xlog_recover_item *next;
  3147. LIST_HEAD (buffer_list);
  3148. LIST_HEAD (ra_list);
  3149. LIST_HEAD (done_list);
  3150. #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
  3151. hlist_del(&trans->r_list);
  3152. error = xlog_recover_reorder_trans(log, trans, pass);
  3153. if (error)
  3154. return error;
  3155. list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
  3156. switch (pass) {
  3157. case XLOG_RECOVER_PASS1:
  3158. error = xlog_recover_commit_pass1(log, trans, item);
  3159. break;
  3160. case XLOG_RECOVER_PASS2:
  3161. xlog_recover_ra_pass2(log, item);
  3162. list_move_tail(&item->ri_list, &ra_list);
  3163. items_queued++;
  3164. if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
  3165. error = xlog_recover_items_pass2(log, trans,
  3166. &buffer_list, &ra_list);
  3167. list_splice_tail_init(&ra_list, &done_list);
  3168. items_queued = 0;
  3169. }
  3170. break;
  3171. default:
  3172. ASSERT(0);
  3173. }
  3174. if (error)
  3175. goto out;
  3176. }
  3177. out:
  3178. if (!list_empty(&ra_list)) {
  3179. if (!error)
  3180. error = xlog_recover_items_pass2(log, trans,
  3181. &buffer_list, &ra_list);
  3182. list_splice_tail_init(&ra_list, &done_list);
  3183. }
  3184. if (!list_empty(&done_list))
  3185. list_splice_init(&done_list, &trans->r_itemq);
  3186. xlog_recover_free_trans(trans);
  3187. error2 = xfs_buf_delwri_submit(&buffer_list);
  3188. return error ? error : error2;
  3189. }
  3190. STATIC int
  3191. xlog_recover_unmount_trans(
  3192. struct xlog *log,
  3193. struct xlog_recover *trans)
  3194. {
  3195. /* Do nothing now */
  3196. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  3197. return 0;
  3198. }
  3199. /*
  3200. * There are two valid states of the r_state field. 0 indicates that the
  3201. * transaction structure is in a normal state. We have either seen the
  3202. * start of the transaction or the last operation we added was not a partial
  3203. * operation. If the last operation we added to the transaction was a
  3204. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  3205. *
  3206. * NOTE: skip LRs with 0 data length.
  3207. */
  3208. STATIC int
  3209. xlog_recover_process_data(
  3210. struct xlog *log,
  3211. struct hlist_head rhash[],
  3212. struct xlog_rec_header *rhead,
  3213. xfs_caddr_t dp,
  3214. int pass)
  3215. {
  3216. xfs_caddr_t lp;
  3217. int num_logops;
  3218. xlog_op_header_t *ohead;
  3219. xlog_recover_t *trans;
  3220. xlog_tid_t tid;
  3221. int error;
  3222. unsigned long hash;
  3223. uint flags;
  3224. lp = dp + be32_to_cpu(rhead->h_len);
  3225. num_logops = be32_to_cpu(rhead->h_num_logops);
  3226. /* check the log format matches our own - else we can't recover */
  3227. if (xlog_header_check_recover(log->l_mp, rhead))
  3228. return (XFS_ERROR(EIO));
  3229. while ((dp < lp) && num_logops) {
  3230. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  3231. ohead = (xlog_op_header_t *)dp;
  3232. dp += sizeof(xlog_op_header_t);
  3233. if (ohead->oh_clientid != XFS_TRANSACTION &&
  3234. ohead->oh_clientid != XFS_LOG) {
  3235. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  3236. __func__, ohead->oh_clientid);
  3237. ASSERT(0);
  3238. return (XFS_ERROR(EIO));
  3239. }
  3240. tid = be32_to_cpu(ohead->oh_tid);
  3241. hash = XLOG_RHASH(tid);
  3242. trans = xlog_recover_find_tid(&rhash[hash], tid);
  3243. if (trans == NULL) { /* not found; add new tid */
  3244. if (ohead->oh_flags & XLOG_START_TRANS)
  3245. xlog_recover_new_tid(&rhash[hash], tid,
  3246. be64_to_cpu(rhead->h_lsn));
  3247. } else {
  3248. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  3249. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  3250. __func__, be32_to_cpu(ohead->oh_len));
  3251. WARN_ON(1);
  3252. return (XFS_ERROR(EIO));
  3253. }
  3254. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  3255. if (flags & XLOG_WAS_CONT_TRANS)
  3256. flags &= ~XLOG_CONTINUE_TRANS;
  3257. switch (flags) {
  3258. case XLOG_COMMIT_TRANS:
  3259. error = xlog_recover_commit_trans(log,
  3260. trans, pass);
  3261. break;
  3262. case XLOG_UNMOUNT_TRANS:
  3263. error = xlog_recover_unmount_trans(log, trans);
  3264. break;
  3265. case XLOG_WAS_CONT_TRANS:
  3266. error = xlog_recover_add_to_cont_trans(log,
  3267. trans, dp,
  3268. be32_to_cpu(ohead->oh_len));
  3269. break;
  3270. case XLOG_START_TRANS:
  3271. xfs_warn(log->l_mp, "%s: bad transaction",
  3272. __func__);
  3273. ASSERT(0);
  3274. error = XFS_ERROR(EIO);
  3275. break;
  3276. case 0:
  3277. case XLOG_CONTINUE_TRANS:
  3278. error = xlog_recover_add_to_trans(log, trans,
  3279. dp, be32_to_cpu(ohead->oh_len));
  3280. break;
  3281. default:
  3282. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  3283. __func__, flags);
  3284. ASSERT(0);
  3285. error = XFS_ERROR(EIO);
  3286. break;
  3287. }
  3288. if (error)
  3289. return error;
  3290. }
  3291. dp += be32_to_cpu(ohead->oh_len);
  3292. num_logops--;
  3293. }
  3294. return 0;
  3295. }
  3296. /*
  3297. * Process an extent free intent item that was recovered from
  3298. * the log. We need to free the extents that it describes.
  3299. */
  3300. STATIC int
  3301. xlog_recover_process_efi(
  3302. xfs_mount_t *mp,
  3303. xfs_efi_log_item_t *efip)
  3304. {
  3305. xfs_efd_log_item_t *efdp;
  3306. xfs_trans_t *tp;
  3307. int i;
  3308. int error = 0;
  3309. xfs_extent_t *extp;
  3310. xfs_fsblock_t startblock_fsb;
  3311. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  3312. /*
  3313. * First check the validity of the extents described by the
  3314. * EFI. If any are bad, then assume that all are bad and
  3315. * just toss the EFI.
  3316. */
  3317. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3318. extp = &(efip->efi_format.efi_extents[i]);
  3319. startblock_fsb = XFS_BB_TO_FSB(mp,
  3320. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  3321. if ((startblock_fsb == 0) ||
  3322. (extp->ext_len == 0) ||
  3323. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  3324. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  3325. /*
  3326. * This will pull the EFI from the AIL and
  3327. * free the memory associated with it.
  3328. */
  3329. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3330. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  3331. return XFS_ERROR(EIO);
  3332. }
  3333. }
  3334. tp = xfs_trans_alloc(mp, 0);
  3335. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
  3336. if (error)
  3337. goto abort_error;
  3338. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  3339. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3340. extp = &(efip->efi_format.efi_extents[i]);
  3341. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  3342. if (error)
  3343. goto abort_error;
  3344. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  3345. extp->ext_len);
  3346. }
  3347. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3348. error = xfs_trans_commit(tp, 0);
  3349. return error;
  3350. abort_error:
  3351. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3352. return error;
  3353. }
  3354. /*
  3355. * When this is called, all of the EFIs which did not have
  3356. * corresponding EFDs should be in the AIL. What we do now
  3357. * is free the extents associated with each one.
  3358. *
  3359. * Since we process the EFIs in normal transactions, they
  3360. * will be removed at some point after the commit. This prevents
  3361. * us from just walking down the list processing each one.
  3362. * We'll use a flag in the EFI to skip those that we've already
  3363. * processed and use the AIL iteration mechanism's generation
  3364. * count to try to speed this up at least a bit.
  3365. *
  3366. * When we start, we know that the EFIs are the only things in
  3367. * the AIL. As we process them, however, other items are added
  3368. * to the AIL. Since everything added to the AIL must come after
  3369. * everything already in the AIL, we stop processing as soon as
  3370. * we see something other than an EFI in the AIL.
  3371. */
  3372. STATIC int
  3373. xlog_recover_process_efis(
  3374. struct xlog *log)
  3375. {
  3376. xfs_log_item_t *lip;
  3377. xfs_efi_log_item_t *efip;
  3378. int error = 0;
  3379. struct xfs_ail_cursor cur;
  3380. struct xfs_ail *ailp;
  3381. ailp = log->l_ailp;
  3382. spin_lock(&ailp->xa_lock);
  3383. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  3384. while (lip != NULL) {
  3385. /*
  3386. * We're done when we see something other than an EFI.
  3387. * There should be no EFIs left in the AIL now.
  3388. */
  3389. if (lip->li_type != XFS_LI_EFI) {
  3390. #ifdef DEBUG
  3391. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  3392. ASSERT(lip->li_type != XFS_LI_EFI);
  3393. #endif
  3394. break;
  3395. }
  3396. /*
  3397. * Skip EFIs that we've already processed.
  3398. */
  3399. efip = (xfs_efi_log_item_t *)lip;
  3400. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  3401. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3402. continue;
  3403. }
  3404. spin_unlock(&ailp->xa_lock);
  3405. error = xlog_recover_process_efi(log->l_mp, efip);
  3406. spin_lock(&ailp->xa_lock);
  3407. if (error)
  3408. goto out;
  3409. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3410. }
  3411. out:
  3412. xfs_trans_ail_cursor_done(ailp, &cur);
  3413. spin_unlock(&ailp->xa_lock);
  3414. return error;
  3415. }
  3416. /*
  3417. * This routine performs a transaction to null out a bad inode pointer
  3418. * in an agi unlinked inode hash bucket.
  3419. */
  3420. STATIC void
  3421. xlog_recover_clear_agi_bucket(
  3422. xfs_mount_t *mp,
  3423. xfs_agnumber_t agno,
  3424. int bucket)
  3425. {
  3426. xfs_trans_t *tp;
  3427. xfs_agi_t *agi;
  3428. xfs_buf_t *agibp;
  3429. int offset;
  3430. int error;
  3431. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  3432. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
  3433. if (error)
  3434. goto out_abort;
  3435. error = xfs_read_agi(mp, tp, agno, &agibp);
  3436. if (error)
  3437. goto out_abort;
  3438. agi = XFS_BUF_TO_AGI(agibp);
  3439. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  3440. offset = offsetof(xfs_agi_t, agi_unlinked) +
  3441. (sizeof(xfs_agino_t) * bucket);
  3442. xfs_trans_log_buf(tp, agibp, offset,
  3443. (offset + sizeof(xfs_agino_t) - 1));
  3444. error = xfs_trans_commit(tp, 0);
  3445. if (error)
  3446. goto out_error;
  3447. return;
  3448. out_abort:
  3449. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3450. out_error:
  3451. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  3452. return;
  3453. }
  3454. STATIC xfs_agino_t
  3455. xlog_recover_process_one_iunlink(
  3456. struct xfs_mount *mp,
  3457. xfs_agnumber_t agno,
  3458. xfs_agino_t agino,
  3459. int bucket)
  3460. {
  3461. struct xfs_buf *ibp;
  3462. struct xfs_dinode *dip;
  3463. struct xfs_inode *ip;
  3464. xfs_ino_t ino;
  3465. int error;
  3466. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  3467. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  3468. if (error)
  3469. goto fail;
  3470. /*
  3471. * Get the on disk inode to find the next inode in the bucket.
  3472. */
  3473. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  3474. if (error)
  3475. goto fail_iput;
  3476. ASSERT(ip->i_d.di_nlink == 0);
  3477. ASSERT(ip->i_d.di_mode != 0);
  3478. /* setup for the next pass */
  3479. agino = be32_to_cpu(dip->di_next_unlinked);
  3480. xfs_buf_relse(ibp);
  3481. /*
  3482. * Prevent any DMAPI event from being sent when the reference on
  3483. * the inode is dropped.
  3484. */
  3485. ip->i_d.di_dmevmask = 0;
  3486. IRELE(ip);
  3487. return agino;
  3488. fail_iput:
  3489. IRELE(ip);
  3490. fail:
  3491. /*
  3492. * We can't read in the inode this bucket points to, or this inode
  3493. * is messed up. Just ditch this bucket of inodes. We will lose
  3494. * some inodes and space, but at least we won't hang.
  3495. *
  3496. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  3497. * clear the inode pointer in the bucket.
  3498. */
  3499. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  3500. return NULLAGINO;
  3501. }
  3502. /*
  3503. * xlog_iunlink_recover
  3504. *
  3505. * This is called during recovery to process any inodes which
  3506. * we unlinked but not freed when the system crashed. These
  3507. * inodes will be on the lists in the AGI blocks. What we do
  3508. * here is scan all the AGIs and fully truncate and free any
  3509. * inodes found on the lists. Each inode is removed from the
  3510. * lists when it has been fully truncated and is freed. The
  3511. * freeing of the inode and its removal from the list must be
  3512. * atomic.
  3513. */
  3514. STATIC void
  3515. xlog_recover_process_iunlinks(
  3516. struct xlog *log)
  3517. {
  3518. xfs_mount_t *mp;
  3519. xfs_agnumber_t agno;
  3520. xfs_agi_t *agi;
  3521. xfs_buf_t *agibp;
  3522. xfs_agino_t agino;
  3523. int bucket;
  3524. int error;
  3525. uint mp_dmevmask;
  3526. mp = log->l_mp;
  3527. /*
  3528. * Prevent any DMAPI event from being sent while in this function.
  3529. */
  3530. mp_dmevmask = mp->m_dmevmask;
  3531. mp->m_dmevmask = 0;
  3532. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3533. /*
  3534. * Find the agi for this ag.
  3535. */
  3536. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3537. if (error) {
  3538. /*
  3539. * AGI is b0rked. Don't process it.
  3540. *
  3541. * We should probably mark the filesystem as corrupt
  3542. * after we've recovered all the ag's we can....
  3543. */
  3544. continue;
  3545. }
  3546. /*
  3547. * Unlock the buffer so that it can be acquired in the normal
  3548. * course of the transaction to truncate and free each inode.
  3549. * Because we are not racing with anyone else here for the AGI
  3550. * buffer, we don't even need to hold it locked to read the
  3551. * initial unlinked bucket entries out of the buffer. We keep
  3552. * buffer reference though, so that it stays pinned in memory
  3553. * while we need the buffer.
  3554. */
  3555. agi = XFS_BUF_TO_AGI(agibp);
  3556. xfs_buf_unlock(agibp);
  3557. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3558. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3559. while (agino != NULLAGINO) {
  3560. agino = xlog_recover_process_one_iunlink(mp,
  3561. agno, agino, bucket);
  3562. }
  3563. }
  3564. xfs_buf_rele(agibp);
  3565. }
  3566. mp->m_dmevmask = mp_dmevmask;
  3567. }
  3568. /*
  3569. * Upack the log buffer data and crc check it. If the check fails, issue a
  3570. * warning if and only if the CRC in the header is non-zero. This makes the
  3571. * check an advisory warning, and the zero CRC check will prevent failure
  3572. * warnings from being emitted when upgrading the kernel from one that does not
  3573. * add CRCs by default.
  3574. *
  3575. * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
  3576. * corruption failure
  3577. */
  3578. STATIC int
  3579. xlog_unpack_data_crc(
  3580. struct xlog_rec_header *rhead,
  3581. xfs_caddr_t dp,
  3582. struct xlog *log)
  3583. {
  3584. __le32 crc;
  3585. crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
  3586. if (crc != rhead->h_crc) {
  3587. if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
  3588. xfs_alert(log->l_mp,
  3589. "log record CRC mismatch: found 0x%x, expected 0x%x.",
  3590. le32_to_cpu(rhead->h_crc),
  3591. le32_to_cpu(crc));
  3592. xfs_hex_dump(dp, 32);
  3593. }
  3594. /*
  3595. * If we've detected a log record corruption, then we can't
  3596. * recover past this point. Abort recovery if we are enforcing
  3597. * CRC protection by punting an error back up the stack.
  3598. */
  3599. if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
  3600. return EFSCORRUPTED;
  3601. }
  3602. return 0;
  3603. }
  3604. STATIC int
  3605. xlog_unpack_data(
  3606. struct xlog_rec_header *rhead,
  3607. xfs_caddr_t dp,
  3608. struct xlog *log)
  3609. {
  3610. int i, j, k;
  3611. int error;
  3612. error = xlog_unpack_data_crc(rhead, dp, log);
  3613. if (error)
  3614. return error;
  3615. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3616. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3617. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3618. dp += BBSIZE;
  3619. }
  3620. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3621. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3622. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3623. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3624. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3625. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3626. dp += BBSIZE;
  3627. }
  3628. }
  3629. return 0;
  3630. }
  3631. STATIC int
  3632. xlog_valid_rec_header(
  3633. struct xlog *log,
  3634. struct xlog_rec_header *rhead,
  3635. xfs_daddr_t blkno)
  3636. {
  3637. int hlen;
  3638. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3639. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3640. XFS_ERRLEVEL_LOW, log->l_mp);
  3641. return XFS_ERROR(EFSCORRUPTED);
  3642. }
  3643. if (unlikely(
  3644. (!rhead->h_version ||
  3645. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3646. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3647. __func__, be32_to_cpu(rhead->h_version));
  3648. return XFS_ERROR(EIO);
  3649. }
  3650. /* LR body must have data or it wouldn't have been written */
  3651. hlen = be32_to_cpu(rhead->h_len);
  3652. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3653. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3654. XFS_ERRLEVEL_LOW, log->l_mp);
  3655. return XFS_ERROR(EFSCORRUPTED);
  3656. }
  3657. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3658. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3659. XFS_ERRLEVEL_LOW, log->l_mp);
  3660. return XFS_ERROR(EFSCORRUPTED);
  3661. }
  3662. return 0;
  3663. }
  3664. /*
  3665. * Read the log from tail to head and process the log records found.
  3666. * Handle the two cases where the tail and head are in the same cycle
  3667. * and where the active portion of the log wraps around the end of
  3668. * the physical log separately. The pass parameter is passed through
  3669. * to the routines called to process the data and is not looked at
  3670. * here.
  3671. */
  3672. STATIC int
  3673. xlog_do_recovery_pass(
  3674. struct xlog *log,
  3675. xfs_daddr_t head_blk,
  3676. xfs_daddr_t tail_blk,
  3677. int pass)
  3678. {
  3679. xlog_rec_header_t *rhead;
  3680. xfs_daddr_t blk_no;
  3681. xfs_caddr_t offset;
  3682. xfs_buf_t *hbp, *dbp;
  3683. int error = 0, h_size;
  3684. int bblks, split_bblks;
  3685. int hblks, split_hblks, wrapped_hblks;
  3686. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3687. ASSERT(head_blk != tail_blk);
  3688. /*
  3689. * Read the header of the tail block and get the iclog buffer size from
  3690. * h_size. Use this to tell how many sectors make up the log header.
  3691. */
  3692. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3693. /*
  3694. * When using variable length iclogs, read first sector of
  3695. * iclog header and extract the header size from it. Get a
  3696. * new hbp that is the correct size.
  3697. */
  3698. hbp = xlog_get_bp(log, 1);
  3699. if (!hbp)
  3700. return ENOMEM;
  3701. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3702. if (error)
  3703. goto bread_err1;
  3704. rhead = (xlog_rec_header_t *)offset;
  3705. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3706. if (error)
  3707. goto bread_err1;
  3708. h_size = be32_to_cpu(rhead->h_size);
  3709. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3710. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3711. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3712. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3713. hblks++;
  3714. xlog_put_bp(hbp);
  3715. hbp = xlog_get_bp(log, hblks);
  3716. } else {
  3717. hblks = 1;
  3718. }
  3719. } else {
  3720. ASSERT(log->l_sectBBsize == 1);
  3721. hblks = 1;
  3722. hbp = xlog_get_bp(log, 1);
  3723. h_size = XLOG_BIG_RECORD_BSIZE;
  3724. }
  3725. if (!hbp)
  3726. return ENOMEM;
  3727. dbp = xlog_get_bp(log, BTOBB(h_size));
  3728. if (!dbp) {
  3729. xlog_put_bp(hbp);
  3730. return ENOMEM;
  3731. }
  3732. memset(rhash, 0, sizeof(rhash));
  3733. if (tail_blk <= head_blk) {
  3734. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3735. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3736. if (error)
  3737. goto bread_err2;
  3738. rhead = (xlog_rec_header_t *)offset;
  3739. error = xlog_valid_rec_header(log, rhead, blk_no);
  3740. if (error)
  3741. goto bread_err2;
  3742. /* blocks in data section */
  3743. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3744. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3745. &offset);
  3746. if (error)
  3747. goto bread_err2;
  3748. error = xlog_unpack_data(rhead, offset, log);
  3749. if (error)
  3750. goto bread_err2;
  3751. error = xlog_recover_process_data(log,
  3752. rhash, rhead, offset, pass);
  3753. if (error)
  3754. goto bread_err2;
  3755. blk_no += bblks + hblks;
  3756. }
  3757. } else {
  3758. /*
  3759. * Perform recovery around the end of the physical log.
  3760. * When the head is not on the same cycle number as the tail,
  3761. * we can't do a sequential recovery as above.
  3762. */
  3763. blk_no = tail_blk;
  3764. while (blk_no < log->l_logBBsize) {
  3765. /*
  3766. * Check for header wrapping around physical end-of-log
  3767. */
  3768. offset = hbp->b_addr;
  3769. split_hblks = 0;
  3770. wrapped_hblks = 0;
  3771. if (blk_no + hblks <= log->l_logBBsize) {
  3772. /* Read header in one read */
  3773. error = xlog_bread(log, blk_no, hblks, hbp,
  3774. &offset);
  3775. if (error)
  3776. goto bread_err2;
  3777. } else {
  3778. /* This LR is split across physical log end */
  3779. if (blk_no != log->l_logBBsize) {
  3780. /* some data before physical log end */
  3781. ASSERT(blk_no <= INT_MAX);
  3782. split_hblks = log->l_logBBsize - (int)blk_no;
  3783. ASSERT(split_hblks > 0);
  3784. error = xlog_bread(log, blk_no,
  3785. split_hblks, hbp,
  3786. &offset);
  3787. if (error)
  3788. goto bread_err2;
  3789. }
  3790. /*
  3791. * Note: this black magic still works with
  3792. * large sector sizes (non-512) only because:
  3793. * - we increased the buffer size originally
  3794. * by 1 sector giving us enough extra space
  3795. * for the second read;
  3796. * - the log start is guaranteed to be sector
  3797. * aligned;
  3798. * - we read the log end (LR header start)
  3799. * _first_, then the log start (LR header end)
  3800. * - order is important.
  3801. */
  3802. wrapped_hblks = hblks - split_hblks;
  3803. error = xlog_bread_offset(log, 0,
  3804. wrapped_hblks, hbp,
  3805. offset + BBTOB(split_hblks));
  3806. if (error)
  3807. goto bread_err2;
  3808. }
  3809. rhead = (xlog_rec_header_t *)offset;
  3810. error = xlog_valid_rec_header(log, rhead,
  3811. split_hblks ? blk_no : 0);
  3812. if (error)
  3813. goto bread_err2;
  3814. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3815. blk_no += hblks;
  3816. /* Read in data for log record */
  3817. if (blk_no + bblks <= log->l_logBBsize) {
  3818. error = xlog_bread(log, blk_no, bblks, dbp,
  3819. &offset);
  3820. if (error)
  3821. goto bread_err2;
  3822. } else {
  3823. /* This log record is split across the
  3824. * physical end of log */
  3825. offset = dbp->b_addr;
  3826. split_bblks = 0;
  3827. if (blk_no != log->l_logBBsize) {
  3828. /* some data is before the physical
  3829. * end of log */
  3830. ASSERT(!wrapped_hblks);
  3831. ASSERT(blk_no <= INT_MAX);
  3832. split_bblks =
  3833. log->l_logBBsize - (int)blk_no;
  3834. ASSERT(split_bblks > 0);
  3835. error = xlog_bread(log, blk_no,
  3836. split_bblks, dbp,
  3837. &offset);
  3838. if (error)
  3839. goto bread_err2;
  3840. }
  3841. /*
  3842. * Note: this black magic still works with
  3843. * large sector sizes (non-512) only because:
  3844. * - we increased the buffer size originally
  3845. * by 1 sector giving us enough extra space
  3846. * for the second read;
  3847. * - the log start is guaranteed to be sector
  3848. * aligned;
  3849. * - we read the log end (LR header start)
  3850. * _first_, then the log start (LR header end)
  3851. * - order is important.
  3852. */
  3853. error = xlog_bread_offset(log, 0,
  3854. bblks - split_bblks, dbp,
  3855. offset + BBTOB(split_bblks));
  3856. if (error)
  3857. goto bread_err2;
  3858. }
  3859. error = xlog_unpack_data(rhead, offset, log);
  3860. if (error)
  3861. goto bread_err2;
  3862. error = xlog_recover_process_data(log, rhash,
  3863. rhead, offset, pass);
  3864. if (error)
  3865. goto bread_err2;
  3866. blk_no += bblks;
  3867. }
  3868. ASSERT(blk_no >= log->l_logBBsize);
  3869. blk_no -= log->l_logBBsize;
  3870. /* read first part of physical log */
  3871. while (blk_no < head_blk) {
  3872. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3873. if (error)
  3874. goto bread_err2;
  3875. rhead = (xlog_rec_header_t *)offset;
  3876. error = xlog_valid_rec_header(log, rhead, blk_no);
  3877. if (error)
  3878. goto bread_err2;
  3879. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3880. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3881. &offset);
  3882. if (error)
  3883. goto bread_err2;
  3884. error = xlog_unpack_data(rhead, offset, log);
  3885. if (error)
  3886. goto bread_err2;
  3887. error = xlog_recover_process_data(log, rhash,
  3888. rhead, offset, pass);
  3889. if (error)
  3890. goto bread_err2;
  3891. blk_no += bblks + hblks;
  3892. }
  3893. }
  3894. bread_err2:
  3895. xlog_put_bp(dbp);
  3896. bread_err1:
  3897. xlog_put_bp(hbp);
  3898. return error;
  3899. }
  3900. /*
  3901. * Do the recovery of the log. We actually do this in two phases.
  3902. * The two passes are necessary in order to implement the function
  3903. * of cancelling a record written into the log. The first pass
  3904. * determines those things which have been cancelled, and the
  3905. * second pass replays log items normally except for those which
  3906. * have been cancelled. The handling of the replay and cancellations
  3907. * takes place in the log item type specific routines.
  3908. *
  3909. * The table of items which have cancel records in the log is allocated
  3910. * and freed at this level, since only here do we know when all of
  3911. * the log recovery has been completed.
  3912. */
  3913. STATIC int
  3914. xlog_do_log_recovery(
  3915. struct xlog *log,
  3916. xfs_daddr_t head_blk,
  3917. xfs_daddr_t tail_blk)
  3918. {
  3919. int error, i;
  3920. ASSERT(head_blk != tail_blk);
  3921. /*
  3922. * First do a pass to find all of the cancelled buf log items.
  3923. * Store them in the buf_cancel_table for use in the second pass.
  3924. */
  3925. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3926. sizeof(struct list_head),
  3927. KM_SLEEP);
  3928. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3929. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3930. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3931. XLOG_RECOVER_PASS1);
  3932. if (error != 0) {
  3933. kmem_free(log->l_buf_cancel_table);
  3934. log->l_buf_cancel_table = NULL;
  3935. return error;
  3936. }
  3937. /*
  3938. * Then do a second pass to actually recover the items in the log.
  3939. * When it is complete free the table of buf cancel items.
  3940. */
  3941. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3942. XLOG_RECOVER_PASS2);
  3943. #ifdef DEBUG
  3944. if (!error) {
  3945. int i;
  3946. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3947. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3948. }
  3949. #endif /* DEBUG */
  3950. kmem_free(log->l_buf_cancel_table);
  3951. log->l_buf_cancel_table = NULL;
  3952. return error;
  3953. }
  3954. /*
  3955. * Do the actual recovery
  3956. */
  3957. STATIC int
  3958. xlog_do_recover(
  3959. struct xlog *log,
  3960. xfs_daddr_t head_blk,
  3961. xfs_daddr_t tail_blk)
  3962. {
  3963. int error;
  3964. xfs_buf_t *bp;
  3965. xfs_sb_t *sbp;
  3966. /*
  3967. * First replay the images in the log.
  3968. */
  3969. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3970. if (error)
  3971. return error;
  3972. /*
  3973. * If IO errors happened during recovery, bail out.
  3974. */
  3975. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3976. return (EIO);
  3977. }
  3978. /*
  3979. * We now update the tail_lsn since much of the recovery has completed
  3980. * and there may be space available to use. If there were no extent
  3981. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3982. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3983. * lsn of the last known good LR on disk. If there are extent frees
  3984. * or iunlinks they will have some entries in the AIL; so we look at
  3985. * the AIL to determine how to set the tail_lsn.
  3986. */
  3987. xlog_assign_tail_lsn(log->l_mp);
  3988. /*
  3989. * Now that we've finished replaying all buffer and inode
  3990. * updates, re-read in the superblock and reverify it.
  3991. */
  3992. bp = xfs_getsb(log->l_mp, 0);
  3993. XFS_BUF_UNDONE(bp);
  3994. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3995. XFS_BUF_READ(bp);
  3996. XFS_BUF_UNASYNC(bp);
  3997. bp->b_ops = &xfs_sb_buf_ops;
  3998. xfsbdstrat(log->l_mp, bp);
  3999. error = xfs_buf_iowait(bp);
  4000. if (error) {
  4001. xfs_buf_ioerror_alert(bp, __func__);
  4002. ASSERT(0);
  4003. xfs_buf_relse(bp);
  4004. return error;
  4005. }
  4006. /* Convert superblock from on-disk format */
  4007. sbp = &log->l_mp->m_sb;
  4008. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  4009. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  4010. ASSERT(xfs_sb_good_version(sbp));
  4011. xfs_buf_relse(bp);
  4012. /* We've re-read the superblock so re-initialize per-cpu counters */
  4013. xfs_icsb_reinit_counters(log->l_mp);
  4014. xlog_recover_check_summary(log);
  4015. /* Normal transactions can now occur */
  4016. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  4017. return 0;
  4018. }
  4019. /*
  4020. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  4021. *
  4022. * Return error or zero.
  4023. */
  4024. int
  4025. xlog_recover(
  4026. struct xlog *log)
  4027. {
  4028. xfs_daddr_t head_blk, tail_blk;
  4029. int error;
  4030. /* find the tail of the log */
  4031. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  4032. return error;
  4033. if (tail_blk != head_blk) {
  4034. /* There used to be a comment here:
  4035. *
  4036. * disallow recovery on read-only mounts. note -- mount
  4037. * checks for ENOSPC and turns it into an intelligent
  4038. * error message.
  4039. * ...but this is no longer true. Now, unless you specify
  4040. * NORECOVERY (in which case this function would never be
  4041. * called), we just go ahead and recover. We do this all
  4042. * under the vfs layer, so we can get away with it unless
  4043. * the device itself is read-only, in which case we fail.
  4044. */
  4045. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  4046. return error;
  4047. }
  4048. /*
  4049. * Version 5 superblock log feature mask validation. We know the
  4050. * log is dirty so check if there are any unknown log features
  4051. * in what we need to recover. If there are unknown features
  4052. * (e.g. unsupported transactions, then simply reject the
  4053. * attempt at recovery before touching anything.
  4054. */
  4055. if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
  4056. xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
  4057. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
  4058. xfs_warn(log->l_mp,
  4059. "Superblock has unknown incompatible log features (0x%x) enabled.\n"
  4060. "The log can not be fully and/or safely recovered by this kernel.\n"
  4061. "Please recover the log on a kernel that supports the unknown features.",
  4062. (log->l_mp->m_sb.sb_features_log_incompat &
  4063. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
  4064. return EINVAL;
  4065. }
  4066. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  4067. log->l_mp->m_logname ? log->l_mp->m_logname
  4068. : "internal");
  4069. error = xlog_do_recover(log, head_blk, tail_blk);
  4070. log->l_flags |= XLOG_RECOVERY_NEEDED;
  4071. }
  4072. return error;
  4073. }
  4074. /*
  4075. * In the first part of recovery we replay inodes and buffers and build
  4076. * up the list of extent free items which need to be processed. Here
  4077. * we process the extent free items and clean up the on disk unlinked
  4078. * inode lists. This is separated from the first part of recovery so
  4079. * that the root and real-time bitmap inodes can be read in from disk in
  4080. * between the two stages. This is necessary so that we can free space
  4081. * in the real-time portion of the file system.
  4082. */
  4083. int
  4084. xlog_recover_finish(
  4085. struct xlog *log)
  4086. {
  4087. /*
  4088. * Now we're ready to do the transactions needed for the
  4089. * rest of recovery. Start with completing all the extent
  4090. * free intent records and then process the unlinked inode
  4091. * lists. At this point, we essentially run in normal mode
  4092. * except that we're still performing recovery actions
  4093. * rather than accepting new requests.
  4094. */
  4095. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  4096. int error;
  4097. error = xlog_recover_process_efis(log);
  4098. if (error) {
  4099. xfs_alert(log->l_mp, "Failed to recover EFIs");
  4100. return error;
  4101. }
  4102. /*
  4103. * Sync the log to get all the EFIs out of the AIL.
  4104. * This isn't absolutely necessary, but it helps in
  4105. * case the unlink transactions would have problems
  4106. * pushing the EFIs out of the way.
  4107. */
  4108. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  4109. xlog_recover_process_iunlinks(log);
  4110. xlog_recover_check_summary(log);
  4111. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  4112. log->l_mp->m_logname ? log->l_mp->m_logname
  4113. : "internal");
  4114. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  4115. } else {
  4116. xfs_info(log->l_mp, "Ending clean mount");
  4117. }
  4118. return 0;
  4119. }
  4120. #if defined(DEBUG)
  4121. /*
  4122. * Read all of the agf and agi counters and check that they
  4123. * are consistent with the superblock counters.
  4124. */
  4125. void
  4126. xlog_recover_check_summary(
  4127. struct xlog *log)
  4128. {
  4129. xfs_mount_t *mp;
  4130. xfs_agf_t *agfp;
  4131. xfs_buf_t *agfbp;
  4132. xfs_buf_t *agibp;
  4133. xfs_agnumber_t agno;
  4134. __uint64_t freeblks;
  4135. __uint64_t itotal;
  4136. __uint64_t ifree;
  4137. int error;
  4138. mp = log->l_mp;
  4139. freeblks = 0LL;
  4140. itotal = 0LL;
  4141. ifree = 0LL;
  4142. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  4143. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  4144. if (error) {
  4145. xfs_alert(mp, "%s agf read failed agno %d error %d",
  4146. __func__, agno, error);
  4147. } else {
  4148. agfp = XFS_BUF_TO_AGF(agfbp);
  4149. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  4150. be32_to_cpu(agfp->agf_flcount);
  4151. xfs_buf_relse(agfbp);
  4152. }
  4153. error = xfs_read_agi(mp, NULL, agno, &agibp);
  4154. if (error) {
  4155. xfs_alert(mp, "%s agi read failed agno %d error %d",
  4156. __func__, agno, error);
  4157. } else {
  4158. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  4159. itotal += be32_to_cpu(agi->agi_count);
  4160. ifree += be32_to_cpu(agi->agi_freecount);
  4161. xfs_buf_relse(agibp);
  4162. }
  4163. }
  4164. }
  4165. #endif /* DEBUG */