segment.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  108. {
  109. struct nilfs_transaction_info *cur_ti = current->journal_info;
  110. void *save = NULL;
  111. if (cur_ti) {
  112. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  113. return ++cur_ti->ti_count;
  114. else {
  115. /*
  116. * If journal_info field is occupied by other FS,
  117. * it is saved and will be restored on
  118. * nilfs_transaction_commit().
  119. */
  120. printk(KERN_WARNING
  121. "NILFS warning: journal info from a different "
  122. "FS\n");
  123. save = current->journal_info;
  124. }
  125. }
  126. if (!ti) {
  127. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  128. if (!ti)
  129. return -ENOMEM;
  130. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  131. } else {
  132. ti->ti_flags = 0;
  133. }
  134. ti->ti_count = 0;
  135. ti->ti_save = save;
  136. ti->ti_magic = NILFS_TI_MAGIC;
  137. current->journal_info = ti;
  138. return 0;
  139. }
  140. /**
  141. * nilfs_transaction_begin - start indivisible file operations.
  142. * @sb: super block
  143. * @ti: nilfs_transaction_info
  144. * @vacancy_check: flags for vacancy rate checks
  145. *
  146. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  147. * the segment semaphore, to make a segment construction and write tasks
  148. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  149. * The region enclosed by these two functions can be nested. To avoid a
  150. * deadlock, the semaphore is only acquired or released in the outermost call.
  151. *
  152. * This function allocates a nilfs_transaction_info struct to keep context
  153. * information on it. It is initialized and hooked onto the current task in
  154. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  155. * instead; otherwise a new struct is assigned from a slab.
  156. *
  157. * When @vacancy_check flag is set, this function will check the amount of
  158. * free space, and will wait for the GC to reclaim disk space if low capacity.
  159. *
  160. * Return Value: On success, 0 is returned. On error, one of the following
  161. * negative error code is returned.
  162. *
  163. * %-ENOMEM - Insufficient memory available.
  164. *
  165. * %-ENOSPC - No space left on device
  166. */
  167. int nilfs_transaction_begin(struct super_block *sb,
  168. struct nilfs_transaction_info *ti,
  169. int vacancy_check)
  170. {
  171. struct the_nilfs *nilfs;
  172. int ret = nilfs_prepare_segment_lock(ti);
  173. if (unlikely(ret < 0))
  174. return ret;
  175. if (ret > 0)
  176. return 0;
  177. sb_start_intwrite(sb);
  178. nilfs = sb->s_fs_info;
  179. down_read(&nilfs->ns_segctor_sem);
  180. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  181. up_read(&nilfs->ns_segctor_sem);
  182. ret = -ENOSPC;
  183. goto failed;
  184. }
  185. return 0;
  186. failed:
  187. ti = current->journal_info;
  188. current->journal_info = ti->ti_save;
  189. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  190. kmem_cache_free(nilfs_transaction_cachep, ti);
  191. sb_end_intwrite(sb);
  192. return ret;
  193. }
  194. /**
  195. * nilfs_transaction_commit - commit indivisible file operations.
  196. * @sb: super block
  197. *
  198. * nilfs_transaction_commit() releases the read semaphore which is
  199. * acquired by nilfs_transaction_begin(). This is only performed
  200. * in outermost call of this function. If a commit flag is set,
  201. * nilfs_transaction_commit() sets a timer to start the segment
  202. * constructor. If a sync flag is set, it starts construction
  203. * directly.
  204. */
  205. int nilfs_transaction_commit(struct super_block *sb)
  206. {
  207. struct nilfs_transaction_info *ti = current->journal_info;
  208. struct the_nilfs *nilfs = sb->s_fs_info;
  209. int err = 0;
  210. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  211. ti->ti_flags |= NILFS_TI_COMMIT;
  212. if (ti->ti_count > 0) {
  213. ti->ti_count--;
  214. return 0;
  215. }
  216. if (nilfs->ns_writer) {
  217. struct nilfs_sc_info *sci = nilfs->ns_writer;
  218. if (ti->ti_flags & NILFS_TI_COMMIT)
  219. nilfs_segctor_start_timer(sci);
  220. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  221. nilfs_segctor_do_flush(sci, 0);
  222. }
  223. up_read(&nilfs->ns_segctor_sem);
  224. current->journal_info = ti->ti_save;
  225. if (ti->ti_flags & NILFS_TI_SYNC)
  226. err = nilfs_construct_segment(sb);
  227. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  228. kmem_cache_free(nilfs_transaction_cachep, ti);
  229. sb_end_intwrite(sb);
  230. return err;
  231. }
  232. void nilfs_transaction_abort(struct super_block *sb)
  233. {
  234. struct nilfs_transaction_info *ti = current->journal_info;
  235. struct the_nilfs *nilfs = sb->s_fs_info;
  236. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  237. if (ti->ti_count > 0) {
  238. ti->ti_count--;
  239. return;
  240. }
  241. up_read(&nilfs->ns_segctor_sem);
  242. current->journal_info = ti->ti_save;
  243. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  244. kmem_cache_free(nilfs_transaction_cachep, ti);
  245. sb_end_intwrite(sb);
  246. }
  247. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  248. {
  249. struct the_nilfs *nilfs = sb->s_fs_info;
  250. struct nilfs_sc_info *sci = nilfs->ns_writer;
  251. if (!sci || !sci->sc_flush_request)
  252. return;
  253. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  254. up_read(&nilfs->ns_segctor_sem);
  255. down_write(&nilfs->ns_segctor_sem);
  256. if (sci->sc_flush_request &&
  257. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  258. struct nilfs_transaction_info *ti = current->journal_info;
  259. ti->ti_flags |= NILFS_TI_WRITER;
  260. nilfs_segctor_do_immediate_flush(sci);
  261. ti->ti_flags &= ~NILFS_TI_WRITER;
  262. }
  263. downgrade_write(&nilfs->ns_segctor_sem);
  264. }
  265. static void nilfs_transaction_lock(struct super_block *sb,
  266. struct nilfs_transaction_info *ti,
  267. int gcflag)
  268. {
  269. struct nilfs_transaction_info *cur_ti = current->journal_info;
  270. struct the_nilfs *nilfs = sb->s_fs_info;
  271. struct nilfs_sc_info *sci = nilfs->ns_writer;
  272. WARN_ON(cur_ti);
  273. ti->ti_flags = NILFS_TI_WRITER;
  274. ti->ti_count = 0;
  275. ti->ti_save = cur_ti;
  276. ti->ti_magic = NILFS_TI_MAGIC;
  277. INIT_LIST_HEAD(&ti->ti_garbage);
  278. current->journal_info = ti;
  279. for (;;) {
  280. down_write(&nilfs->ns_segctor_sem);
  281. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  282. break;
  283. nilfs_segctor_do_immediate_flush(sci);
  284. up_write(&nilfs->ns_segctor_sem);
  285. yield();
  286. }
  287. if (gcflag)
  288. ti->ti_flags |= NILFS_TI_GC;
  289. }
  290. static void nilfs_transaction_unlock(struct super_block *sb)
  291. {
  292. struct nilfs_transaction_info *ti = current->journal_info;
  293. struct the_nilfs *nilfs = sb->s_fs_info;
  294. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  295. BUG_ON(ti->ti_count > 0);
  296. up_write(&nilfs->ns_segctor_sem);
  297. current->journal_info = ti->ti_save;
  298. if (!list_empty(&ti->ti_garbage))
  299. nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
  300. }
  301. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  302. struct nilfs_segsum_pointer *ssp,
  303. unsigned bytes)
  304. {
  305. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  306. unsigned blocksize = sci->sc_super->s_blocksize;
  307. void *p;
  308. if (unlikely(ssp->offset + bytes > blocksize)) {
  309. ssp->offset = 0;
  310. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  311. &segbuf->sb_segsum_buffers));
  312. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  313. }
  314. p = ssp->bh->b_data + ssp->offset;
  315. ssp->offset += bytes;
  316. return p;
  317. }
  318. /**
  319. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  320. * @sci: nilfs_sc_info
  321. */
  322. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  323. {
  324. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  325. struct buffer_head *sumbh;
  326. unsigned sumbytes;
  327. unsigned flags = 0;
  328. int err;
  329. if (nilfs_doing_gc())
  330. flags = NILFS_SS_GC;
  331. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  332. if (unlikely(err))
  333. return err;
  334. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  335. sumbytes = segbuf->sb_sum.sumbytes;
  336. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  337. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  338. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  339. return 0;
  340. }
  341. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  342. {
  343. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  344. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  345. return -E2BIG; /* The current segment is filled up
  346. (internal code) */
  347. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  348. return nilfs_segctor_reset_segment_buffer(sci);
  349. }
  350. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  351. {
  352. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  353. int err;
  354. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  355. err = nilfs_segctor_feed_segment(sci);
  356. if (err)
  357. return err;
  358. segbuf = sci->sc_curseg;
  359. }
  360. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  361. if (likely(!err))
  362. segbuf->sb_sum.flags |= NILFS_SS_SR;
  363. return err;
  364. }
  365. /*
  366. * Functions for making segment summary and payloads
  367. */
  368. static int nilfs_segctor_segsum_block_required(
  369. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  370. unsigned binfo_size)
  371. {
  372. unsigned blocksize = sci->sc_super->s_blocksize;
  373. /* Size of finfo and binfo is enough small against blocksize */
  374. return ssp->offset + binfo_size +
  375. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  376. blocksize;
  377. }
  378. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  379. struct inode *inode)
  380. {
  381. sci->sc_curseg->sb_sum.nfinfo++;
  382. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  383. nilfs_segctor_map_segsum_entry(
  384. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  385. if (NILFS_I(inode)->i_root &&
  386. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  387. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  388. /* skip finfo */
  389. }
  390. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  391. struct inode *inode)
  392. {
  393. struct nilfs_finfo *finfo;
  394. struct nilfs_inode_info *ii;
  395. struct nilfs_segment_buffer *segbuf;
  396. __u64 cno;
  397. if (sci->sc_blk_cnt == 0)
  398. return;
  399. ii = NILFS_I(inode);
  400. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  401. cno = ii->i_cno;
  402. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  403. cno = 0;
  404. else
  405. cno = sci->sc_cno;
  406. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  407. sizeof(*finfo));
  408. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  409. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  410. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  411. finfo->fi_cno = cpu_to_le64(cno);
  412. segbuf = sci->sc_curseg;
  413. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  414. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  415. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  416. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  417. }
  418. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  419. struct buffer_head *bh,
  420. struct inode *inode,
  421. unsigned binfo_size)
  422. {
  423. struct nilfs_segment_buffer *segbuf;
  424. int required, err = 0;
  425. retry:
  426. segbuf = sci->sc_curseg;
  427. required = nilfs_segctor_segsum_block_required(
  428. sci, &sci->sc_binfo_ptr, binfo_size);
  429. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  430. nilfs_segctor_end_finfo(sci, inode);
  431. err = nilfs_segctor_feed_segment(sci);
  432. if (err)
  433. return err;
  434. goto retry;
  435. }
  436. if (unlikely(required)) {
  437. err = nilfs_segbuf_extend_segsum(segbuf);
  438. if (unlikely(err))
  439. goto failed;
  440. }
  441. if (sci->sc_blk_cnt == 0)
  442. nilfs_segctor_begin_finfo(sci, inode);
  443. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  444. /* Substitution to vblocknr is delayed until update_blocknr() */
  445. nilfs_segbuf_add_file_buffer(segbuf, bh);
  446. sci->sc_blk_cnt++;
  447. failed:
  448. return err;
  449. }
  450. /*
  451. * Callback functions that enumerate, mark, and collect dirty blocks
  452. */
  453. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  454. struct buffer_head *bh, struct inode *inode)
  455. {
  456. int err;
  457. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  458. if (err < 0)
  459. return err;
  460. err = nilfs_segctor_add_file_block(sci, bh, inode,
  461. sizeof(struct nilfs_binfo_v));
  462. if (!err)
  463. sci->sc_datablk_cnt++;
  464. return err;
  465. }
  466. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  467. struct buffer_head *bh,
  468. struct inode *inode)
  469. {
  470. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  471. }
  472. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  473. struct buffer_head *bh,
  474. struct inode *inode)
  475. {
  476. WARN_ON(!buffer_dirty(bh));
  477. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  478. }
  479. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  480. struct nilfs_segsum_pointer *ssp,
  481. union nilfs_binfo *binfo)
  482. {
  483. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  484. sci, ssp, sizeof(*binfo_v));
  485. *binfo_v = binfo->bi_v;
  486. }
  487. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  488. struct nilfs_segsum_pointer *ssp,
  489. union nilfs_binfo *binfo)
  490. {
  491. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  492. sci, ssp, sizeof(*vblocknr));
  493. *vblocknr = binfo->bi_v.bi_vblocknr;
  494. }
  495. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  496. .collect_data = nilfs_collect_file_data,
  497. .collect_node = nilfs_collect_file_node,
  498. .collect_bmap = nilfs_collect_file_bmap,
  499. .write_data_binfo = nilfs_write_file_data_binfo,
  500. .write_node_binfo = nilfs_write_file_node_binfo,
  501. };
  502. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  503. struct buffer_head *bh, struct inode *inode)
  504. {
  505. int err;
  506. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  507. if (err < 0)
  508. return err;
  509. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  510. if (!err)
  511. sci->sc_datablk_cnt++;
  512. return err;
  513. }
  514. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  515. struct buffer_head *bh, struct inode *inode)
  516. {
  517. WARN_ON(!buffer_dirty(bh));
  518. return nilfs_segctor_add_file_block(sci, bh, inode,
  519. sizeof(struct nilfs_binfo_dat));
  520. }
  521. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  522. struct nilfs_segsum_pointer *ssp,
  523. union nilfs_binfo *binfo)
  524. {
  525. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  526. sizeof(*blkoff));
  527. *blkoff = binfo->bi_dat.bi_blkoff;
  528. }
  529. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  530. struct nilfs_segsum_pointer *ssp,
  531. union nilfs_binfo *binfo)
  532. {
  533. struct nilfs_binfo_dat *binfo_dat =
  534. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  535. *binfo_dat = binfo->bi_dat;
  536. }
  537. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  538. .collect_data = nilfs_collect_dat_data,
  539. .collect_node = nilfs_collect_file_node,
  540. .collect_bmap = nilfs_collect_dat_bmap,
  541. .write_data_binfo = nilfs_write_dat_data_binfo,
  542. .write_node_binfo = nilfs_write_dat_node_binfo,
  543. };
  544. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  545. .collect_data = nilfs_collect_file_data,
  546. .collect_node = NULL,
  547. .collect_bmap = NULL,
  548. .write_data_binfo = nilfs_write_file_data_binfo,
  549. .write_node_binfo = NULL,
  550. };
  551. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  552. struct list_head *listp,
  553. size_t nlimit,
  554. loff_t start, loff_t end)
  555. {
  556. struct address_space *mapping = inode->i_mapping;
  557. struct pagevec pvec;
  558. pgoff_t index = 0, last = ULONG_MAX;
  559. size_t ndirties = 0;
  560. int i;
  561. if (unlikely(start != 0 || end != LLONG_MAX)) {
  562. /*
  563. * A valid range is given for sync-ing data pages. The
  564. * range is rounded to per-page; extra dirty buffers
  565. * may be included if blocksize < pagesize.
  566. */
  567. index = start >> PAGE_SHIFT;
  568. last = end >> PAGE_SHIFT;
  569. }
  570. pagevec_init(&pvec, 0);
  571. repeat:
  572. if (unlikely(index > last) ||
  573. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  574. min_t(pgoff_t, last - index,
  575. PAGEVEC_SIZE - 1) + 1))
  576. return ndirties;
  577. for (i = 0; i < pagevec_count(&pvec); i++) {
  578. struct buffer_head *bh, *head;
  579. struct page *page = pvec.pages[i];
  580. if (unlikely(page->index > last))
  581. break;
  582. lock_page(page);
  583. if (!page_has_buffers(page))
  584. create_empty_buffers(page, 1 << inode->i_blkbits, 0);
  585. unlock_page(page);
  586. bh = head = page_buffers(page);
  587. do {
  588. if (!buffer_dirty(bh) || buffer_async_write(bh))
  589. continue;
  590. get_bh(bh);
  591. list_add_tail(&bh->b_assoc_buffers, listp);
  592. ndirties++;
  593. if (unlikely(ndirties >= nlimit)) {
  594. pagevec_release(&pvec);
  595. cond_resched();
  596. return ndirties;
  597. }
  598. } while (bh = bh->b_this_page, bh != head);
  599. }
  600. pagevec_release(&pvec);
  601. cond_resched();
  602. goto repeat;
  603. }
  604. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  605. struct list_head *listp)
  606. {
  607. struct nilfs_inode_info *ii = NILFS_I(inode);
  608. struct address_space *mapping = &ii->i_btnode_cache;
  609. struct pagevec pvec;
  610. struct buffer_head *bh, *head;
  611. unsigned int i;
  612. pgoff_t index = 0;
  613. pagevec_init(&pvec, 0);
  614. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  615. PAGEVEC_SIZE)) {
  616. for (i = 0; i < pagevec_count(&pvec); i++) {
  617. bh = head = page_buffers(pvec.pages[i]);
  618. do {
  619. if (buffer_dirty(bh) &&
  620. !buffer_async_write(bh)) {
  621. get_bh(bh);
  622. list_add_tail(&bh->b_assoc_buffers,
  623. listp);
  624. }
  625. bh = bh->b_this_page;
  626. } while (bh != head);
  627. }
  628. pagevec_release(&pvec);
  629. cond_resched();
  630. }
  631. }
  632. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  633. struct list_head *head, int force)
  634. {
  635. struct nilfs_inode_info *ii, *n;
  636. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  637. unsigned nv = 0;
  638. while (!list_empty(head)) {
  639. spin_lock(&nilfs->ns_inode_lock);
  640. list_for_each_entry_safe(ii, n, head, i_dirty) {
  641. list_del_init(&ii->i_dirty);
  642. if (force) {
  643. if (unlikely(ii->i_bh)) {
  644. brelse(ii->i_bh);
  645. ii->i_bh = NULL;
  646. }
  647. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  648. set_bit(NILFS_I_QUEUED, &ii->i_state);
  649. list_add_tail(&ii->i_dirty,
  650. &nilfs->ns_dirty_files);
  651. continue;
  652. }
  653. ivec[nv++] = ii;
  654. if (nv == SC_N_INODEVEC)
  655. break;
  656. }
  657. spin_unlock(&nilfs->ns_inode_lock);
  658. for (pii = ivec; nv > 0; pii++, nv--)
  659. iput(&(*pii)->vfs_inode);
  660. }
  661. }
  662. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  663. struct nilfs_root *root)
  664. {
  665. int ret = 0;
  666. if (nilfs_mdt_fetch_dirty(root->ifile))
  667. ret++;
  668. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  669. ret++;
  670. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  671. ret++;
  672. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  673. ret++;
  674. return ret;
  675. }
  676. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  677. {
  678. return list_empty(&sci->sc_dirty_files) &&
  679. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  680. sci->sc_nfreesegs == 0 &&
  681. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  682. }
  683. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  684. {
  685. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  686. int ret = 0;
  687. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  688. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  689. spin_lock(&nilfs->ns_inode_lock);
  690. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  691. ret++;
  692. spin_unlock(&nilfs->ns_inode_lock);
  693. return ret;
  694. }
  695. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  696. {
  697. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  698. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  699. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  700. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  701. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  702. }
  703. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  704. {
  705. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  706. struct buffer_head *bh_cp;
  707. struct nilfs_checkpoint *raw_cp;
  708. int err;
  709. /* XXX: this interface will be changed */
  710. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  711. &raw_cp, &bh_cp);
  712. if (likely(!err)) {
  713. /* The following code is duplicated with cpfile. But, it is
  714. needed to collect the checkpoint even if it was not newly
  715. created */
  716. mark_buffer_dirty(bh_cp);
  717. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  718. nilfs_cpfile_put_checkpoint(
  719. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  720. } else
  721. WARN_ON(err == -EINVAL || err == -ENOENT);
  722. return err;
  723. }
  724. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  725. {
  726. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  727. struct buffer_head *bh_cp;
  728. struct nilfs_checkpoint *raw_cp;
  729. int err;
  730. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  731. &raw_cp, &bh_cp);
  732. if (unlikely(err)) {
  733. WARN_ON(err == -EINVAL || err == -ENOENT);
  734. goto failed_ibh;
  735. }
  736. raw_cp->cp_snapshot_list.ssl_next = 0;
  737. raw_cp->cp_snapshot_list.ssl_prev = 0;
  738. raw_cp->cp_inodes_count =
  739. cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
  740. raw_cp->cp_blocks_count =
  741. cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
  742. raw_cp->cp_nblk_inc =
  743. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  744. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  745. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  746. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  747. nilfs_checkpoint_clear_minor(raw_cp);
  748. else
  749. nilfs_checkpoint_set_minor(raw_cp);
  750. nilfs_write_inode_common(sci->sc_root->ifile,
  751. &raw_cp->cp_ifile_inode, 1);
  752. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  753. return 0;
  754. failed_ibh:
  755. return err;
  756. }
  757. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  758. struct nilfs_inode_info *ii)
  759. {
  760. struct buffer_head *ibh;
  761. struct nilfs_inode *raw_inode;
  762. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  763. ibh = ii->i_bh;
  764. BUG_ON(!ibh);
  765. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  766. ibh);
  767. nilfs_bmap_write(ii->i_bmap, raw_inode);
  768. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  769. }
  770. }
  771. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  772. {
  773. struct nilfs_inode_info *ii;
  774. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  775. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  776. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  777. }
  778. }
  779. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  780. struct the_nilfs *nilfs)
  781. {
  782. struct buffer_head *bh_sr;
  783. struct nilfs_super_root *raw_sr;
  784. unsigned isz, srsz;
  785. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  786. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  787. isz = nilfs->ns_inode_size;
  788. srsz = NILFS_SR_BYTES(isz);
  789. raw_sr->sr_bytes = cpu_to_le16(srsz);
  790. raw_sr->sr_nongc_ctime
  791. = cpu_to_le64(nilfs_doing_gc() ?
  792. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  793. raw_sr->sr_flags = 0;
  794. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  795. NILFS_SR_DAT_OFFSET(isz), 1);
  796. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  797. NILFS_SR_CPFILE_OFFSET(isz), 1);
  798. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  799. NILFS_SR_SUFILE_OFFSET(isz), 1);
  800. memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
  801. }
  802. static void nilfs_redirty_inodes(struct list_head *head)
  803. {
  804. struct nilfs_inode_info *ii;
  805. list_for_each_entry(ii, head, i_dirty) {
  806. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  807. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  808. }
  809. }
  810. static void nilfs_drop_collected_inodes(struct list_head *head)
  811. {
  812. struct nilfs_inode_info *ii;
  813. list_for_each_entry(ii, head, i_dirty) {
  814. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  815. continue;
  816. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  817. set_bit(NILFS_I_UPDATED, &ii->i_state);
  818. }
  819. }
  820. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  821. struct inode *inode,
  822. struct list_head *listp,
  823. int (*collect)(struct nilfs_sc_info *,
  824. struct buffer_head *,
  825. struct inode *))
  826. {
  827. struct buffer_head *bh, *n;
  828. int err = 0;
  829. if (collect) {
  830. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  831. list_del_init(&bh->b_assoc_buffers);
  832. err = collect(sci, bh, inode);
  833. brelse(bh);
  834. if (unlikely(err))
  835. goto dispose_buffers;
  836. }
  837. return 0;
  838. }
  839. dispose_buffers:
  840. while (!list_empty(listp)) {
  841. bh = list_first_entry(listp, struct buffer_head,
  842. b_assoc_buffers);
  843. list_del_init(&bh->b_assoc_buffers);
  844. brelse(bh);
  845. }
  846. return err;
  847. }
  848. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  849. {
  850. /* Remaining number of blocks within segment buffer */
  851. return sci->sc_segbuf_nblocks -
  852. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  853. }
  854. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  855. struct inode *inode,
  856. struct nilfs_sc_operations *sc_ops)
  857. {
  858. LIST_HEAD(data_buffers);
  859. LIST_HEAD(node_buffers);
  860. int err;
  861. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  862. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  863. n = nilfs_lookup_dirty_data_buffers(
  864. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  865. if (n > rest) {
  866. err = nilfs_segctor_apply_buffers(
  867. sci, inode, &data_buffers,
  868. sc_ops->collect_data);
  869. BUG_ON(!err); /* always receive -E2BIG or true error */
  870. goto break_or_fail;
  871. }
  872. }
  873. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  874. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  875. err = nilfs_segctor_apply_buffers(
  876. sci, inode, &data_buffers, sc_ops->collect_data);
  877. if (unlikely(err)) {
  878. /* dispose node list */
  879. nilfs_segctor_apply_buffers(
  880. sci, inode, &node_buffers, NULL);
  881. goto break_or_fail;
  882. }
  883. sci->sc_stage.flags |= NILFS_CF_NODE;
  884. }
  885. /* Collect node */
  886. err = nilfs_segctor_apply_buffers(
  887. sci, inode, &node_buffers, sc_ops->collect_node);
  888. if (unlikely(err))
  889. goto break_or_fail;
  890. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  891. err = nilfs_segctor_apply_buffers(
  892. sci, inode, &node_buffers, sc_ops->collect_bmap);
  893. if (unlikely(err))
  894. goto break_or_fail;
  895. nilfs_segctor_end_finfo(sci, inode);
  896. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  897. break_or_fail:
  898. return err;
  899. }
  900. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  901. struct inode *inode)
  902. {
  903. LIST_HEAD(data_buffers);
  904. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  905. int err;
  906. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  907. sci->sc_dsync_start,
  908. sci->sc_dsync_end);
  909. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  910. nilfs_collect_file_data);
  911. if (!err) {
  912. nilfs_segctor_end_finfo(sci, inode);
  913. BUG_ON(n > rest);
  914. /* always receive -E2BIG or true error if n > rest */
  915. }
  916. return err;
  917. }
  918. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  919. {
  920. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  921. struct list_head *head;
  922. struct nilfs_inode_info *ii;
  923. size_t ndone;
  924. int err = 0;
  925. switch (sci->sc_stage.scnt) {
  926. case NILFS_ST_INIT:
  927. /* Pre-processes */
  928. sci->sc_stage.flags = 0;
  929. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  930. sci->sc_nblk_inc = 0;
  931. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  932. if (mode == SC_LSEG_DSYNC) {
  933. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  934. goto dsync_mode;
  935. }
  936. }
  937. sci->sc_stage.dirty_file_ptr = NULL;
  938. sci->sc_stage.gc_inode_ptr = NULL;
  939. if (mode == SC_FLUSH_DAT) {
  940. sci->sc_stage.scnt = NILFS_ST_DAT;
  941. goto dat_stage;
  942. }
  943. sci->sc_stage.scnt++; /* Fall through */
  944. case NILFS_ST_GC:
  945. if (nilfs_doing_gc()) {
  946. head = &sci->sc_gc_inodes;
  947. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  948. head, i_dirty);
  949. list_for_each_entry_continue(ii, head, i_dirty) {
  950. err = nilfs_segctor_scan_file(
  951. sci, &ii->vfs_inode,
  952. &nilfs_sc_file_ops);
  953. if (unlikely(err)) {
  954. sci->sc_stage.gc_inode_ptr = list_entry(
  955. ii->i_dirty.prev,
  956. struct nilfs_inode_info,
  957. i_dirty);
  958. goto break_or_fail;
  959. }
  960. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  961. }
  962. sci->sc_stage.gc_inode_ptr = NULL;
  963. }
  964. sci->sc_stage.scnt++; /* Fall through */
  965. case NILFS_ST_FILE:
  966. head = &sci->sc_dirty_files;
  967. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  968. i_dirty);
  969. list_for_each_entry_continue(ii, head, i_dirty) {
  970. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  971. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  972. &nilfs_sc_file_ops);
  973. if (unlikely(err)) {
  974. sci->sc_stage.dirty_file_ptr =
  975. list_entry(ii->i_dirty.prev,
  976. struct nilfs_inode_info,
  977. i_dirty);
  978. goto break_or_fail;
  979. }
  980. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  981. /* XXX: required ? */
  982. }
  983. sci->sc_stage.dirty_file_ptr = NULL;
  984. if (mode == SC_FLUSH_FILE) {
  985. sci->sc_stage.scnt = NILFS_ST_DONE;
  986. return 0;
  987. }
  988. sci->sc_stage.scnt++;
  989. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  990. /* Fall through */
  991. case NILFS_ST_IFILE:
  992. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  993. &nilfs_sc_file_ops);
  994. if (unlikely(err))
  995. break;
  996. sci->sc_stage.scnt++;
  997. /* Creating a checkpoint */
  998. err = nilfs_segctor_create_checkpoint(sci);
  999. if (unlikely(err))
  1000. break;
  1001. /* Fall through */
  1002. case NILFS_ST_CPFILE:
  1003. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1004. &nilfs_sc_file_ops);
  1005. if (unlikely(err))
  1006. break;
  1007. sci->sc_stage.scnt++; /* Fall through */
  1008. case NILFS_ST_SUFILE:
  1009. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1010. sci->sc_nfreesegs, &ndone);
  1011. if (unlikely(err)) {
  1012. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1013. sci->sc_freesegs, ndone,
  1014. NULL);
  1015. break;
  1016. }
  1017. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1018. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1019. &nilfs_sc_file_ops);
  1020. if (unlikely(err))
  1021. break;
  1022. sci->sc_stage.scnt++; /* Fall through */
  1023. case NILFS_ST_DAT:
  1024. dat_stage:
  1025. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1026. &nilfs_sc_dat_ops);
  1027. if (unlikely(err))
  1028. break;
  1029. if (mode == SC_FLUSH_DAT) {
  1030. sci->sc_stage.scnt = NILFS_ST_DONE;
  1031. return 0;
  1032. }
  1033. sci->sc_stage.scnt++; /* Fall through */
  1034. case NILFS_ST_SR:
  1035. if (mode == SC_LSEG_SR) {
  1036. /* Appending a super root */
  1037. err = nilfs_segctor_add_super_root(sci);
  1038. if (unlikely(err))
  1039. break;
  1040. }
  1041. /* End of a logical segment */
  1042. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1043. sci->sc_stage.scnt = NILFS_ST_DONE;
  1044. return 0;
  1045. case NILFS_ST_DSYNC:
  1046. dsync_mode:
  1047. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1048. ii = sci->sc_dsync_inode;
  1049. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1050. break;
  1051. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1052. if (unlikely(err))
  1053. break;
  1054. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1055. sci->sc_stage.scnt = NILFS_ST_DONE;
  1056. return 0;
  1057. case NILFS_ST_DONE:
  1058. return 0;
  1059. default:
  1060. BUG();
  1061. }
  1062. break_or_fail:
  1063. return err;
  1064. }
  1065. /**
  1066. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1067. * @sci: nilfs_sc_info
  1068. * @nilfs: nilfs object
  1069. */
  1070. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1071. struct the_nilfs *nilfs)
  1072. {
  1073. struct nilfs_segment_buffer *segbuf, *prev;
  1074. __u64 nextnum;
  1075. int err, alloc = 0;
  1076. segbuf = nilfs_segbuf_new(sci->sc_super);
  1077. if (unlikely(!segbuf))
  1078. return -ENOMEM;
  1079. if (list_empty(&sci->sc_write_logs)) {
  1080. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1081. nilfs->ns_pseg_offset, nilfs);
  1082. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1083. nilfs_shift_to_next_segment(nilfs);
  1084. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1085. }
  1086. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1087. nextnum = nilfs->ns_nextnum;
  1088. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1089. /* Start from the head of a new full segment */
  1090. alloc++;
  1091. } else {
  1092. /* Continue logs */
  1093. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1094. nilfs_segbuf_map_cont(segbuf, prev);
  1095. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1096. nextnum = prev->sb_nextnum;
  1097. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1098. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1099. segbuf->sb_sum.seg_seq++;
  1100. alloc++;
  1101. }
  1102. }
  1103. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1104. if (err)
  1105. goto failed;
  1106. if (alloc) {
  1107. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1108. if (err)
  1109. goto failed;
  1110. }
  1111. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1112. BUG_ON(!list_empty(&sci->sc_segbufs));
  1113. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1114. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1115. return 0;
  1116. failed:
  1117. nilfs_segbuf_free(segbuf);
  1118. return err;
  1119. }
  1120. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1121. struct the_nilfs *nilfs, int nadd)
  1122. {
  1123. struct nilfs_segment_buffer *segbuf, *prev;
  1124. struct inode *sufile = nilfs->ns_sufile;
  1125. __u64 nextnextnum;
  1126. LIST_HEAD(list);
  1127. int err, ret, i;
  1128. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1129. /*
  1130. * Since the segment specified with nextnum might be allocated during
  1131. * the previous construction, the buffer including its segusage may
  1132. * not be dirty. The following call ensures that the buffer is dirty
  1133. * and will pin the buffer on memory until the sufile is written.
  1134. */
  1135. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1136. if (unlikely(err))
  1137. return err;
  1138. for (i = 0; i < nadd; i++) {
  1139. /* extend segment info */
  1140. err = -ENOMEM;
  1141. segbuf = nilfs_segbuf_new(sci->sc_super);
  1142. if (unlikely(!segbuf))
  1143. goto failed;
  1144. /* map this buffer to region of segment on-disk */
  1145. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1146. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1147. /* allocate the next next full segment */
  1148. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1149. if (unlikely(err))
  1150. goto failed_segbuf;
  1151. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1152. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1153. list_add_tail(&segbuf->sb_list, &list);
  1154. prev = segbuf;
  1155. }
  1156. list_splice_tail(&list, &sci->sc_segbufs);
  1157. return 0;
  1158. failed_segbuf:
  1159. nilfs_segbuf_free(segbuf);
  1160. failed:
  1161. list_for_each_entry(segbuf, &list, sb_list) {
  1162. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1163. WARN_ON(ret); /* never fails */
  1164. }
  1165. nilfs_destroy_logs(&list);
  1166. return err;
  1167. }
  1168. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1169. struct the_nilfs *nilfs)
  1170. {
  1171. struct nilfs_segment_buffer *segbuf, *prev;
  1172. struct inode *sufile = nilfs->ns_sufile;
  1173. int ret;
  1174. segbuf = NILFS_FIRST_SEGBUF(logs);
  1175. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1176. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1177. WARN_ON(ret); /* never fails */
  1178. }
  1179. if (atomic_read(&segbuf->sb_err)) {
  1180. /* Case 1: The first segment failed */
  1181. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1182. /* Case 1a: Partial segment appended into an existing
  1183. segment */
  1184. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1185. segbuf->sb_fseg_end);
  1186. else /* Case 1b: New full segment */
  1187. set_nilfs_discontinued(nilfs);
  1188. }
  1189. prev = segbuf;
  1190. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1191. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1192. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1193. WARN_ON(ret); /* never fails */
  1194. }
  1195. if (atomic_read(&segbuf->sb_err) &&
  1196. segbuf->sb_segnum != nilfs->ns_nextnum)
  1197. /* Case 2: extended segment (!= next) failed */
  1198. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1199. prev = segbuf;
  1200. }
  1201. }
  1202. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1203. struct inode *sufile)
  1204. {
  1205. struct nilfs_segment_buffer *segbuf;
  1206. unsigned long live_blocks;
  1207. int ret;
  1208. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1209. live_blocks = segbuf->sb_sum.nblocks +
  1210. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1211. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1212. live_blocks,
  1213. sci->sc_seg_ctime);
  1214. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1215. }
  1216. }
  1217. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1218. {
  1219. struct nilfs_segment_buffer *segbuf;
  1220. int ret;
  1221. segbuf = NILFS_FIRST_SEGBUF(logs);
  1222. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1223. segbuf->sb_pseg_start -
  1224. segbuf->sb_fseg_start, 0);
  1225. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1226. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1227. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1228. 0, 0);
  1229. WARN_ON(ret); /* always succeed */
  1230. }
  1231. }
  1232. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1233. struct nilfs_segment_buffer *last,
  1234. struct inode *sufile)
  1235. {
  1236. struct nilfs_segment_buffer *segbuf = last;
  1237. int ret;
  1238. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1239. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1240. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1241. WARN_ON(ret);
  1242. }
  1243. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1244. }
  1245. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1246. struct the_nilfs *nilfs, int mode)
  1247. {
  1248. struct nilfs_cstage prev_stage = sci->sc_stage;
  1249. int err, nadd = 1;
  1250. /* Collection retry loop */
  1251. for (;;) {
  1252. sci->sc_nblk_this_inc = 0;
  1253. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1254. err = nilfs_segctor_reset_segment_buffer(sci);
  1255. if (unlikely(err))
  1256. goto failed;
  1257. err = nilfs_segctor_collect_blocks(sci, mode);
  1258. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1259. if (!err)
  1260. break;
  1261. if (unlikely(err != -E2BIG))
  1262. goto failed;
  1263. /* The current segment is filled up */
  1264. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1265. break;
  1266. nilfs_clear_logs(&sci->sc_segbufs);
  1267. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1268. if (unlikely(err))
  1269. return err;
  1270. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1271. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1272. sci->sc_freesegs,
  1273. sci->sc_nfreesegs,
  1274. NULL);
  1275. WARN_ON(err); /* do not happen */
  1276. }
  1277. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1278. sci->sc_stage = prev_stage;
  1279. }
  1280. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1281. return 0;
  1282. failed:
  1283. return err;
  1284. }
  1285. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1286. struct buffer_head *new_bh)
  1287. {
  1288. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1289. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1290. /* The caller must release old_bh */
  1291. }
  1292. static int
  1293. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1294. struct nilfs_segment_buffer *segbuf,
  1295. int mode)
  1296. {
  1297. struct inode *inode = NULL;
  1298. sector_t blocknr;
  1299. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1300. unsigned long nblocks = 0, ndatablk = 0;
  1301. struct nilfs_sc_operations *sc_op = NULL;
  1302. struct nilfs_segsum_pointer ssp;
  1303. struct nilfs_finfo *finfo = NULL;
  1304. union nilfs_binfo binfo;
  1305. struct buffer_head *bh, *bh_org;
  1306. ino_t ino = 0;
  1307. int err = 0;
  1308. if (!nfinfo)
  1309. goto out;
  1310. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1311. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1312. ssp.offset = sizeof(struct nilfs_segment_summary);
  1313. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1314. if (bh == segbuf->sb_super_root)
  1315. break;
  1316. if (!finfo) {
  1317. finfo = nilfs_segctor_map_segsum_entry(
  1318. sci, &ssp, sizeof(*finfo));
  1319. ino = le64_to_cpu(finfo->fi_ino);
  1320. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1321. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1322. inode = bh->b_page->mapping->host;
  1323. if (mode == SC_LSEG_DSYNC)
  1324. sc_op = &nilfs_sc_dsync_ops;
  1325. else if (ino == NILFS_DAT_INO)
  1326. sc_op = &nilfs_sc_dat_ops;
  1327. else /* file blocks */
  1328. sc_op = &nilfs_sc_file_ops;
  1329. }
  1330. bh_org = bh;
  1331. get_bh(bh_org);
  1332. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1333. &binfo);
  1334. if (bh != bh_org)
  1335. nilfs_list_replace_buffer(bh_org, bh);
  1336. brelse(bh_org);
  1337. if (unlikely(err))
  1338. goto failed_bmap;
  1339. if (ndatablk > 0)
  1340. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1341. else
  1342. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1343. blocknr++;
  1344. if (--nblocks == 0) {
  1345. finfo = NULL;
  1346. if (--nfinfo == 0)
  1347. break;
  1348. } else if (ndatablk > 0)
  1349. ndatablk--;
  1350. }
  1351. out:
  1352. return 0;
  1353. failed_bmap:
  1354. return err;
  1355. }
  1356. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1357. {
  1358. struct nilfs_segment_buffer *segbuf;
  1359. int err;
  1360. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1361. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1362. if (unlikely(err))
  1363. return err;
  1364. nilfs_segbuf_fill_in_segsum(segbuf);
  1365. }
  1366. return 0;
  1367. }
  1368. static void nilfs_begin_page_io(struct page *page)
  1369. {
  1370. if (!page || PageWriteback(page))
  1371. /* For split b-tree node pages, this function may be called
  1372. twice. We ignore the 2nd or later calls by this check. */
  1373. return;
  1374. lock_page(page);
  1375. clear_page_dirty_for_io(page);
  1376. set_page_writeback(page);
  1377. unlock_page(page);
  1378. }
  1379. static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
  1380. {
  1381. struct nilfs_segment_buffer *segbuf;
  1382. struct page *bd_page = NULL, *fs_page = NULL;
  1383. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1384. struct buffer_head *bh;
  1385. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1386. b_assoc_buffers) {
  1387. set_buffer_async_write(bh);
  1388. if (bh->b_page != bd_page) {
  1389. if (bd_page) {
  1390. lock_page(bd_page);
  1391. clear_page_dirty_for_io(bd_page);
  1392. set_page_writeback(bd_page);
  1393. unlock_page(bd_page);
  1394. }
  1395. bd_page = bh->b_page;
  1396. }
  1397. }
  1398. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1399. b_assoc_buffers) {
  1400. set_buffer_async_write(bh);
  1401. if (bh == segbuf->sb_super_root) {
  1402. if (bh->b_page != bd_page) {
  1403. lock_page(bd_page);
  1404. clear_page_dirty_for_io(bd_page);
  1405. set_page_writeback(bd_page);
  1406. unlock_page(bd_page);
  1407. bd_page = bh->b_page;
  1408. }
  1409. break;
  1410. }
  1411. if (bh->b_page != fs_page) {
  1412. nilfs_begin_page_io(fs_page);
  1413. fs_page = bh->b_page;
  1414. }
  1415. }
  1416. }
  1417. if (bd_page) {
  1418. lock_page(bd_page);
  1419. clear_page_dirty_for_io(bd_page);
  1420. set_page_writeback(bd_page);
  1421. unlock_page(bd_page);
  1422. }
  1423. nilfs_begin_page_io(fs_page);
  1424. }
  1425. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1426. struct the_nilfs *nilfs)
  1427. {
  1428. int ret;
  1429. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1430. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1431. return ret;
  1432. }
  1433. static void nilfs_end_page_io(struct page *page, int err)
  1434. {
  1435. if (!page)
  1436. return;
  1437. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1438. /*
  1439. * For b-tree node pages, this function may be called twice
  1440. * or more because they might be split in a segment.
  1441. */
  1442. if (PageDirty(page)) {
  1443. /*
  1444. * For pages holding split b-tree node buffers, dirty
  1445. * flag on the buffers may be cleared discretely.
  1446. * In that case, the page is once redirtied for
  1447. * remaining buffers, and it must be cancelled if
  1448. * all the buffers get cleaned later.
  1449. */
  1450. lock_page(page);
  1451. if (nilfs_page_buffers_clean(page))
  1452. __nilfs_clear_page_dirty(page);
  1453. unlock_page(page);
  1454. }
  1455. return;
  1456. }
  1457. if (!err) {
  1458. if (!nilfs_page_buffers_clean(page))
  1459. __set_page_dirty_nobuffers(page);
  1460. ClearPageError(page);
  1461. } else {
  1462. __set_page_dirty_nobuffers(page);
  1463. SetPageError(page);
  1464. }
  1465. end_page_writeback(page);
  1466. }
  1467. static void nilfs_abort_logs(struct list_head *logs, int err)
  1468. {
  1469. struct nilfs_segment_buffer *segbuf;
  1470. struct page *bd_page = NULL, *fs_page = NULL;
  1471. struct buffer_head *bh;
  1472. if (list_empty(logs))
  1473. return;
  1474. list_for_each_entry(segbuf, logs, sb_list) {
  1475. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1476. b_assoc_buffers) {
  1477. clear_buffer_async_write(bh);
  1478. if (bh->b_page != bd_page) {
  1479. if (bd_page)
  1480. end_page_writeback(bd_page);
  1481. bd_page = bh->b_page;
  1482. }
  1483. }
  1484. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1485. b_assoc_buffers) {
  1486. clear_buffer_async_write(bh);
  1487. if (bh == segbuf->sb_super_root) {
  1488. if (bh->b_page != bd_page) {
  1489. end_page_writeback(bd_page);
  1490. bd_page = bh->b_page;
  1491. }
  1492. break;
  1493. }
  1494. if (bh->b_page != fs_page) {
  1495. nilfs_end_page_io(fs_page, err);
  1496. fs_page = bh->b_page;
  1497. }
  1498. }
  1499. }
  1500. if (bd_page)
  1501. end_page_writeback(bd_page);
  1502. nilfs_end_page_io(fs_page, err);
  1503. }
  1504. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1505. struct the_nilfs *nilfs, int err)
  1506. {
  1507. LIST_HEAD(logs);
  1508. int ret;
  1509. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1510. ret = nilfs_wait_on_logs(&logs);
  1511. nilfs_abort_logs(&logs, ret ? : err);
  1512. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1513. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1514. nilfs_free_incomplete_logs(&logs, nilfs);
  1515. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1516. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1517. sci->sc_freesegs,
  1518. sci->sc_nfreesegs,
  1519. NULL);
  1520. WARN_ON(ret); /* do not happen */
  1521. }
  1522. nilfs_destroy_logs(&logs);
  1523. }
  1524. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1525. struct nilfs_segment_buffer *segbuf)
  1526. {
  1527. nilfs->ns_segnum = segbuf->sb_segnum;
  1528. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1529. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1530. + segbuf->sb_sum.nblocks;
  1531. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1532. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1533. }
  1534. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1535. {
  1536. struct nilfs_segment_buffer *segbuf;
  1537. struct page *bd_page = NULL, *fs_page = NULL;
  1538. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1539. int update_sr = false;
  1540. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1541. struct buffer_head *bh;
  1542. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1543. b_assoc_buffers) {
  1544. set_buffer_uptodate(bh);
  1545. clear_buffer_dirty(bh);
  1546. clear_buffer_async_write(bh);
  1547. if (bh->b_page != bd_page) {
  1548. if (bd_page)
  1549. end_page_writeback(bd_page);
  1550. bd_page = bh->b_page;
  1551. }
  1552. }
  1553. /*
  1554. * We assume that the buffers which belong to the same page
  1555. * continue over the buffer list.
  1556. * Under this assumption, the last BHs of pages is
  1557. * identifiable by the discontinuity of bh->b_page
  1558. * (page != fs_page).
  1559. *
  1560. * For B-tree node blocks, however, this assumption is not
  1561. * guaranteed. The cleanup code of B-tree node pages needs
  1562. * special care.
  1563. */
  1564. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1565. b_assoc_buffers) {
  1566. set_buffer_uptodate(bh);
  1567. clear_buffer_dirty(bh);
  1568. clear_buffer_async_write(bh);
  1569. clear_buffer_delay(bh);
  1570. clear_buffer_nilfs_volatile(bh);
  1571. clear_buffer_nilfs_redirected(bh);
  1572. if (bh == segbuf->sb_super_root) {
  1573. if (bh->b_page != bd_page) {
  1574. end_page_writeback(bd_page);
  1575. bd_page = bh->b_page;
  1576. }
  1577. update_sr = true;
  1578. break;
  1579. }
  1580. if (bh->b_page != fs_page) {
  1581. nilfs_end_page_io(fs_page, 0);
  1582. fs_page = bh->b_page;
  1583. }
  1584. }
  1585. if (!nilfs_segbuf_simplex(segbuf)) {
  1586. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1587. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1588. sci->sc_lseg_stime = jiffies;
  1589. }
  1590. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1591. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1592. }
  1593. }
  1594. /*
  1595. * Since pages may continue over multiple segment buffers,
  1596. * end of the last page must be checked outside of the loop.
  1597. */
  1598. if (bd_page)
  1599. end_page_writeback(bd_page);
  1600. nilfs_end_page_io(fs_page, 0);
  1601. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1602. if (nilfs_doing_gc())
  1603. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1604. else
  1605. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1606. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1607. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1608. nilfs_set_next_segment(nilfs, segbuf);
  1609. if (update_sr) {
  1610. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1611. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1612. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1613. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1614. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1615. nilfs_segctor_clear_metadata_dirty(sci);
  1616. } else
  1617. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1618. }
  1619. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1620. {
  1621. int ret;
  1622. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1623. if (!ret) {
  1624. nilfs_segctor_complete_write(sci);
  1625. nilfs_destroy_logs(&sci->sc_write_logs);
  1626. }
  1627. return ret;
  1628. }
  1629. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1630. struct the_nilfs *nilfs)
  1631. {
  1632. struct nilfs_inode_info *ii, *n;
  1633. struct inode *ifile = sci->sc_root->ifile;
  1634. spin_lock(&nilfs->ns_inode_lock);
  1635. retry:
  1636. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1637. if (!ii->i_bh) {
  1638. struct buffer_head *ibh;
  1639. int err;
  1640. spin_unlock(&nilfs->ns_inode_lock);
  1641. err = nilfs_ifile_get_inode_block(
  1642. ifile, ii->vfs_inode.i_ino, &ibh);
  1643. if (unlikely(err)) {
  1644. nilfs_warning(sci->sc_super, __func__,
  1645. "failed to get inode block.\n");
  1646. return err;
  1647. }
  1648. mark_buffer_dirty(ibh);
  1649. nilfs_mdt_mark_dirty(ifile);
  1650. spin_lock(&nilfs->ns_inode_lock);
  1651. if (likely(!ii->i_bh))
  1652. ii->i_bh = ibh;
  1653. else
  1654. brelse(ibh);
  1655. goto retry;
  1656. }
  1657. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1658. set_bit(NILFS_I_BUSY, &ii->i_state);
  1659. list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1660. }
  1661. spin_unlock(&nilfs->ns_inode_lock);
  1662. return 0;
  1663. }
  1664. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1665. struct the_nilfs *nilfs)
  1666. {
  1667. struct nilfs_transaction_info *ti = current->journal_info;
  1668. struct nilfs_inode_info *ii, *n;
  1669. spin_lock(&nilfs->ns_inode_lock);
  1670. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1671. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1672. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1673. continue;
  1674. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1675. brelse(ii->i_bh);
  1676. ii->i_bh = NULL;
  1677. list_move_tail(&ii->i_dirty, &ti->ti_garbage);
  1678. }
  1679. spin_unlock(&nilfs->ns_inode_lock);
  1680. }
  1681. /*
  1682. * Main procedure of segment constructor
  1683. */
  1684. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1685. {
  1686. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1687. int err;
  1688. sci->sc_stage.scnt = NILFS_ST_INIT;
  1689. sci->sc_cno = nilfs->ns_cno;
  1690. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1691. if (unlikely(err))
  1692. goto out;
  1693. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1694. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1695. if (nilfs_segctor_clean(sci))
  1696. goto out;
  1697. do {
  1698. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1699. err = nilfs_segctor_begin_construction(sci, nilfs);
  1700. if (unlikely(err))
  1701. goto out;
  1702. /* Update time stamp */
  1703. sci->sc_seg_ctime = get_seconds();
  1704. err = nilfs_segctor_collect(sci, nilfs, mode);
  1705. if (unlikely(err))
  1706. goto failed;
  1707. /* Avoid empty segment */
  1708. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1709. nilfs_segbuf_empty(sci->sc_curseg)) {
  1710. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1711. goto out;
  1712. }
  1713. err = nilfs_segctor_assign(sci, mode);
  1714. if (unlikely(err))
  1715. goto failed;
  1716. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1717. nilfs_segctor_fill_in_file_bmap(sci);
  1718. if (mode == SC_LSEG_SR &&
  1719. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1720. err = nilfs_segctor_fill_in_checkpoint(sci);
  1721. if (unlikely(err))
  1722. goto failed_to_write;
  1723. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1724. }
  1725. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1726. /* Write partial segments */
  1727. nilfs_segctor_prepare_write(sci);
  1728. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1729. nilfs->ns_crc_seed);
  1730. err = nilfs_segctor_write(sci, nilfs);
  1731. if (unlikely(err))
  1732. goto failed_to_write;
  1733. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1734. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1735. /*
  1736. * At this point, we avoid double buffering
  1737. * for blocksize < pagesize because page dirty
  1738. * flag is turned off during write and dirty
  1739. * buffers are not properly collected for
  1740. * pages crossing over segments.
  1741. */
  1742. err = nilfs_segctor_wait(sci);
  1743. if (err)
  1744. goto failed_to_write;
  1745. }
  1746. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1747. out:
  1748. nilfs_segctor_drop_written_files(sci, nilfs);
  1749. return err;
  1750. failed_to_write:
  1751. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1752. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1753. failed:
  1754. if (nilfs_doing_gc())
  1755. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1756. nilfs_segctor_abort_construction(sci, nilfs, err);
  1757. goto out;
  1758. }
  1759. /**
  1760. * nilfs_segctor_start_timer - set timer of background write
  1761. * @sci: nilfs_sc_info
  1762. *
  1763. * If the timer has already been set, it ignores the new request.
  1764. * This function MUST be called within a section locking the segment
  1765. * semaphore.
  1766. */
  1767. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1768. {
  1769. spin_lock(&sci->sc_state_lock);
  1770. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1771. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1772. add_timer(&sci->sc_timer);
  1773. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1774. }
  1775. spin_unlock(&sci->sc_state_lock);
  1776. }
  1777. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1778. {
  1779. spin_lock(&sci->sc_state_lock);
  1780. if (!(sci->sc_flush_request & (1 << bn))) {
  1781. unsigned long prev_req = sci->sc_flush_request;
  1782. sci->sc_flush_request |= (1 << bn);
  1783. if (!prev_req)
  1784. wake_up(&sci->sc_wait_daemon);
  1785. }
  1786. spin_unlock(&sci->sc_state_lock);
  1787. }
  1788. /**
  1789. * nilfs_flush_segment - trigger a segment construction for resource control
  1790. * @sb: super block
  1791. * @ino: inode number of the file to be flushed out.
  1792. */
  1793. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1794. {
  1795. struct the_nilfs *nilfs = sb->s_fs_info;
  1796. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1797. if (!sci || nilfs_doing_construction())
  1798. return;
  1799. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1800. /* assign bit 0 to data files */
  1801. }
  1802. struct nilfs_segctor_wait_request {
  1803. wait_queue_t wq;
  1804. __u32 seq;
  1805. int err;
  1806. atomic_t done;
  1807. };
  1808. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1809. {
  1810. struct nilfs_segctor_wait_request wait_req;
  1811. int err = 0;
  1812. spin_lock(&sci->sc_state_lock);
  1813. init_wait(&wait_req.wq);
  1814. wait_req.err = 0;
  1815. atomic_set(&wait_req.done, 0);
  1816. wait_req.seq = ++sci->sc_seq_request;
  1817. spin_unlock(&sci->sc_state_lock);
  1818. init_waitqueue_entry(&wait_req.wq, current);
  1819. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1820. set_current_state(TASK_INTERRUPTIBLE);
  1821. wake_up(&sci->sc_wait_daemon);
  1822. for (;;) {
  1823. if (atomic_read(&wait_req.done)) {
  1824. err = wait_req.err;
  1825. break;
  1826. }
  1827. if (!signal_pending(current)) {
  1828. schedule();
  1829. continue;
  1830. }
  1831. err = -ERESTARTSYS;
  1832. break;
  1833. }
  1834. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1835. return err;
  1836. }
  1837. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1838. {
  1839. struct nilfs_segctor_wait_request *wrq, *n;
  1840. unsigned long flags;
  1841. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1842. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1843. wq.task_list) {
  1844. if (!atomic_read(&wrq->done) &&
  1845. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1846. wrq->err = err;
  1847. atomic_set(&wrq->done, 1);
  1848. }
  1849. if (atomic_read(&wrq->done)) {
  1850. wrq->wq.func(&wrq->wq,
  1851. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1852. 0, NULL);
  1853. }
  1854. }
  1855. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1856. }
  1857. /**
  1858. * nilfs_construct_segment - construct a logical segment
  1859. * @sb: super block
  1860. *
  1861. * Return Value: On success, 0 is retured. On errors, one of the following
  1862. * negative error code is returned.
  1863. *
  1864. * %-EROFS - Read only filesystem.
  1865. *
  1866. * %-EIO - I/O error
  1867. *
  1868. * %-ENOSPC - No space left on device (only in a panic state).
  1869. *
  1870. * %-ERESTARTSYS - Interrupted.
  1871. *
  1872. * %-ENOMEM - Insufficient memory available.
  1873. */
  1874. int nilfs_construct_segment(struct super_block *sb)
  1875. {
  1876. struct the_nilfs *nilfs = sb->s_fs_info;
  1877. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1878. struct nilfs_transaction_info *ti;
  1879. int err;
  1880. if (!sci)
  1881. return -EROFS;
  1882. /* A call inside transactions causes a deadlock. */
  1883. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1884. err = nilfs_segctor_sync(sci);
  1885. return err;
  1886. }
  1887. /**
  1888. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1889. * @sb: super block
  1890. * @inode: inode whose data blocks should be written out
  1891. * @start: start byte offset
  1892. * @end: end byte offset (inclusive)
  1893. *
  1894. * Return Value: On success, 0 is retured. On errors, one of the following
  1895. * negative error code is returned.
  1896. *
  1897. * %-EROFS - Read only filesystem.
  1898. *
  1899. * %-EIO - I/O error
  1900. *
  1901. * %-ENOSPC - No space left on device (only in a panic state).
  1902. *
  1903. * %-ERESTARTSYS - Interrupted.
  1904. *
  1905. * %-ENOMEM - Insufficient memory available.
  1906. */
  1907. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  1908. loff_t start, loff_t end)
  1909. {
  1910. struct the_nilfs *nilfs = sb->s_fs_info;
  1911. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1912. struct nilfs_inode_info *ii;
  1913. struct nilfs_transaction_info ti;
  1914. int err = 0;
  1915. if (!sci)
  1916. return -EROFS;
  1917. nilfs_transaction_lock(sb, &ti, 0);
  1918. ii = NILFS_I(inode);
  1919. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  1920. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  1921. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  1922. nilfs_discontinued(nilfs)) {
  1923. nilfs_transaction_unlock(sb);
  1924. err = nilfs_segctor_sync(sci);
  1925. return err;
  1926. }
  1927. spin_lock(&nilfs->ns_inode_lock);
  1928. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  1929. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  1930. spin_unlock(&nilfs->ns_inode_lock);
  1931. nilfs_transaction_unlock(sb);
  1932. return 0;
  1933. }
  1934. spin_unlock(&nilfs->ns_inode_lock);
  1935. sci->sc_dsync_inode = ii;
  1936. sci->sc_dsync_start = start;
  1937. sci->sc_dsync_end = end;
  1938. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  1939. nilfs_transaction_unlock(sb);
  1940. return err;
  1941. }
  1942. #define FLUSH_FILE_BIT (0x1) /* data file only */
  1943. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  1944. /**
  1945. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  1946. * @sci: segment constructor object
  1947. */
  1948. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  1949. {
  1950. spin_lock(&sci->sc_state_lock);
  1951. sci->sc_seq_accepted = sci->sc_seq_request;
  1952. spin_unlock(&sci->sc_state_lock);
  1953. del_timer_sync(&sci->sc_timer);
  1954. }
  1955. /**
  1956. * nilfs_segctor_notify - notify the result of request to caller threads
  1957. * @sci: segment constructor object
  1958. * @mode: mode of log forming
  1959. * @err: error code to be notified
  1960. */
  1961. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  1962. {
  1963. /* Clear requests (even when the construction failed) */
  1964. spin_lock(&sci->sc_state_lock);
  1965. if (mode == SC_LSEG_SR) {
  1966. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  1967. sci->sc_seq_done = sci->sc_seq_accepted;
  1968. nilfs_segctor_wakeup(sci, err);
  1969. sci->sc_flush_request = 0;
  1970. } else {
  1971. if (mode == SC_FLUSH_FILE)
  1972. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  1973. else if (mode == SC_FLUSH_DAT)
  1974. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  1975. /* re-enable timer if checkpoint creation was not done */
  1976. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  1977. time_before(jiffies, sci->sc_timer.expires))
  1978. add_timer(&sci->sc_timer);
  1979. }
  1980. spin_unlock(&sci->sc_state_lock);
  1981. }
  1982. /**
  1983. * nilfs_segctor_construct - form logs and write them to disk
  1984. * @sci: segment constructor object
  1985. * @mode: mode of log forming
  1986. */
  1987. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  1988. {
  1989. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1990. struct nilfs_super_block **sbp;
  1991. int err = 0;
  1992. nilfs_segctor_accept(sci);
  1993. if (nilfs_discontinued(nilfs))
  1994. mode = SC_LSEG_SR;
  1995. if (!nilfs_segctor_confirm(sci))
  1996. err = nilfs_segctor_do_construct(sci, mode);
  1997. if (likely(!err)) {
  1998. if (mode != SC_FLUSH_DAT)
  1999. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2000. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2001. nilfs_discontinued(nilfs)) {
  2002. down_write(&nilfs->ns_sem);
  2003. err = -EIO;
  2004. sbp = nilfs_prepare_super(sci->sc_super,
  2005. nilfs_sb_will_flip(nilfs));
  2006. if (likely(sbp)) {
  2007. nilfs_set_log_cursor(sbp[0], nilfs);
  2008. err = nilfs_commit_super(sci->sc_super,
  2009. NILFS_SB_COMMIT);
  2010. }
  2011. up_write(&nilfs->ns_sem);
  2012. }
  2013. }
  2014. nilfs_segctor_notify(sci, mode, err);
  2015. return err;
  2016. }
  2017. static void nilfs_construction_timeout(unsigned long data)
  2018. {
  2019. struct task_struct *p = (struct task_struct *)data;
  2020. wake_up_process(p);
  2021. }
  2022. static void
  2023. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2024. {
  2025. struct nilfs_inode_info *ii, *n;
  2026. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2027. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2028. continue;
  2029. list_del_init(&ii->i_dirty);
  2030. truncate_inode_pages(&ii->vfs_inode.i_data, 0);
  2031. nilfs_btnode_cache_clear(&ii->i_btnode_cache);
  2032. iput(&ii->vfs_inode);
  2033. }
  2034. }
  2035. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2036. void **kbufs)
  2037. {
  2038. struct the_nilfs *nilfs = sb->s_fs_info;
  2039. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2040. struct nilfs_transaction_info ti;
  2041. int err;
  2042. if (unlikely(!sci))
  2043. return -EROFS;
  2044. nilfs_transaction_lock(sb, &ti, 1);
  2045. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2046. if (unlikely(err))
  2047. goto out_unlock;
  2048. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2049. if (unlikely(err)) {
  2050. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2051. goto out_unlock;
  2052. }
  2053. sci->sc_freesegs = kbufs[4];
  2054. sci->sc_nfreesegs = argv[4].v_nmembs;
  2055. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2056. for (;;) {
  2057. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2058. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2059. if (likely(!err))
  2060. break;
  2061. nilfs_warning(sb, __func__,
  2062. "segment construction failed. (err=%d)", err);
  2063. set_current_state(TASK_INTERRUPTIBLE);
  2064. schedule_timeout(sci->sc_interval);
  2065. }
  2066. if (nilfs_test_opt(nilfs, DISCARD)) {
  2067. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2068. sci->sc_nfreesegs);
  2069. if (ret) {
  2070. printk(KERN_WARNING
  2071. "NILFS warning: error %d on discard request, "
  2072. "turning discards off for the device\n", ret);
  2073. nilfs_clear_opt(nilfs, DISCARD);
  2074. }
  2075. }
  2076. out_unlock:
  2077. sci->sc_freesegs = NULL;
  2078. sci->sc_nfreesegs = 0;
  2079. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2080. nilfs_transaction_unlock(sb);
  2081. return err;
  2082. }
  2083. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2084. {
  2085. struct nilfs_transaction_info ti;
  2086. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2087. nilfs_segctor_construct(sci, mode);
  2088. /*
  2089. * Unclosed segment should be retried. We do this using sc_timer.
  2090. * Timeout of sc_timer will invoke complete construction which leads
  2091. * to close the current logical segment.
  2092. */
  2093. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2094. nilfs_segctor_start_timer(sci);
  2095. nilfs_transaction_unlock(sci->sc_super);
  2096. }
  2097. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2098. {
  2099. int mode = 0;
  2100. int err;
  2101. spin_lock(&sci->sc_state_lock);
  2102. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2103. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2104. spin_unlock(&sci->sc_state_lock);
  2105. if (mode) {
  2106. err = nilfs_segctor_do_construct(sci, mode);
  2107. spin_lock(&sci->sc_state_lock);
  2108. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2109. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2110. spin_unlock(&sci->sc_state_lock);
  2111. }
  2112. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2113. }
  2114. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2115. {
  2116. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2117. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2118. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2119. return SC_FLUSH_FILE;
  2120. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2121. return SC_FLUSH_DAT;
  2122. }
  2123. return SC_LSEG_SR;
  2124. }
  2125. /**
  2126. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2127. * @arg: pointer to a struct nilfs_sc_info.
  2128. *
  2129. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2130. * to execute segment constructions.
  2131. */
  2132. static int nilfs_segctor_thread(void *arg)
  2133. {
  2134. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2135. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2136. int timeout = 0;
  2137. sci->sc_timer.data = (unsigned long)current;
  2138. sci->sc_timer.function = nilfs_construction_timeout;
  2139. /* start sync. */
  2140. sci->sc_task = current;
  2141. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2142. printk(KERN_INFO
  2143. "segctord starting. Construction interval = %lu seconds, "
  2144. "CP frequency < %lu seconds\n",
  2145. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2146. spin_lock(&sci->sc_state_lock);
  2147. loop:
  2148. for (;;) {
  2149. int mode;
  2150. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2151. goto end_thread;
  2152. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2153. mode = SC_LSEG_SR;
  2154. else if (!sci->sc_flush_request)
  2155. break;
  2156. else
  2157. mode = nilfs_segctor_flush_mode(sci);
  2158. spin_unlock(&sci->sc_state_lock);
  2159. nilfs_segctor_thread_construct(sci, mode);
  2160. spin_lock(&sci->sc_state_lock);
  2161. timeout = 0;
  2162. }
  2163. if (freezing(current)) {
  2164. spin_unlock(&sci->sc_state_lock);
  2165. try_to_freeze();
  2166. spin_lock(&sci->sc_state_lock);
  2167. } else {
  2168. DEFINE_WAIT(wait);
  2169. int should_sleep = 1;
  2170. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2171. TASK_INTERRUPTIBLE);
  2172. if (sci->sc_seq_request != sci->sc_seq_done)
  2173. should_sleep = 0;
  2174. else if (sci->sc_flush_request)
  2175. should_sleep = 0;
  2176. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2177. should_sleep = time_before(jiffies,
  2178. sci->sc_timer.expires);
  2179. if (should_sleep) {
  2180. spin_unlock(&sci->sc_state_lock);
  2181. schedule();
  2182. spin_lock(&sci->sc_state_lock);
  2183. }
  2184. finish_wait(&sci->sc_wait_daemon, &wait);
  2185. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2186. time_after_eq(jiffies, sci->sc_timer.expires));
  2187. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2188. set_nilfs_discontinued(nilfs);
  2189. }
  2190. goto loop;
  2191. end_thread:
  2192. spin_unlock(&sci->sc_state_lock);
  2193. /* end sync. */
  2194. sci->sc_task = NULL;
  2195. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2196. return 0;
  2197. }
  2198. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2199. {
  2200. struct task_struct *t;
  2201. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2202. if (IS_ERR(t)) {
  2203. int err = PTR_ERR(t);
  2204. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2205. err);
  2206. return err;
  2207. }
  2208. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2209. return 0;
  2210. }
  2211. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2212. __acquires(&sci->sc_state_lock)
  2213. __releases(&sci->sc_state_lock)
  2214. {
  2215. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2216. while (sci->sc_task) {
  2217. wake_up(&sci->sc_wait_daemon);
  2218. spin_unlock(&sci->sc_state_lock);
  2219. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2220. spin_lock(&sci->sc_state_lock);
  2221. }
  2222. }
  2223. /*
  2224. * Setup & clean-up functions
  2225. */
  2226. static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
  2227. struct nilfs_root *root)
  2228. {
  2229. struct the_nilfs *nilfs = sb->s_fs_info;
  2230. struct nilfs_sc_info *sci;
  2231. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2232. if (!sci)
  2233. return NULL;
  2234. sci->sc_super = sb;
  2235. nilfs_get_root(root);
  2236. sci->sc_root = root;
  2237. init_waitqueue_head(&sci->sc_wait_request);
  2238. init_waitqueue_head(&sci->sc_wait_daemon);
  2239. init_waitqueue_head(&sci->sc_wait_task);
  2240. spin_lock_init(&sci->sc_state_lock);
  2241. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2242. INIT_LIST_HEAD(&sci->sc_segbufs);
  2243. INIT_LIST_HEAD(&sci->sc_write_logs);
  2244. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2245. init_timer(&sci->sc_timer);
  2246. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2247. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2248. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2249. if (nilfs->ns_interval)
  2250. sci->sc_interval = HZ * nilfs->ns_interval;
  2251. if (nilfs->ns_watermark)
  2252. sci->sc_watermark = nilfs->ns_watermark;
  2253. return sci;
  2254. }
  2255. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2256. {
  2257. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2258. /* The segctord thread was stopped and its timer was removed.
  2259. But some tasks remain. */
  2260. do {
  2261. struct nilfs_transaction_info ti;
  2262. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2263. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2264. nilfs_transaction_unlock(sci->sc_super);
  2265. } while (ret && retrycount-- > 0);
  2266. }
  2267. /**
  2268. * nilfs_segctor_destroy - destroy the segment constructor.
  2269. * @sci: nilfs_sc_info
  2270. *
  2271. * nilfs_segctor_destroy() kills the segctord thread and frees
  2272. * the nilfs_sc_info struct.
  2273. * Caller must hold the segment semaphore.
  2274. */
  2275. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2276. {
  2277. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2278. int flag;
  2279. up_write(&nilfs->ns_segctor_sem);
  2280. spin_lock(&sci->sc_state_lock);
  2281. nilfs_segctor_kill_thread(sci);
  2282. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2283. || sci->sc_seq_request != sci->sc_seq_done);
  2284. spin_unlock(&sci->sc_state_lock);
  2285. if (flag || !nilfs_segctor_confirm(sci))
  2286. nilfs_segctor_write_out(sci);
  2287. if (!list_empty(&sci->sc_dirty_files)) {
  2288. nilfs_warning(sci->sc_super, __func__,
  2289. "dirty file(s) after the final construction\n");
  2290. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2291. }
  2292. WARN_ON(!list_empty(&sci->sc_segbufs));
  2293. WARN_ON(!list_empty(&sci->sc_write_logs));
  2294. nilfs_put_root(sci->sc_root);
  2295. down_write(&nilfs->ns_segctor_sem);
  2296. del_timer_sync(&sci->sc_timer);
  2297. kfree(sci);
  2298. }
  2299. /**
  2300. * nilfs_attach_log_writer - attach log writer
  2301. * @sb: super block instance
  2302. * @root: root object of the current filesystem tree
  2303. *
  2304. * This allocates a log writer object, initializes it, and starts the
  2305. * log writer.
  2306. *
  2307. * Return Value: On success, 0 is returned. On error, one of the following
  2308. * negative error code is returned.
  2309. *
  2310. * %-ENOMEM - Insufficient memory available.
  2311. */
  2312. int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
  2313. {
  2314. struct the_nilfs *nilfs = sb->s_fs_info;
  2315. int err;
  2316. if (nilfs->ns_writer) {
  2317. /*
  2318. * This happens if the filesystem was remounted
  2319. * read/write after nilfs_error degenerated it into a
  2320. * read-only mount.
  2321. */
  2322. nilfs_detach_log_writer(sb);
  2323. }
  2324. nilfs->ns_writer = nilfs_segctor_new(sb, root);
  2325. if (!nilfs->ns_writer)
  2326. return -ENOMEM;
  2327. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2328. if (err) {
  2329. kfree(nilfs->ns_writer);
  2330. nilfs->ns_writer = NULL;
  2331. }
  2332. return err;
  2333. }
  2334. /**
  2335. * nilfs_detach_log_writer - destroy log writer
  2336. * @sb: super block instance
  2337. *
  2338. * This kills log writer daemon, frees the log writer object, and
  2339. * destroys list of dirty files.
  2340. */
  2341. void nilfs_detach_log_writer(struct super_block *sb)
  2342. {
  2343. struct the_nilfs *nilfs = sb->s_fs_info;
  2344. LIST_HEAD(garbage_list);
  2345. down_write(&nilfs->ns_segctor_sem);
  2346. if (nilfs->ns_writer) {
  2347. nilfs_segctor_destroy(nilfs->ns_writer);
  2348. nilfs->ns_writer = NULL;
  2349. }
  2350. /* Force to free the list of dirty files */
  2351. spin_lock(&nilfs->ns_inode_lock);
  2352. if (!list_empty(&nilfs->ns_dirty_files)) {
  2353. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2354. nilfs_warning(sb, __func__,
  2355. "Hit dirty file after stopped log writer\n");
  2356. }
  2357. spin_unlock(&nilfs->ns_inode_lock);
  2358. up_write(&nilfs->ns_segctor_sem);
  2359. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2360. }