write.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <linux/export.h>
  22. #include <asm/uaccess.h>
  23. #include "delegation.h"
  24. #include "internal.h"
  25. #include "iostat.h"
  26. #include "nfs4_fs.h"
  27. #include "fscache.h"
  28. #include "pnfs.h"
  29. #include "nfstrace.h"
  30. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  31. #define MIN_POOL_WRITE (32)
  32. #define MIN_POOL_COMMIT (4)
  33. /*
  34. * Local function declarations
  35. */
  36. static void nfs_redirty_request(struct nfs_page *req);
  37. static const struct rpc_call_ops nfs_write_common_ops;
  38. static const struct rpc_call_ops nfs_commit_ops;
  39. static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
  40. static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
  41. static struct kmem_cache *nfs_wdata_cachep;
  42. static mempool_t *nfs_wdata_mempool;
  43. static struct kmem_cache *nfs_cdata_cachep;
  44. static mempool_t *nfs_commit_mempool;
  45. struct nfs_commit_data *nfs_commitdata_alloc(void)
  46. {
  47. struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
  48. if (p) {
  49. memset(p, 0, sizeof(*p));
  50. INIT_LIST_HEAD(&p->pages);
  51. }
  52. return p;
  53. }
  54. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  55. void nfs_commit_free(struct nfs_commit_data *p)
  56. {
  57. mempool_free(p, nfs_commit_mempool);
  58. }
  59. EXPORT_SYMBOL_GPL(nfs_commit_free);
  60. struct nfs_write_header *nfs_writehdr_alloc(void)
  61. {
  62. struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
  63. if (p) {
  64. struct nfs_pgio_header *hdr = &p->header;
  65. memset(p, 0, sizeof(*p));
  66. INIT_LIST_HEAD(&hdr->pages);
  67. INIT_LIST_HEAD(&hdr->rpc_list);
  68. spin_lock_init(&hdr->lock);
  69. atomic_set(&hdr->refcnt, 0);
  70. hdr->verf = &p->verf;
  71. }
  72. return p;
  73. }
  74. EXPORT_SYMBOL_GPL(nfs_writehdr_alloc);
  75. static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr,
  76. unsigned int pagecount)
  77. {
  78. struct nfs_write_data *data, *prealloc;
  79. prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data;
  80. if (prealloc->header == NULL)
  81. data = prealloc;
  82. else
  83. data = kzalloc(sizeof(*data), GFP_KERNEL);
  84. if (!data)
  85. goto out;
  86. if (nfs_pgarray_set(&data->pages, pagecount)) {
  87. data->header = hdr;
  88. atomic_inc(&hdr->refcnt);
  89. } else {
  90. if (data != prealloc)
  91. kfree(data);
  92. data = NULL;
  93. }
  94. out:
  95. return data;
  96. }
  97. void nfs_writehdr_free(struct nfs_pgio_header *hdr)
  98. {
  99. struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header);
  100. mempool_free(whdr, nfs_wdata_mempool);
  101. }
  102. EXPORT_SYMBOL_GPL(nfs_writehdr_free);
  103. void nfs_writedata_release(struct nfs_write_data *wdata)
  104. {
  105. struct nfs_pgio_header *hdr = wdata->header;
  106. struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header);
  107. put_nfs_open_context(wdata->args.context);
  108. if (wdata->pages.pagevec != wdata->pages.page_array)
  109. kfree(wdata->pages.pagevec);
  110. if (wdata == &write_header->rpc_data) {
  111. wdata->header = NULL;
  112. wdata = NULL;
  113. }
  114. if (atomic_dec_and_test(&hdr->refcnt))
  115. hdr->completion_ops->completion(hdr);
  116. /* Note: we only free the rpc_task after callbacks are done.
  117. * See the comment in rpc_free_task() for why
  118. */
  119. kfree(wdata);
  120. }
  121. EXPORT_SYMBOL_GPL(nfs_writedata_release);
  122. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  123. {
  124. ctx->error = error;
  125. smp_wmb();
  126. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  127. }
  128. static struct nfs_page *
  129. nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page)
  130. {
  131. struct nfs_page *req = NULL;
  132. if (PagePrivate(page))
  133. req = (struct nfs_page *)page_private(page);
  134. else if (unlikely(PageSwapCache(page))) {
  135. struct nfs_page *freq, *t;
  136. /* Linearly search the commit list for the correct req */
  137. list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) {
  138. if (freq->wb_page == page) {
  139. req = freq;
  140. break;
  141. }
  142. }
  143. }
  144. if (req)
  145. kref_get(&req->wb_kref);
  146. return req;
  147. }
  148. static struct nfs_page *nfs_page_find_request(struct page *page)
  149. {
  150. struct inode *inode = page_file_mapping(page)->host;
  151. struct nfs_page *req = NULL;
  152. spin_lock(&inode->i_lock);
  153. req = nfs_page_find_request_locked(NFS_I(inode), page);
  154. spin_unlock(&inode->i_lock);
  155. return req;
  156. }
  157. /* Adjust the file length if we're writing beyond the end */
  158. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  159. {
  160. struct inode *inode = page_file_mapping(page)->host;
  161. loff_t end, i_size;
  162. pgoff_t end_index;
  163. spin_lock(&inode->i_lock);
  164. i_size = i_size_read(inode);
  165. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  166. if (i_size > 0 && page_file_index(page) < end_index)
  167. goto out;
  168. end = page_file_offset(page) + ((loff_t)offset+count);
  169. if (i_size >= end)
  170. goto out;
  171. i_size_write(inode, end);
  172. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  173. out:
  174. spin_unlock(&inode->i_lock);
  175. }
  176. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  177. static void nfs_set_pageerror(struct page *page)
  178. {
  179. nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
  180. }
  181. /* We can set the PG_uptodate flag if we see that a write request
  182. * covers the full page.
  183. */
  184. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  185. {
  186. if (PageUptodate(page))
  187. return;
  188. if (base != 0)
  189. return;
  190. if (count != nfs_page_length(page))
  191. return;
  192. SetPageUptodate(page);
  193. }
  194. static int wb_priority(struct writeback_control *wbc)
  195. {
  196. if (wbc->for_reclaim)
  197. return FLUSH_HIGHPRI | FLUSH_STABLE;
  198. if (wbc->for_kupdate || wbc->for_background)
  199. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  200. return FLUSH_COND_STABLE;
  201. }
  202. /*
  203. * NFS congestion control
  204. */
  205. int nfs_congestion_kb;
  206. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  207. #define NFS_CONGESTION_OFF_THRESH \
  208. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  209. static void nfs_set_page_writeback(struct page *page)
  210. {
  211. struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host);
  212. int ret = test_set_page_writeback(page);
  213. WARN_ON_ONCE(ret != 0);
  214. if (atomic_long_inc_return(&nfss->writeback) >
  215. NFS_CONGESTION_ON_THRESH) {
  216. set_bdi_congested(&nfss->backing_dev_info,
  217. BLK_RW_ASYNC);
  218. }
  219. }
  220. static void nfs_end_page_writeback(struct page *page)
  221. {
  222. struct inode *inode = page_file_mapping(page)->host;
  223. struct nfs_server *nfss = NFS_SERVER(inode);
  224. end_page_writeback(page);
  225. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  226. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  227. }
  228. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  229. {
  230. struct inode *inode = page_file_mapping(page)->host;
  231. struct nfs_page *req;
  232. int ret;
  233. spin_lock(&inode->i_lock);
  234. for (;;) {
  235. req = nfs_page_find_request_locked(NFS_I(inode), page);
  236. if (req == NULL)
  237. break;
  238. if (nfs_lock_request(req))
  239. break;
  240. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  241. * then the call to nfs_lock_request() will always
  242. * succeed provided that someone hasn't already marked the
  243. * request as dirty (in which case we don't care).
  244. */
  245. spin_unlock(&inode->i_lock);
  246. if (!nonblock)
  247. ret = nfs_wait_on_request(req);
  248. else
  249. ret = -EAGAIN;
  250. nfs_release_request(req);
  251. if (ret != 0)
  252. return ERR_PTR(ret);
  253. spin_lock(&inode->i_lock);
  254. }
  255. spin_unlock(&inode->i_lock);
  256. return req;
  257. }
  258. /*
  259. * Find an associated nfs write request, and prepare to flush it out
  260. * May return an error if the user signalled nfs_wait_on_request().
  261. */
  262. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  263. struct page *page, bool nonblock)
  264. {
  265. struct nfs_page *req;
  266. int ret = 0;
  267. req = nfs_find_and_lock_request(page, nonblock);
  268. if (!req)
  269. goto out;
  270. ret = PTR_ERR(req);
  271. if (IS_ERR(req))
  272. goto out;
  273. nfs_set_page_writeback(page);
  274. WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
  275. ret = 0;
  276. if (!nfs_pageio_add_request(pgio, req)) {
  277. nfs_redirty_request(req);
  278. ret = pgio->pg_error;
  279. }
  280. out:
  281. return ret;
  282. }
  283. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  284. {
  285. struct inode *inode = page_file_mapping(page)->host;
  286. int ret;
  287. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  288. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  289. nfs_pageio_cond_complete(pgio, page_file_index(page));
  290. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  291. if (ret == -EAGAIN) {
  292. redirty_page_for_writepage(wbc, page);
  293. ret = 0;
  294. }
  295. return ret;
  296. }
  297. /*
  298. * Write an mmapped page to the server.
  299. */
  300. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  301. {
  302. struct nfs_pageio_descriptor pgio;
  303. int err;
  304. NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio,
  305. page->mapping->host,
  306. wb_priority(wbc),
  307. &nfs_async_write_completion_ops);
  308. err = nfs_do_writepage(page, wbc, &pgio);
  309. nfs_pageio_complete(&pgio);
  310. if (err < 0)
  311. return err;
  312. if (pgio.pg_error < 0)
  313. return pgio.pg_error;
  314. return 0;
  315. }
  316. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  317. {
  318. int ret;
  319. ret = nfs_writepage_locked(page, wbc);
  320. unlock_page(page);
  321. return ret;
  322. }
  323. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  324. {
  325. int ret;
  326. ret = nfs_do_writepage(page, wbc, data);
  327. unlock_page(page);
  328. return ret;
  329. }
  330. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  331. {
  332. struct inode *inode = mapping->host;
  333. unsigned long *bitlock = &NFS_I(inode)->flags;
  334. struct nfs_pageio_descriptor pgio;
  335. int err;
  336. /* Stop dirtying of new pages while we sync */
  337. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  338. nfs_wait_bit_killable, TASK_KILLABLE);
  339. if (err)
  340. goto out_err;
  341. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  342. NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops);
  343. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  344. nfs_pageio_complete(&pgio);
  345. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  346. smp_mb__after_clear_bit();
  347. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  348. if (err < 0)
  349. goto out_err;
  350. err = pgio.pg_error;
  351. if (err < 0)
  352. goto out_err;
  353. return 0;
  354. out_err:
  355. return err;
  356. }
  357. /*
  358. * Insert a write request into an inode
  359. */
  360. static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  361. {
  362. struct nfs_inode *nfsi = NFS_I(inode);
  363. /* Lock the request! */
  364. nfs_lock_request(req);
  365. spin_lock(&inode->i_lock);
  366. if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
  367. inode->i_version++;
  368. /*
  369. * Swap-space should not get truncated. Hence no need to plug the race
  370. * with invalidate/truncate.
  371. */
  372. if (likely(!PageSwapCache(req->wb_page))) {
  373. set_bit(PG_MAPPED, &req->wb_flags);
  374. SetPagePrivate(req->wb_page);
  375. set_page_private(req->wb_page, (unsigned long)req);
  376. }
  377. nfsi->npages++;
  378. kref_get(&req->wb_kref);
  379. spin_unlock(&inode->i_lock);
  380. }
  381. /*
  382. * Remove a write request from an inode
  383. */
  384. static void nfs_inode_remove_request(struct nfs_page *req)
  385. {
  386. struct inode *inode = req->wb_context->dentry->d_inode;
  387. struct nfs_inode *nfsi = NFS_I(inode);
  388. spin_lock(&inode->i_lock);
  389. if (likely(!PageSwapCache(req->wb_page))) {
  390. set_page_private(req->wb_page, 0);
  391. ClearPagePrivate(req->wb_page);
  392. clear_bit(PG_MAPPED, &req->wb_flags);
  393. }
  394. nfsi->npages--;
  395. spin_unlock(&inode->i_lock);
  396. nfs_release_request(req);
  397. }
  398. static void
  399. nfs_mark_request_dirty(struct nfs_page *req)
  400. {
  401. __set_page_dirty_nobuffers(req->wb_page);
  402. }
  403. #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
  404. /**
  405. * nfs_request_add_commit_list - add request to a commit list
  406. * @req: pointer to a struct nfs_page
  407. * @dst: commit list head
  408. * @cinfo: holds list lock and accounting info
  409. *
  410. * This sets the PG_CLEAN bit, updates the cinfo count of
  411. * number of outstanding requests requiring a commit as well as
  412. * the MM page stats.
  413. *
  414. * The caller must _not_ hold the cinfo->lock, but must be
  415. * holding the nfs_page lock.
  416. */
  417. void
  418. nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst,
  419. struct nfs_commit_info *cinfo)
  420. {
  421. set_bit(PG_CLEAN, &(req)->wb_flags);
  422. spin_lock(cinfo->lock);
  423. nfs_list_add_request(req, dst);
  424. cinfo->mds->ncommit++;
  425. spin_unlock(cinfo->lock);
  426. if (!cinfo->dreq) {
  427. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  428. inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
  429. BDI_RECLAIMABLE);
  430. __mark_inode_dirty(req->wb_context->dentry->d_inode,
  431. I_DIRTY_DATASYNC);
  432. }
  433. }
  434. EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
  435. /**
  436. * nfs_request_remove_commit_list - Remove request from a commit list
  437. * @req: pointer to a nfs_page
  438. * @cinfo: holds list lock and accounting info
  439. *
  440. * This clears the PG_CLEAN bit, and updates the cinfo's count of
  441. * number of outstanding requests requiring a commit
  442. * It does not update the MM page stats.
  443. *
  444. * The caller _must_ hold the cinfo->lock and the nfs_page lock.
  445. */
  446. void
  447. nfs_request_remove_commit_list(struct nfs_page *req,
  448. struct nfs_commit_info *cinfo)
  449. {
  450. if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
  451. return;
  452. nfs_list_remove_request(req);
  453. cinfo->mds->ncommit--;
  454. }
  455. EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
  456. static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
  457. struct inode *inode)
  458. {
  459. cinfo->lock = &inode->i_lock;
  460. cinfo->mds = &NFS_I(inode)->commit_info;
  461. cinfo->ds = pnfs_get_ds_info(inode);
  462. cinfo->dreq = NULL;
  463. cinfo->completion_ops = &nfs_commit_completion_ops;
  464. }
  465. void nfs_init_cinfo(struct nfs_commit_info *cinfo,
  466. struct inode *inode,
  467. struct nfs_direct_req *dreq)
  468. {
  469. if (dreq)
  470. nfs_init_cinfo_from_dreq(cinfo, dreq);
  471. else
  472. nfs_init_cinfo_from_inode(cinfo, inode);
  473. }
  474. EXPORT_SYMBOL_GPL(nfs_init_cinfo);
  475. /*
  476. * Add a request to the inode's commit list.
  477. */
  478. void
  479. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
  480. struct nfs_commit_info *cinfo)
  481. {
  482. if (pnfs_mark_request_commit(req, lseg, cinfo))
  483. return;
  484. nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo);
  485. }
  486. static void
  487. nfs_clear_page_commit(struct page *page)
  488. {
  489. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  490. dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE);
  491. }
  492. static void
  493. nfs_clear_request_commit(struct nfs_page *req)
  494. {
  495. if (test_bit(PG_CLEAN, &req->wb_flags)) {
  496. struct inode *inode = req->wb_context->dentry->d_inode;
  497. struct nfs_commit_info cinfo;
  498. nfs_init_cinfo_from_inode(&cinfo, inode);
  499. if (!pnfs_clear_request_commit(req, &cinfo)) {
  500. spin_lock(cinfo.lock);
  501. nfs_request_remove_commit_list(req, &cinfo);
  502. spin_unlock(cinfo.lock);
  503. }
  504. nfs_clear_page_commit(req->wb_page);
  505. }
  506. }
  507. static inline
  508. int nfs_write_need_commit(struct nfs_write_data *data)
  509. {
  510. if (data->verf.committed == NFS_DATA_SYNC)
  511. return data->header->lseg == NULL;
  512. return data->verf.committed != NFS_FILE_SYNC;
  513. }
  514. #else
  515. static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
  516. struct inode *inode)
  517. {
  518. }
  519. void nfs_init_cinfo(struct nfs_commit_info *cinfo,
  520. struct inode *inode,
  521. struct nfs_direct_req *dreq)
  522. {
  523. }
  524. void
  525. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
  526. struct nfs_commit_info *cinfo)
  527. {
  528. }
  529. static void
  530. nfs_clear_request_commit(struct nfs_page *req)
  531. {
  532. }
  533. static inline
  534. int nfs_write_need_commit(struct nfs_write_data *data)
  535. {
  536. return 0;
  537. }
  538. #endif
  539. static void nfs_write_completion(struct nfs_pgio_header *hdr)
  540. {
  541. struct nfs_commit_info cinfo;
  542. unsigned long bytes = 0;
  543. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  544. goto out;
  545. nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
  546. while (!list_empty(&hdr->pages)) {
  547. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  548. bytes += req->wb_bytes;
  549. nfs_list_remove_request(req);
  550. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
  551. (hdr->good_bytes < bytes)) {
  552. nfs_set_pageerror(req->wb_page);
  553. nfs_context_set_write_error(req->wb_context, hdr->error);
  554. goto remove_req;
  555. }
  556. if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
  557. nfs_mark_request_dirty(req);
  558. goto next;
  559. }
  560. if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
  561. memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf));
  562. nfs_mark_request_commit(req, hdr->lseg, &cinfo);
  563. goto next;
  564. }
  565. remove_req:
  566. nfs_inode_remove_request(req);
  567. next:
  568. nfs_unlock_request(req);
  569. nfs_end_page_writeback(req->wb_page);
  570. nfs_release_request(req);
  571. }
  572. out:
  573. hdr->release(hdr);
  574. }
  575. #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
  576. static unsigned long
  577. nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
  578. {
  579. return cinfo->mds->ncommit;
  580. }
  581. /* cinfo->lock held by caller */
  582. int
  583. nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
  584. struct nfs_commit_info *cinfo, int max)
  585. {
  586. struct nfs_page *req, *tmp;
  587. int ret = 0;
  588. list_for_each_entry_safe(req, tmp, src, wb_list) {
  589. if (!nfs_lock_request(req))
  590. continue;
  591. kref_get(&req->wb_kref);
  592. if (cond_resched_lock(cinfo->lock))
  593. list_safe_reset_next(req, tmp, wb_list);
  594. nfs_request_remove_commit_list(req, cinfo);
  595. nfs_list_add_request(req, dst);
  596. ret++;
  597. if ((ret == max) && !cinfo->dreq)
  598. break;
  599. }
  600. return ret;
  601. }
  602. /*
  603. * nfs_scan_commit - Scan an inode for commit requests
  604. * @inode: NFS inode to scan
  605. * @dst: mds destination list
  606. * @cinfo: mds and ds lists of reqs ready to commit
  607. *
  608. * Moves requests from the inode's 'commit' request list.
  609. * The requests are *not* checked to ensure that they form a contiguous set.
  610. */
  611. int
  612. nfs_scan_commit(struct inode *inode, struct list_head *dst,
  613. struct nfs_commit_info *cinfo)
  614. {
  615. int ret = 0;
  616. spin_lock(cinfo->lock);
  617. if (cinfo->mds->ncommit > 0) {
  618. const int max = INT_MAX;
  619. ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
  620. cinfo, max);
  621. ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
  622. }
  623. spin_unlock(cinfo->lock);
  624. return ret;
  625. }
  626. #else
  627. static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
  628. {
  629. return 0;
  630. }
  631. int nfs_scan_commit(struct inode *inode, struct list_head *dst,
  632. struct nfs_commit_info *cinfo)
  633. {
  634. return 0;
  635. }
  636. #endif
  637. /*
  638. * Search for an existing write request, and attempt to update
  639. * it to reflect a new dirty region on a given page.
  640. *
  641. * If the attempt fails, then the existing request is flushed out
  642. * to disk.
  643. */
  644. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  645. struct page *page,
  646. unsigned int offset,
  647. unsigned int bytes)
  648. {
  649. struct nfs_page *req;
  650. unsigned int rqend;
  651. unsigned int end;
  652. int error;
  653. if (!PagePrivate(page))
  654. return NULL;
  655. end = offset + bytes;
  656. spin_lock(&inode->i_lock);
  657. for (;;) {
  658. req = nfs_page_find_request_locked(NFS_I(inode), page);
  659. if (req == NULL)
  660. goto out_unlock;
  661. rqend = req->wb_offset + req->wb_bytes;
  662. /*
  663. * Tell the caller to flush out the request if
  664. * the offsets are non-contiguous.
  665. * Note: nfs_flush_incompatible() will already
  666. * have flushed out requests having wrong owners.
  667. */
  668. if (offset > rqend
  669. || end < req->wb_offset)
  670. goto out_flushme;
  671. if (nfs_lock_request(req))
  672. break;
  673. /* The request is locked, so wait and then retry */
  674. spin_unlock(&inode->i_lock);
  675. error = nfs_wait_on_request(req);
  676. nfs_release_request(req);
  677. if (error != 0)
  678. goto out_err;
  679. spin_lock(&inode->i_lock);
  680. }
  681. /* Okay, the request matches. Update the region */
  682. if (offset < req->wb_offset) {
  683. req->wb_offset = offset;
  684. req->wb_pgbase = offset;
  685. }
  686. if (end > rqend)
  687. req->wb_bytes = end - req->wb_offset;
  688. else
  689. req->wb_bytes = rqend - req->wb_offset;
  690. out_unlock:
  691. spin_unlock(&inode->i_lock);
  692. if (req)
  693. nfs_clear_request_commit(req);
  694. return req;
  695. out_flushme:
  696. spin_unlock(&inode->i_lock);
  697. nfs_release_request(req);
  698. error = nfs_wb_page(inode, page);
  699. out_err:
  700. return ERR_PTR(error);
  701. }
  702. /*
  703. * Try to update an existing write request, or create one if there is none.
  704. *
  705. * Note: Should always be called with the Page Lock held to prevent races
  706. * if we have to add a new request. Also assumes that the caller has
  707. * already called nfs_flush_incompatible() if necessary.
  708. */
  709. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  710. struct page *page, unsigned int offset, unsigned int bytes)
  711. {
  712. struct inode *inode = page_file_mapping(page)->host;
  713. struct nfs_page *req;
  714. req = nfs_try_to_update_request(inode, page, offset, bytes);
  715. if (req != NULL)
  716. goto out;
  717. req = nfs_create_request(ctx, inode, page, offset, bytes);
  718. if (IS_ERR(req))
  719. goto out;
  720. nfs_inode_add_request(inode, req);
  721. out:
  722. return req;
  723. }
  724. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  725. unsigned int offset, unsigned int count)
  726. {
  727. struct nfs_page *req;
  728. req = nfs_setup_write_request(ctx, page, offset, count);
  729. if (IS_ERR(req))
  730. return PTR_ERR(req);
  731. /* Update file length */
  732. nfs_grow_file(page, offset, count);
  733. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  734. nfs_mark_request_dirty(req);
  735. nfs_unlock_and_release_request(req);
  736. return 0;
  737. }
  738. int nfs_flush_incompatible(struct file *file, struct page *page)
  739. {
  740. struct nfs_open_context *ctx = nfs_file_open_context(file);
  741. struct nfs_lock_context *l_ctx;
  742. struct nfs_page *req;
  743. int do_flush, status;
  744. /*
  745. * Look for a request corresponding to this page. If there
  746. * is one, and it belongs to another file, we flush it out
  747. * before we try to copy anything into the page. Do this
  748. * due to the lack of an ACCESS-type call in NFSv2.
  749. * Also do the same if we find a request from an existing
  750. * dropped page.
  751. */
  752. do {
  753. req = nfs_page_find_request(page);
  754. if (req == NULL)
  755. return 0;
  756. l_ctx = req->wb_lock_context;
  757. do_flush = req->wb_page != page || req->wb_context != ctx;
  758. if (l_ctx && ctx->dentry->d_inode->i_flock != NULL) {
  759. do_flush |= l_ctx->lockowner.l_owner != current->files
  760. || l_ctx->lockowner.l_pid != current->tgid;
  761. }
  762. nfs_release_request(req);
  763. if (!do_flush)
  764. return 0;
  765. status = nfs_wb_page(page_file_mapping(page)->host, page);
  766. } while (status == 0);
  767. return status;
  768. }
  769. /*
  770. * Avoid buffered writes when a open context credential's key would
  771. * expire soon.
  772. *
  773. * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
  774. *
  775. * Return 0 and set a credential flag which triggers the inode to flush
  776. * and performs NFS_FILE_SYNC writes if the key will expired within
  777. * RPC_KEY_EXPIRE_TIMEO.
  778. */
  779. int
  780. nfs_key_timeout_notify(struct file *filp, struct inode *inode)
  781. {
  782. struct nfs_open_context *ctx = nfs_file_open_context(filp);
  783. struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
  784. return rpcauth_key_timeout_notify(auth, ctx->cred);
  785. }
  786. /*
  787. * Test if the open context credential key is marked to expire soon.
  788. */
  789. bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx)
  790. {
  791. return rpcauth_cred_key_to_expire(ctx->cred);
  792. }
  793. /*
  794. * If the page cache is marked as unsafe or invalid, then we can't rely on
  795. * the PageUptodate() flag. In this case, we will need to turn off
  796. * write optimisations that depend on the page contents being correct.
  797. */
  798. static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
  799. {
  800. if (nfs_have_delegated_attributes(inode))
  801. goto out;
  802. if (NFS_I(inode)->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE))
  803. return false;
  804. out:
  805. return PageUptodate(page) != 0;
  806. }
  807. /* If we know the page is up to date, and we're not using byte range locks (or
  808. * if we have the whole file locked for writing), it may be more efficient to
  809. * extend the write to cover the entire page in order to avoid fragmentation
  810. * inefficiencies.
  811. *
  812. * If the file is opened for synchronous writes or if we have a write delegation
  813. * from the server then we can just skip the rest of the checks.
  814. */
  815. static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
  816. {
  817. if (file->f_flags & O_DSYNC)
  818. return 0;
  819. if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
  820. return 1;
  821. if (nfs_write_pageuptodate(page, inode) && (inode->i_flock == NULL ||
  822. (inode->i_flock->fl_start == 0 &&
  823. inode->i_flock->fl_end == OFFSET_MAX &&
  824. inode->i_flock->fl_type != F_RDLCK)))
  825. return 1;
  826. return 0;
  827. }
  828. /*
  829. * Update and possibly write a cached page of an NFS file.
  830. *
  831. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  832. * things with a page scheduled for an RPC call (e.g. invalidate it).
  833. */
  834. int nfs_updatepage(struct file *file, struct page *page,
  835. unsigned int offset, unsigned int count)
  836. {
  837. struct nfs_open_context *ctx = nfs_file_open_context(file);
  838. struct inode *inode = page_file_mapping(page)->host;
  839. int status = 0;
  840. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  841. dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
  842. file, count, (long long)(page_file_offset(page) + offset));
  843. if (nfs_can_extend_write(file, page, inode)) {
  844. count = max(count + offset, nfs_page_length(page));
  845. offset = 0;
  846. }
  847. status = nfs_writepage_setup(ctx, page, offset, count);
  848. if (status < 0)
  849. nfs_set_pageerror(page);
  850. else
  851. __set_page_dirty_nobuffers(page);
  852. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  853. status, (long long)i_size_read(inode));
  854. return status;
  855. }
  856. static int flush_task_priority(int how)
  857. {
  858. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  859. case FLUSH_HIGHPRI:
  860. return RPC_PRIORITY_HIGH;
  861. case FLUSH_LOWPRI:
  862. return RPC_PRIORITY_LOW;
  863. }
  864. return RPC_PRIORITY_NORMAL;
  865. }
  866. int nfs_initiate_write(struct rpc_clnt *clnt,
  867. struct nfs_write_data *data,
  868. const struct rpc_call_ops *call_ops,
  869. int how, int flags)
  870. {
  871. struct inode *inode = data->header->inode;
  872. int priority = flush_task_priority(how);
  873. struct rpc_task *task;
  874. struct rpc_message msg = {
  875. .rpc_argp = &data->args,
  876. .rpc_resp = &data->res,
  877. .rpc_cred = data->header->cred,
  878. };
  879. struct rpc_task_setup task_setup_data = {
  880. .rpc_client = clnt,
  881. .task = &data->task,
  882. .rpc_message = &msg,
  883. .callback_ops = call_ops,
  884. .callback_data = data,
  885. .workqueue = nfsiod_workqueue,
  886. .flags = RPC_TASK_ASYNC | flags,
  887. .priority = priority,
  888. };
  889. int ret = 0;
  890. /* Set up the initial task struct. */
  891. NFS_PROTO(inode)->write_setup(data, &msg);
  892. dprintk("NFS: %5u initiated write call "
  893. "(req %s/%lld, %u bytes @ offset %llu)\n",
  894. data->task.tk_pid,
  895. inode->i_sb->s_id,
  896. (long long)NFS_FILEID(inode),
  897. data->args.count,
  898. (unsigned long long)data->args.offset);
  899. nfs4_state_protect_write(NFS_SERVER(inode)->nfs_client,
  900. &task_setup_data.rpc_client, &msg, data);
  901. task = rpc_run_task(&task_setup_data);
  902. if (IS_ERR(task)) {
  903. ret = PTR_ERR(task);
  904. goto out;
  905. }
  906. if (how & FLUSH_SYNC) {
  907. ret = rpc_wait_for_completion_task(task);
  908. if (ret == 0)
  909. ret = task->tk_status;
  910. }
  911. rpc_put_task(task);
  912. out:
  913. return ret;
  914. }
  915. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  916. /*
  917. * Set up the argument/result storage required for the RPC call.
  918. */
  919. static void nfs_write_rpcsetup(struct nfs_write_data *data,
  920. unsigned int count, unsigned int offset,
  921. int how, struct nfs_commit_info *cinfo)
  922. {
  923. struct nfs_page *req = data->header->req;
  924. /* Set up the RPC argument and reply structs
  925. * NB: take care not to mess about with data->commit et al. */
  926. data->args.fh = NFS_FH(data->header->inode);
  927. data->args.offset = req_offset(req) + offset;
  928. /* pnfs_set_layoutcommit needs this */
  929. data->mds_offset = data->args.offset;
  930. data->args.pgbase = req->wb_pgbase + offset;
  931. data->args.pages = data->pages.pagevec;
  932. data->args.count = count;
  933. data->args.context = get_nfs_open_context(req->wb_context);
  934. data->args.lock_context = req->wb_lock_context;
  935. data->args.stable = NFS_UNSTABLE;
  936. switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  937. case 0:
  938. break;
  939. case FLUSH_COND_STABLE:
  940. if (nfs_reqs_to_commit(cinfo))
  941. break;
  942. default:
  943. data->args.stable = NFS_FILE_SYNC;
  944. }
  945. data->res.fattr = &data->fattr;
  946. data->res.count = count;
  947. data->res.verf = &data->verf;
  948. nfs_fattr_init(&data->fattr);
  949. }
  950. static int nfs_do_write(struct nfs_write_data *data,
  951. const struct rpc_call_ops *call_ops,
  952. int how)
  953. {
  954. struct inode *inode = data->header->inode;
  955. return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0);
  956. }
  957. static int nfs_do_multiple_writes(struct list_head *head,
  958. const struct rpc_call_ops *call_ops,
  959. int how)
  960. {
  961. struct nfs_write_data *data;
  962. int ret = 0;
  963. while (!list_empty(head)) {
  964. int ret2;
  965. data = list_first_entry(head, struct nfs_write_data, list);
  966. list_del_init(&data->list);
  967. ret2 = nfs_do_write(data, call_ops, how);
  968. if (ret == 0)
  969. ret = ret2;
  970. }
  971. return ret;
  972. }
  973. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  974. * call this on each, which will prepare them to be retried on next
  975. * writeback using standard nfs.
  976. */
  977. static void nfs_redirty_request(struct nfs_page *req)
  978. {
  979. nfs_mark_request_dirty(req);
  980. nfs_unlock_request(req);
  981. nfs_end_page_writeback(req->wb_page);
  982. nfs_release_request(req);
  983. }
  984. static void nfs_async_write_error(struct list_head *head)
  985. {
  986. struct nfs_page *req;
  987. while (!list_empty(head)) {
  988. req = nfs_list_entry(head->next);
  989. nfs_list_remove_request(req);
  990. nfs_redirty_request(req);
  991. }
  992. }
  993. static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
  994. .error_cleanup = nfs_async_write_error,
  995. .completion = nfs_write_completion,
  996. };
  997. static void nfs_flush_error(struct nfs_pageio_descriptor *desc,
  998. struct nfs_pgio_header *hdr)
  999. {
  1000. set_bit(NFS_IOHDR_REDO, &hdr->flags);
  1001. while (!list_empty(&hdr->rpc_list)) {
  1002. struct nfs_write_data *data = list_first_entry(&hdr->rpc_list,
  1003. struct nfs_write_data, list);
  1004. list_del(&data->list);
  1005. nfs_writedata_release(data);
  1006. }
  1007. desc->pg_completion_ops->error_cleanup(&desc->pg_list);
  1008. }
  1009. /*
  1010. * Generate multiple small requests to write out a single
  1011. * contiguous dirty area on one page.
  1012. */
  1013. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc,
  1014. struct nfs_pgio_header *hdr)
  1015. {
  1016. struct nfs_page *req = hdr->req;
  1017. struct page *page = req->wb_page;
  1018. struct nfs_write_data *data;
  1019. size_t wsize = desc->pg_bsize, nbytes;
  1020. unsigned int offset;
  1021. int requests = 0;
  1022. struct nfs_commit_info cinfo;
  1023. nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
  1024. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  1025. (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) ||
  1026. desc->pg_count > wsize))
  1027. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  1028. offset = 0;
  1029. nbytes = desc->pg_count;
  1030. do {
  1031. size_t len = min(nbytes, wsize);
  1032. data = nfs_writedata_alloc(hdr, 1);
  1033. if (!data) {
  1034. nfs_flush_error(desc, hdr);
  1035. return -ENOMEM;
  1036. }
  1037. data->pages.pagevec[0] = page;
  1038. nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo);
  1039. list_add(&data->list, &hdr->rpc_list);
  1040. requests++;
  1041. nbytes -= len;
  1042. offset += len;
  1043. } while (nbytes != 0);
  1044. nfs_list_remove_request(req);
  1045. nfs_list_add_request(req, &hdr->pages);
  1046. desc->pg_rpc_callops = &nfs_write_common_ops;
  1047. return 0;
  1048. }
  1049. /*
  1050. * Create an RPC task for the given write request and kick it.
  1051. * The page must have been locked by the caller.
  1052. *
  1053. * It may happen that the page we're passed is not marked dirty.
  1054. * This is the case if nfs_updatepage detects a conflicting request
  1055. * that has been written but not committed.
  1056. */
  1057. static int nfs_flush_one(struct nfs_pageio_descriptor *desc,
  1058. struct nfs_pgio_header *hdr)
  1059. {
  1060. struct nfs_page *req;
  1061. struct page **pages;
  1062. struct nfs_write_data *data;
  1063. struct list_head *head = &desc->pg_list;
  1064. struct nfs_commit_info cinfo;
  1065. data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base,
  1066. desc->pg_count));
  1067. if (!data) {
  1068. nfs_flush_error(desc, hdr);
  1069. return -ENOMEM;
  1070. }
  1071. nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
  1072. pages = data->pages.pagevec;
  1073. while (!list_empty(head)) {
  1074. req = nfs_list_entry(head->next);
  1075. nfs_list_remove_request(req);
  1076. nfs_list_add_request(req, &hdr->pages);
  1077. *pages++ = req->wb_page;
  1078. }
  1079. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  1080. (desc->pg_moreio || nfs_reqs_to_commit(&cinfo)))
  1081. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  1082. /* Set up the argument struct */
  1083. nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo);
  1084. list_add(&data->list, &hdr->rpc_list);
  1085. desc->pg_rpc_callops = &nfs_write_common_ops;
  1086. return 0;
  1087. }
  1088. int nfs_generic_flush(struct nfs_pageio_descriptor *desc,
  1089. struct nfs_pgio_header *hdr)
  1090. {
  1091. if (desc->pg_bsize < PAGE_CACHE_SIZE)
  1092. return nfs_flush_multi(desc, hdr);
  1093. return nfs_flush_one(desc, hdr);
  1094. }
  1095. EXPORT_SYMBOL_GPL(nfs_generic_flush);
  1096. static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
  1097. {
  1098. struct nfs_write_header *whdr;
  1099. struct nfs_pgio_header *hdr;
  1100. int ret;
  1101. whdr = nfs_writehdr_alloc();
  1102. if (!whdr) {
  1103. desc->pg_completion_ops->error_cleanup(&desc->pg_list);
  1104. return -ENOMEM;
  1105. }
  1106. hdr = &whdr->header;
  1107. nfs_pgheader_init(desc, hdr, nfs_writehdr_free);
  1108. atomic_inc(&hdr->refcnt);
  1109. ret = nfs_generic_flush(desc, hdr);
  1110. if (ret == 0)
  1111. ret = nfs_do_multiple_writes(&hdr->rpc_list,
  1112. desc->pg_rpc_callops,
  1113. desc->pg_ioflags);
  1114. if (atomic_dec_and_test(&hdr->refcnt))
  1115. hdr->completion_ops->completion(hdr);
  1116. return ret;
  1117. }
  1118. static const struct nfs_pageio_ops nfs_pageio_write_ops = {
  1119. .pg_test = nfs_generic_pg_test,
  1120. .pg_doio = nfs_generic_pg_writepages,
  1121. };
  1122. void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  1123. struct inode *inode, int ioflags,
  1124. const struct nfs_pgio_completion_ops *compl_ops)
  1125. {
  1126. nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops,
  1127. NFS_SERVER(inode)->wsize, ioflags);
  1128. }
  1129. EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
  1130. void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
  1131. {
  1132. pgio->pg_ops = &nfs_pageio_write_ops;
  1133. pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
  1134. }
  1135. EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
  1136. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  1137. {
  1138. struct nfs_write_data *data = calldata;
  1139. int err;
  1140. err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data);
  1141. if (err)
  1142. rpc_exit(task, err);
  1143. }
  1144. void nfs_commit_prepare(struct rpc_task *task, void *calldata)
  1145. {
  1146. struct nfs_commit_data *data = calldata;
  1147. NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
  1148. }
  1149. /*
  1150. * Handle a write reply that flushes a whole page.
  1151. *
  1152. * FIXME: There is an inherent race with invalidate_inode_pages and
  1153. * writebacks since the page->count is kept > 1 for as long
  1154. * as the page has a write request pending.
  1155. */
  1156. static void nfs_writeback_done_common(struct rpc_task *task, void *calldata)
  1157. {
  1158. struct nfs_write_data *data = calldata;
  1159. nfs_writeback_done(task, data);
  1160. }
  1161. static void nfs_writeback_release_common(void *calldata)
  1162. {
  1163. struct nfs_write_data *data = calldata;
  1164. struct nfs_pgio_header *hdr = data->header;
  1165. int status = data->task.tk_status;
  1166. if ((status >= 0) && nfs_write_need_commit(data)) {
  1167. spin_lock(&hdr->lock);
  1168. if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags))
  1169. ; /* Do nothing */
  1170. else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags))
  1171. memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf));
  1172. else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf)))
  1173. set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags);
  1174. spin_unlock(&hdr->lock);
  1175. }
  1176. nfs_writedata_release(data);
  1177. }
  1178. static const struct rpc_call_ops nfs_write_common_ops = {
  1179. .rpc_call_prepare = nfs_write_prepare,
  1180. .rpc_call_done = nfs_writeback_done_common,
  1181. .rpc_release = nfs_writeback_release_common,
  1182. };
  1183. /*
  1184. * This function is called when the WRITE call is complete.
  1185. */
  1186. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1187. {
  1188. struct nfs_writeargs *argp = &data->args;
  1189. struct nfs_writeres *resp = &data->res;
  1190. struct inode *inode = data->header->inode;
  1191. int status;
  1192. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1193. task->tk_pid, task->tk_status);
  1194. /*
  1195. * ->write_done will attempt to use post-op attributes to detect
  1196. * conflicting writes by other clients. A strict interpretation
  1197. * of close-to-open would allow us to continue caching even if
  1198. * another writer had changed the file, but some applications
  1199. * depend on tighter cache coherency when writing.
  1200. */
  1201. status = NFS_PROTO(inode)->write_done(task, data);
  1202. if (status != 0)
  1203. return;
  1204. nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1205. #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
  1206. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1207. /* We tried a write call, but the server did not
  1208. * commit data to stable storage even though we
  1209. * requested it.
  1210. * Note: There is a known bug in Tru64 < 5.0 in which
  1211. * the server reports NFS_DATA_SYNC, but performs
  1212. * NFS_FILE_SYNC. We therefore implement this checking
  1213. * as a dprintk() in order to avoid filling syslog.
  1214. */
  1215. static unsigned long complain;
  1216. /* Note this will print the MDS for a DS write */
  1217. if (time_before(complain, jiffies)) {
  1218. dprintk("NFS: faulty NFS server %s:"
  1219. " (committed = %d) != (stable = %d)\n",
  1220. NFS_SERVER(inode)->nfs_client->cl_hostname,
  1221. resp->verf->committed, argp->stable);
  1222. complain = jiffies + 300 * HZ;
  1223. }
  1224. }
  1225. #endif
  1226. if (task->tk_status < 0)
  1227. nfs_set_pgio_error(data->header, task->tk_status, argp->offset);
  1228. else if (resp->count < argp->count) {
  1229. static unsigned long complain;
  1230. /* This a short write! */
  1231. nfs_inc_stats(inode, NFSIOS_SHORTWRITE);
  1232. /* Has the server at least made some progress? */
  1233. if (resp->count == 0) {
  1234. if (time_before(complain, jiffies)) {
  1235. printk(KERN_WARNING
  1236. "NFS: Server wrote zero bytes, expected %u.\n",
  1237. argp->count);
  1238. complain = jiffies + 300 * HZ;
  1239. }
  1240. nfs_set_pgio_error(data->header, -EIO, argp->offset);
  1241. task->tk_status = -EIO;
  1242. return;
  1243. }
  1244. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1245. if (resp->verf->committed != NFS_UNSTABLE) {
  1246. /* Resend from where the server left off */
  1247. data->mds_offset += resp->count;
  1248. argp->offset += resp->count;
  1249. argp->pgbase += resp->count;
  1250. argp->count -= resp->count;
  1251. } else {
  1252. /* Resend as a stable write in order to avoid
  1253. * headaches in the case of a server crash.
  1254. */
  1255. argp->stable = NFS_FILE_SYNC;
  1256. }
  1257. rpc_restart_call_prepare(task);
  1258. }
  1259. }
  1260. #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
  1261. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1262. {
  1263. int ret;
  1264. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1265. return 1;
  1266. if (!may_wait)
  1267. return 0;
  1268. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1269. NFS_INO_COMMIT,
  1270. nfs_wait_bit_killable,
  1271. TASK_KILLABLE);
  1272. return (ret < 0) ? ret : 1;
  1273. }
  1274. static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1275. {
  1276. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1277. smp_mb__after_clear_bit();
  1278. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1279. }
  1280. void nfs_commitdata_release(struct nfs_commit_data *data)
  1281. {
  1282. put_nfs_open_context(data->context);
  1283. nfs_commit_free(data);
  1284. }
  1285. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1286. int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
  1287. const struct rpc_call_ops *call_ops,
  1288. int how, int flags)
  1289. {
  1290. struct rpc_task *task;
  1291. int priority = flush_task_priority(how);
  1292. struct rpc_message msg = {
  1293. .rpc_argp = &data->args,
  1294. .rpc_resp = &data->res,
  1295. .rpc_cred = data->cred,
  1296. };
  1297. struct rpc_task_setup task_setup_data = {
  1298. .task = &data->task,
  1299. .rpc_client = clnt,
  1300. .rpc_message = &msg,
  1301. .callback_ops = call_ops,
  1302. .callback_data = data,
  1303. .workqueue = nfsiod_workqueue,
  1304. .flags = RPC_TASK_ASYNC | flags,
  1305. .priority = priority,
  1306. };
  1307. /* Set up the initial task struct. */
  1308. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1309. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1310. nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
  1311. NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
  1312. task = rpc_run_task(&task_setup_data);
  1313. if (IS_ERR(task))
  1314. return PTR_ERR(task);
  1315. if (how & FLUSH_SYNC)
  1316. rpc_wait_for_completion_task(task);
  1317. rpc_put_task(task);
  1318. return 0;
  1319. }
  1320. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1321. /*
  1322. * Set up the argument/result storage required for the RPC call.
  1323. */
  1324. void nfs_init_commit(struct nfs_commit_data *data,
  1325. struct list_head *head,
  1326. struct pnfs_layout_segment *lseg,
  1327. struct nfs_commit_info *cinfo)
  1328. {
  1329. struct nfs_page *first = nfs_list_entry(head->next);
  1330. struct inode *inode = first->wb_context->dentry->d_inode;
  1331. /* Set up the RPC argument and reply structs
  1332. * NB: take care not to mess about with data->commit et al. */
  1333. list_splice_init(head, &data->pages);
  1334. data->inode = inode;
  1335. data->cred = first->wb_context->cred;
  1336. data->lseg = lseg; /* reference transferred */
  1337. data->mds_ops = &nfs_commit_ops;
  1338. data->completion_ops = cinfo->completion_ops;
  1339. data->dreq = cinfo->dreq;
  1340. data->args.fh = NFS_FH(data->inode);
  1341. /* Note: we always request a commit of the entire inode */
  1342. data->args.offset = 0;
  1343. data->args.count = 0;
  1344. data->context = get_nfs_open_context(first->wb_context);
  1345. data->res.fattr = &data->fattr;
  1346. data->res.verf = &data->verf;
  1347. nfs_fattr_init(&data->fattr);
  1348. }
  1349. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1350. void nfs_retry_commit(struct list_head *page_list,
  1351. struct pnfs_layout_segment *lseg,
  1352. struct nfs_commit_info *cinfo)
  1353. {
  1354. struct nfs_page *req;
  1355. while (!list_empty(page_list)) {
  1356. req = nfs_list_entry(page_list->next);
  1357. nfs_list_remove_request(req);
  1358. nfs_mark_request_commit(req, lseg, cinfo);
  1359. if (!cinfo->dreq) {
  1360. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1361. dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
  1362. BDI_RECLAIMABLE);
  1363. }
  1364. nfs_unlock_and_release_request(req);
  1365. }
  1366. }
  1367. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1368. /*
  1369. * Commit dirty pages
  1370. */
  1371. static int
  1372. nfs_commit_list(struct inode *inode, struct list_head *head, int how,
  1373. struct nfs_commit_info *cinfo)
  1374. {
  1375. struct nfs_commit_data *data;
  1376. data = nfs_commitdata_alloc();
  1377. if (!data)
  1378. goto out_bad;
  1379. /* Set up the argument struct */
  1380. nfs_init_commit(data, head, NULL, cinfo);
  1381. atomic_inc(&cinfo->mds->rpcs_out);
  1382. return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops,
  1383. how, 0);
  1384. out_bad:
  1385. nfs_retry_commit(head, NULL, cinfo);
  1386. cinfo->completion_ops->error_cleanup(NFS_I(inode));
  1387. return -ENOMEM;
  1388. }
  1389. /*
  1390. * COMMIT call returned
  1391. */
  1392. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1393. {
  1394. struct nfs_commit_data *data = calldata;
  1395. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1396. task->tk_pid, task->tk_status);
  1397. /* Call the NFS version-specific code */
  1398. NFS_PROTO(data->inode)->commit_done(task, data);
  1399. }
  1400. static void nfs_commit_release_pages(struct nfs_commit_data *data)
  1401. {
  1402. struct nfs_page *req;
  1403. int status = data->task.tk_status;
  1404. struct nfs_commit_info cinfo;
  1405. while (!list_empty(&data->pages)) {
  1406. req = nfs_list_entry(data->pages.next);
  1407. nfs_list_remove_request(req);
  1408. nfs_clear_page_commit(req->wb_page);
  1409. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1410. req->wb_context->dentry->d_sb->s_id,
  1411. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1412. req->wb_bytes,
  1413. (long long)req_offset(req));
  1414. if (status < 0) {
  1415. nfs_context_set_write_error(req->wb_context, status);
  1416. nfs_inode_remove_request(req);
  1417. dprintk(", error = %d\n", status);
  1418. goto next;
  1419. }
  1420. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1421. * returned by the server against all stored verfs. */
  1422. if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) {
  1423. /* We have a match */
  1424. nfs_inode_remove_request(req);
  1425. dprintk(" OK\n");
  1426. goto next;
  1427. }
  1428. /* We have a mismatch. Write the page again */
  1429. dprintk(" mismatch\n");
  1430. nfs_mark_request_dirty(req);
  1431. set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
  1432. next:
  1433. nfs_unlock_and_release_request(req);
  1434. }
  1435. nfs_init_cinfo(&cinfo, data->inode, data->dreq);
  1436. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  1437. nfs_commit_clear_lock(NFS_I(data->inode));
  1438. }
  1439. static void nfs_commit_release(void *calldata)
  1440. {
  1441. struct nfs_commit_data *data = calldata;
  1442. data->completion_ops->completion(data);
  1443. nfs_commitdata_release(calldata);
  1444. }
  1445. static const struct rpc_call_ops nfs_commit_ops = {
  1446. .rpc_call_prepare = nfs_commit_prepare,
  1447. .rpc_call_done = nfs_commit_done,
  1448. .rpc_release = nfs_commit_release,
  1449. };
  1450. static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
  1451. .completion = nfs_commit_release_pages,
  1452. .error_cleanup = nfs_commit_clear_lock,
  1453. };
  1454. int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
  1455. int how, struct nfs_commit_info *cinfo)
  1456. {
  1457. int status;
  1458. status = pnfs_commit_list(inode, head, how, cinfo);
  1459. if (status == PNFS_NOT_ATTEMPTED)
  1460. status = nfs_commit_list(inode, head, how, cinfo);
  1461. return status;
  1462. }
  1463. int nfs_commit_inode(struct inode *inode, int how)
  1464. {
  1465. LIST_HEAD(head);
  1466. struct nfs_commit_info cinfo;
  1467. int may_wait = how & FLUSH_SYNC;
  1468. int res;
  1469. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1470. if (res <= 0)
  1471. goto out_mark_dirty;
  1472. nfs_init_cinfo_from_inode(&cinfo, inode);
  1473. res = nfs_scan_commit(inode, &head, &cinfo);
  1474. if (res) {
  1475. int error;
  1476. error = nfs_generic_commit_list(inode, &head, how, &cinfo);
  1477. if (error < 0)
  1478. return error;
  1479. if (!may_wait)
  1480. goto out_mark_dirty;
  1481. error = wait_on_bit(&NFS_I(inode)->flags,
  1482. NFS_INO_COMMIT,
  1483. nfs_wait_bit_killable,
  1484. TASK_KILLABLE);
  1485. if (error < 0)
  1486. return error;
  1487. } else
  1488. nfs_commit_clear_lock(NFS_I(inode));
  1489. return res;
  1490. /* Note: If we exit without ensuring that the commit is complete,
  1491. * we must mark the inode as dirty. Otherwise, future calls to
  1492. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1493. * that the data is on the disk.
  1494. */
  1495. out_mark_dirty:
  1496. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1497. return res;
  1498. }
  1499. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1500. {
  1501. struct nfs_inode *nfsi = NFS_I(inode);
  1502. int flags = FLUSH_SYNC;
  1503. int ret = 0;
  1504. /* no commits means nothing needs to be done */
  1505. if (!nfsi->commit_info.ncommit)
  1506. return ret;
  1507. if (wbc->sync_mode == WB_SYNC_NONE) {
  1508. /* Don't commit yet if this is a non-blocking flush and there
  1509. * are a lot of outstanding writes for this mapping.
  1510. */
  1511. if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1))
  1512. goto out_mark_dirty;
  1513. /* don't wait for the COMMIT response */
  1514. flags = 0;
  1515. }
  1516. ret = nfs_commit_inode(inode, flags);
  1517. if (ret >= 0) {
  1518. if (wbc->sync_mode == WB_SYNC_NONE) {
  1519. if (ret < wbc->nr_to_write)
  1520. wbc->nr_to_write -= ret;
  1521. else
  1522. wbc->nr_to_write = 0;
  1523. }
  1524. return 0;
  1525. }
  1526. out_mark_dirty:
  1527. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1528. return ret;
  1529. }
  1530. #else
  1531. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1532. {
  1533. return 0;
  1534. }
  1535. #endif
  1536. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1537. {
  1538. return nfs_commit_unstable_pages(inode, wbc);
  1539. }
  1540. EXPORT_SYMBOL_GPL(nfs_write_inode);
  1541. /*
  1542. * flush the inode to disk.
  1543. */
  1544. int nfs_wb_all(struct inode *inode)
  1545. {
  1546. struct writeback_control wbc = {
  1547. .sync_mode = WB_SYNC_ALL,
  1548. .nr_to_write = LONG_MAX,
  1549. .range_start = 0,
  1550. .range_end = LLONG_MAX,
  1551. };
  1552. int ret;
  1553. trace_nfs_writeback_inode_enter(inode);
  1554. ret = sync_inode(inode, &wbc);
  1555. trace_nfs_writeback_inode_exit(inode, ret);
  1556. return ret;
  1557. }
  1558. EXPORT_SYMBOL_GPL(nfs_wb_all);
  1559. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1560. {
  1561. struct nfs_page *req;
  1562. int ret = 0;
  1563. for (;;) {
  1564. wait_on_page_writeback(page);
  1565. req = nfs_page_find_request(page);
  1566. if (req == NULL)
  1567. break;
  1568. if (nfs_lock_request(req)) {
  1569. nfs_clear_request_commit(req);
  1570. nfs_inode_remove_request(req);
  1571. /*
  1572. * In case nfs_inode_remove_request has marked the
  1573. * page as being dirty
  1574. */
  1575. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1576. nfs_unlock_and_release_request(req);
  1577. break;
  1578. }
  1579. ret = nfs_wait_on_request(req);
  1580. nfs_release_request(req);
  1581. if (ret < 0)
  1582. break;
  1583. }
  1584. return ret;
  1585. }
  1586. /*
  1587. * Write back all requests on one page - we do this before reading it.
  1588. */
  1589. int nfs_wb_page(struct inode *inode, struct page *page)
  1590. {
  1591. loff_t range_start = page_file_offset(page);
  1592. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1593. struct writeback_control wbc = {
  1594. .sync_mode = WB_SYNC_ALL,
  1595. .nr_to_write = 0,
  1596. .range_start = range_start,
  1597. .range_end = range_end,
  1598. };
  1599. int ret;
  1600. trace_nfs_writeback_page_enter(inode);
  1601. for (;;) {
  1602. wait_on_page_writeback(page);
  1603. if (clear_page_dirty_for_io(page)) {
  1604. ret = nfs_writepage_locked(page, &wbc);
  1605. if (ret < 0)
  1606. goto out_error;
  1607. continue;
  1608. }
  1609. ret = 0;
  1610. if (!PagePrivate(page))
  1611. break;
  1612. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1613. if (ret < 0)
  1614. goto out_error;
  1615. }
  1616. out_error:
  1617. trace_nfs_writeback_page_exit(inode, ret);
  1618. return ret;
  1619. }
  1620. #ifdef CONFIG_MIGRATION
  1621. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1622. struct page *page, enum migrate_mode mode)
  1623. {
  1624. /*
  1625. * If PagePrivate is set, then the page is currently associated with
  1626. * an in-progress read or write request. Don't try to migrate it.
  1627. *
  1628. * FIXME: we could do this in principle, but we'll need a way to ensure
  1629. * that we can safely release the inode reference while holding
  1630. * the page lock.
  1631. */
  1632. if (PagePrivate(page))
  1633. return -EBUSY;
  1634. if (!nfs_fscache_release_page(page, GFP_KERNEL))
  1635. return -EBUSY;
  1636. return migrate_page(mapping, newpage, page, mode);
  1637. }
  1638. #endif
  1639. int __init nfs_init_writepagecache(void)
  1640. {
  1641. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1642. sizeof(struct nfs_write_header),
  1643. 0, SLAB_HWCACHE_ALIGN,
  1644. NULL);
  1645. if (nfs_wdata_cachep == NULL)
  1646. return -ENOMEM;
  1647. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1648. nfs_wdata_cachep);
  1649. if (nfs_wdata_mempool == NULL)
  1650. goto out_destroy_write_cache;
  1651. nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
  1652. sizeof(struct nfs_commit_data),
  1653. 0, SLAB_HWCACHE_ALIGN,
  1654. NULL);
  1655. if (nfs_cdata_cachep == NULL)
  1656. goto out_destroy_write_mempool;
  1657. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1658. nfs_cdata_cachep);
  1659. if (nfs_commit_mempool == NULL)
  1660. goto out_destroy_commit_cache;
  1661. /*
  1662. * NFS congestion size, scale with available memory.
  1663. *
  1664. * 64MB: 8192k
  1665. * 128MB: 11585k
  1666. * 256MB: 16384k
  1667. * 512MB: 23170k
  1668. * 1GB: 32768k
  1669. * 2GB: 46340k
  1670. * 4GB: 65536k
  1671. * 8GB: 92681k
  1672. * 16GB: 131072k
  1673. *
  1674. * This allows larger machines to have larger/more transfers.
  1675. * Limit the default to 256M
  1676. */
  1677. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1678. if (nfs_congestion_kb > 256*1024)
  1679. nfs_congestion_kb = 256*1024;
  1680. return 0;
  1681. out_destroy_commit_cache:
  1682. kmem_cache_destroy(nfs_cdata_cachep);
  1683. out_destroy_write_mempool:
  1684. mempool_destroy(nfs_wdata_mempool);
  1685. out_destroy_write_cache:
  1686. kmem_cache_destroy(nfs_wdata_cachep);
  1687. return -ENOMEM;
  1688. }
  1689. void nfs_destroy_writepagecache(void)
  1690. {
  1691. mempool_destroy(nfs_commit_mempool);
  1692. kmem_cache_destroy(nfs_cdata_cachep);
  1693. mempool_destroy(nfs_wdata_mempool);
  1694. kmem_cache_destroy(nfs_wdata_cachep);
  1695. }