xattr.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. /*
  2. * fs/f2fs/xattr.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * Portions of this code from linux/fs/ext2/xattr.c
  8. *
  9. * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
  10. *
  11. * Fix by Harrison Xing <harrison@mountainviewdata.com>.
  12. * Extended attributes for symlinks and special files added per
  13. * suggestion of Luka Renko <luka.renko@hermes.si>.
  14. * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
  15. * Red Hat Inc.
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License version 2 as
  19. * published by the Free Software Foundation.
  20. */
  21. #include <linux/rwsem.h>
  22. #include <linux/f2fs_fs.h>
  23. #include <linux/security.h>
  24. #include "f2fs.h"
  25. #include "xattr.h"
  26. static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list,
  27. size_t list_size, const char *name, size_t name_len, int type)
  28. {
  29. struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
  30. int total_len, prefix_len = 0;
  31. const char *prefix = NULL;
  32. switch (type) {
  33. case F2FS_XATTR_INDEX_USER:
  34. if (!test_opt(sbi, XATTR_USER))
  35. return -EOPNOTSUPP;
  36. prefix = XATTR_USER_PREFIX;
  37. prefix_len = XATTR_USER_PREFIX_LEN;
  38. break;
  39. case F2FS_XATTR_INDEX_TRUSTED:
  40. if (!capable(CAP_SYS_ADMIN))
  41. return -EPERM;
  42. prefix = XATTR_TRUSTED_PREFIX;
  43. prefix_len = XATTR_TRUSTED_PREFIX_LEN;
  44. break;
  45. case F2FS_XATTR_INDEX_SECURITY:
  46. prefix = XATTR_SECURITY_PREFIX;
  47. prefix_len = XATTR_SECURITY_PREFIX_LEN;
  48. break;
  49. default:
  50. return -EINVAL;
  51. }
  52. total_len = prefix_len + name_len + 1;
  53. if (list && total_len <= list_size) {
  54. memcpy(list, prefix, prefix_len);
  55. memcpy(list + prefix_len, name, name_len);
  56. list[prefix_len + name_len] = '\0';
  57. }
  58. return total_len;
  59. }
  60. static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name,
  61. void *buffer, size_t size, int type)
  62. {
  63. struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
  64. switch (type) {
  65. case F2FS_XATTR_INDEX_USER:
  66. if (!test_opt(sbi, XATTR_USER))
  67. return -EOPNOTSUPP;
  68. break;
  69. case F2FS_XATTR_INDEX_TRUSTED:
  70. if (!capable(CAP_SYS_ADMIN))
  71. return -EPERM;
  72. break;
  73. case F2FS_XATTR_INDEX_SECURITY:
  74. break;
  75. default:
  76. return -EINVAL;
  77. }
  78. if (strcmp(name, "") == 0)
  79. return -EINVAL;
  80. return f2fs_getxattr(dentry->d_inode, type, name, buffer, size);
  81. }
  82. static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name,
  83. const void *value, size_t size, int flags, int type)
  84. {
  85. struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
  86. switch (type) {
  87. case F2FS_XATTR_INDEX_USER:
  88. if (!test_opt(sbi, XATTR_USER))
  89. return -EOPNOTSUPP;
  90. break;
  91. case F2FS_XATTR_INDEX_TRUSTED:
  92. if (!capable(CAP_SYS_ADMIN))
  93. return -EPERM;
  94. break;
  95. case F2FS_XATTR_INDEX_SECURITY:
  96. break;
  97. default:
  98. return -EINVAL;
  99. }
  100. if (strcmp(name, "") == 0)
  101. return -EINVAL;
  102. return f2fs_setxattr(dentry->d_inode, type, name, value, size, NULL);
  103. }
  104. static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list,
  105. size_t list_size, const char *name, size_t name_len, int type)
  106. {
  107. const char *xname = F2FS_SYSTEM_ADVISE_PREFIX;
  108. size_t size;
  109. if (type != F2FS_XATTR_INDEX_ADVISE)
  110. return 0;
  111. size = strlen(xname) + 1;
  112. if (list && size <= list_size)
  113. memcpy(list, xname, size);
  114. return size;
  115. }
  116. static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name,
  117. void *buffer, size_t size, int type)
  118. {
  119. struct inode *inode = dentry->d_inode;
  120. if (strcmp(name, "") != 0)
  121. return -EINVAL;
  122. *((char *)buffer) = F2FS_I(inode)->i_advise;
  123. return sizeof(char);
  124. }
  125. static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name,
  126. const void *value, size_t size, int flags, int type)
  127. {
  128. struct inode *inode = dentry->d_inode;
  129. if (strcmp(name, "") != 0)
  130. return -EINVAL;
  131. if (!inode_owner_or_capable(inode))
  132. return -EPERM;
  133. if (value == NULL)
  134. return -EINVAL;
  135. F2FS_I(inode)->i_advise |= *(char *)value;
  136. return 0;
  137. }
  138. #ifdef CONFIG_F2FS_FS_SECURITY
  139. static int __f2fs_setxattr(struct inode *inode, int name_index,
  140. const char *name, const void *value, size_t value_len,
  141. struct page *ipage);
  142. static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
  143. void *page)
  144. {
  145. const struct xattr *xattr;
  146. int err = 0;
  147. for (xattr = xattr_array; xattr->name != NULL; xattr++) {
  148. err = __f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY,
  149. xattr->name, xattr->value,
  150. xattr->value_len, (struct page *)page);
  151. if (err < 0)
  152. break;
  153. }
  154. return err;
  155. }
  156. int f2fs_init_security(struct inode *inode, struct inode *dir,
  157. const struct qstr *qstr, struct page *ipage)
  158. {
  159. return security_inode_init_security(inode, dir, qstr,
  160. &f2fs_initxattrs, ipage);
  161. }
  162. #endif
  163. const struct xattr_handler f2fs_xattr_user_handler = {
  164. .prefix = XATTR_USER_PREFIX,
  165. .flags = F2FS_XATTR_INDEX_USER,
  166. .list = f2fs_xattr_generic_list,
  167. .get = f2fs_xattr_generic_get,
  168. .set = f2fs_xattr_generic_set,
  169. };
  170. const struct xattr_handler f2fs_xattr_trusted_handler = {
  171. .prefix = XATTR_TRUSTED_PREFIX,
  172. .flags = F2FS_XATTR_INDEX_TRUSTED,
  173. .list = f2fs_xattr_generic_list,
  174. .get = f2fs_xattr_generic_get,
  175. .set = f2fs_xattr_generic_set,
  176. };
  177. const struct xattr_handler f2fs_xattr_advise_handler = {
  178. .prefix = F2FS_SYSTEM_ADVISE_PREFIX,
  179. .flags = F2FS_XATTR_INDEX_ADVISE,
  180. .list = f2fs_xattr_advise_list,
  181. .get = f2fs_xattr_advise_get,
  182. .set = f2fs_xattr_advise_set,
  183. };
  184. const struct xattr_handler f2fs_xattr_security_handler = {
  185. .prefix = XATTR_SECURITY_PREFIX,
  186. .flags = F2FS_XATTR_INDEX_SECURITY,
  187. .list = f2fs_xattr_generic_list,
  188. .get = f2fs_xattr_generic_get,
  189. .set = f2fs_xattr_generic_set,
  190. };
  191. static const struct xattr_handler *f2fs_xattr_handler_map[] = {
  192. [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
  193. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  194. [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler,
  195. [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler,
  196. #endif
  197. [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
  198. #ifdef CONFIG_F2FS_FS_SECURITY
  199. [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler,
  200. #endif
  201. [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
  202. };
  203. const struct xattr_handler *f2fs_xattr_handlers[] = {
  204. &f2fs_xattr_user_handler,
  205. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  206. &f2fs_xattr_acl_access_handler,
  207. &f2fs_xattr_acl_default_handler,
  208. #endif
  209. &f2fs_xattr_trusted_handler,
  210. #ifdef CONFIG_F2FS_FS_SECURITY
  211. &f2fs_xattr_security_handler,
  212. #endif
  213. &f2fs_xattr_advise_handler,
  214. NULL,
  215. };
  216. static inline const struct xattr_handler *f2fs_xattr_handler(int name_index)
  217. {
  218. const struct xattr_handler *handler = NULL;
  219. if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map))
  220. handler = f2fs_xattr_handler_map[name_index];
  221. return handler;
  222. }
  223. static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int name_index,
  224. size_t name_len, const char *name)
  225. {
  226. struct f2fs_xattr_entry *entry;
  227. list_for_each_xattr(entry, base_addr) {
  228. if (entry->e_name_index != name_index)
  229. continue;
  230. if (entry->e_name_len != name_len)
  231. continue;
  232. if (!memcmp(entry->e_name, name, name_len))
  233. break;
  234. }
  235. return entry;
  236. }
  237. static void *read_all_xattrs(struct inode *inode, struct page *ipage)
  238. {
  239. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  240. struct f2fs_xattr_header *header;
  241. size_t size = PAGE_SIZE, inline_size = 0;
  242. void *txattr_addr;
  243. inline_size = inline_xattr_size(inode);
  244. txattr_addr = kzalloc(inline_size + size, GFP_KERNEL);
  245. if (!txattr_addr)
  246. return NULL;
  247. /* read from inline xattr */
  248. if (inline_size) {
  249. struct page *page = NULL;
  250. void *inline_addr;
  251. if (ipage) {
  252. inline_addr = inline_xattr_addr(ipage);
  253. } else {
  254. page = get_node_page(sbi, inode->i_ino);
  255. if (IS_ERR(page))
  256. goto fail;
  257. inline_addr = inline_xattr_addr(page);
  258. }
  259. memcpy(txattr_addr, inline_addr, inline_size);
  260. f2fs_put_page(page, 1);
  261. }
  262. /* read from xattr node block */
  263. if (F2FS_I(inode)->i_xattr_nid) {
  264. struct page *xpage;
  265. void *xattr_addr;
  266. /* The inode already has an extended attribute block. */
  267. xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
  268. if (IS_ERR(xpage))
  269. goto fail;
  270. xattr_addr = page_address(xpage);
  271. memcpy(txattr_addr + inline_size, xattr_addr, PAGE_SIZE);
  272. f2fs_put_page(xpage, 1);
  273. }
  274. header = XATTR_HDR(txattr_addr);
  275. /* never been allocated xattrs */
  276. if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
  277. header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
  278. header->h_refcount = cpu_to_le32(1);
  279. }
  280. return txattr_addr;
  281. fail:
  282. kzfree(txattr_addr);
  283. return NULL;
  284. }
  285. static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
  286. void *txattr_addr, struct page *ipage)
  287. {
  288. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  289. size_t inline_size = 0;
  290. void *xattr_addr;
  291. struct page *xpage;
  292. nid_t new_nid = 0;
  293. int err;
  294. inline_size = inline_xattr_size(inode);
  295. if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
  296. if (!alloc_nid(sbi, &new_nid))
  297. return -ENOSPC;
  298. /* write to inline xattr */
  299. if (inline_size) {
  300. struct page *page = NULL;
  301. void *inline_addr;
  302. if (ipage) {
  303. inline_addr = inline_xattr_addr(ipage);
  304. } else {
  305. page = get_node_page(sbi, inode->i_ino);
  306. if (IS_ERR(page)) {
  307. alloc_nid_failed(sbi, new_nid);
  308. return PTR_ERR(page);
  309. }
  310. inline_addr = inline_xattr_addr(page);
  311. }
  312. memcpy(inline_addr, txattr_addr, inline_size);
  313. f2fs_put_page(page, 1);
  314. /* no need to use xattr node block */
  315. if (hsize <= inline_size) {
  316. err = truncate_xattr_node(inode, ipage);
  317. alloc_nid_failed(sbi, new_nid);
  318. return err;
  319. }
  320. }
  321. /* write to xattr node block */
  322. if (F2FS_I(inode)->i_xattr_nid) {
  323. xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
  324. if (IS_ERR(xpage)) {
  325. alloc_nid_failed(sbi, new_nid);
  326. return PTR_ERR(xpage);
  327. }
  328. f2fs_bug_on(new_nid);
  329. } else {
  330. struct dnode_of_data dn;
  331. set_new_dnode(&dn, inode, NULL, NULL, new_nid);
  332. xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage);
  333. if (IS_ERR(xpage)) {
  334. alloc_nid_failed(sbi, new_nid);
  335. return PTR_ERR(xpage);
  336. }
  337. alloc_nid_done(sbi, new_nid);
  338. }
  339. xattr_addr = page_address(xpage);
  340. memcpy(xattr_addr, txattr_addr + inline_size, PAGE_SIZE -
  341. sizeof(struct node_footer));
  342. set_page_dirty(xpage);
  343. f2fs_put_page(xpage, 1);
  344. /* need to checkpoint during fsync */
  345. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  346. return 0;
  347. }
  348. int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
  349. void *buffer, size_t buffer_size)
  350. {
  351. struct f2fs_xattr_entry *entry;
  352. void *base_addr;
  353. int error = 0;
  354. size_t value_len, name_len;
  355. if (name == NULL)
  356. return -EINVAL;
  357. name_len = strlen(name);
  358. base_addr = read_all_xattrs(inode, NULL);
  359. if (!base_addr)
  360. return -ENOMEM;
  361. entry = __find_xattr(base_addr, name_index, name_len, name);
  362. if (IS_XATTR_LAST_ENTRY(entry)) {
  363. error = -ENODATA;
  364. goto cleanup;
  365. }
  366. value_len = le16_to_cpu(entry->e_value_size);
  367. if (buffer && value_len > buffer_size) {
  368. error = -ERANGE;
  369. goto cleanup;
  370. }
  371. if (buffer) {
  372. char *pval = entry->e_name + entry->e_name_len;
  373. memcpy(buffer, pval, value_len);
  374. }
  375. error = value_len;
  376. cleanup:
  377. kzfree(base_addr);
  378. return error;
  379. }
  380. ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
  381. {
  382. struct inode *inode = dentry->d_inode;
  383. struct f2fs_xattr_entry *entry;
  384. void *base_addr;
  385. int error = 0;
  386. size_t rest = buffer_size;
  387. base_addr = read_all_xattrs(inode, NULL);
  388. if (!base_addr)
  389. return -ENOMEM;
  390. list_for_each_xattr(entry, base_addr) {
  391. const struct xattr_handler *handler =
  392. f2fs_xattr_handler(entry->e_name_index);
  393. size_t size;
  394. if (!handler)
  395. continue;
  396. size = handler->list(dentry, buffer, rest, entry->e_name,
  397. entry->e_name_len, handler->flags);
  398. if (buffer && size > rest) {
  399. error = -ERANGE;
  400. goto cleanup;
  401. }
  402. if (buffer)
  403. buffer += size;
  404. rest -= size;
  405. }
  406. error = buffer_size - rest;
  407. cleanup:
  408. kzfree(base_addr);
  409. return error;
  410. }
  411. static int __f2fs_setxattr(struct inode *inode, int name_index,
  412. const char *name, const void *value, size_t value_len,
  413. struct page *ipage)
  414. {
  415. struct f2fs_inode_info *fi = F2FS_I(inode);
  416. struct f2fs_xattr_entry *here, *last;
  417. void *base_addr;
  418. int found, newsize;
  419. size_t name_len;
  420. __u32 new_hsize;
  421. int error = -ENOMEM;
  422. if (name == NULL)
  423. return -EINVAL;
  424. if (value == NULL)
  425. value_len = 0;
  426. name_len = strlen(name);
  427. if (name_len > F2FS_NAME_LEN || value_len > MAX_VALUE_LEN(inode))
  428. return -ERANGE;
  429. base_addr = read_all_xattrs(inode, ipage);
  430. if (!base_addr)
  431. goto exit;
  432. /* find entry with wanted name. */
  433. here = __find_xattr(base_addr, name_index, name_len, name);
  434. found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1;
  435. last = here;
  436. while (!IS_XATTR_LAST_ENTRY(last))
  437. last = XATTR_NEXT_ENTRY(last);
  438. newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) +
  439. name_len + value_len);
  440. /* 1. Check space */
  441. if (value) {
  442. int free;
  443. /*
  444. * If value is NULL, it is remove operation.
  445. * In case of update operation, we caculate free.
  446. */
  447. free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr);
  448. if (found)
  449. free = free + ENTRY_SIZE(here);
  450. if (free < newsize) {
  451. error = -ENOSPC;
  452. goto exit;
  453. }
  454. }
  455. /* 2. Remove old entry */
  456. if (found) {
  457. /*
  458. * If entry is found, remove old entry.
  459. * If not found, remove operation is not needed.
  460. */
  461. struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
  462. int oldsize = ENTRY_SIZE(here);
  463. memmove(here, next, (char *)last - (char *)next);
  464. last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
  465. memset(last, 0, oldsize);
  466. }
  467. new_hsize = (char *)last - (char *)base_addr;
  468. /* 3. Write new entry */
  469. if (value) {
  470. char *pval;
  471. /*
  472. * Before we come here, old entry is removed.
  473. * We just write new entry.
  474. */
  475. memset(last, 0, newsize);
  476. last->e_name_index = name_index;
  477. last->e_name_len = name_len;
  478. memcpy(last->e_name, name, name_len);
  479. pval = last->e_name + name_len;
  480. memcpy(pval, value, value_len);
  481. last->e_value_size = cpu_to_le16(value_len);
  482. new_hsize += newsize;
  483. }
  484. error = write_all_xattrs(inode, new_hsize, base_addr, ipage);
  485. if (error)
  486. goto exit;
  487. if (is_inode_flag_set(fi, FI_ACL_MODE)) {
  488. inode->i_mode = fi->i_acl_mode;
  489. inode->i_ctime = CURRENT_TIME;
  490. clear_inode_flag(fi, FI_ACL_MODE);
  491. }
  492. if (ipage)
  493. update_inode(inode, ipage);
  494. else
  495. update_inode_page(inode);
  496. exit:
  497. kzfree(base_addr);
  498. return error;
  499. }
  500. int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
  501. const void *value, size_t value_len, struct page *ipage)
  502. {
  503. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  504. int err;
  505. f2fs_balance_fs(sbi);
  506. f2fs_lock_op(sbi);
  507. err = __f2fs_setxattr(inode, name_index, name, value, value_len, ipage);
  508. f2fs_unlock_op(sbi);
  509. return err;
  510. }