inode.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. void f2fs_set_inode_flags(struct inode *inode)
  19. {
  20. unsigned int flags = F2FS_I(inode)->i_flags;
  21. inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
  22. S_NOATIME | S_DIRSYNC);
  23. if (flags & FS_SYNC_FL)
  24. inode->i_flags |= S_SYNC;
  25. if (flags & FS_APPEND_FL)
  26. inode->i_flags |= S_APPEND;
  27. if (flags & FS_IMMUTABLE_FL)
  28. inode->i_flags |= S_IMMUTABLE;
  29. if (flags & FS_NOATIME_FL)
  30. inode->i_flags |= S_NOATIME;
  31. if (flags & FS_DIRSYNC_FL)
  32. inode->i_flags |= S_DIRSYNC;
  33. }
  34. static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  35. {
  36. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  37. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  38. if (ri->i_addr[0])
  39. inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  40. else
  41. inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  42. }
  43. }
  44. static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  45. {
  46. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  47. if (old_valid_dev(inode->i_rdev)) {
  48. ri->i_addr[0] = cpu_to_le32(old_encode_dev(inode->i_rdev));
  49. ri->i_addr[1] = 0;
  50. } else {
  51. ri->i_addr[0] = 0;
  52. ri->i_addr[1] = cpu_to_le32(new_encode_dev(inode->i_rdev));
  53. ri->i_addr[2] = 0;
  54. }
  55. }
  56. }
  57. static int do_read_inode(struct inode *inode)
  58. {
  59. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  60. struct f2fs_inode_info *fi = F2FS_I(inode);
  61. struct page *node_page;
  62. struct f2fs_node *rn;
  63. struct f2fs_inode *ri;
  64. /* Check if ino is within scope */
  65. if (check_nid_range(sbi, inode->i_ino)) {
  66. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  67. (unsigned long) inode->i_ino);
  68. return -EINVAL;
  69. }
  70. node_page = get_node_page(sbi, inode->i_ino);
  71. if (IS_ERR(node_page))
  72. return PTR_ERR(node_page);
  73. rn = F2FS_NODE(node_page);
  74. ri = &(rn->i);
  75. inode->i_mode = le16_to_cpu(ri->i_mode);
  76. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  77. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  78. set_nlink(inode, le32_to_cpu(ri->i_links));
  79. inode->i_size = le64_to_cpu(ri->i_size);
  80. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  81. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  82. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  83. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  84. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  85. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  86. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  87. inode->i_generation = le32_to_cpu(ri->i_generation);
  88. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  89. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  90. fi->i_flags = le32_to_cpu(ri->i_flags);
  91. fi->flags = 0;
  92. fi->i_advise = ri->i_advise;
  93. fi->i_pino = le32_to_cpu(ri->i_pino);
  94. get_extent_info(&fi->ext, ri->i_ext);
  95. get_inline_info(fi, ri);
  96. /* get rdev by using inline_info */
  97. __get_inode_rdev(inode, ri);
  98. f2fs_put_page(node_page, 1);
  99. return 0;
  100. }
  101. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  102. {
  103. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  104. struct inode *inode;
  105. int ret = 0;
  106. inode = iget_locked(sb, ino);
  107. if (!inode)
  108. return ERR_PTR(-ENOMEM);
  109. if (!(inode->i_state & I_NEW)) {
  110. trace_f2fs_iget(inode);
  111. return inode;
  112. }
  113. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  114. goto make_now;
  115. ret = do_read_inode(inode);
  116. if (ret)
  117. goto bad_inode;
  118. make_now:
  119. if (ino == F2FS_NODE_INO(sbi)) {
  120. inode->i_mapping->a_ops = &f2fs_node_aops;
  121. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  122. } else if (ino == F2FS_META_INO(sbi)) {
  123. inode->i_mapping->a_ops = &f2fs_meta_aops;
  124. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  125. } else if (S_ISREG(inode->i_mode)) {
  126. inode->i_op = &f2fs_file_inode_operations;
  127. inode->i_fop = &f2fs_file_operations;
  128. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  129. } else if (S_ISDIR(inode->i_mode)) {
  130. inode->i_op = &f2fs_dir_inode_operations;
  131. inode->i_fop = &f2fs_dir_operations;
  132. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  133. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  134. } else if (S_ISLNK(inode->i_mode)) {
  135. inode->i_op = &f2fs_symlink_inode_operations;
  136. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  137. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  138. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  139. inode->i_op = &f2fs_special_inode_operations;
  140. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  141. } else {
  142. ret = -EIO;
  143. goto bad_inode;
  144. }
  145. unlock_new_inode(inode);
  146. trace_f2fs_iget(inode);
  147. return inode;
  148. bad_inode:
  149. iget_failed(inode);
  150. trace_f2fs_iget_exit(inode, ret);
  151. return ERR_PTR(ret);
  152. }
  153. void update_inode(struct inode *inode, struct page *node_page)
  154. {
  155. struct f2fs_node *rn;
  156. struct f2fs_inode *ri;
  157. f2fs_wait_on_page_writeback(node_page, NODE, false);
  158. rn = F2FS_NODE(node_page);
  159. ri = &(rn->i);
  160. ri->i_mode = cpu_to_le16(inode->i_mode);
  161. ri->i_advise = F2FS_I(inode)->i_advise;
  162. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  163. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  164. ri->i_links = cpu_to_le32(inode->i_nlink);
  165. ri->i_size = cpu_to_le64(i_size_read(inode));
  166. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  167. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  168. set_raw_inline(F2FS_I(inode), ri);
  169. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  170. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  171. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  172. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  173. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  174. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  175. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  176. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  177. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  178. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  179. ri->i_generation = cpu_to_le32(inode->i_generation);
  180. __set_inode_rdev(inode, ri);
  181. set_cold_node(inode, node_page);
  182. set_page_dirty(node_page);
  183. clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  184. }
  185. int update_inode_page(struct inode *inode)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  188. struct page *node_page;
  189. node_page = get_node_page(sbi, inode->i_ino);
  190. if (IS_ERR(node_page))
  191. return PTR_ERR(node_page);
  192. update_inode(inode, node_page);
  193. f2fs_put_page(node_page, 1);
  194. return 0;
  195. }
  196. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  197. {
  198. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  199. int ret;
  200. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  201. inode->i_ino == F2FS_META_INO(sbi))
  202. return 0;
  203. if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
  204. return 0;
  205. /*
  206. * We need to lock here to prevent from producing dirty node pages
  207. * during the urgent cleaning time when runing out of free sections.
  208. */
  209. f2fs_lock_op(sbi);
  210. ret = update_inode_page(inode);
  211. f2fs_unlock_op(sbi);
  212. if (wbc)
  213. f2fs_balance_fs(sbi);
  214. return ret;
  215. }
  216. /*
  217. * Called at the last iput() if i_nlink is zero
  218. */
  219. void f2fs_evict_inode(struct inode *inode)
  220. {
  221. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  222. trace_f2fs_evict_inode(inode);
  223. truncate_inode_pages(&inode->i_data, 0);
  224. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  225. inode->i_ino == F2FS_META_INO(sbi))
  226. goto no_delete;
  227. f2fs_bug_on(atomic_read(&F2FS_I(inode)->dirty_dents));
  228. remove_dirty_dir_inode(inode);
  229. if (inode->i_nlink || is_bad_inode(inode))
  230. goto no_delete;
  231. sb_start_intwrite(inode->i_sb);
  232. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  233. i_size_write(inode, 0);
  234. if (F2FS_HAS_BLOCKS(inode))
  235. f2fs_truncate(inode);
  236. f2fs_lock_op(sbi);
  237. remove_inode_page(inode);
  238. f2fs_unlock_op(sbi);
  239. sb_end_intwrite(inode->i_sb);
  240. no_delete:
  241. clear_inode(inode);
  242. }