data.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. /*
  26. * Lock ordering for the change of data block address:
  27. * ->data_page
  28. * ->node_page
  29. * update block addresses in the node page
  30. */
  31. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  32. {
  33. struct f2fs_node *rn;
  34. __le32 *addr_array;
  35. struct page *node_page = dn->node_page;
  36. unsigned int ofs_in_node = dn->ofs_in_node;
  37. f2fs_wait_on_page_writeback(node_page, NODE, false);
  38. rn = F2FS_NODE(node_page);
  39. /* Get physical address of data block */
  40. addr_array = blkaddr_in_node(rn);
  41. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  42. set_page_dirty(node_page);
  43. }
  44. int reserve_new_block(struct dnode_of_data *dn)
  45. {
  46. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  47. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  48. return -EPERM;
  49. if (!inc_valid_block_count(sbi, dn->inode, 1))
  50. return -ENOSPC;
  51. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  52. __set_data_blkaddr(dn, NEW_ADDR);
  53. dn->data_blkaddr = NEW_ADDR;
  54. sync_inode_page(dn);
  55. return 0;
  56. }
  57. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  58. struct buffer_head *bh_result)
  59. {
  60. struct f2fs_inode_info *fi = F2FS_I(inode);
  61. pgoff_t start_fofs, end_fofs;
  62. block_t start_blkaddr;
  63. read_lock(&fi->ext.ext_lock);
  64. if (fi->ext.len == 0) {
  65. read_unlock(&fi->ext.ext_lock);
  66. return 0;
  67. }
  68. stat_inc_total_hit(inode->i_sb);
  69. start_fofs = fi->ext.fofs;
  70. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  71. start_blkaddr = fi->ext.blk_addr;
  72. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  73. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  74. size_t count;
  75. clear_buffer_new(bh_result);
  76. map_bh(bh_result, inode->i_sb,
  77. start_blkaddr + pgofs - start_fofs);
  78. count = end_fofs - pgofs + 1;
  79. if (count < (UINT_MAX >> blkbits))
  80. bh_result->b_size = (count << blkbits);
  81. else
  82. bh_result->b_size = UINT_MAX;
  83. stat_inc_read_hit(inode->i_sb);
  84. read_unlock(&fi->ext.ext_lock);
  85. return 1;
  86. }
  87. read_unlock(&fi->ext.ext_lock);
  88. return 0;
  89. }
  90. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  91. {
  92. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  93. pgoff_t fofs, start_fofs, end_fofs;
  94. block_t start_blkaddr, end_blkaddr;
  95. f2fs_bug_on(blk_addr == NEW_ADDR);
  96. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  97. dn->ofs_in_node;
  98. /* Update the page address in the parent node */
  99. __set_data_blkaddr(dn, blk_addr);
  100. write_lock(&fi->ext.ext_lock);
  101. start_fofs = fi->ext.fofs;
  102. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  103. start_blkaddr = fi->ext.blk_addr;
  104. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  105. /* Drop and initialize the matched extent */
  106. if (fi->ext.len == 1 && fofs == start_fofs)
  107. fi->ext.len = 0;
  108. /* Initial extent */
  109. if (fi->ext.len == 0) {
  110. if (blk_addr != NULL_ADDR) {
  111. fi->ext.fofs = fofs;
  112. fi->ext.blk_addr = blk_addr;
  113. fi->ext.len = 1;
  114. }
  115. goto end_update;
  116. }
  117. /* Front merge */
  118. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  119. fi->ext.fofs--;
  120. fi->ext.blk_addr--;
  121. fi->ext.len++;
  122. goto end_update;
  123. }
  124. /* Back merge */
  125. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  126. fi->ext.len++;
  127. goto end_update;
  128. }
  129. /* Split the existing extent */
  130. if (fi->ext.len > 1 &&
  131. fofs >= start_fofs && fofs <= end_fofs) {
  132. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  133. fi->ext.len = fofs - start_fofs;
  134. } else {
  135. fi->ext.fofs = fofs + 1;
  136. fi->ext.blk_addr = start_blkaddr +
  137. fofs - start_fofs + 1;
  138. fi->ext.len -= fofs - start_fofs + 1;
  139. }
  140. goto end_update;
  141. }
  142. write_unlock(&fi->ext.ext_lock);
  143. return;
  144. end_update:
  145. write_unlock(&fi->ext.ext_lock);
  146. sync_inode_page(dn);
  147. }
  148. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  149. {
  150. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  151. struct address_space *mapping = inode->i_mapping;
  152. struct dnode_of_data dn;
  153. struct page *page;
  154. int err;
  155. page = find_get_page(mapping, index);
  156. if (page && PageUptodate(page))
  157. return page;
  158. f2fs_put_page(page, 0);
  159. set_new_dnode(&dn, inode, NULL, NULL, 0);
  160. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  161. if (err)
  162. return ERR_PTR(err);
  163. f2fs_put_dnode(&dn);
  164. if (dn.data_blkaddr == NULL_ADDR)
  165. return ERR_PTR(-ENOENT);
  166. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  167. if (dn.data_blkaddr == NEW_ADDR)
  168. return ERR_PTR(-EINVAL);
  169. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  170. if (!page)
  171. return ERR_PTR(-ENOMEM);
  172. if (PageUptodate(page)) {
  173. unlock_page(page);
  174. return page;
  175. }
  176. err = f2fs_readpage(sbi, page, dn.data_blkaddr,
  177. sync ? READ_SYNC : READA);
  178. if (sync) {
  179. wait_on_page_locked(page);
  180. if (!PageUptodate(page)) {
  181. f2fs_put_page(page, 0);
  182. return ERR_PTR(-EIO);
  183. }
  184. }
  185. return page;
  186. }
  187. /*
  188. * If it tries to access a hole, return an error.
  189. * Because, the callers, functions in dir.c and GC, should be able to know
  190. * whether this page exists or not.
  191. */
  192. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  193. {
  194. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  195. struct address_space *mapping = inode->i_mapping;
  196. struct dnode_of_data dn;
  197. struct page *page;
  198. int err;
  199. repeat:
  200. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  201. if (!page)
  202. return ERR_PTR(-ENOMEM);
  203. set_new_dnode(&dn, inode, NULL, NULL, 0);
  204. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  205. if (err) {
  206. f2fs_put_page(page, 1);
  207. return ERR_PTR(err);
  208. }
  209. f2fs_put_dnode(&dn);
  210. if (dn.data_blkaddr == NULL_ADDR) {
  211. f2fs_put_page(page, 1);
  212. return ERR_PTR(-ENOENT);
  213. }
  214. if (PageUptodate(page))
  215. return page;
  216. /*
  217. * A new dentry page is allocated but not able to be written, since its
  218. * new inode page couldn't be allocated due to -ENOSPC.
  219. * In such the case, its blkaddr can be remained as NEW_ADDR.
  220. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  221. */
  222. if (dn.data_blkaddr == NEW_ADDR) {
  223. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  224. SetPageUptodate(page);
  225. return page;
  226. }
  227. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  228. if (err)
  229. return ERR_PTR(err);
  230. lock_page(page);
  231. if (!PageUptodate(page)) {
  232. f2fs_put_page(page, 1);
  233. return ERR_PTR(-EIO);
  234. }
  235. if (page->mapping != mapping) {
  236. f2fs_put_page(page, 1);
  237. goto repeat;
  238. }
  239. return page;
  240. }
  241. /*
  242. * Caller ensures that this data page is never allocated.
  243. * A new zero-filled data page is allocated in the page cache.
  244. *
  245. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  246. * mutex_unlock_op().
  247. * Note that, npage is set only by make_empty_dir.
  248. */
  249. struct page *get_new_data_page(struct inode *inode,
  250. struct page *npage, pgoff_t index, bool new_i_size)
  251. {
  252. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  253. struct address_space *mapping = inode->i_mapping;
  254. struct page *page;
  255. struct dnode_of_data dn;
  256. int err;
  257. set_new_dnode(&dn, inode, npage, npage, 0);
  258. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  259. if (err)
  260. return ERR_PTR(err);
  261. if (dn.data_blkaddr == NULL_ADDR) {
  262. if (reserve_new_block(&dn)) {
  263. if (!npage)
  264. f2fs_put_dnode(&dn);
  265. return ERR_PTR(-ENOSPC);
  266. }
  267. }
  268. if (!npage)
  269. f2fs_put_dnode(&dn);
  270. repeat:
  271. page = grab_cache_page(mapping, index);
  272. if (!page)
  273. return ERR_PTR(-ENOMEM);
  274. if (PageUptodate(page))
  275. return page;
  276. if (dn.data_blkaddr == NEW_ADDR) {
  277. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  278. SetPageUptodate(page);
  279. } else {
  280. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  281. if (err)
  282. return ERR_PTR(err);
  283. lock_page(page);
  284. if (!PageUptodate(page)) {
  285. f2fs_put_page(page, 1);
  286. return ERR_PTR(-EIO);
  287. }
  288. if (page->mapping != mapping) {
  289. f2fs_put_page(page, 1);
  290. goto repeat;
  291. }
  292. }
  293. if (new_i_size &&
  294. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  295. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  296. /* Only the directory inode sets new_i_size */
  297. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  298. mark_inode_dirty_sync(inode);
  299. }
  300. return page;
  301. }
  302. static void read_end_io(struct bio *bio, int err)
  303. {
  304. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  305. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  306. do {
  307. struct page *page = bvec->bv_page;
  308. if (--bvec >= bio->bi_io_vec)
  309. prefetchw(&bvec->bv_page->flags);
  310. if (uptodate) {
  311. SetPageUptodate(page);
  312. } else {
  313. ClearPageUptodate(page);
  314. SetPageError(page);
  315. }
  316. unlock_page(page);
  317. } while (bvec >= bio->bi_io_vec);
  318. bio_put(bio);
  319. }
  320. /*
  321. * Fill the locked page with data located in the block address.
  322. * Return unlocked page.
  323. */
  324. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  325. block_t blk_addr, int type)
  326. {
  327. struct block_device *bdev = sbi->sb->s_bdev;
  328. struct bio *bio;
  329. trace_f2fs_readpage(page, blk_addr, type);
  330. down_read(&sbi->bio_sem);
  331. /* Allocate a new bio */
  332. bio = f2fs_bio_alloc(bdev, 1);
  333. /* Initialize the bio */
  334. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  335. bio->bi_end_io = read_end_io;
  336. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  337. bio_put(bio);
  338. up_read(&sbi->bio_sem);
  339. f2fs_put_page(page, 1);
  340. return -EFAULT;
  341. }
  342. submit_bio(type, bio);
  343. up_read(&sbi->bio_sem);
  344. return 0;
  345. }
  346. /*
  347. * This function should be used by the data read flow only where it
  348. * does not check the "create" flag that indicates block allocation.
  349. * The reason for this special functionality is to exploit VFS readahead
  350. * mechanism.
  351. */
  352. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  353. struct buffer_head *bh_result, int create)
  354. {
  355. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  356. unsigned maxblocks = bh_result->b_size >> blkbits;
  357. struct dnode_of_data dn;
  358. pgoff_t pgofs;
  359. int err;
  360. /* Get the page offset from the block offset(iblock) */
  361. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  362. if (check_extent_cache(inode, pgofs, bh_result)) {
  363. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  364. return 0;
  365. }
  366. /* When reading holes, we need its node page */
  367. set_new_dnode(&dn, inode, NULL, NULL, 0);
  368. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  369. if (err) {
  370. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  371. return (err == -ENOENT) ? 0 : err;
  372. }
  373. /* It does not support data allocation */
  374. f2fs_bug_on(create);
  375. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  376. int i;
  377. unsigned int end_offset;
  378. end_offset = IS_INODE(dn.node_page) ?
  379. ADDRS_PER_INODE(F2FS_I(inode)) :
  380. ADDRS_PER_BLOCK;
  381. clear_buffer_new(bh_result);
  382. /* Give more consecutive addresses for the read ahead */
  383. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  384. if (((datablock_addr(dn.node_page,
  385. dn.ofs_in_node + i))
  386. != (dn.data_blkaddr + i)) || maxblocks == i)
  387. break;
  388. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  389. bh_result->b_size = (i << blkbits);
  390. }
  391. f2fs_put_dnode(&dn);
  392. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  393. return 0;
  394. }
  395. static int f2fs_read_data_page(struct file *file, struct page *page)
  396. {
  397. return mpage_readpage(page, get_data_block_ro);
  398. }
  399. static int f2fs_read_data_pages(struct file *file,
  400. struct address_space *mapping,
  401. struct list_head *pages, unsigned nr_pages)
  402. {
  403. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  404. }
  405. int do_write_data_page(struct page *page)
  406. {
  407. struct inode *inode = page->mapping->host;
  408. block_t old_blk_addr, new_blk_addr;
  409. struct dnode_of_data dn;
  410. int err = 0;
  411. set_new_dnode(&dn, inode, NULL, NULL, 0);
  412. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  413. if (err)
  414. return err;
  415. old_blk_addr = dn.data_blkaddr;
  416. /* This page is already truncated */
  417. if (old_blk_addr == NULL_ADDR)
  418. goto out_writepage;
  419. set_page_writeback(page);
  420. /*
  421. * If current allocation needs SSR,
  422. * it had better in-place writes for updated data.
  423. */
  424. if (unlikely(old_blk_addr != NEW_ADDR &&
  425. !is_cold_data(page) &&
  426. need_inplace_update(inode))) {
  427. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  428. old_blk_addr);
  429. } else {
  430. write_data_page(inode, page, &dn,
  431. old_blk_addr, &new_blk_addr);
  432. update_extent_cache(new_blk_addr, &dn);
  433. }
  434. out_writepage:
  435. f2fs_put_dnode(&dn);
  436. return err;
  437. }
  438. static int f2fs_write_data_page(struct page *page,
  439. struct writeback_control *wbc)
  440. {
  441. struct inode *inode = page->mapping->host;
  442. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  443. loff_t i_size = i_size_read(inode);
  444. const pgoff_t end_index = ((unsigned long long) i_size)
  445. >> PAGE_CACHE_SHIFT;
  446. unsigned offset;
  447. bool need_balance_fs = false;
  448. int err = 0;
  449. if (page->index < end_index)
  450. goto write;
  451. /*
  452. * If the offset is out-of-range of file size,
  453. * this page does not have to be written to disk.
  454. */
  455. offset = i_size & (PAGE_CACHE_SIZE - 1);
  456. if ((page->index >= end_index + 1) || !offset) {
  457. if (S_ISDIR(inode->i_mode)) {
  458. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  459. inode_dec_dirty_dents(inode);
  460. }
  461. goto out;
  462. }
  463. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  464. write:
  465. if (sbi->por_doing) {
  466. err = AOP_WRITEPAGE_ACTIVATE;
  467. goto redirty_out;
  468. }
  469. /* Dentry blocks are controlled by checkpoint */
  470. if (S_ISDIR(inode->i_mode)) {
  471. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  472. inode_dec_dirty_dents(inode);
  473. err = do_write_data_page(page);
  474. } else {
  475. f2fs_lock_op(sbi);
  476. err = do_write_data_page(page);
  477. f2fs_unlock_op(sbi);
  478. need_balance_fs = true;
  479. }
  480. if (err == -ENOENT)
  481. goto out;
  482. else if (err)
  483. goto redirty_out;
  484. if (wbc->for_reclaim)
  485. f2fs_submit_bio(sbi, DATA, true);
  486. clear_cold_data(page);
  487. out:
  488. unlock_page(page);
  489. if (need_balance_fs)
  490. f2fs_balance_fs(sbi);
  491. return 0;
  492. redirty_out:
  493. wbc->pages_skipped++;
  494. set_page_dirty(page);
  495. return err;
  496. }
  497. #define MAX_DESIRED_PAGES_WP 4096
  498. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  499. void *data)
  500. {
  501. struct address_space *mapping = data;
  502. int ret = mapping->a_ops->writepage(page, wbc);
  503. mapping_set_error(mapping, ret);
  504. return ret;
  505. }
  506. static int f2fs_write_data_pages(struct address_space *mapping,
  507. struct writeback_control *wbc)
  508. {
  509. struct inode *inode = mapping->host;
  510. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  511. bool locked = false;
  512. int ret;
  513. long excess_nrtw = 0, desired_nrtw;
  514. /* deal with chardevs and other special file */
  515. if (!mapping->a_ops->writepage)
  516. return 0;
  517. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  518. desired_nrtw = MAX_DESIRED_PAGES_WP;
  519. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  520. wbc->nr_to_write = desired_nrtw;
  521. }
  522. if (!S_ISDIR(inode->i_mode)) {
  523. mutex_lock(&sbi->writepages);
  524. locked = true;
  525. }
  526. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  527. if (locked)
  528. mutex_unlock(&sbi->writepages);
  529. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  530. remove_dirty_dir_inode(inode);
  531. wbc->nr_to_write -= excess_nrtw;
  532. return ret;
  533. }
  534. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  535. loff_t pos, unsigned len, unsigned flags,
  536. struct page **pagep, void **fsdata)
  537. {
  538. struct inode *inode = mapping->host;
  539. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  540. struct page *page;
  541. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  542. struct dnode_of_data dn;
  543. int err = 0;
  544. f2fs_balance_fs(sbi);
  545. repeat:
  546. page = grab_cache_page_write_begin(mapping, index, flags);
  547. if (!page)
  548. return -ENOMEM;
  549. *pagep = page;
  550. f2fs_lock_op(sbi);
  551. set_new_dnode(&dn, inode, NULL, NULL, 0);
  552. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  553. if (err)
  554. goto err;
  555. if (dn.data_blkaddr == NULL_ADDR)
  556. err = reserve_new_block(&dn);
  557. f2fs_put_dnode(&dn);
  558. if (err)
  559. goto err;
  560. f2fs_unlock_op(sbi);
  561. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  562. return 0;
  563. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  564. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  565. unsigned end = start + len;
  566. /* Reading beyond i_size is simple: memset to zero */
  567. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  568. goto out;
  569. }
  570. if (dn.data_blkaddr == NEW_ADDR) {
  571. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  572. } else {
  573. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  574. if (err)
  575. return err;
  576. lock_page(page);
  577. if (!PageUptodate(page)) {
  578. f2fs_put_page(page, 1);
  579. return -EIO;
  580. }
  581. if (page->mapping != mapping) {
  582. f2fs_put_page(page, 1);
  583. goto repeat;
  584. }
  585. }
  586. out:
  587. SetPageUptodate(page);
  588. clear_cold_data(page);
  589. return 0;
  590. err:
  591. f2fs_unlock_op(sbi);
  592. f2fs_put_page(page, 1);
  593. return err;
  594. }
  595. static int f2fs_write_end(struct file *file,
  596. struct address_space *mapping,
  597. loff_t pos, unsigned len, unsigned copied,
  598. struct page *page, void *fsdata)
  599. {
  600. struct inode *inode = page->mapping->host;
  601. SetPageUptodate(page);
  602. set_page_dirty(page);
  603. if (pos + copied > i_size_read(inode)) {
  604. i_size_write(inode, pos + copied);
  605. mark_inode_dirty(inode);
  606. update_inode_page(inode);
  607. }
  608. unlock_page(page);
  609. page_cache_release(page);
  610. return copied;
  611. }
  612. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  613. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  614. {
  615. struct file *file = iocb->ki_filp;
  616. struct inode *inode = file->f_mapping->host;
  617. if (rw == WRITE)
  618. return 0;
  619. /* Needs synchronization with the cleaner */
  620. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  621. get_data_block_ro);
  622. }
  623. static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
  624. unsigned int length)
  625. {
  626. struct inode *inode = page->mapping->host;
  627. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  628. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  629. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  630. inode_dec_dirty_dents(inode);
  631. }
  632. ClearPagePrivate(page);
  633. }
  634. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  635. {
  636. ClearPagePrivate(page);
  637. return 1;
  638. }
  639. static int f2fs_set_data_page_dirty(struct page *page)
  640. {
  641. struct address_space *mapping = page->mapping;
  642. struct inode *inode = mapping->host;
  643. trace_f2fs_set_page_dirty(page, DATA);
  644. SetPageUptodate(page);
  645. if (!PageDirty(page)) {
  646. __set_page_dirty_nobuffers(page);
  647. set_dirty_dir_page(inode, page);
  648. return 1;
  649. }
  650. return 0;
  651. }
  652. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  653. {
  654. return generic_block_bmap(mapping, block, get_data_block_ro);
  655. }
  656. const struct address_space_operations f2fs_dblock_aops = {
  657. .readpage = f2fs_read_data_page,
  658. .readpages = f2fs_read_data_pages,
  659. .writepage = f2fs_write_data_page,
  660. .writepages = f2fs_write_data_pages,
  661. .write_begin = f2fs_write_begin,
  662. .write_end = f2fs_write_end,
  663. .set_page_dirty = f2fs_set_data_page_dirty,
  664. .invalidatepage = f2fs_invalidate_data_page,
  665. .releasepage = f2fs_release_data_page,
  666. .direct_IO = f2fs_direct_IO,
  667. .bmap = f2fs_bmap,
  668. };