checkpoint.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *orphan_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = sbi->meta_inode->i_mapping;
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. /* We wait writeback only inside grab_meta_page() */
  39. wait_on_page_writeback(page);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = sbi->meta_inode->i_mapping;
  49. struct page *page;
  50. repeat:
  51. page = grab_cache_page(mapping, index);
  52. if (!page) {
  53. cond_resched();
  54. goto repeat;
  55. }
  56. if (PageUptodate(page))
  57. goto out;
  58. if (f2fs_readpage(sbi, page, index, READ_SYNC))
  59. goto repeat;
  60. lock_page(page);
  61. if (page->mapping != mapping) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. mark_page_accessed(page);
  67. return page;
  68. }
  69. static int f2fs_write_meta_page(struct page *page,
  70. struct writeback_control *wbc)
  71. {
  72. struct inode *inode = page->mapping->host;
  73. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  74. /* Should not write any meta pages, if any IO error was occurred */
  75. if (wbc->for_reclaim || sbi->por_doing ||
  76. is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
  77. dec_page_count(sbi, F2FS_DIRTY_META);
  78. wbc->pages_skipped++;
  79. set_page_dirty(page);
  80. return AOP_WRITEPAGE_ACTIVATE;
  81. }
  82. wait_on_page_writeback(page);
  83. write_meta_page(sbi, page);
  84. dec_page_count(sbi, F2FS_DIRTY_META);
  85. unlock_page(page);
  86. return 0;
  87. }
  88. static int f2fs_write_meta_pages(struct address_space *mapping,
  89. struct writeback_control *wbc)
  90. {
  91. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  92. struct block_device *bdev = sbi->sb->s_bdev;
  93. long written;
  94. if (wbc->for_kupdate)
  95. return 0;
  96. if (get_pages(sbi, F2FS_DIRTY_META) == 0)
  97. return 0;
  98. /* if mounting is failed, skip writing node pages */
  99. mutex_lock(&sbi->cp_mutex);
  100. written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
  101. mutex_unlock(&sbi->cp_mutex);
  102. wbc->nr_to_write -= written;
  103. return 0;
  104. }
  105. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  106. long nr_to_write)
  107. {
  108. struct address_space *mapping = sbi->meta_inode->i_mapping;
  109. pgoff_t index = 0, end = LONG_MAX;
  110. struct pagevec pvec;
  111. long nwritten = 0;
  112. struct writeback_control wbc = {
  113. .for_reclaim = 0,
  114. };
  115. pagevec_init(&pvec, 0);
  116. while (index <= end) {
  117. int i, nr_pages;
  118. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  119. PAGECACHE_TAG_DIRTY,
  120. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  121. if (nr_pages == 0)
  122. break;
  123. for (i = 0; i < nr_pages; i++) {
  124. struct page *page = pvec.pages[i];
  125. lock_page(page);
  126. f2fs_bug_on(page->mapping != mapping);
  127. f2fs_bug_on(!PageDirty(page));
  128. clear_page_dirty_for_io(page);
  129. if (f2fs_write_meta_page(page, &wbc)) {
  130. unlock_page(page);
  131. break;
  132. }
  133. if (nwritten++ >= nr_to_write)
  134. break;
  135. }
  136. pagevec_release(&pvec);
  137. cond_resched();
  138. }
  139. if (nwritten)
  140. f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
  141. return nwritten;
  142. }
  143. static int f2fs_set_meta_page_dirty(struct page *page)
  144. {
  145. struct address_space *mapping = page->mapping;
  146. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  147. trace_f2fs_set_page_dirty(page, META);
  148. SetPageUptodate(page);
  149. if (!PageDirty(page)) {
  150. __set_page_dirty_nobuffers(page);
  151. inc_page_count(sbi, F2FS_DIRTY_META);
  152. return 1;
  153. }
  154. return 0;
  155. }
  156. const struct address_space_operations f2fs_meta_aops = {
  157. .writepage = f2fs_write_meta_page,
  158. .writepages = f2fs_write_meta_pages,
  159. .set_page_dirty = f2fs_set_meta_page_dirty,
  160. };
  161. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  162. {
  163. unsigned int max_orphans;
  164. int err = 0;
  165. /*
  166. * considering 512 blocks in a segment 5 blocks are needed for cp
  167. * and log segment summaries. Remaining blocks are used to keep
  168. * orphan entries with the limitation one reserved segment
  169. * for cp pack we can have max 1020*507 orphan entries
  170. */
  171. max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
  172. mutex_lock(&sbi->orphan_inode_mutex);
  173. if (sbi->n_orphans >= max_orphans)
  174. err = -ENOSPC;
  175. else
  176. sbi->n_orphans++;
  177. mutex_unlock(&sbi->orphan_inode_mutex);
  178. return err;
  179. }
  180. void release_orphan_inode(struct f2fs_sb_info *sbi)
  181. {
  182. mutex_lock(&sbi->orphan_inode_mutex);
  183. f2fs_bug_on(sbi->n_orphans == 0);
  184. sbi->n_orphans--;
  185. mutex_unlock(&sbi->orphan_inode_mutex);
  186. }
  187. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  188. {
  189. struct list_head *head, *this;
  190. struct orphan_inode_entry *new = NULL, *orphan = NULL;
  191. mutex_lock(&sbi->orphan_inode_mutex);
  192. head = &sbi->orphan_inode_list;
  193. list_for_each(this, head) {
  194. orphan = list_entry(this, struct orphan_inode_entry, list);
  195. if (orphan->ino == ino)
  196. goto out;
  197. if (orphan->ino > ino)
  198. break;
  199. orphan = NULL;
  200. }
  201. new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
  202. new->ino = ino;
  203. /* add new_oentry into list which is sorted by inode number */
  204. if (orphan)
  205. list_add(&new->list, this->prev);
  206. else
  207. list_add_tail(&new->list, head);
  208. out:
  209. mutex_unlock(&sbi->orphan_inode_mutex);
  210. }
  211. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  212. {
  213. struct list_head *head;
  214. struct orphan_inode_entry *orphan;
  215. mutex_lock(&sbi->orphan_inode_mutex);
  216. head = &sbi->orphan_inode_list;
  217. list_for_each_entry(orphan, head, list) {
  218. if (orphan->ino == ino) {
  219. list_del(&orphan->list);
  220. kmem_cache_free(orphan_entry_slab, orphan);
  221. f2fs_bug_on(sbi->n_orphans == 0);
  222. sbi->n_orphans--;
  223. break;
  224. }
  225. }
  226. mutex_unlock(&sbi->orphan_inode_mutex);
  227. }
  228. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  229. {
  230. struct inode *inode = f2fs_iget(sbi->sb, ino);
  231. f2fs_bug_on(IS_ERR(inode));
  232. clear_nlink(inode);
  233. /* truncate all the data during iput */
  234. iput(inode);
  235. }
  236. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  237. {
  238. block_t start_blk, orphan_blkaddr, i, j;
  239. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  240. return 0;
  241. sbi->por_doing = true;
  242. start_blk = __start_cp_addr(sbi) + 1;
  243. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  244. for (i = 0; i < orphan_blkaddr; i++) {
  245. struct page *page = get_meta_page(sbi, start_blk + i);
  246. struct f2fs_orphan_block *orphan_blk;
  247. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  248. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  249. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  250. recover_orphan_inode(sbi, ino);
  251. }
  252. f2fs_put_page(page, 1);
  253. }
  254. /* clear Orphan Flag */
  255. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  256. sbi->por_doing = false;
  257. return 0;
  258. }
  259. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  260. {
  261. struct list_head *head, *this, *next;
  262. struct f2fs_orphan_block *orphan_blk = NULL;
  263. struct page *page = NULL;
  264. unsigned int nentries = 0;
  265. unsigned short index = 1;
  266. unsigned short orphan_blocks;
  267. orphan_blocks = (unsigned short)((sbi->n_orphans +
  268. (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
  269. mutex_lock(&sbi->orphan_inode_mutex);
  270. head = &sbi->orphan_inode_list;
  271. /* loop for each orphan inode entry and write them in Jornal block */
  272. list_for_each_safe(this, next, head) {
  273. struct orphan_inode_entry *orphan;
  274. orphan = list_entry(this, struct orphan_inode_entry, list);
  275. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  276. /*
  277. * an orphan block is full of 1020 entries,
  278. * then we need to flush current orphan blocks
  279. * and bring another one in memory
  280. */
  281. orphan_blk->blk_addr = cpu_to_le16(index);
  282. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  283. orphan_blk->entry_count = cpu_to_le32(nentries);
  284. set_page_dirty(page);
  285. f2fs_put_page(page, 1);
  286. index++;
  287. start_blk++;
  288. nentries = 0;
  289. page = NULL;
  290. }
  291. if (page)
  292. goto page_exist;
  293. page = grab_meta_page(sbi, start_blk);
  294. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  295. memset(orphan_blk, 0, sizeof(*orphan_blk));
  296. page_exist:
  297. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  298. }
  299. if (!page)
  300. goto end;
  301. orphan_blk->blk_addr = cpu_to_le16(index);
  302. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  303. orphan_blk->entry_count = cpu_to_le32(nentries);
  304. set_page_dirty(page);
  305. f2fs_put_page(page, 1);
  306. end:
  307. mutex_unlock(&sbi->orphan_inode_mutex);
  308. }
  309. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  310. block_t cp_addr, unsigned long long *version)
  311. {
  312. struct page *cp_page_1, *cp_page_2 = NULL;
  313. unsigned long blk_size = sbi->blocksize;
  314. struct f2fs_checkpoint *cp_block;
  315. unsigned long long cur_version = 0, pre_version = 0;
  316. size_t crc_offset;
  317. __u32 crc = 0;
  318. /* Read the 1st cp block in this CP pack */
  319. cp_page_1 = get_meta_page(sbi, cp_addr);
  320. /* get the version number */
  321. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  322. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  323. if (crc_offset >= blk_size)
  324. goto invalid_cp1;
  325. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  326. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  327. goto invalid_cp1;
  328. pre_version = cur_cp_version(cp_block);
  329. /* Read the 2nd cp block in this CP pack */
  330. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  331. cp_page_2 = get_meta_page(sbi, cp_addr);
  332. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  333. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  334. if (crc_offset >= blk_size)
  335. goto invalid_cp2;
  336. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  337. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  338. goto invalid_cp2;
  339. cur_version = cur_cp_version(cp_block);
  340. if (cur_version == pre_version) {
  341. *version = cur_version;
  342. f2fs_put_page(cp_page_2, 1);
  343. return cp_page_1;
  344. }
  345. invalid_cp2:
  346. f2fs_put_page(cp_page_2, 1);
  347. invalid_cp1:
  348. f2fs_put_page(cp_page_1, 1);
  349. return NULL;
  350. }
  351. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  352. {
  353. struct f2fs_checkpoint *cp_block;
  354. struct f2fs_super_block *fsb = sbi->raw_super;
  355. struct page *cp1, *cp2, *cur_page;
  356. unsigned long blk_size = sbi->blocksize;
  357. unsigned long long cp1_version = 0, cp2_version = 0;
  358. unsigned long long cp_start_blk_no;
  359. sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
  360. if (!sbi->ckpt)
  361. return -ENOMEM;
  362. /*
  363. * Finding out valid cp block involves read both
  364. * sets( cp pack1 and cp pack 2)
  365. */
  366. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  367. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  368. /* The second checkpoint pack should start at the next segment */
  369. cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  370. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  371. if (cp1 && cp2) {
  372. if (ver_after(cp2_version, cp1_version))
  373. cur_page = cp2;
  374. else
  375. cur_page = cp1;
  376. } else if (cp1) {
  377. cur_page = cp1;
  378. } else if (cp2) {
  379. cur_page = cp2;
  380. } else {
  381. goto fail_no_cp;
  382. }
  383. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  384. memcpy(sbi->ckpt, cp_block, blk_size);
  385. f2fs_put_page(cp1, 1);
  386. f2fs_put_page(cp2, 1);
  387. return 0;
  388. fail_no_cp:
  389. kfree(sbi->ckpt);
  390. return -EINVAL;
  391. }
  392. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  393. {
  394. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  395. struct list_head *head = &sbi->dir_inode_list;
  396. struct list_head *this;
  397. list_for_each(this, head) {
  398. struct dir_inode_entry *entry;
  399. entry = list_entry(this, struct dir_inode_entry, list);
  400. if (entry->inode == inode)
  401. return -EEXIST;
  402. }
  403. list_add_tail(&new->list, head);
  404. stat_inc_dirty_dir(sbi);
  405. return 0;
  406. }
  407. void set_dirty_dir_page(struct inode *inode, struct page *page)
  408. {
  409. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  410. struct dir_inode_entry *new;
  411. if (!S_ISDIR(inode->i_mode))
  412. return;
  413. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  414. new->inode = inode;
  415. INIT_LIST_HEAD(&new->list);
  416. spin_lock(&sbi->dir_inode_lock);
  417. if (__add_dirty_inode(inode, new))
  418. kmem_cache_free(inode_entry_slab, new);
  419. inc_page_count(sbi, F2FS_DIRTY_DENTS);
  420. inode_inc_dirty_dents(inode);
  421. SetPagePrivate(page);
  422. spin_unlock(&sbi->dir_inode_lock);
  423. }
  424. void add_dirty_dir_inode(struct inode *inode)
  425. {
  426. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  427. struct dir_inode_entry *new =
  428. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  429. new->inode = inode;
  430. INIT_LIST_HEAD(&new->list);
  431. spin_lock(&sbi->dir_inode_lock);
  432. if (__add_dirty_inode(inode, new))
  433. kmem_cache_free(inode_entry_slab, new);
  434. spin_unlock(&sbi->dir_inode_lock);
  435. }
  436. void remove_dirty_dir_inode(struct inode *inode)
  437. {
  438. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  439. struct list_head *head = &sbi->dir_inode_list;
  440. struct list_head *this;
  441. if (!S_ISDIR(inode->i_mode))
  442. return;
  443. spin_lock(&sbi->dir_inode_lock);
  444. if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
  445. spin_unlock(&sbi->dir_inode_lock);
  446. return;
  447. }
  448. list_for_each(this, head) {
  449. struct dir_inode_entry *entry;
  450. entry = list_entry(this, struct dir_inode_entry, list);
  451. if (entry->inode == inode) {
  452. list_del(&entry->list);
  453. kmem_cache_free(inode_entry_slab, entry);
  454. stat_dec_dirty_dir(sbi);
  455. break;
  456. }
  457. }
  458. spin_unlock(&sbi->dir_inode_lock);
  459. /* Only from the recovery routine */
  460. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  461. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  462. iput(inode);
  463. }
  464. }
  465. struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
  466. {
  467. struct list_head *head = &sbi->dir_inode_list;
  468. struct list_head *this;
  469. struct inode *inode = NULL;
  470. spin_lock(&sbi->dir_inode_lock);
  471. list_for_each(this, head) {
  472. struct dir_inode_entry *entry;
  473. entry = list_entry(this, struct dir_inode_entry, list);
  474. if (entry->inode->i_ino == ino) {
  475. inode = entry->inode;
  476. break;
  477. }
  478. }
  479. spin_unlock(&sbi->dir_inode_lock);
  480. return inode;
  481. }
  482. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  483. {
  484. struct list_head *head = &sbi->dir_inode_list;
  485. struct dir_inode_entry *entry;
  486. struct inode *inode;
  487. retry:
  488. spin_lock(&sbi->dir_inode_lock);
  489. if (list_empty(head)) {
  490. spin_unlock(&sbi->dir_inode_lock);
  491. return;
  492. }
  493. entry = list_entry(head->next, struct dir_inode_entry, list);
  494. inode = igrab(entry->inode);
  495. spin_unlock(&sbi->dir_inode_lock);
  496. if (inode) {
  497. filemap_flush(inode->i_mapping);
  498. iput(inode);
  499. } else {
  500. /*
  501. * We should submit bio, since it exists several
  502. * wribacking dentry pages in the freeing inode.
  503. */
  504. f2fs_submit_bio(sbi, DATA, true);
  505. }
  506. goto retry;
  507. }
  508. /*
  509. * Freeze all the FS-operations for checkpoint.
  510. */
  511. static void block_operations(struct f2fs_sb_info *sbi)
  512. {
  513. struct writeback_control wbc = {
  514. .sync_mode = WB_SYNC_ALL,
  515. .nr_to_write = LONG_MAX,
  516. .for_reclaim = 0,
  517. };
  518. struct blk_plug plug;
  519. blk_start_plug(&plug);
  520. retry_flush_dents:
  521. f2fs_lock_all(sbi);
  522. /* write all the dirty dentry pages */
  523. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  524. f2fs_unlock_all(sbi);
  525. sync_dirty_dir_inodes(sbi);
  526. goto retry_flush_dents;
  527. }
  528. /*
  529. * POR: we should ensure that there is no dirty node pages
  530. * until finishing nat/sit flush.
  531. */
  532. retry_flush_nodes:
  533. mutex_lock(&sbi->node_write);
  534. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  535. mutex_unlock(&sbi->node_write);
  536. sync_node_pages(sbi, 0, &wbc);
  537. goto retry_flush_nodes;
  538. }
  539. blk_finish_plug(&plug);
  540. }
  541. static void unblock_operations(struct f2fs_sb_info *sbi)
  542. {
  543. mutex_unlock(&sbi->node_write);
  544. f2fs_unlock_all(sbi);
  545. }
  546. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  547. {
  548. DEFINE_WAIT(wait);
  549. for (;;) {
  550. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  551. if (!get_pages(sbi, F2FS_WRITEBACK))
  552. break;
  553. io_schedule();
  554. }
  555. finish_wait(&sbi->cp_wait, &wait);
  556. }
  557. static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  558. {
  559. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  560. nid_t last_nid = 0;
  561. block_t start_blk;
  562. struct page *cp_page;
  563. unsigned int data_sum_blocks, orphan_blocks;
  564. __u32 crc32 = 0;
  565. void *kaddr;
  566. int i;
  567. /* Flush all the NAT/SIT pages */
  568. while (get_pages(sbi, F2FS_DIRTY_META))
  569. sync_meta_pages(sbi, META, LONG_MAX);
  570. next_free_nid(sbi, &last_nid);
  571. /*
  572. * modify checkpoint
  573. * version number is already updated
  574. */
  575. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  576. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  577. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  578. for (i = 0; i < 3; i++) {
  579. ckpt->cur_node_segno[i] =
  580. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  581. ckpt->cur_node_blkoff[i] =
  582. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  583. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  584. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  585. }
  586. for (i = 0; i < 3; i++) {
  587. ckpt->cur_data_segno[i] =
  588. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  589. ckpt->cur_data_blkoff[i] =
  590. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  591. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  592. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  593. }
  594. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  595. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  596. ckpt->next_free_nid = cpu_to_le32(last_nid);
  597. /* 2 cp + n data seg summary + orphan inode blocks */
  598. data_sum_blocks = npages_for_summary_flush(sbi);
  599. if (data_sum_blocks < 3)
  600. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  601. else
  602. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  603. orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
  604. / F2FS_ORPHANS_PER_BLOCK;
  605. ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
  606. if (is_umount) {
  607. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  608. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  609. data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
  610. } else {
  611. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  612. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  613. data_sum_blocks + orphan_blocks);
  614. }
  615. if (sbi->n_orphans)
  616. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  617. else
  618. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  619. /* update SIT/NAT bitmap */
  620. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  621. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  622. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  623. *((__le32 *)((unsigned char *)ckpt +
  624. le32_to_cpu(ckpt->checksum_offset)))
  625. = cpu_to_le32(crc32);
  626. start_blk = __start_cp_addr(sbi);
  627. /* write out checkpoint buffer at block 0 */
  628. cp_page = grab_meta_page(sbi, start_blk++);
  629. kaddr = page_address(cp_page);
  630. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  631. set_page_dirty(cp_page);
  632. f2fs_put_page(cp_page, 1);
  633. if (sbi->n_orphans) {
  634. write_orphan_inodes(sbi, start_blk);
  635. start_blk += orphan_blocks;
  636. }
  637. write_data_summaries(sbi, start_blk);
  638. start_blk += data_sum_blocks;
  639. if (is_umount) {
  640. write_node_summaries(sbi, start_blk);
  641. start_blk += NR_CURSEG_NODE_TYPE;
  642. }
  643. /* writeout checkpoint block */
  644. cp_page = grab_meta_page(sbi, start_blk);
  645. kaddr = page_address(cp_page);
  646. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  647. set_page_dirty(cp_page);
  648. f2fs_put_page(cp_page, 1);
  649. /* wait for previous submitted node/meta pages writeback */
  650. wait_on_all_pages_writeback(sbi);
  651. filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
  652. filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
  653. /* update user_block_counts */
  654. sbi->last_valid_block_count = sbi->total_valid_block_count;
  655. sbi->alloc_valid_block_count = 0;
  656. /* Here, we only have one bio having CP pack */
  657. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  658. if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
  659. clear_prefree_segments(sbi);
  660. F2FS_RESET_SB_DIRT(sbi);
  661. }
  662. }
  663. /*
  664. * We guarantee that this checkpoint procedure should not fail.
  665. */
  666. void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  667. {
  668. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  669. unsigned long long ckpt_ver;
  670. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
  671. mutex_lock(&sbi->cp_mutex);
  672. block_operations(sbi);
  673. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
  674. f2fs_submit_bio(sbi, DATA, true);
  675. f2fs_submit_bio(sbi, NODE, true);
  676. f2fs_submit_bio(sbi, META, true);
  677. /*
  678. * update checkpoint pack index
  679. * Increase the version number so that
  680. * SIT entries and seg summaries are written at correct place
  681. */
  682. ckpt_ver = cur_cp_version(ckpt);
  683. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  684. /* write cached NAT/SIT entries to NAT/SIT area */
  685. flush_nat_entries(sbi);
  686. flush_sit_entries(sbi);
  687. /* unlock all the fs_lock[] in do_checkpoint() */
  688. do_checkpoint(sbi, is_umount);
  689. unblock_operations(sbi);
  690. mutex_unlock(&sbi->cp_mutex);
  691. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
  692. }
  693. void init_orphan_info(struct f2fs_sb_info *sbi)
  694. {
  695. mutex_init(&sbi->orphan_inode_mutex);
  696. INIT_LIST_HEAD(&sbi->orphan_inode_list);
  697. sbi->n_orphans = 0;
  698. }
  699. int __init create_checkpoint_caches(void)
  700. {
  701. orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
  702. sizeof(struct orphan_inode_entry), NULL);
  703. if (unlikely(!orphan_entry_slab))
  704. return -ENOMEM;
  705. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  706. sizeof(struct dir_inode_entry), NULL);
  707. if (unlikely(!inode_entry_slab)) {
  708. kmem_cache_destroy(orphan_entry_slab);
  709. return -ENOMEM;
  710. }
  711. return 0;
  712. }
  713. void destroy_checkpoint_caches(void)
  714. {
  715. kmem_cache_destroy(orphan_entry_slab);
  716. kmem_cache_destroy(inode_entry_slab);
  717. }