ordered-data.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. #include "disk-io.h"
  27. static struct kmem_cache *btrfs_ordered_extent_cache;
  28. static u64 entry_end(struct btrfs_ordered_extent *entry)
  29. {
  30. if (entry->file_offset + entry->len < entry->file_offset)
  31. return (u64)-1;
  32. return entry->file_offset + entry->len;
  33. }
  34. /* returns NULL if the insertion worked, or it returns the node it did find
  35. * in the tree
  36. */
  37. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  38. struct rb_node *node)
  39. {
  40. struct rb_node **p = &root->rb_node;
  41. struct rb_node *parent = NULL;
  42. struct btrfs_ordered_extent *entry;
  43. while (*p) {
  44. parent = *p;
  45. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46. if (file_offset < entry->file_offset)
  47. p = &(*p)->rb_left;
  48. else if (file_offset >= entry_end(entry))
  49. p = &(*p)->rb_right;
  50. else
  51. return parent;
  52. }
  53. rb_link_node(node, parent, p);
  54. rb_insert_color(node, root);
  55. return NULL;
  56. }
  57. static void ordered_data_tree_panic(struct inode *inode, int errno,
  58. u64 offset)
  59. {
  60. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  61. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  62. "%llu\n", offset);
  63. }
  64. /*
  65. * look for a given offset in the tree, and if it can't be found return the
  66. * first lesser offset
  67. */
  68. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  69. struct rb_node **prev_ret)
  70. {
  71. struct rb_node *n = root->rb_node;
  72. struct rb_node *prev = NULL;
  73. struct rb_node *test;
  74. struct btrfs_ordered_extent *entry;
  75. struct btrfs_ordered_extent *prev_entry = NULL;
  76. while (n) {
  77. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78. prev = n;
  79. prev_entry = entry;
  80. if (file_offset < entry->file_offset)
  81. n = n->rb_left;
  82. else if (file_offset >= entry_end(entry))
  83. n = n->rb_right;
  84. else
  85. return n;
  86. }
  87. if (!prev_ret)
  88. return NULL;
  89. while (prev && file_offset >= entry_end(prev_entry)) {
  90. test = rb_next(prev);
  91. if (!test)
  92. break;
  93. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94. rb_node);
  95. if (file_offset < entry_end(prev_entry))
  96. break;
  97. prev = test;
  98. }
  99. if (prev)
  100. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  101. rb_node);
  102. while (prev && file_offset < entry_end(prev_entry)) {
  103. test = rb_prev(prev);
  104. if (!test)
  105. break;
  106. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  107. rb_node);
  108. prev = test;
  109. }
  110. *prev_ret = prev;
  111. return NULL;
  112. }
  113. /*
  114. * helper to check if a given offset is inside a given entry
  115. */
  116. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  117. {
  118. if (file_offset < entry->file_offset ||
  119. entry->file_offset + entry->len <= file_offset)
  120. return 0;
  121. return 1;
  122. }
  123. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  124. u64 len)
  125. {
  126. if (file_offset + len <= entry->file_offset ||
  127. entry->file_offset + entry->len <= file_offset)
  128. return 0;
  129. return 1;
  130. }
  131. /*
  132. * look find the first ordered struct that has this offset, otherwise
  133. * the first one less than this offset
  134. */
  135. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  136. u64 file_offset)
  137. {
  138. struct rb_root *root = &tree->tree;
  139. struct rb_node *prev = NULL;
  140. struct rb_node *ret;
  141. struct btrfs_ordered_extent *entry;
  142. if (tree->last) {
  143. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  144. rb_node);
  145. if (offset_in_entry(entry, file_offset))
  146. return tree->last;
  147. }
  148. ret = __tree_search(root, file_offset, &prev);
  149. if (!ret)
  150. ret = prev;
  151. if (ret)
  152. tree->last = ret;
  153. return ret;
  154. }
  155. /* allocate and add a new ordered_extent into the per-inode tree.
  156. * file_offset is the logical offset in the file
  157. *
  158. * start is the disk block number of an extent already reserved in the
  159. * extent allocation tree
  160. *
  161. * len is the length of the extent
  162. *
  163. * The tree is given a single reference on the ordered extent that was
  164. * inserted.
  165. */
  166. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  167. u64 start, u64 len, u64 disk_len,
  168. int type, int dio, int compress_type)
  169. {
  170. struct btrfs_root *root = BTRFS_I(inode)->root;
  171. struct btrfs_ordered_inode_tree *tree;
  172. struct rb_node *node;
  173. struct btrfs_ordered_extent *entry;
  174. tree = &BTRFS_I(inode)->ordered_tree;
  175. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  176. if (!entry)
  177. return -ENOMEM;
  178. entry->file_offset = file_offset;
  179. entry->start = start;
  180. entry->len = len;
  181. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
  182. !(type == BTRFS_ORDERED_NOCOW))
  183. entry->csum_bytes_left = disk_len;
  184. entry->disk_len = disk_len;
  185. entry->bytes_left = len;
  186. entry->inode = igrab(inode);
  187. entry->compress_type = compress_type;
  188. entry->truncated_len = (u64)-1;
  189. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  190. set_bit(type, &entry->flags);
  191. if (dio)
  192. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  193. /* one ref for the tree */
  194. atomic_set(&entry->refs, 1);
  195. init_waitqueue_head(&entry->wait);
  196. INIT_LIST_HEAD(&entry->list);
  197. INIT_LIST_HEAD(&entry->root_extent_list);
  198. INIT_LIST_HEAD(&entry->work_list);
  199. init_completion(&entry->completion);
  200. INIT_LIST_HEAD(&entry->log_list);
  201. trace_btrfs_ordered_extent_add(inode, entry);
  202. spin_lock_irq(&tree->lock);
  203. node = tree_insert(&tree->tree, file_offset,
  204. &entry->rb_node);
  205. if (node)
  206. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  207. spin_unlock_irq(&tree->lock);
  208. spin_lock(&root->ordered_extent_lock);
  209. list_add_tail(&entry->root_extent_list,
  210. &root->ordered_extents);
  211. root->nr_ordered_extents++;
  212. if (root->nr_ordered_extents == 1) {
  213. spin_lock(&root->fs_info->ordered_root_lock);
  214. BUG_ON(!list_empty(&root->ordered_root));
  215. list_add_tail(&root->ordered_root,
  216. &root->fs_info->ordered_roots);
  217. spin_unlock(&root->fs_info->ordered_root_lock);
  218. }
  219. spin_unlock(&root->ordered_extent_lock);
  220. return 0;
  221. }
  222. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  223. u64 start, u64 len, u64 disk_len, int type)
  224. {
  225. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  226. disk_len, type, 0,
  227. BTRFS_COMPRESS_NONE);
  228. }
  229. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  230. u64 start, u64 len, u64 disk_len, int type)
  231. {
  232. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  233. disk_len, type, 1,
  234. BTRFS_COMPRESS_NONE);
  235. }
  236. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  237. u64 start, u64 len, u64 disk_len,
  238. int type, int compress_type)
  239. {
  240. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  241. disk_len, type, 0,
  242. compress_type);
  243. }
  244. /*
  245. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  246. * when an ordered extent is finished. If the list covers more than one
  247. * ordered extent, it is split across multiples.
  248. */
  249. void btrfs_add_ordered_sum(struct inode *inode,
  250. struct btrfs_ordered_extent *entry,
  251. struct btrfs_ordered_sum *sum)
  252. {
  253. struct btrfs_ordered_inode_tree *tree;
  254. tree = &BTRFS_I(inode)->ordered_tree;
  255. spin_lock_irq(&tree->lock);
  256. list_add_tail(&sum->list, &entry->list);
  257. WARN_ON(entry->csum_bytes_left < sum->len);
  258. entry->csum_bytes_left -= sum->len;
  259. if (entry->csum_bytes_left == 0)
  260. wake_up(&entry->wait);
  261. spin_unlock_irq(&tree->lock);
  262. }
  263. /*
  264. * this is used to account for finished IO across a given range
  265. * of the file. The IO may span ordered extents. If
  266. * a given ordered_extent is completely done, 1 is returned, otherwise
  267. * 0.
  268. *
  269. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  270. * to make sure this function only returns 1 once for a given ordered extent.
  271. *
  272. * file_offset is updated to one byte past the range that is recorded as
  273. * complete. This allows you to walk forward in the file.
  274. */
  275. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  276. struct btrfs_ordered_extent **cached,
  277. u64 *file_offset, u64 io_size, int uptodate)
  278. {
  279. struct btrfs_ordered_inode_tree *tree;
  280. struct rb_node *node;
  281. struct btrfs_ordered_extent *entry = NULL;
  282. int ret;
  283. unsigned long flags;
  284. u64 dec_end;
  285. u64 dec_start;
  286. u64 to_dec;
  287. tree = &BTRFS_I(inode)->ordered_tree;
  288. spin_lock_irqsave(&tree->lock, flags);
  289. node = tree_search(tree, *file_offset);
  290. if (!node) {
  291. ret = 1;
  292. goto out;
  293. }
  294. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  295. if (!offset_in_entry(entry, *file_offset)) {
  296. ret = 1;
  297. goto out;
  298. }
  299. dec_start = max(*file_offset, entry->file_offset);
  300. dec_end = min(*file_offset + io_size, entry->file_offset +
  301. entry->len);
  302. *file_offset = dec_end;
  303. if (dec_start > dec_end) {
  304. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  305. dec_start, dec_end);
  306. }
  307. to_dec = dec_end - dec_start;
  308. if (to_dec > entry->bytes_left) {
  309. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  310. entry->bytes_left, to_dec);
  311. }
  312. entry->bytes_left -= to_dec;
  313. if (!uptodate)
  314. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  315. if (entry->bytes_left == 0)
  316. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  317. else
  318. ret = 1;
  319. out:
  320. if (!ret && cached && entry) {
  321. *cached = entry;
  322. atomic_inc(&entry->refs);
  323. }
  324. spin_unlock_irqrestore(&tree->lock, flags);
  325. return ret == 0;
  326. }
  327. /*
  328. * this is used to account for finished IO across a given range
  329. * of the file. The IO should not span ordered extents. If
  330. * a given ordered_extent is completely done, 1 is returned, otherwise
  331. * 0.
  332. *
  333. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  334. * to make sure this function only returns 1 once for a given ordered extent.
  335. */
  336. int btrfs_dec_test_ordered_pending(struct inode *inode,
  337. struct btrfs_ordered_extent **cached,
  338. u64 file_offset, u64 io_size, int uptodate)
  339. {
  340. struct btrfs_ordered_inode_tree *tree;
  341. struct rb_node *node;
  342. struct btrfs_ordered_extent *entry = NULL;
  343. unsigned long flags;
  344. int ret;
  345. tree = &BTRFS_I(inode)->ordered_tree;
  346. spin_lock_irqsave(&tree->lock, flags);
  347. if (cached && *cached) {
  348. entry = *cached;
  349. goto have_entry;
  350. }
  351. node = tree_search(tree, file_offset);
  352. if (!node) {
  353. ret = 1;
  354. goto out;
  355. }
  356. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  357. have_entry:
  358. if (!offset_in_entry(entry, file_offset)) {
  359. ret = 1;
  360. goto out;
  361. }
  362. if (io_size > entry->bytes_left) {
  363. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  364. entry->bytes_left, io_size);
  365. }
  366. entry->bytes_left -= io_size;
  367. if (!uptodate)
  368. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  369. if (entry->bytes_left == 0)
  370. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  371. else
  372. ret = 1;
  373. out:
  374. if (!ret && cached && entry) {
  375. *cached = entry;
  376. atomic_inc(&entry->refs);
  377. }
  378. spin_unlock_irqrestore(&tree->lock, flags);
  379. return ret == 0;
  380. }
  381. /* Needs to either be called under a log transaction or the log_mutex */
  382. void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
  383. {
  384. struct btrfs_ordered_inode_tree *tree;
  385. struct btrfs_ordered_extent *ordered;
  386. struct rb_node *n;
  387. int index = log->log_transid % 2;
  388. tree = &BTRFS_I(inode)->ordered_tree;
  389. spin_lock_irq(&tree->lock);
  390. for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
  391. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  392. spin_lock(&log->log_extents_lock[index]);
  393. if (list_empty(&ordered->log_list)) {
  394. list_add_tail(&ordered->log_list, &log->logged_list[index]);
  395. atomic_inc(&ordered->refs);
  396. }
  397. spin_unlock(&log->log_extents_lock[index]);
  398. }
  399. spin_unlock_irq(&tree->lock);
  400. }
  401. void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
  402. {
  403. struct btrfs_ordered_extent *ordered;
  404. int index = transid % 2;
  405. spin_lock_irq(&log->log_extents_lock[index]);
  406. while (!list_empty(&log->logged_list[index])) {
  407. ordered = list_first_entry(&log->logged_list[index],
  408. struct btrfs_ordered_extent,
  409. log_list);
  410. list_del_init(&ordered->log_list);
  411. spin_unlock_irq(&log->log_extents_lock[index]);
  412. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  413. &ordered->flags));
  414. btrfs_put_ordered_extent(ordered);
  415. spin_lock_irq(&log->log_extents_lock[index]);
  416. }
  417. spin_unlock_irq(&log->log_extents_lock[index]);
  418. }
  419. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  420. {
  421. struct btrfs_ordered_extent *ordered;
  422. int index = transid % 2;
  423. spin_lock_irq(&log->log_extents_lock[index]);
  424. while (!list_empty(&log->logged_list[index])) {
  425. ordered = list_first_entry(&log->logged_list[index],
  426. struct btrfs_ordered_extent,
  427. log_list);
  428. list_del_init(&ordered->log_list);
  429. spin_unlock_irq(&log->log_extents_lock[index]);
  430. btrfs_put_ordered_extent(ordered);
  431. spin_lock_irq(&log->log_extents_lock[index]);
  432. }
  433. spin_unlock_irq(&log->log_extents_lock[index]);
  434. }
  435. /*
  436. * used to drop a reference on an ordered extent. This will free
  437. * the extent if the last reference is dropped
  438. */
  439. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  440. {
  441. struct list_head *cur;
  442. struct btrfs_ordered_sum *sum;
  443. trace_btrfs_ordered_extent_put(entry->inode, entry);
  444. if (atomic_dec_and_test(&entry->refs)) {
  445. if (entry->inode)
  446. btrfs_add_delayed_iput(entry->inode);
  447. while (!list_empty(&entry->list)) {
  448. cur = entry->list.next;
  449. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  450. list_del(&sum->list);
  451. kfree(sum);
  452. }
  453. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  454. }
  455. }
  456. /*
  457. * remove an ordered extent from the tree. No references are dropped
  458. * and waiters are woken up.
  459. */
  460. void btrfs_remove_ordered_extent(struct inode *inode,
  461. struct btrfs_ordered_extent *entry)
  462. {
  463. struct btrfs_ordered_inode_tree *tree;
  464. struct btrfs_root *root = BTRFS_I(inode)->root;
  465. struct rb_node *node;
  466. tree = &BTRFS_I(inode)->ordered_tree;
  467. spin_lock_irq(&tree->lock);
  468. node = &entry->rb_node;
  469. rb_erase(node, &tree->tree);
  470. tree->last = NULL;
  471. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  472. spin_unlock_irq(&tree->lock);
  473. spin_lock(&root->ordered_extent_lock);
  474. list_del_init(&entry->root_extent_list);
  475. root->nr_ordered_extents--;
  476. trace_btrfs_ordered_extent_remove(inode, entry);
  477. /*
  478. * we have no more ordered extents for this inode and
  479. * no dirty pages. We can safely remove it from the
  480. * list of ordered extents
  481. */
  482. if (RB_EMPTY_ROOT(&tree->tree) &&
  483. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  484. spin_lock(&root->fs_info->ordered_root_lock);
  485. list_del_init(&BTRFS_I(inode)->ordered_operations);
  486. spin_unlock(&root->fs_info->ordered_root_lock);
  487. }
  488. if (!root->nr_ordered_extents) {
  489. spin_lock(&root->fs_info->ordered_root_lock);
  490. BUG_ON(list_empty(&root->ordered_root));
  491. list_del_init(&root->ordered_root);
  492. spin_unlock(&root->fs_info->ordered_root_lock);
  493. }
  494. spin_unlock(&root->ordered_extent_lock);
  495. wake_up(&entry->wait);
  496. }
  497. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  498. {
  499. struct btrfs_ordered_extent *ordered;
  500. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  501. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  502. complete(&ordered->completion);
  503. }
  504. /*
  505. * wait for all the ordered extents in a root. This is done when balancing
  506. * space between drives.
  507. */
  508. int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
  509. {
  510. struct list_head splice, works;
  511. struct btrfs_ordered_extent *ordered, *next;
  512. int count = 0;
  513. INIT_LIST_HEAD(&splice);
  514. INIT_LIST_HEAD(&works);
  515. mutex_lock(&root->fs_info->ordered_operations_mutex);
  516. spin_lock(&root->ordered_extent_lock);
  517. list_splice_init(&root->ordered_extents, &splice);
  518. while (!list_empty(&splice) && nr) {
  519. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  520. root_extent_list);
  521. list_move_tail(&ordered->root_extent_list,
  522. &root->ordered_extents);
  523. atomic_inc(&ordered->refs);
  524. spin_unlock(&root->ordered_extent_lock);
  525. ordered->flush_work.func = btrfs_run_ordered_extent_work;
  526. list_add_tail(&ordered->work_list, &works);
  527. btrfs_queue_worker(&root->fs_info->flush_workers,
  528. &ordered->flush_work);
  529. cond_resched();
  530. spin_lock(&root->ordered_extent_lock);
  531. if (nr != -1)
  532. nr--;
  533. count++;
  534. }
  535. list_splice_tail(&splice, &root->ordered_extents);
  536. spin_unlock(&root->ordered_extent_lock);
  537. list_for_each_entry_safe(ordered, next, &works, work_list) {
  538. list_del_init(&ordered->work_list);
  539. wait_for_completion(&ordered->completion);
  540. btrfs_put_ordered_extent(ordered);
  541. cond_resched();
  542. }
  543. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  544. return count;
  545. }
  546. void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
  547. {
  548. struct btrfs_root *root;
  549. struct list_head splice;
  550. int done;
  551. INIT_LIST_HEAD(&splice);
  552. spin_lock(&fs_info->ordered_root_lock);
  553. list_splice_init(&fs_info->ordered_roots, &splice);
  554. while (!list_empty(&splice) && nr) {
  555. root = list_first_entry(&splice, struct btrfs_root,
  556. ordered_root);
  557. root = btrfs_grab_fs_root(root);
  558. BUG_ON(!root);
  559. list_move_tail(&root->ordered_root,
  560. &fs_info->ordered_roots);
  561. spin_unlock(&fs_info->ordered_root_lock);
  562. done = btrfs_wait_ordered_extents(root, nr);
  563. btrfs_put_fs_root(root);
  564. spin_lock(&fs_info->ordered_root_lock);
  565. if (nr != -1) {
  566. nr -= done;
  567. WARN_ON(nr < 0);
  568. }
  569. }
  570. list_splice_tail(&splice, &fs_info->ordered_roots);
  571. spin_unlock(&fs_info->ordered_root_lock);
  572. }
  573. /*
  574. * this is used during transaction commit to write all the inodes
  575. * added to the ordered operation list. These files must be fully on
  576. * disk before the transaction commits.
  577. *
  578. * we have two modes here, one is to just start the IO via filemap_flush
  579. * and the other is to wait for all the io. When we wait, we have an
  580. * extra check to make sure the ordered operation list really is empty
  581. * before we return
  582. */
  583. int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
  584. struct btrfs_root *root, int wait)
  585. {
  586. struct btrfs_inode *btrfs_inode;
  587. struct inode *inode;
  588. struct btrfs_transaction *cur_trans = trans->transaction;
  589. struct list_head splice;
  590. struct list_head works;
  591. struct btrfs_delalloc_work *work, *next;
  592. int ret = 0;
  593. INIT_LIST_HEAD(&splice);
  594. INIT_LIST_HEAD(&works);
  595. mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
  596. spin_lock(&root->fs_info->ordered_root_lock);
  597. list_splice_init(&cur_trans->ordered_operations, &splice);
  598. while (!list_empty(&splice)) {
  599. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  600. ordered_operations);
  601. inode = &btrfs_inode->vfs_inode;
  602. list_del_init(&btrfs_inode->ordered_operations);
  603. /*
  604. * the inode may be getting freed (in sys_unlink path).
  605. */
  606. inode = igrab(inode);
  607. if (!inode)
  608. continue;
  609. if (!wait)
  610. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  611. &cur_trans->ordered_operations);
  612. spin_unlock(&root->fs_info->ordered_root_lock);
  613. work = btrfs_alloc_delalloc_work(inode, wait, 1);
  614. if (!work) {
  615. spin_lock(&root->fs_info->ordered_root_lock);
  616. if (list_empty(&BTRFS_I(inode)->ordered_operations))
  617. list_add_tail(&btrfs_inode->ordered_operations,
  618. &splice);
  619. list_splice_tail(&splice,
  620. &cur_trans->ordered_operations);
  621. spin_unlock(&root->fs_info->ordered_root_lock);
  622. ret = -ENOMEM;
  623. goto out;
  624. }
  625. list_add_tail(&work->list, &works);
  626. btrfs_queue_worker(&root->fs_info->flush_workers,
  627. &work->work);
  628. cond_resched();
  629. spin_lock(&root->fs_info->ordered_root_lock);
  630. }
  631. spin_unlock(&root->fs_info->ordered_root_lock);
  632. out:
  633. list_for_each_entry_safe(work, next, &works, list) {
  634. list_del_init(&work->list);
  635. btrfs_wait_and_free_delalloc_work(work);
  636. }
  637. mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
  638. return ret;
  639. }
  640. /*
  641. * Used to start IO or wait for a given ordered extent to finish.
  642. *
  643. * If wait is one, this effectively waits on page writeback for all the pages
  644. * in the extent, and it waits on the io completion code to insert
  645. * metadata into the btree corresponding to the extent
  646. */
  647. void btrfs_start_ordered_extent(struct inode *inode,
  648. struct btrfs_ordered_extent *entry,
  649. int wait)
  650. {
  651. u64 start = entry->file_offset;
  652. u64 end = start + entry->len - 1;
  653. trace_btrfs_ordered_extent_start(inode, entry);
  654. /*
  655. * pages in the range can be dirty, clean or writeback. We
  656. * start IO on any dirty ones so the wait doesn't stall waiting
  657. * for the flusher thread to find them
  658. */
  659. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  660. filemap_fdatawrite_range(inode->i_mapping, start, end);
  661. if (wait) {
  662. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  663. &entry->flags));
  664. }
  665. }
  666. /*
  667. * Used to wait on ordered extents across a large range of bytes.
  668. */
  669. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  670. {
  671. int ret = 0;
  672. u64 end;
  673. u64 orig_end;
  674. struct btrfs_ordered_extent *ordered;
  675. if (start + len < start) {
  676. orig_end = INT_LIMIT(loff_t);
  677. } else {
  678. orig_end = start + len - 1;
  679. if (orig_end > INT_LIMIT(loff_t))
  680. orig_end = INT_LIMIT(loff_t);
  681. }
  682. /* start IO across the range first to instantiate any delalloc
  683. * extents
  684. */
  685. ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  686. if (ret)
  687. return ret;
  688. /*
  689. * So with compression we will find and lock a dirty page and clear the
  690. * first one as dirty, setup an async extent, and immediately return
  691. * with the entire range locked but with nobody actually marked with
  692. * writeback. So we can't just filemap_write_and_wait_range() and
  693. * expect it to work since it will just kick off a thread to do the
  694. * actual work. So we need to call filemap_fdatawrite_range _again_
  695. * since it will wait on the page lock, which won't be unlocked until
  696. * after the pages have been marked as writeback and so we're good to go
  697. * from there. We have to do this otherwise we'll miss the ordered
  698. * extents and that results in badness. Please Josef, do not think you
  699. * know better and pull this out at some point in the future, it is
  700. * right and you are wrong.
  701. */
  702. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  703. &BTRFS_I(inode)->runtime_flags)) {
  704. ret = filemap_fdatawrite_range(inode->i_mapping, start,
  705. orig_end);
  706. if (ret)
  707. return ret;
  708. }
  709. ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  710. if (ret)
  711. return ret;
  712. end = orig_end;
  713. while (1) {
  714. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  715. if (!ordered)
  716. break;
  717. if (ordered->file_offset > orig_end) {
  718. btrfs_put_ordered_extent(ordered);
  719. break;
  720. }
  721. if (ordered->file_offset + ordered->len <= start) {
  722. btrfs_put_ordered_extent(ordered);
  723. break;
  724. }
  725. btrfs_start_ordered_extent(inode, ordered, 1);
  726. end = ordered->file_offset;
  727. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  728. ret = -EIO;
  729. btrfs_put_ordered_extent(ordered);
  730. if (ret || end == 0 || end == start)
  731. break;
  732. end--;
  733. }
  734. return ret;
  735. }
  736. /*
  737. * find an ordered extent corresponding to file_offset. return NULL if
  738. * nothing is found, otherwise take a reference on the extent and return it
  739. */
  740. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  741. u64 file_offset)
  742. {
  743. struct btrfs_ordered_inode_tree *tree;
  744. struct rb_node *node;
  745. struct btrfs_ordered_extent *entry = NULL;
  746. tree = &BTRFS_I(inode)->ordered_tree;
  747. spin_lock_irq(&tree->lock);
  748. node = tree_search(tree, file_offset);
  749. if (!node)
  750. goto out;
  751. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  752. if (!offset_in_entry(entry, file_offset))
  753. entry = NULL;
  754. if (entry)
  755. atomic_inc(&entry->refs);
  756. out:
  757. spin_unlock_irq(&tree->lock);
  758. return entry;
  759. }
  760. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  761. * extents that exist in the range, rather than just the start of the range.
  762. */
  763. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  764. u64 file_offset,
  765. u64 len)
  766. {
  767. struct btrfs_ordered_inode_tree *tree;
  768. struct rb_node *node;
  769. struct btrfs_ordered_extent *entry = NULL;
  770. tree = &BTRFS_I(inode)->ordered_tree;
  771. spin_lock_irq(&tree->lock);
  772. node = tree_search(tree, file_offset);
  773. if (!node) {
  774. node = tree_search(tree, file_offset + len);
  775. if (!node)
  776. goto out;
  777. }
  778. while (1) {
  779. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  780. if (range_overlaps(entry, file_offset, len))
  781. break;
  782. if (entry->file_offset >= file_offset + len) {
  783. entry = NULL;
  784. break;
  785. }
  786. entry = NULL;
  787. node = rb_next(node);
  788. if (!node)
  789. break;
  790. }
  791. out:
  792. if (entry)
  793. atomic_inc(&entry->refs);
  794. spin_unlock_irq(&tree->lock);
  795. return entry;
  796. }
  797. /*
  798. * lookup and return any extent before 'file_offset'. NULL is returned
  799. * if none is found
  800. */
  801. struct btrfs_ordered_extent *
  802. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  803. {
  804. struct btrfs_ordered_inode_tree *tree;
  805. struct rb_node *node;
  806. struct btrfs_ordered_extent *entry = NULL;
  807. tree = &BTRFS_I(inode)->ordered_tree;
  808. spin_lock_irq(&tree->lock);
  809. node = tree_search(tree, file_offset);
  810. if (!node)
  811. goto out;
  812. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  813. atomic_inc(&entry->refs);
  814. out:
  815. spin_unlock_irq(&tree->lock);
  816. return entry;
  817. }
  818. /*
  819. * After an extent is done, call this to conditionally update the on disk
  820. * i_size. i_size is updated to cover any fully written part of the file.
  821. */
  822. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  823. struct btrfs_ordered_extent *ordered)
  824. {
  825. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  826. u64 disk_i_size;
  827. u64 new_i_size;
  828. u64 i_size = i_size_read(inode);
  829. struct rb_node *node;
  830. struct rb_node *prev = NULL;
  831. struct btrfs_ordered_extent *test;
  832. int ret = 1;
  833. spin_lock_irq(&tree->lock);
  834. if (ordered) {
  835. offset = entry_end(ordered);
  836. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  837. offset = min(offset,
  838. ordered->file_offset +
  839. ordered->truncated_len);
  840. } else {
  841. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  842. }
  843. disk_i_size = BTRFS_I(inode)->disk_i_size;
  844. /* truncate file */
  845. if (disk_i_size > i_size) {
  846. BTRFS_I(inode)->disk_i_size = i_size;
  847. ret = 0;
  848. goto out;
  849. }
  850. /*
  851. * if the disk i_size is already at the inode->i_size, or
  852. * this ordered extent is inside the disk i_size, we're done
  853. */
  854. if (disk_i_size == i_size)
  855. goto out;
  856. /*
  857. * We still need to update disk_i_size if outstanding_isize is greater
  858. * than disk_i_size.
  859. */
  860. if (offset <= disk_i_size &&
  861. (!ordered || ordered->outstanding_isize <= disk_i_size))
  862. goto out;
  863. /*
  864. * walk backward from this ordered extent to disk_i_size.
  865. * if we find an ordered extent then we can't update disk i_size
  866. * yet
  867. */
  868. if (ordered) {
  869. node = rb_prev(&ordered->rb_node);
  870. } else {
  871. prev = tree_search(tree, offset);
  872. /*
  873. * we insert file extents without involving ordered struct,
  874. * so there should be no ordered struct cover this offset
  875. */
  876. if (prev) {
  877. test = rb_entry(prev, struct btrfs_ordered_extent,
  878. rb_node);
  879. BUG_ON(offset_in_entry(test, offset));
  880. }
  881. node = prev;
  882. }
  883. for (; node; node = rb_prev(node)) {
  884. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  885. /* We treat this entry as if it doesnt exist */
  886. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  887. continue;
  888. if (test->file_offset + test->len <= disk_i_size)
  889. break;
  890. if (test->file_offset >= i_size)
  891. break;
  892. if (entry_end(test) > disk_i_size) {
  893. /*
  894. * we don't update disk_i_size now, so record this
  895. * undealt i_size. Or we will not know the real
  896. * i_size.
  897. */
  898. if (test->outstanding_isize < offset)
  899. test->outstanding_isize = offset;
  900. if (ordered &&
  901. ordered->outstanding_isize >
  902. test->outstanding_isize)
  903. test->outstanding_isize =
  904. ordered->outstanding_isize;
  905. goto out;
  906. }
  907. }
  908. new_i_size = min_t(u64, offset, i_size);
  909. /*
  910. * Some ordered extents may completed before the current one, and
  911. * we hold the real i_size in ->outstanding_isize.
  912. */
  913. if (ordered && ordered->outstanding_isize > new_i_size)
  914. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  915. BTRFS_I(inode)->disk_i_size = new_i_size;
  916. ret = 0;
  917. out:
  918. /*
  919. * We need to do this because we can't remove ordered extents until
  920. * after the i_disk_size has been updated and then the inode has been
  921. * updated to reflect the change, so we need to tell anybody who finds
  922. * this ordered extent that we've already done all the real work, we
  923. * just haven't completed all the other work.
  924. */
  925. if (ordered)
  926. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  927. spin_unlock_irq(&tree->lock);
  928. return ret;
  929. }
  930. /*
  931. * search the ordered extents for one corresponding to 'offset' and
  932. * try to find a checksum. This is used because we allow pages to
  933. * be reclaimed before their checksum is actually put into the btree
  934. */
  935. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  936. u32 *sum, int len)
  937. {
  938. struct btrfs_ordered_sum *ordered_sum;
  939. struct btrfs_ordered_extent *ordered;
  940. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  941. unsigned long num_sectors;
  942. unsigned long i;
  943. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  944. int index = 0;
  945. ordered = btrfs_lookup_ordered_extent(inode, offset);
  946. if (!ordered)
  947. return 0;
  948. spin_lock_irq(&tree->lock);
  949. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  950. if (disk_bytenr >= ordered_sum->bytenr &&
  951. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  952. i = (disk_bytenr - ordered_sum->bytenr) >>
  953. inode->i_sb->s_blocksize_bits;
  954. num_sectors = ordered_sum->len >>
  955. inode->i_sb->s_blocksize_bits;
  956. num_sectors = min_t(int, len - index, num_sectors - i);
  957. memcpy(sum + index, ordered_sum->sums + i,
  958. num_sectors);
  959. index += (int)num_sectors;
  960. if (index == len)
  961. goto out;
  962. disk_bytenr += num_sectors * sectorsize;
  963. }
  964. }
  965. out:
  966. spin_unlock_irq(&tree->lock);
  967. btrfs_put_ordered_extent(ordered);
  968. return index;
  969. }
  970. /*
  971. * add a given inode to the list of inodes that must be fully on
  972. * disk before a transaction commit finishes.
  973. *
  974. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  975. * used to make sure renamed files are fully on disk.
  976. *
  977. * It is a noop if the inode is already fully on disk.
  978. *
  979. * If trans is not null, we'll do a friendly check for a transaction that
  980. * is already flushing things and force the IO down ourselves.
  981. */
  982. void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  983. struct btrfs_root *root, struct inode *inode)
  984. {
  985. struct btrfs_transaction *cur_trans = trans->transaction;
  986. u64 last_mod;
  987. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  988. /*
  989. * if this file hasn't been changed since the last transaction
  990. * commit, we can safely return without doing anything
  991. */
  992. if (last_mod <= root->fs_info->last_trans_committed)
  993. return;
  994. spin_lock(&root->fs_info->ordered_root_lock);
  995. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  996. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  997. &cur_trans->ordered_operations);
  998. }
  999. spin_unlock(&root->fs_info->ordered_root_lock);
  1000. }
  1001. int __init ordered_data_init(void)
  1002. {
  1003. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  1004. sizeof(struct btrfs_ordered_extent), 0,
  1005. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  1006. NULL);
  1007. if (!btrfs_ordered_extent_cache)
  1008. return -ENOMEM;
  1009. return 0;
  1010. }
  1011. void ordered_data_exit(void)
  1012. {
  1013. if (btrfs_ordered_extent_cache)
  1014. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1015. }