free-space-cache.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include <linux/ratelimit.h>
  23. #include "ctree.h"
  24. #include "free-space-cache.h"
  25. #include "transaction.h"
  26. #include "disk-io.h"
  27. #include "extent_io.h"
  28. #include "inode-map.h"
  29. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  30. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  31. static int link_free_space(struct btrfs_free_space_ctl *ctl,
  32. struct btrfs_free_space *info);
  33. static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  34. struct btrfs_free_space *info);
  35. static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  36. struct btrfs_path *path,
  37. u64 offset)
  38. {
  39. struct btrfs_key key;
  40. struct btrfs_key location;
  41. struct btrfs_disk_key disk_key;
  42. struct btrfs_free_space_header *header;
  43. struct extent_buffer *leaf;
  44. struct inode *inode = NULL;
  45. int ret;
  46. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  47. key.offset = offset;
  48. key.type = 0;
  49. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  50. if (ret < 0)
  51. return ERR_PTR(ret);
  52. if (ret > 0) {
  53. btrfs_release_path(path);
  54. return ERR_PTR(-ENOENT);
  55. }
  56. leaf = path->nodes[0];
  57. header = btrfs_item_ptr(leaf, path->slots[0],
  58. struct btrfs_free_space_header);
  59. btrfs_free_space_key(leaf, header, &disk_key);
  60. btrfs_disk_key_to_cpu(&location, &disk_key);
  61. btrfs_release_path(path);
  62. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  63. if (!inode)
  64. return ERR_PTR(-ENOENT);
  65. if (IS_ERR(inode))
  66. return inode;
  67. if (is_bad_inode(inode)) {
  68. iput(inode);
  69. return ERR_PTR(-ENOENT);
  70. }
  71. mapping_set_gfp_mask(inode->i_mapping,
  72. mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
  73. return inode;
  74. }
  75. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  76. struct btrfs_block_group_cache
  77. *block_group, struct btrfs_path *path)
  78. {
  79. struct inode *inode = NULL;
  80. u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
  81. spin_lock(&block_group->lock);
  82. if (block_group->inode)
  83. inode = igrab(block_group->inode);
  84. spin_unlock(&block_group->lock);
  85. if (inode)
  86. return inode;
  87. inode = __lookup_free_space_inode(root, path,
  88. block_group->key.objectid);
  89. if (IS_ERR(inode))
  90. return inode;
  91. spin_lock(&block_group->lock);
  92. if (!((BTRFS_I(inode)->flags & flags) == flags)) {
  93. btrfs_info(root->fs_info,
  94. "Old style space inode found, converting.");
  95. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
  96. BTRFS_INODE_NODATACOW;
  97. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  98. }
  99. if (!block_group->iref) {
  100. block_group->inode = igrab(inode);
  101. block_group->iref = 1;
  102. }
  103. spin_unlock(&block_group->lock);
  104. return inode;
  105. }
  106. static int __create_free_space_inode(struct btrfs_root *root,
  107. struct btrfs_trans_handle *trans,
  108. struct btrfs_path *path,
  109. u64 ino, u64 offset)
  110. {
  111. struct btrfs_key key;
  112. struct btrfs_disk_key disk_key;
  113. struct btrfs_free_space_header *header;
  114. struct btrfs_inode_item *inode_item;
  115. struct extent_buffer *leaf;
  116. u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
  117. int ret;
  118. ret = btrfs_insert_empty_inode(trans, root, path, ino);
  119. if (ret)
  120. return ret;
  121. /* We inline crc's for the free disk space cache */
  122. if (ino != BTRFS_FREE_INO_OBJECTID)
  123. flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
  124. leaf = path->nodes[0];
  125. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  126. struct btrfs_inode_item);
  127. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  128. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  129. sizeof(*inode_item));
  130. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  131. btrfs_set_inode_size(leaf, inode_item, 0);
  132. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  133. btrfs_set_inode_uid(leaf, inode_item, 0);
  134. btrfs_set_inode_gid(leaf, inode_item, 0);
  135. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  136. btrfs_set_inode_flags(leaf, inode_item, flags);
  137. btrfs_set_inode_nlink(leaf, inode_item, 1);
  138. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  139. btrfs_set_inode_block_group(leaf, inode_item, offset);
  140. btrfs_mark_buffer_dirty(leaf);
  141. btrfs_release_path(path);
  142. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  143. key.offset = offset;
  144. key.type = 0;
  145. ret = btrfs_insert_empty_item(trans, root, path, &key,
  146. sizeof(struct btrfs_free_space_header));
  147. if (ret < 0) {
  148. btrfs_release_path(path);
  149. return ret;
  150. }
  151. leaf = path->nodes[0];
  152. header = btrfs_item_ptr(leaf, path->slots[0],
  153. struct btrfs_free_space_header);
  154. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  155. btrfs_set_free_space_key(leaf, header, &disk_key);
  156. btrfs_mark_buffer_dirty(leaf);
  157. btrfs_release_path(path);
  158. return 0;
  159. }
  160. int create_free_space_inode(struct btrfs_root *root,
  161. struct btrfs_trans_handle *trans,
  162. struct btrfs_block_group_cache *block_group,
  163. struct btrfs_path *path)
  164. {
  165. int ret;
  166. u64 ino;
  167. ret = btrfs_find_free_objectid(root, &ino);
  168. if (ret < 0)
  169. return ret;
  170. return __create_free_space_inode(root, trans, path, ino,
  171. block_group->key.objectid);
  172. }
  173. int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
  174. struct btrfs_block_rsv *rsv)
  175. {
  176. u64 needed_bytes;
  177. int ret;
  178. /* 1 for slack space, 1 for updating the inode */
  179. needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
  180. btrfs_calc_trans_metadata_size(root, 1);
  181. spin_lock(&rsv->lock);
  182. if (rsv->reserved < needed_bytes)
  183. ret = -ENOSPC;
  184. else
  185. ret = 0;
  186. spin_unlock(&rsv->lock);
  187. return ret;
  188. }
  189. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  190. struct btrfs_trans_handle *trans,
  191. struct inode *inode)
  192. {
  193. int ret = 0;
  194. btrfs_i_size_write(inode, 0);
  195. truncate_pagecache(inode, 0);
  196. /*
  197. * We don't need an orphan item because truncating the free space cache
  198. * will never be split across transactions.
  199. */
  200. ret = btrfs_truncate_inode_items(trans, root, inode,
  201. 0, BTRFS_EXTENT_DATA_KEY);
  202. if (ret) {
  203. btrfs_abort_transaction(trans, root, ret);
  204. return ret;
  205. }
  206. ret = btrfs_update_inode(trans, root, inode);
  207. if (ret)
  208. btrfs_abort_transaction(trans, root, ret);
  209. return ret;
  210. }
  211. static int readahead_cache(struct inode *inode)
  212. {
  213. struct file_ra_state *ra;
  214. unsigned long last_index;
  215. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  216. if (!ra)
  217. return -ENOMEM;
  218. file_ra_state_init(ra, inode->i_mapping);
  219. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  220. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  221. kfree(ra);
  222. return 0;
  223. }
  224. struct io_ctl {
  225. void *cur, *orig;
  226. struct page *page;
  227. struct page **pages;
  228. struct btrfs_root *root;
  229. unsigned long size;
  230. int index;
  231. int num_pages;
  232. unsigned check_crcs:1;
  233. };
  234. static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
  235. struct btrfs_root *root)
  236. {
  237. memset(io_ctl, 0, sizeof(struct io_ctl));
  238. io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
  239. PAGE_CACHE_SHIFT;
  240. io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
  241. GFP_NOFS);
  242. if (!io_ctl->pages)
  243. return -ENOMEM;
  244. io_ctl->root = root;
  245. if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
  246. io_ctl->check_crcs = 1;
  247. return 0;
  248. }
  249. static void io_ctl_free(struct io_ctl *io_ctl)
  250. {
  251. kfree(io_ctl->pages);
  252. }
  253. static void io_ctl_unmap_page(struct io_ctl *io_ctl)
  254. {
  255. if (io_ctl->cur) {
  256. kunmap(io_ctl->page);
  257. io_ctl->cur = NULL;
  258. io_ctl->orig = NULL;
  259. }
  260. }
  261. static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
  262. {
  263. ASSERT(io_ctl->index < io_ctl->num_pages);
  264. io_ctl->page = io_ctl->pages[io_ctl->index++];
  265. io_ctl->cur = kmap(io_ctl->page);
  266. io_ctl->orig = io_ctl->cur;
  267. io_ctl->size = PAGE_CACHE_SIZE;
  268. if (clear)
  269. memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
  270. }
  271. static void io_ctl_drop_pages(struct io_ctl *io_ctl)
  272. {
  273. int i;
  274. io_ctl_unmap_page(io_ctl);
  275. for (i = 0; i < io_ctl->num_pages; i++) {
  276. if (io_ctl->pages[i]) {
  277. ClearPageChecked(io_ctl->pages[i]);
  278. unlock_page(io_ctl->pages[i]);
  279. page_cache_release(io_ctl->pages[i]);
  280. }
  281. }
  282. }
  283. static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
  284. int uptodate)
  285. {
  286. struct page *page;
  287. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  288. int i;
  289. for (i = 0; i < io_ctl->num_pages; i++) {
  290. page = find_or_create_page(inode->i_mapping, i, mask);
  291. if (!page) {
  292. io_ctl_drop_pages(io_ctl);
  293. return -ENOMEM;
  294. }
  295. io_ctl->pages[i] = page;
  296. if (uptodate && !PageUptodate(page)) {
  297. btrfs_readpage(NULL, page);
  298. lock_page(page);
  299. if (!PageUptodate(page)) {
  300. printk(KERN_ERR "btrfs: error reading free "
  301. "space cache\n");
  302. io_ctl_drop_pages(io_ctl);
  303. return -EIO;
  304. }
  305. }
  306. }
  307. for (i = 0; i < io_ctl->num_pages; i++) {
  308. clear_page_dirty_for_io(io_ctl->pages[i]);
  309. set_page_extent_mapped(io_ctl->pages[i]);
  310. }
  311. return 0;
  312. }
  313. static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
  314. {
  315. __le64 *val;
  316. io_ctl_map_page(io_ctl, 1);
  317. /*
  318. * Skip the csum areas. If we don't check crcs then we just have a
  319. * 64bit chunk at the front of the first page.
  320. */
  321. if (io_ctl->check_crcs) {
  322. io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
  323. io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
  324. } else {
  325. io_ctl->cur += sizeof(u64);
  326. io_ctl->size -= sizeof(u64) * 2;
  327. }
  328. val = io_ctl->cur;
  329. *val = cpu_to_le64(generation);
  330. io_ctl->cur += sizeof(u64);
  331. }
  332. static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
  333. {
  334. __le64 *gen;
  335. /*
  336. * Skip the crc area. If we don't check crcs then we just have a 64bit
  337. * chunk at the front of the first page.
  338. */
  339. if (io_ctl->check_crcs) {
  340. io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
  341. io_ctl->size -= sizeof(u64) +
  342. (sizeof(u32) * io_ctl->num_pages);
  343. } else {
  344. io_ctl->cur += sizeof(u64);
  345. io_ctl->size -= sizeof(u64) * 2;
  346. }
  347. gen = io_ctl->cur;
  348. if (le64_to_cpu(*gen) != generation) {
  349. printk_ratelimited(KERN_ERR "btrfs: space cache generation "
  350. "(%Lu) does not match inode (%Lu)\n", *gen,
  351. generation);
  352. io_ctl_unmap_page(io_ctl);
  353. return -EIO;
  354. }
  355. io_ctl->cur += sizeof(u64);
  356. return 0;
  357. }
  358. static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
  359. {
  360. u32 *tmp;
  361. u32 crc = ~(u32)0;
  362. unsigned offset = 0;
  363. if (!io_ctl->check_crcs) {
  364. io_ctl_unmap_page(io_ctl);
  365. return;
  366. }
  367. if (index == 0)
  368. offset = sizeof(u32) * io_ctl->num_pages;
  369. crc = btrfs_csum_data(io_ctl->orig + offset, crc,
  370. PAGE_CACHE_SIZE - offset);
  371. btrfs_csum_final(crc, (char *)&crc);
  372. io_ctl_unmap_page(io_ctl);
  373. tmp = kmap(io_ctl->pages[0]);
  374. tmp += index;
  375. *tmp = crc;
  376. kunmap(io_ctl->pages[0]);
  377. }
  378. static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
  379. {
  380. u32 *tmp, val;
  381. u32 crc = ~(u32)0;
  382. unsigned offset = 0;
  383. if (!io_ctl->check_crcs) {
  384. io_ctl_map_page(io_ctl, 0);
  385. return 0;
  386. }
  387. if (index == 0)
  388. offset = sizeof(u32) * io_ctl->num_pages;
  389. tmp = kmap(io_ctl->pages[0]);
  390. tmp += index;
  391. val = *tmp;
  392. kunmap(io_ctl->pages[0]);
  393. io_ctl_map_page(io_ctl, 0);
  394. crc = btrfs_csum_data(io_ctl->orig + offset, crc,
  395. PAGE_CACHE_SIZE - offset);
  396. btrfs_csum_final(crc, (char *)&crc);
  397. if (val != crc) {
  398. printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
  399. "space cache\n");
  400. io_ctl_unmap_page(io_ctl);
  401. return -EIO;
  402. }
  403. return 0;
  404. }
  405. static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
  406. void *bitmap)
  407. {
  408. struct btrfs_free_space_entry *entry;
  409. if (!io_ctl->cur)
  410. return -ENOSPC;
  411. entry = io_ctl->cur;
  412. entry->offset = cpu_to_le64(offset);
  413. entry->bytes = cpu_to_le64(bytes);
  414. entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
  415. BTRFS_FREE_SPACE_EXTENT;
  416. io_ctl->cur += sizeof(struct btrfs_free_space_entry);
  417. io_ctl->size -= sizeof(struct btrfs_free_space_entry);
  418. if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
  419. return 0;
  420. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  421. /* No more pages to map */
  422. if (io_ctl->index >= io_ctl->num_pages)
  423. return 0;
  424. /* map the next page */
  425. io_ctl_map_page(io_ctl, 1);
  426. return 0;
  427. }
  428. static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
  429. {
  430. if (!io_ctl->cur)
  431. return -ENOSPC;
  432. /*
  433. * If we aren't at the start of the current page, unmap this one and
  434. * map the next one if there is any left.
  435. */
  436. if (io_ctl->cur != io_ctl->orig) {
  437. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  438. if (io_ctl->index >= io_ctl->num_pages)
  439. return -ENOSPC;
  440. io_ctl_map_page(io_ctl, 0);
  441. }
  442. memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
  443. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  444. if (io_ctl->index < io_ctl->num_pages)
  445. io_ctl_map_page(io_ctl, 0);
  446. return 0;
  447. }
  448. static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
  449. {
  450. /*
  451. * If we're not on the boundary we know we've modified the page and we
  452. * need to crc the page.
  453. */
  454. if (io_ctl->cur != io_ctl->orig)
  455. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  456. else
  457. io_ctl_unmap_page(io_ctl);
  458. while (io_ctl->index < io_ctl->num_pages) {
  459. io_ctl_map_page(io_ctl, 1);
  460. io_ctl_set_crc(io_ctl, io_ctl->index - 1);
  461. }
  462. }
  463. static int io_ctl_read_entry(struct io_ctl *io_ctl,
  464. struct btrfs_free_space *entry, u8 *type)
  465. {
  466. struct btrfs_free_space_entry *e;
  467. int ret;
  468. if (!io_ctl->cur) {
  469. ret = io_ctl_check_crc(io_ctl, io_ctl->index);
  470. if (ret)
  471. return ret;
  472. }
  473. e = io_ctl->cur;
  474. entry->offset = le64_to_cpu(e->offset);
  475. entry->bytes = le64_to_cpu(e->bytes);
  476. *type = e->type;
  477. io_ctl->cur += sizeof(struct btrfs_free_space_entry);
  478. io_ctl->size -= sizeof(struct btrfs_free_space_entry);
  479. if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
  480. return 0;
  481. io_ctl_unmap_page(io_ctl);
  482. return 0;
  483. }
  484. static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
  485. struct btrfs_free_space *entry)
  486. {
  487. int ret;
  488. ret = io_ctl_check_crc(io_ctl, io_ctl->index);
  489. if (ret)
  490. return ret;
  491. memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
  492. io_ctl_unmap_page(io_ctl);
  493. return 0;
  494. }
  495. /*
  496. * Since we attach pinned extents after the fact we can have contiguous sections
  497. * of free space that are split up in entries. This poses a problem with the
  498. * tree logging stuff since it could have allocated across what appears to be 2
  499. * entries since we would have merged the entries when adding the pinned extents
  500. * back to the free space cache. So run through the space cache that we just
  501. * loaded and merge contiguous entries. This will make the log replay stuff not
  502. * blow up and it will make for nicer allocator behavior.
  503. */
  504. static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
  505. {
  506. struct btrfs_free_space *e, *prev = NULL;
  507. struct rb_node *n;
  508. again:
  509. spin_lock(&ctl->tree_lock);
  510. for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
  511. e = rb_entry(n, struct btrfs_free_space, offset_index);
  512. if (!prev)
  513. goto next;
  514. if (e->bitmap || prev->bitmap)
  515. goto next;
  516. if (prev->offset + prev->bytes == e->offset) {
  517. unlink_free_space(ctl, prev);
  518. unlink_free_space(ctl, e);
  519. prev->bytes += e->bytes;
  520. kmem_cache_free(btrfs_free_space_cachep, e);
  521. link_free_space(ctl, prev);
  522. prev = NULL;
  523. spin_unlock(&ctl->tree_lock);
  524. goto again;
  525. }
  526. next:
  527. prev = e;
  528. }
  529. spin_unlock(&ctl->tree_lock);
  530. }
  531. static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
  532. struct btrfs_free_space_ctl *ctl,
  533. struct btrfs_path *path, u64 offset)
  534. {
  535. struct btrfs_free_space_header *header;
  536. struct extent_buffer *leaf;
  537. struct io_ctl io_ctl;
  538. struct btrfs_key key;
  539. struct btrfs_free_space *e, *n;
  540. struct list_head bitmaps;
  541. u64 num_entries;
  542. u64 num_bitmaps;
  543. u64 generation;
  544. u8 type;
  545. int ret = 0;
  546. INIT_LIST_HEAD(&bitmaps);
  547. /* Nothing in the space cache, goodbye */
  548. if (!i_size_read(inode))
  549. return 0;
  550. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  551. key.offset = offset;
  552. key.type = 0;
  553. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  554. if (ret < 0)
  555. return 0;
  556. else if (ret > 0) {
  557. btrfs_release_path(path);
  558. return 0;
  559. }
  560. ret = -1;
  561. leaf = path->nodes[0];
  562. header = btrfs_item_ptr(leaf, path->slots[0],
  563. struct btrfs_free_space_header);
  564. num_entries = btrfs_free_space_entries(leaf, header);
  565. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  566. generation = btrfs_free_space_generation(leaf, header);
  567. btrfs_release_path(path);
  568. if (BTRFS_I(inode)->generation != generation) {
  569. btrfs_err(root->fs_info,
  570. "free space inode generation (%llu) "
  571. "did not match free space cache generation (%llu)",
  572. BTRFS_I(inode)->generation, generation);
  573. return 0;
  574. }
  575. if (!num_entries)
  576. return 0;
  577. ret = io_ctl_init(&io_ctl, inode, root);
  578. if (ret)
  579. return ret;
  580. ret = readahead_cache(inode);
  581. if (ret)
  582. goto out;
  583. ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
  584. if (ret)
  585. goto out;
  586. ret = io_ctl_check_crc(&io_ctl, 0);
  587. if (ret)
  588. goto free_cache;
  589. ret = io_ctl_check_generation(&io_ctl, generation);
  590. if (ret)
  591. goto free_cache;
  592. while (num_entries) {
  593. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  594. GFP_NOFS);
  595. if (!e)
  596. goto free_cache;
  597. ret = io_ctl_read_entry(&io_ctl, e, &type);
  598. if (ret) {
  599. kmem_cache_free(btrfs_free_space_cachep, e);
  600. goto free_cache;
  601. }
  602. if (!e->bytes) {
  603. kmem_cache_free(btrfs_free_space_cachep, e);
  604. goto free_cache;
  605. }
  606. if (type == BTRFS_FREE_SPACE_EXTENT) {
  607. spin_lock(&ctl->tree_lock);
  608. ret = link_free_space(ctl, e);
  609. spin_unlock(&ctl->tree_lock);
  610. if (ret) {
  611. btrfs_err(root->fs_info,
  612. "Duplicate entries in free space cache, dumping");
  613. kmem_cache_free(btrfs_free_space_cachep, e);
  614. goto free_cache;
  615. }
  616. } else {
  617. ASSERT(num_bitmaps);
  618. num_bitmaps--;
  619. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  620. if (!e->bitmap) {
  621. kmem_cache_free(
  622. btrfs_free_space_cachep, e);
  623. goto free_cache;
  624. }
  625. spin_lock(&ctl->tree_lock);
  626. ret = link_free_space(ctl, e);
  627. ctl->total_bitmaps++;
  628. ctl->op->recalc_thresholds(ctl);
  629. spin_unlock(&ctl->tree_lock);
  630. if (ret) {
  631. btrfs_err(root->fs_info,
  632. "Duplicate entries in free space cache, dumping");
  633. kmem_cache_free(btrfs_free_space_cachep, e);
  634. goto free_cache;
  635. }
  636. list_add_tail(&e->list, &bitmaps);
  637. }
  638. num_entries--;
  639. }
  640. io_ctl_unmap_page(&io_ctl);
  641. /*
  642. * We add the bitmaps at the end of the entries in order that
  643. * the bitmap entries are added to the cache.
  644. */
  645. list_for_each_entry_safe(e, n, &bitmaps, list) {
  646. list_del_init(&e->list);
  647. ret = io_ctl_read_bitmap(&io_ctl, e);
  648. if (ret)
  649. goto free_cache;
  650. }
  651. io_ctl_drop_pages(&io_ctl);
  652. merge_space_tree(ctl);
  653. ret = 1;
  654. out:
  655. io_ctl_free(&io_ctl);
  656. return ret;
  657. free_cache:
  658. io_ctl_drop_pages(&io_ctl);
  659. __btrfs_remove_free_space_cache(ctl);
  660. goto out;
  661. }
  662. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  663. struct btrfs_block_group_cache *block_group)
  664. {
  665. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  666. struct btrfs_root *root = fs_info->tree_root;
  667. struct inode *inode;
  668. struct btrfs_path *path;
  669. int ret = 0;
  670. bool matched;
  671. u64 used = btrfs_block_group_used(&block_group->item);
  672. /*
  673. * If this block group has been marked to be cleared for one reason or
  674. * another then we can't trust the on disk cache, so just return.
  675. */
  676. spin_lock(&block_group->lock);
  677. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  678. spin_unlock(&block_group->lock);
  679. return 0;
  680. }
  681. spin_unlock(&block_group->lock);
  682. path = btrfs_alloc_path();
  683. if (!path)
  684. return 0;
  685. path->search_commit_root = 1;
  686. path->skip_locking = 1;
  687. inode = lookup_free_space_inode(root, block_group, path);
  688. if (IS_ERR(inode)) {
  689. btrfs_free_path(path);
  690. return 0;
  691. }
  692. /* We may have converted the inode and made the cache invalid. */
  693. spin_lock(&block_group->lock);
  694. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  695. spin_unlock(&block_group->lock);
  696. btrfs_free_path(path);
  697. goto out;
  698. }
  699. spin_unlock(&block_group->lock);
  700. ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
  701. path, block_group->key.objectid);
  702. btrfs_free_path(path);
  703. if (ret <= 0)
  704. goto out;
  705. spin_lock(&ctl->tree_lock);
  706. matched = (ctl->free_space == (block_group->key.offset - used -
  707. block_group->bytes_super));
  708. spin_unlock(&ctl->tree_lock);
  709. if (!matched) {
  710. __btrfs_remove_free_space_cache(ctl);
  711. btrfs_err(fs_info, "block group %llu has wrong amount of free space",
  712. block_group->key.objectid);
  713. ret = -1;
  714. }
  715. out:
  716. if (ret < 0) {
  717. /* This cache is bogus, make sure it gets cleared */
  718. spin_lock(&block_group->lock);
  719. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  720. spin_unlock(&block_group->lock);
  721. ret = 0;
  722. btrfs_err(fs_info, "failed to load free space cache for block group %llu",
  723. block_group->key.objectid);
  724. }
  725. iput(inode);
  726. return ret;
  727. }
  728. /**
  729. * __btrfs_write_out_cache - write out cached info to an inode
  730. * @root - the root the inode belongs to
  731. * @ctl - the free space cache we are going to write out
  732. * @block_group - the block_group for this cache if it belongs to a block_group
  733. * @trans - the trans handle
  734. * @path - the path to use
  735. * @offset - the offset for the key we'll insert
  736. *
  737. * This function writes out a free space cache struct to disk for quick recovery
  738. * on mount. This will return 0 if it was successfull in writing the cache out,
  739. * and -1 if it was not.
  740. */
  741. static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
  742. struct btrfs_free_space_ctl *ctl,
  743. struct btrfs_block_group_cache *block_group,
  744. struct btrfs_trans_handle *trans,
  745. struct btrfs_path *path, u64 offset)
  746. {
  747. struct btrfs_free_space_header *header;
  748. struct extent_buffer *leaf;
  749. struct rb_node *node;
  750. struct list_head *pos, *n;
  751. struct extent_state *cached_state = NULL;
  752. struct btrfs_free_cluster *cluster = NULL;
  753. struct extent_io_tree *unpin = NULL;
  754. struct io_ctl io_ctl;
  755. struct list_head bitmap_list;
  756. struct btrfs_key key;
  757. u64 start, extent_start, extent_end, len;
  758. int entries = 0;
  759. int bitmaps = 0;
  760. int ret;
  761. int err = -1;
  762. INIT_LIST_HEAD(&bitmap_list);
  763. if (!i_size_read(inode))
  764. return -1;
  765. ret = io_ctl_init(&io_ctl, inode, root);
  766. if (ret)
  767. return -1;
  768. /* Get the cluster for this block_group if it exists */
  769. if (block_group && !list_empty(&block_group->cluster_list))
  770. cluster = list_entry(block_group->cluster_list.next,
  771. struct btrfs_free_cluster,
  772. block_group_list);
  773. /* Lock all pages first so we can lock the extent safely. */
  774. io_ctl_prepare_pages(&io_ctl, inode, 0);
  775. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  776. 0, &cached_state);
  777. node = rb_first(&ctl->free_space_offset);
  778. if (!node && cluster) {
  779. node = rb_first(&cluster->root);
  780. cluster = NULL;
  781. }
  782. /* Make sure we can fit our crcs into the first page */
  783. if (io_ctl.check_crcs &&
  784. (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
  785. goto out_nospc;
  786. io_ctl_set_generation(&io_ctl, trans->transid);
  787. /* Write out the extent entries */
  788. while (node) {
  789. struct btrfs_free_space *e;
  790. e = rb_entry(node, struct btrfs_free_space, offset_index);
  791. entries++;
  792. ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
  793. e->bitmap);
  794. if (ret)
  795. goto out_nospc;
  796. if (e->bitmap) {
  797. list_add_tail(&e->list, &bitmap_list);
  798. bitmaps++;
  799. }
  800. node = rb_next(node);
  801. if (!node && cluster) {
  802. node = rb_first(&cluster->root);
  803. cluster = NULL;
  804. }
  805. }
  806. /*
  807. * We want to add any pinned extents to our free space cache
  808. * so we don't leak the space
  809. */
  810. /*
  811. * We shouldn't have switched the pinned extents yet so this is the
  812. * right one
  813. */
  814. unpin = root->fs_info->pinned_extents;
  815. if (block_group)
  816. start = block_group->key.objectid;
  817. while (block_group && (start < block_group->key.objectid +
  818. block_group->key.offset)) {
  819. ret = find_first_extent_bit(unpin, start,
  820. &extent_start, &extent_end,
  821. EXTENT_DIRTY, NULL);
  822. if (ret) {
  823. ret = 0;
  824. break;
  825. }
  826. /* This pinned extent is out of our range */
  827. if (extent_start >= block_group->key.objectid +
  828. block_group->key.offset)
  829. break;
  830. extent_start = max(extent_start, start);
  831. extent_end = min(block_group->key.objectid +
  832. block_group->key.offset, extent_end + 1);
  833. len = extent_end - extent_start;
  834. entries++;
  835. ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
  836. if (ret)
  837. goto out_nospc;
  838. start = extent_end;
  839. }
  840. /* Write out the bitmaps */
  841. list_for_each_safe(pos, n, &bitmap_list) {
  842. struct btrfs_free_space *entry =
  843. list_entry(pos, struct btrfs_free_space, list);
  844. ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
  845. if (ret)
  846. goto out_nospc;
  847. list_del_init(&entry->list);
  848. }
  849. /* Zero out the rest of the pages just to make sure */
  850. io_ctl_zero_remaining_pages(&io_ctl);
  851. ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
  852. 0, i_size_read(inode), &cached_state);
  853. io_ctl_drop_pages(&io_ctl);
  854. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  855. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  856. if (ret)
  857. goto out;
  858. ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
  859. if (ret) {
  860. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
  861. EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
  862. GFP_NOFS);
  863. goto out;
  864. }
  865. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  866. key.offset = offset;
  867. key.type = 0;
  868. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  869. if (ret < 0) {
  870. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
  871. EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
  872. GFP_NOFS);
  873. goto out;
  874. }
  875. leaf = path->nodes[0];
  876. if (ret > 0) {
  877. struct btrfs_key found_key;
  878. ASSERT(path->slots[0]);
  879. path->slots[0]--;
  880. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  881. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  882. found_key.offset != offset) {
  883. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
  884. inode->i_size - 1,
  885. EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
  886. NULL, GFP_NOFS);
  887. btrfs_release_path(path);
  888. goto out;
  889. }
  890. }
  891. BTRFS_I(inode)->generation = trans->transid;
  892. header = btrfs_item_ptr(leaf, path->slots[0],
  893. struct btrfs_free_space_header);
  894. btrfs_set_free_space_entries(leaf, header, entries);
  895. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  896. btrfs_set_free_space_generation(leaf, header, trans->transid);
  897. btrfs_mark_buffer_dirty(leaf);
  898. btrfs_release_path(path);
  899. err = 0;
  900. out:
  901. io_ctl_free(&io_ctl);
  902. if (err) {
  903. invalidate_inode_pages2(inode->i_mapping);
  904. BTRFS_I(inode)->generation = 0;
  905. }
  906. btrfs_update_inode(trans, root, inode);
  907. return err;
  908. out_nospc:
  909. list_for_each_safe(pos, n, &bitmap_list) {
  910. struct btrfs_free_space *entry =
  911. list_entry(pos, struct btrfs_free_space, list);
  912. list_del_init(&entry->list);
  913. }
  914. io_ctl_drop_pages(&io_ctl);
  915. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  916. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  917. goto out;
  918. }
  919. int btrfs_write_out_cache(struct btrfs_root *root,
  920. struct btrfs_trans_handle *trans,
  921. struct btrfs_block_group_cache *block_group,
  922. struct btrfs_path *path)
  923. {
  924. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  925. struct inode *inode;
  926. int ret = 0;
  927. root = root->fs_info->tree_root;
  928. spin_lock(&block_group->lock);
  929. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  930. spin_unlock(&block_group->lock);
  931. return 0;
  932. }
  933. spin_unlock(&block_group->lock);
  934. inode = lookup_free_space_inode(root, block_group, path);
  935. if (IS_ERR(inode))
  936. return 0;
  937. ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
  938. path, block_group->key.objectid);
  939. if (ret) {
  940. spin_lock(&block_group->lock);
  941. block_group->disk_cache_state = BTRFS_DC_ERROR;
  942. spin_unlock(&block_group->lock);
  943. ret = 0;
  944. #ifdef DEBUG
  945. btrfs_err(root->fs_info,
  946. "failed to write free space cache for block group %llu",
  947. block_group->key.objectid);
  948. #endif
  949. }
  950. iput(inode);
  951. return ret;
  952. }
  953. static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
  954. u64 offset)
  955. {
  956. ASSERT(offset >= bitmap_start);
  957. offset -= bitmap_start;
  958. return (unsigned long)(div_u64(offset, unit));
  959. }
  960. static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
  961. {
  962. return (unsigned long)(div_u64(bytes, unit));
  963. }
  964. static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
  965. u64 offset)
  966. {
  967. u64 bitmap_start;
  968. u64 bytes_per_bitmap;
  969. bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
  970. bitmap_start = offset - ctl->start;
  971. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  972. bitmap_start *= bytes_per_bitmap;
  973. bitmap_start += ctl->start;
  974. return bitmap_start;
  975. }
  976. static int tree_insert_offset(struct rb_root *root, u64 offset,
  977. struct rb_node *node, int bitmap)
  978. {
  979. struct rb_node **p = &root->rb_node;
  980. struct rb_node *parent = NULL;
  981. struct btrfs_free_space *info;
  982. while (*p) {
  983. parent = *p;
  984. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  985. if (offset < info->offset) {
  986. p = &(*p)->rb_left;
  987. } else if (offset > info->offset) {
  988. p = &(*p)->rb_right;
  989. } else {
  990. /*
  991. * we could have a bitmap entry and an extent entry
  992. * share the same offset. If this is the case, we want
  993. * the extent entry to always be found first if we do a
  994. * linear search through the tree, since we want to have
  995. * the quickest allocation time, and allocating from an
  996. * extent is faster than allocating from a bitmap. So
  997. * if we're inserting a bitmap and we find an entry at
  998. * this offset, we want to go right, or after this entry
  999. * logically. If we are inserting an extent and we've
  1000. * found a bitmap, we want to go left, or before
  1001. * logically.
  1002. */
  1003. if (bitmap) {
  1004. if (info->bitmap) {
  1005. WARN_ON_ONCE(1);
  1006. return -EEXIST;
  1007. }
  1008. p = &(*p)->rb_right;
  1009. } else {
  1010. if (!info->bitmap) {
  1011. WARN_ON_ONCE(1);
  1012. return -EEXIST;
  1013. }
  1014. p = &(*p)->rb_left;
  1015. }
  1016. }
  1017. }
  1018. rb_link_node(node, parent, p);
  1019. rb_insert_color(node, root);
  1020. return 0;
  1021. }
  1022. /*
  1023. * searches the tree for the given offset.
  1024. *
  1025. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  1026. * want a section that has at least bytes size and comes at or after the given
  1027. * offset.
  1028. */
  1029. static struct btrfs_free_space *
  1030. tree_search_offset(struct btrfs_free_space_ctl *ctl,
  1031. u64 offset, int bitmap_only, int fuzzy)
  1032. {
  1033. struct rb_node *n = ctl->free_space_offset.rb_node;
  1034. struct btrfs_free_space *entry, *prev = NULL;
  1035. /* find entry that is closest to the 'offset' */
  1036. while (1) {
  1037. if (!n) {
  1038. entry = NULL;
  1039. break;
  1040. }
  1041. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  1042. prev = entry;
  1043. if (offset < entry->offset)
  1044. n = n->rb_left;
  1045. else if (offset > entry->offset)
  1046. n = n->rb_right;
  1047. else
  1048. break;
  1049. }
  1050. if (bitmap_only) {
  1051. if (!entry)
  1052. return NULL;
  1053. if (entry->bitmap)
  1054. return entry;
  1055. /*
  1056. * bitmap entry and extent entry may share same offset,
  1057. * in that case, bitmap entry comes after extent entry.
  1058. */
  1059. n = rb_next(n);
  1060. if (!n)
  1061. return NULL;
  1062. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  1063. if (entry->offset != offset)
  1064. return NULL;
  1065. WARN_ON(!entry->bitmap);
  1066. return entry;
  1067. } else if (entry) {
  1068. if (entry->bitmap) {
  1069. /*
  1070. * if previous extent entry covers the offset,
  1071. * we should return it instead of the bitmap entry
  1072. */
  1073. n = rb_prev(&entry->offset_index);
  1074. if (n) {
  1075. prev = rb_entry(n, struct btrfs_free_space,
  1076. offset_index);
  1077. if (!prev->bitmap &&
  1078. prev->offset + prev->bytes > offset)
  1079. entry = prev;
  1080. }
  1081. }
  1082. return entry;
  1083. }
  1084. if (!prev)
  1085. return NULL;
  1086. /* find last entry before the 'offset' */
  1087. entry = prev;
  1088. if (entry->offset > offset) {
  1089. n = rb_prev(&entry->offset_index);
  1090. if (n) {
  1091. entry = rb_entry(n, struct btrfs_free_space,
  1092. offset_index);
  1093. ASSERT(entry->offset <= offset);
  1094. } else {
  1095. if (fuzzy)
  1096. return entry;
  1097. else
  1098. return NULL;
  1099. }
  1100. }
  1101. if (entry->bitmap) {
  1102. n = rb_prev(&entry->offset_index);
  1103. if (n) {
  1104. prev = rb_entry(n, struct btrfs_free_space,
  1105. offset_index);
  1106. if (!prev->bitmap &&
  1107. prev->offset + prev->bytes > offset)
  1108. return prev;
  1109. }
  1110. if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
  1111. return entry;
  1112. } else if (entry->offset + entry->bytes > offset)
  1113. return entry;
  1114. if (!fuzzy)
  1115. return NULL;
  1116. while (1) {
  1117. if (entry->bitmap) {
  1118. if (entry->offset + BITS_PER_BITMAP *
  1119. ctl->unit > offset)
  1120. break;
  1121. } else {
  1122. if (entry->offset + entry->bytes > offset)
  1123. break;
  1124. }
  1125. n = rb_next(&entry->offset_index);
  1126. if (!n)
  1127. return NULL;
  1128. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  1129. }
  1130. return entry;
  1131. }
  1132. static inline void
  1133. __unlink_free_space(struct btrfs_free_space_ctl *ctl,
  1134. struct btrfs_free_space *info)
  1135. {
  1136. rb_erase(&info->offset_index, &ctl->free_space_offset);
  1137. ctl->free_extents--;
  1138. }
  1139. static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  1140. struct btrfs_free_space *info)
  1141. {
  1142. __unlink_free_space(ctl, info);
  1143. ctl->free_space -= info->bytes;
  1144. }
  1145. static int link_free_space(struct btrfs_free_space_ctl *ctl,
  1146. struct btrfs_free_space *info)
  1147. {
  1148. int ret = 0;
  1149. ASSERT(info->bytes || info->bitmap);
  1150. ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
  1151. &info->offset_index, (info->bitmap != NULL));
  1152. if (ret)
  1153. return ret;
  1154. ctl->free_space += info->bytes;
  1155. ctl->free_extents++;
  1156. return ret;
  1157. }
  1158. static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
  1159. {
  1160. struct btrfs_block_group_cache *block_group = ctl->private;
  1161. u64 max_bytes;
  1162. u64 bitmap_bytes;
  1163. u64 extent_bytes;
  1164. u64 size = block_group->key.offset;
  1165. u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
  1166. int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
  1167. max_bitmaps = max(max_bitmaps, 1);
  1168. ASSERT(ctl->total_bitmaps <= max_bitmaps);
  1169. /*
  1170. * The goal is to keep the total amount of memory used per 1gb of space
  1171. * at or below 32k, so we need to adjust how much memory we allow to be
  1172. * used by extent based free space tracking
  1173. */
  1174. if (size < 1024 * 1024 * 1024)
  1175. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  1176. else
  1177. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  1178. div64_u64(size, 1024 * 1024 * 1024);
  1179. /*
  1180. * we want to account for 1 more bitmap than what we have so we can make
  1181. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  1182. * we add more bitmaps.
  1183. */
  1184. bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  1185. if (bitmap_bytes >= max_bytes) {
  1186. ctl->extents_thresh = 0;
  1187. return;
  1188. }
  1189. /*
  1190. * we want the extent entry threshold to always be at most 1/2 the maxw
  1191. * bytes we can have, or whatever is less than that.
  1192. */
  1193. extent_bytes = max_bytes - bitmap_bytes;
  1194. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  1195. ctl->extents_thresh =
  1196. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  1197. }
  1198. static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  1199. struct btrfs_free_space *info,
  1200. u64 offset, u64 bytes)
  1201. {
  1202. unsigned long start, count;
  1203. start = offset_to_bit(info->offset, ctl->unit, offset);
  1204. count = bytes_to_bits(bytes, ctl->unit);
  1205. ASSERT(start + count <= BITS_PER_BITMAP);
  1206. bitmap_clear(info->bitmap, start, count);
  1207. info->bytes -= bytes;
  1208. }
  1209. static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  1210. struct btrfs_free_space *info, u64 offset,
  1211. u64 bytes)
  1212. {
  1213. __bitmap_clear_bits(ctl, info, offset, bytes);
  1214. ctl->free_space -= bytes;
  1215. }
  1216. static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
  1217. struct btrfs_free_space *info, u64 offset,
  1218. u64 bytes)
  1219. {
  1220. unsigned long start, count;
  1221. start = offset_to_bit(info->offset, ctl->unit, offset);
  1222. count = bytes_to_bits(bytes, ctl->unit);
  1223. ASSERT(start + count <= BITS_PER_BITMAP);
  1224. bitmap_set(info->bitmap, start, count);
  1225. info->bytes += bytes;
  1226. ctl->free_space += bytes;
  1227. }
  1228. /*
  1229. * If we can not find suitable extent, we will use bytes to record
  1230. * the size of the max extent.
  1231. */
  1232. static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  1233. struct btrfs_free_space *bitmap_info, u64 *offset,
  1234. u64 *bytes)
  1235. {
  1236. unsigned long found_bits = 0;
  1237. unsigned long max_bits = 0;
  1238. unsigned long bits, i;
  1239. unsigned long next_zero;
  1240. unsigned long extent_bits;
  1241. i = offset_to_bit(bitmap_info->offset, ctl->unit,
  1242. max_t(u64, *offset, bitmap_info->offset));
  1243. bits = bytes_to_bits(*bytes, ctl->unit);
  1244. for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
  1245. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  1246. BITS_PER_BITMAP, i);
  1247. extent_bits = next_zero - i;
  1248. if (extent_bits >= bits) {
  1249. found_bits = extent_bits;
  1250. break;
  1251. } else if (extent_bits > max_bits) {
  1252. max_bits = extent_bits;
  1253. }
  1254. i = next_zero;
  1255. }
  1256. if (found_bits) {
  1257. *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
  1258. *bytes = (u64)(found_bits) * ctl->unit;
  1259. return 0;
  1260. }
  1261. *bytes = (u64)(max_bits) * ctl->unit;
  1262. return -1;
  1263. }
  1264. /* Cache the size of the max extent in bytes */
  1265. static struct btrfs_free_space *
  1266. find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
  1267. unsigned long align, u64 *max_extent_size)
  1268. {
  1269. struct btrfs_free_space *entry;
  1270. struct rb_node *node;
  1271. u64 tmp;
  1272. u64 align_off;
  1273. int ret;
  1274. if (!ctl->free_space_offset.rb_node)
  1275. goto out;
  1276. entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
  1277. if (!entry)
  1278. goto out;
  1279. for (node = &entry->offset_index; node; node = rb_next(node)) {
  1280. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1281. if (entry->bytes < *bytes) {
  1282. if (entry->bytes > *max_extent_size)
  1283. *max_extent_size = entry->bytes;
  1284. continue;
  1285. }
  1286. /* make sure the space returned is big enough
  1287. * to match our requested alignment
  1288. */
  1289. if (*bytes >= align) {
  1290. tmp = entry->offset - ctl->start + align - 1;
  1291. do_div(tmp, align);
  1292. tmp = tmp * align + ctl->start;
  1293. align_off = tmp - entry->offset;
  1294. } else {
  1295. align_off = 0;
  1296. tmp = entry->offset;
  1297. }
  1298. if (entry->bytes < *bytes + align_off) {
  1299. if (entry->bytes > *max_extent_size)
  1300. *max_extent_size = entry->bytes;
  1301. continue;
  1302. }
  1303. if (entry->bitmap) {
  1304. u64 size = *bytes;
  1305. ret = search_bitmap(ctl, entry, &tmp, &size);
  1306. if (!ret) {
  1307. *offset = tmp;
  1308. *bytes = size;
  1309. return entry;
  1310. } else if (size > *max_extent_size) {
  1311. *max_extent_size = size;
  1312. }
  1313. continue;
  1314. }
  1315. *offset = tmp;
  1316. *bytes = entry->bytes - align_off;
  1317. return entry;
  1318. }
  1319. out:
  1320. return NULL;
  1321. }
  1322. static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
  1323. struct btrfs_free_space *info, u64 offset)
  1324. {
  1325. info->offset = offset_to_bitmap(ctl, offset);
  1326. info->bytes = 0;
  1327. INIT_LIST_HEAD(&info->list);
  1328. link_free_space(ctl, info);
  1329. ctl->total_bitmaps++;
  1330. ctl->op->recalc_thresholds(ctl);
  1331. }
  1332. static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  1333. struct btrfs_free_space *bitmap_info)
  1334. {
  1335. unlink_free_space(ctl, bitmap_info);
  1336. kfree(bitmap_info->bitmap);
  1337. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1338. ctl->total_bitmaps--;
  1339. ctl->op->recalc_thresholds(ctl);
  1340. }
  1341. static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
  1342. struct btrfs_free_space *bitmap_info,
  1343. u64 *offset, u64 *bytes)
  1344. {
  1345. u64 end;
  1346. u64 search_start, search_bytes;
  1347. int ret;
  1348. again:
  1349. end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
  1350. /*
  1351. * We need to search for bits in this bitmap. We could only cover some
  1352. * of the extent in this bitmap thanks to how we add space, so we need
  1353. * to search for as much as it as we can and clear that amount, and then
  1354. * go searching for the next bit.
  1355. */
  1356. search_start = *offset;
  1357. search_bytes = ctl->unit;
  1358. search_bytes = min(search_bytes, end - search_start + 1);
  1359. ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
  1360. if (ret < 0 || search_start != *offset)
  1361. return -EINVAL;
  1362. /* We may have found more bits than what we need */
  1363. search_bytes = min(search_bytes, *bytes);
  1364. /* Cannot clear past the end of the bitmap */
  1365. search_bytes = min(search_bytes, end - search_start + 1);
  1366. bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
  1367. *offset += search_bytes;
  1368. *bytes -= search_bytes;
  1369. if (*bytes) {
  1370. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1371. if (!bitmap_info->bytes)
  1372. free_bitmap(ctl, bitmap_info);
  1373. /*
  1374. * no entry after this bitmap, but we still have bytes to
  1375. * remove, so something has gone wrong.
  1376. */
  1377. if (!next)
  1378. return -EINVAL;
  1379. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1380. offset_index);
  1381. /*
  1382. * if the next entry isn't a bitmap we need to return to let the
  1383. * extent stuff do its work.
  1384. */
  1385. if (!bitmap_info->bitmap)
  1386. return -EAGAIN;
  1387. /*
  1388. * Ok the next item is a bitmap, but it may not actually hold
  1389. * the information for the rest of this free space stuff, so
  1390. * look for it, and if we don't find it return so we can try
  1391. * everything over again.
  1392. */
  1393. search_start = *offset;
  1394. search_bytes = ctl->unit;
  1395. ret = search_bitmap(ctl, bitmap_info, &search_start,
  1396. &search_bytes);
  1397. if (ret < 0 || search_start != *offset)
  1398. return -EAGAIN;
  1399. goto again;
  1400. } else if (!bitmap_info->bytes)
  1401. free_bitmap(ctl, bitmap_info);
  1402. return 0;
  1403. }
  1404. static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
  1405. struct btrfs_free_space *info, u64 offset,
  1406. u64 bytes)
  1407. {
  1408. u64 bytes_to_set = 0;
  1409. u64 end;
  1410. end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
  1411. bytes_to_set = min(end - offset, bytes);
  1412. bitmap_set_bits(ctl, info, offset, bytes_to_set);
  1413. return bytes_to_set;
  1414. }
  1415. static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
  1416. struct btrfs_free_space *info)
  1417. {
  1418. struct btrfs_block_group_cache *block_group = ctl->private;
  1419. /*
  1420. * If we are below the extents threshold then we can add this as an
  1421. * extent, and don't have to deal with the bitmap
  1422. */
  1423. if (ctl->free_extents < ctl->extents_thresh) {
  1424. /*
  1425. * If this block group has some small extents we don't want to
  1426. * use up all of our free slots in the cache with them, we want
  1427. * to reserve them to larger extents, however if we have plent
  1428. * of cache left then go ahead an dadd them, no sense in adding
  1429. * the overhead of a bitmap if we don't have to.
  1430. */
  1431. if (info->bytes <= block_group->sectorsize * 4) {
  1432. if (ctl->free_extents * 2 <= ctl->extents_thresh)
  1433. return false;
  1434. } else {
  1435. return false;
  1436. }
  1437. }
  1438. /*
  1439. * The original block groups from mkfs can be really small, like 8
  1440. * megabytes, so don't bother with a bitmap for those entries. However
  1441. * some block groups can be smaller than what a bitmap would cover but
  1442. * are still large enough that they could overflow the 32k memory limit,
  1443. * so allow those block groups to still be allowed to have a bitmap
  1444. * entry.
  1445. */
  1446. if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
  1447. return false;
  1448. return true;
  1449. }
  1450. static struct btrfs_free_space_op free_space_op = {
  1451. .recalc_thresholds = recalculate_thresholds,
  1452. .use_bitmap = use_bitmap,
  1453. };
  1454. static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
  1455. struct btrfs_free_space *info)
  1456. {
  1457. struct btrfs_free_space *bitmap_info;
  1458. struct btrfs_block_group_cache *block_group = NULL;
  1459. int added = 0;
  1460. u64 bytes, offset, bytes_added;
  1461. int ret;
  1462. bytes = info->bytes;
  1463. offset = info->offset;
  1464. if (!ctl->op->use_bitmap(ctl, info))
  1465. return 0;
  1466. if (ctl->op == &free_space_op)
  1467. block_group = ctl->private;
  1468. again:
  1469. /*
  1470. * Since we link bitmaps right into the cluster we need to see if we
  1471. * have a cluster here, and if so and it has our bitmap we need to add
  1472. * the free space to that bitmap.
  1473. */
  1474. if (block_group && !list_empty(&block_group->cluster_list)) {
  1475. struct btrfs_free_cluster *cluster;
  1476. struct rb_node *node;
  1477. struct btrfs_free_space *entry;
  1478. cluster = list_entry(block_group->cluster_list.next,
  1479. struct btrfs_free_cluster,
  1480. block_group_list);
  1481. spin_lock(&cluster->lock);
  1482. node = rb_first(&cluster->root);
  1483. if (!node) {
  1484. spin_unlock(&cluster->lock);
  1485. goto no_cluster_bitmap;
  1486. }
  1487. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1488. if (!entry->bitmap) {
  1489. spin_unlock(&cluster->lock);
  1490. goto no_cluster_bitmap;
  1491. }
  1492. if (entry->offset == offset_to_bitmap(ctl, offset)) {
  1493. bytes_added = add_bytes_to_bitmap(ctl, entry,
  1494. offset, bytes);
  1495. bytes -= bytes_added;
  1496. offset += bytes_added;
  1497. }
  1498. spin_unlock(&cluster->lock);
  1499. if (!bytes) {
  1500. ret = 1;
  1501. goto out;
  1502. }
  1503. }
  1504. no_cluster_bitmap:
  1505. bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  1506. 1, 0);
  1507. if (!bitmap_info) {
  1508. ASSERT(added == 0);
  1509. goto new_bitmap;
  1510. }
  1511. bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
  1512. bytes -= bytes_added;
  1513. offset += bytes_added;
  1514. added = 0;
  1515. if (!bytes) {
  1516. ret = 1;
  1517. goto out;
  1518. } else
  1519. goto again;
  1520. new_bitmap:
  1521. if (info && info->bitmap) {
  1522. add_new_bitmap(ctl, info, offset);
  1523. added = 1;
  1524. info = NULL;
  1525. goto again;
  1526. } else {
  1527. spin_unlock(&ctl->tree_lock);
  1528. /* no pre-allocated info, allocate a new one */
  1529. if (!info) {
  1530. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1531. GFP_NOFS);
  1532. if (!info) {
  1533. spin_lock(&ctl->tree_lock);
  1534. ret = -ENOMEM;
  1535. goto out;
  1536. }
  1537. }
  1538. /* allocate the bitmap */
  1539. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1540. spin_lock(&ctl->tree_lock);
  1541. if (!info->bitmap) {
  1542. ret = -ENOMEM;
  1543. goto out;
  1544. }
  1545. goto again;
  1546. }
  1547. out:
  1548. if (info) {
  1549. if (info->bitmap)
  1550. kfree(info->bitmap);
  1551. kmem_cache_free(btrfs_free_space_cachep, info);
  1552. }
  1553. return ret;
  1554. }
  1555. static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
  1556. struct btrfs_free_space *info, bool update_stat)
  1557. {
  1558. struct btrfs_free_space *left_info;
  1559. struct btrfs_free_space *right_info;
  1560. bool merged = false;
  1561. u64 offset = info->offset;
  1562. u64 bytes = info->bytes;
  1563. /*
  1564. * first we want to see if there is free space adjacent to the range we
  1565. * are adding, if there is remove that struct and add a new one to
  1566. * cover the entire range
  1567. */
  1568. right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
  1569. if (right_info && rb_prev(&right_info->offset_index))
  1570. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1571. struct btrfs_free_space, offset_index);
  1572. else
  1573. left_info = tree_search_offset(ctl, offset - 1, 0, 0);
  1574. if (right_info && !right_info->bitmap) {
  1575. if (update_stat)
  1576. unlink_free_space(ctl, right_info);
  1577. else
  1578. __unlink_free_space(ctl, right_info);
  1579. info->bytes += right_info->bytes;
  1580. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1581. merged = true;
  1582. }
  1583. if (left_info && !left_info->bitmap &&
  1584. left_info->offset + left_info->bytes == offset) {
  1585. if (update_stat)
  1586. unlink_free_space(ctl, left_info);
  1587. else
  1588. __unlink_free_space(ctl, left_info);
  1589. info->offset = left_info->offset;
  1590. info->bytes += left_info->bytes;
  1591. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1592. merged = true;
  1593. }
  1594. return merged;
  1595. }
  1596. int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
  1597. u64 offset, u64 bytes)
  1598. {
  1599. struct btrfs_free_space *info;
  1600. int ret = 0;
  1601. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1602. if (!info)
  1603. return -ENOMEM;
  1604. info->offset = offset;
  1605. info->bytes = bytes;
  1606. spin_lock(&ctl->tree_lock);
  1607. if (try_merge_free_space(ctl, info, true))
  1608. goto link;
  1609. /*
  1610. * There was no extent directly to the left or right of this new
  1611. * extent then we know we're going to have to allocate a new extent, so
  1612. * before we do that see if we need to drop this into a bitmap
  1613. */
  1614. ret = insert_into_bitmap(ctl, info);
  1615. if (ret < 0) {
  1616. goto out;
  1617. } else if (ret) {
  1618. ret = 0;
  1619. goto out;
  1620. }
  1621. link:
  1622. ret = link_free_space(ctl, info);
  1623. if (ret)
  1624. kmem_cache_free(btrfs_free_space_cachep, info);
  1625. out:
  1626. spin_unlock(&ctl->tree_lock);
  1627. if (ret) {
  1628. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1629. ASSERT(ret != -EEXIST);
  1630. }
  1631. return ret;
  1632. }
  1633. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1634. u64 offset, u64 bytes)
  1635. {
  1636. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1637. struct btrfs_free_space *info;
  1638. int ret;
  1639. bool re_search = false;
  1640. spin_lock(&ctl->tree_lock);
  1641. again:
  1642. ret = 0;
  1643. if (!bytes)
  1644. goto out_lock;
  1645. info = tree_search_offset(ctl, offset, 0, 0);
  1646. if (!info) {
  1647. /*
  1648. * oops didn't find an extent that matched the space we wanted
  1649. * to remove, look for a bitmap instead
  1650. */
  1651. info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  1652. 1, 0);
  1653. if (!info) {
  1654. /*
  1655. * If we found a partial bit of our free space in a
  1656. * bitmap but then couldn't find the other part this may
  1657. * be a problem, so WARN about it.
  1658. */
  1659. WARN_ON(re_search);
  1660. goto out_lock;
  1661. }
  1662. }
  1663. re_search = false;
  1664. if (!info->bitmap) {
  1665. unlink_free_space(ctl, info);
  1666. if (offset == info->offset) {
  1667. u64 to_free = min(bytes, info->bytes);
  1668. info->bytes -= to_free;
  1669. info->offset += to_free;
  1670. if (info->bytes) {
  1671. ret = link_free_space(ctl, info);
  1672. WARN_ON(ret);
  1673. } else {
  1674. kmem_cache_free(btrfs_free_space_cachep, info);
  1675. }
  1676. offset += to_free;
  1677. bytes -= to_free;
  1678. goto again;
  1679. } else {
  1680. u64 old_end = info->bytes + info->offset;
  1681. info->bytes = offset - info->offset;
  1682. ret = link_free_space(ctl, info);
  1683. WARN_ON(ret);
  1684. if (ret)
  1685. goto out_lock;
  1686. /* Not enough bytes in this entry to satisfy us */
  1687. if (old_end < offset + bytes) {
  1688. bytes -= old_end - offset;
  1689. offset = old_end;
  1690. goto again;
  1691. } else if (old_end == offset + bytes) {
  1692. /* all done */
  1693. goto out_lock;
  1694. }
  1695. spin_unlock(&ctl->tree_lock);
  1696. ret = btrfs_add_free_space(block_group, offset + bytes,
  1697. old_end - (offset + bytes));
  1698. WARN_ON(ret);
  1699. goto out;
  1700. }
  1701. }
  1702. ret = remove_from_bitmap(ctl, info, &offset, &bytes);
  1703. if (ret == -EAGAIN) {
  1704. re_search = true;
  1705. goto again;
  1706. }
  1707. out_lock:
  1708. spin_unlock(&ctl->tree_lock);
  1709. out:
  1710. return ret;
  1711. }
  1712. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1713. u64 bytes)
  1714. {
  1715. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1716. struct btrfs_free_space *info;
  1717. struct rb_node *n;
  1718. int count = 0;
  1719. for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
  1720. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1721. if (info->bytes >= bytes && !block_group->ro)
  1722. count++;
  1723. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1724. info->offset, info->bytes,
  1725. (info->bitmap) ? "yes" : "no");
  1726. }
  1727. printk(KERN_INFO "block group has cluster?: %s\n",
  1728. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1729. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1730. "\n", count);
  1731. }
  1732. void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
  1733. {
  1734. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1735. spin_lock_init(&ctl->tree_lock);
  1736. ctl->unit = block_group->sectorsize;
  1737. ctl->start = block_group->key.objectid;
  1738. ctl->private = block_group;
  1739. ctl->op = &free_space_op;
  1740. /*
  1741. * we only want to have 32k of ram per block group for keeping
  1742. * track of free space, and if we pass 1/2 of that we want to
  1743. * start converting things over to using bitmaps
  1744. */
  1745. ctl->extents_thresh = ((1024 * 32) / 2) /
  1746. sizeof(struct btrfs_free_space);
  1747. }
  1748. /*
  1749. * for a given cluster, put all of its extents back into the free
  1750. * space cache. If the block group passed doesn't match the block group
  1751. * pointed to by the cluster, someone else raced in and freed the
  1752. * cluster already. In that case, we just return without changing anything
  1753. */
  1754. static int
  1755. __btrfs_return_cluster_to_free_space(
  1756. struct btrfs_block_group_cache *block_group,
  1757. struct btrfs_free_cluster *cluster)
  1758. {
  1759. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1760. struct btrfs_free_space *entry;
  1761. struct rb_node *node;
  1762. spin_lock(&cluster->lock);
  1763. if (cluster->block_group != block_group)
  1764. goto out;
  1765. cluster->block_group = NULL;
  1766. cluster->window_start = 0;
  1767. list_del_init(&cluster->block_group_list);
  1768. node = rb_first(&cluster->root);
  1769. while (node) {
  1770. bool bitmap;
  1771. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1772. node = rb_next(&entry->offset_index);
  1773. rb_erase(&entry->offset_index, &cluster->root);
  1774. bitmap = (entry->bitmap != NULL);
  1775. if (!bitmap)
  1776. try_merge_free_space(ctl, entry, false);
  1777. tree_insert_offset(&ctl->free_space_offset,
  1778. entry->offset, &entry->offset_index, bitmap);
  1779. }
  1780. cluster->root = RB_ROOT;
  1781. out:
  1782. spin_unlock(&cluster->lock);
  1783. btrfs_put_block_group(block_group);
  1784. return 0;
  1785. }
  1786. static void __btrfs_remove_free_space_cache_locked(
  1787. struct btrfs_free_space_ctl *ctl)
  1788. {
  1789. struct btrfs_free_space *info;
  1790. struct rb_node *node;
  1791. while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  1792. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1793. if (!info->bitmap) {
  1794. unlink_free_space(ctl, info);
  1795. kmem_cache_free(btrfs_free_space_cachep, info);
  1796. } else {
  1797. free_bitmap(ctl, info);
  1798. }
  1799. if (need_resched()) {
  1800. spin_unlock(&ctl->tree_lock);
  1801. cond_resched();
  1802. spin_lock(&ctl->tree_lock);
  1803. }
  1804. }
  1805. }
  1806. void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  1807. {
  1808. spin_lock(&ctl->tree_lock);
  1809. __btrfs_remove_free_space_cache_locked(ctl);
  1810. spin_unlock(&ctl->tree_lock);
  1811. }
  1812. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1813. {
  1814. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1815. struct btrfs_free_cluster *cluster;
  1816. struct list_head *head;
  1817. spin_lock(&ctl->tree_lock);
  1818. while ((head = block_group->cluster_list.next) !=
  1819. &block_group->cluster_list) {
  1820. cluster = list_entry(head, struct btrfs_free_cluster,
  1821. block_group_list);
  1822. WARN_ON(cluster->block_group != block_group);
  1823. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1824. if (need_resched()) {
  1825. spin_unlock(&ctl->tree_lock);
  1826. cond_resched();
  1827. spin_lock(&ctl->tree_lock);
  1828. }
  1829. }
  1830. __btrfs_remove_free_space_cache_locked(ctl);
  1831. spin_unlock(&ctl->tree_lock);
  1832. }
  1833. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1834. u64 offset, u64 bytes, u64 empty_size,
  1835. u64 *max_extent_size)
  1836. {
  1837. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1838. struct btrfs_free_space *entry = NULL;
  1839. u64 bytes_search = bytes + empty_size;
  1840. u64 ret = 0;
  1841. u64 align_gap = 0;
  1842. u64 align_gap_len = 0;
  1843. spin_lock(&ctl->tree_lock);
  1844. entry = find_free_space(ctl, &offset, &bytes_search,
  1845. block_group->full_stripe_len, max_extent_size);
  1846. if (!entry)
  1847. goto out;
  1848. ret = offset;
  1849. if (entry->bitmap) {
  1850. bitmap_clear_bits(ctl, entry, offset, bytes);
  1851. if (!entry->bytes)
  1852. free_bitmap(ctl, entry);
  1853. } else {
  1854. unlink_free_space(ctl, entry);
  1855. align_gap_len = offset - entry->offset;
  1856. align_gap = entry->offset;
  1857. entry->offset = offset + bytes;
  1858. WARN_ON(entry->bytes < bytes + align_gap_len);
  1859. entry->bytes -= bytes + align_gap_len;
  1860. if (!entry->bytes)
  1861. kmem_cache_free(btrfs_free_space_cachep, entry);
  1862. else
  1863. link_free_space(ctl, entry);
  1864. }
  1865. out:
  1866. spin_unlock(&ctl->tree_lock);
  1867. if (align_gap_len)
  1868. __btrfs_add_free_space(ctl, align_gap, align_gap_len);
  1869. return ret;
  1870. }
  1871. /*
  1872. * given a cluster, put all of its extents back into the free space
  1873. * cache. If a block group is passed, this function will only free
  1874. * a cluster that belongs to the passed block group.
  1875. *
  1876. * Otherwise, it'll get a reference on the block group pointed to by the
  1877. * cluster and remove the cluster from it.
  1878. */
  1879. int btrfs_return_cluster_to_free_space(
  1880. struct btrfs_block_group_cache *block_group,
  1881. struct btrfs_free_cluster *cluster)
  1882. {
  1883. struct btrfs_free_space_ctl *ctl;
  1884. int ret;
  1885. /* first, get a safe pointer to the block group */
  1886. spin_lock(&cluster->lock);
  1887. if (!block_group) {
  1888. block_group = cluster->block_group;
  1889. if (!block_group) {
  1890. spin_unlock(&cluster->lock);
  1891. return 0;
  1892. }
  1893. } else if (cluster->block_group != block_group) {
  1894. /* someone else has already freed it don't redo their work */
  1895. spin_unlock(&cluster->lock);
  1896. return 0;
  1897. }
  1898. atomic_inc(&block_group->count);
  1899. spin_unlock(&cluster->lock);
  1900. ctl = block_group->free_space_ctl;
  1901. /* now return any extents the cluster had on it */
  1902. spin_lock(&ctl->tree_lock);
  1903. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1904. spin_unlock(&ctl->tree_lock);
  1905. /* finally drop our ref */
  1906. btrfs_put_block_group(block_group);
  1907. return ret;
  1908. }
  1909. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1910. struct btrfs_free_cluster *cluster,
  1911. struct btrfs_free_space *entry,
  1912. u64 bytes, u64 min_start,
  1913. u64 *max_extent_size)
  1914. {
  1915. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1916. int err;
  1917. u64 search_start = cluster->window_start;
  1918. u64 search_bytes = bytes;
  1919. u64 ret = 0;
  1920. search_start = min_start;
  1921. search_bytes = bytes;
  1922. err = search_bitmap(ctl, entry, &search_start, &search_bytes);
  1923. if (err) {
  1924. if (search_bytes > *max_extent_size)
  1925. *max_extent_size = search_bytes;
  1926. return 0;
  1927. }
  1928. ret = search_start;
  1929. __bitmap_clear_bits(ctl, entry, ret, bytes);
  1930. return ret;
  1931. }
  1932. /*
  1933. * given a cluster, try to allocate 'bytes' from it, returns 0
  1934. * if it couldn't find anything suitably large, or a logical disk offset
  1935. * if things worked out
  1936. */
  1937. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1938. struct btrfs_free_cluster *cluster, u64 bytes,
  1939. u64 min_start, u64 *max_extent_size)
  1940. {
  1941. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  1942. struct btrfs_free_space *entry = NULL;
  1943. struct rb_node *node;
  1944. u64 ret = 0;
  1945. spin_lock(&cluster->lock);
  1946. if (bytes > cluster->max_size)
  1947. goto out;
  1948. if (cluster->block_group != block_group)
  1949. goto out;
  1950. node = rb_first(&cluster->root);
  1951. if (!node)
  1952. goto out;
  1953. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1954. while (1) {
  1955. if (entry->bytes < bytes && entry->bytes > *max_extent_size)
  1956. *max_extent_size = entry->bytes;
  1957. if (entry->bytes < bytes ||
  1958. (!entry->bitmap && entry->offset < min_start)) {
  1959. node = rb_next(&entry->offset_index);
  1960. if (!node)
  1961. break;
  1962. entry = rb_entry(node, struct btrfs_free_space,
  1963. offset_index);
  1964. continue;
  1965. }
  1966. if (entry->bitmap) {
  1967. ret = btrfs_alloc_from_bitmap(block_group,
  1968. cluster, entry, bytes,
  1969. cluster->window_start,
  1970. max_extent_size);
  1971. if (ret == 0) {
  1972. node = rb_next(&entry->offset_index);
  1973. if (!node)
  1974. break;
  1975. entry = rb_entry(node, struct btrfs_free_space,
  1976. offset_index);
  1977. continue;
  1978. }
  1979. cluster->window_start += bytes;
  1980. } else {
  1981. ret = entry->offset;
  1982. entry->offset += bytes;
  1983. entry->bytes -= bytes;
  1984. }
  1985. if (entry->bytes == 0)
  1986. rb_erase(&entry->offset_index, &cluster->root);
  1987. break;
  1988. }
  1989. out:
  1990. spin_unlock(&cluster->lock);
  1991. if (!ret)
  1992. return 0;
  1993. spin_lock(&ctl->tree_lock);
  1994. ctl->free_space -= bytes;
  1995. if (entry->bytes == 0) {
  1996. ctl->free_extents--;
  1997. if (entry->bitmap) {
  1998. kfree(entry->bitmap);
  1999. ctl->total_bitmaps--;
  2000. ctl->op->recalc_thresholds(ctl);
  2001. }
  2002. kmem_cache_free(btrfs_free_space_cachep, entry);
  2003. }
  2004. spin_unlock(&ctl->tree_lock);
  2005. return ret;
  2006. }
  2007. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  2008. struct btrfs_free_space *entry,
  2009. struct btrfs_free_cluster *cluster,
  2010. u64 offset, u64 bytes,
  2011. u64 cont1_bytes, u64 min_bytes)
  2012. {
  2013. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2014. unsigned long next_zero;
  2015. unsigned long i;
  2016. unsigned long want_bits;
  2017. unsigned long min_bits;
  2018. unsigned long found_bits;
  2019. unsigned long start = 0;
  2020. unsigned long total_found = 0;
  2021. int ret;
  2022. i = offset_to_bit(entry->offset, ctl->unit,
  2023. max_t(u64, offset, entry->offset));
  2024. want_bits = bytes_to_bits(bytes, ctl->unit);
  2025. min_bits = bytes_to_bits(min_bytes, ctl->unit);
  2026. again:
  2027. found_bits = 0;
  2028. for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
  2029. next_zero = find_next_zero_bit(entry->bitmap,
  2030. BITS_PER_BITMAP, i);
  2031. if (next_zero - i >= min_bits) {
  2032. found_bits = next_zero - i;
  2033. break;
  2034. }
  2035. i = next_zero;
  2036. }
  2037. if (!found_bits)
  2038. return -ENOSPC;
  2039. if (!total_found) {
  2040. start = i;
  2041. cluster->max_size = 0;
  2042. }
  2043. total_found += found_bits;
  2044. if (cluster->max_size < found_bits * ctl->unit)
  2045. cluster->max_size = found_bits * ctl->unit;
  2046. if (total_found < want_bits || cluster->max_size < cont1_bytes) {
  2047. i = next_zero + 1;
  2048. goto again;
  2049. }
  2050. cluster->window_start = start * ctl->unit + entry->offset;
  2051. rb_erase(&entry->offset_index, &ctl->free_space_offset);
  2052. ret = tree_insert_offset(&cluster->root, entry->offset,
  2053. &entry->offset_index, 1);
  2054. ASSERT(!ret); /* -EEXIST; Logic error */
  2055. trace_btrfs_setup_cluster(block_group, cluster,
  2056. total_found * ctl->unit, 1);
  2057. return 0;
  2058. }
  2059. /*
  2060. * This searches the block group for just extents to fill the cluster with.
  2061. * Try to find a cluster with at least bytes total bytes, at least one
  2062. * extent of cont1_bytes, and other clusters of at least min_bytes.
  2063. */
  2064. static noinline int
  2065. setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  2066. struct btrfs_free_cluster *cluster,
  2067. struct list_head *bitmaps, u64 offset, u64 bytes,
  2068. u64 cont1_bytes, u64 min_bytes)
  2069. {
  2070. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2071. struct btrfs_free_space *first = NULL;
  2072. struct btrfs_free_space *entry = NULL;
  2073. struct btrfs_free_space *last;
  2074. struct rb_node *node;
  2075. u64 window_start;
  2076. u64 window_free;
  2077. u64 max_extent;
  2078. u64 total_size = 0;
  2079. entry = tree_search_offset(ctl, offset, 0, 1);
  2080. if (!entry)
  2081. return -ENOSPC;
  2082. /*
  2083. * We don't want bitmaps, so just move along until we find a normal
  2084. * extent entry.
  2085. */
  2086. while (entry->bitmap || entry->bytes < min_bytes) {
  2087. if (entry->bitmap && list_empty(&entry->list))
  2088. list_add_tail(&entry->list, bitmaps);
  2089. node = rb_next(&entry->offset_index);
  2090. if (!node)
  2091. return -ENOSPC;
  2092. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2093. }
  2094. window_start = entry->offset;
  2095. window_free = entry->bytes;
  2096. max_extent = entry->bytes;
  2097. first = entry;
  2098. last = entry;
  2099. for (node = rb_next(&entry->offset_index); node;
  2100. node = rb_next(&entry->offset_index)) {
  2101. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2102. if (entry->bitmap) {
  2103. if (list_empty(&entry->list))
  2104. list_add_tail(&entry->list, bitmaps);
  2105. continue;
  2106. }
  2107. if (entry->bytes < min_bytes)
  2108. continue;
  2109. last = entry;
  2110. window_free += entry->bytes;
  2111. if (entry->bytes > max_extent)
  2112. max_extent = entry->bytes;
  2113. }
  2114. if (window_free < bytes || max_extent < cont1_bytes)
  2115. return -ENOSPC;
  2116. cluster->window_start = first->offset;
  2117. node = &first->offset_index;
  2118. /*
  2119. * now we've found our entries, pull them out of the free space
  2120. * cache and put them into the cluster rbtree
  2121. */
  2122. do {
  2123. int ret;
  2124. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  2125. node = rb_next(&entry->offset_index);
  2126. if (entry->bitmap || entry->bytes < min_bytes)
  2127. continue;
  2128. rb_erase(&entry->offset_index, &ctl->free_space_offset);
  2129. ret = tree_insert_offset(&cluster->root, entry->offset,
  2130. &entry->offset_index, 0);
  2131. total_size += entry->bytes;
  2132. ASSERT(!ret); /* -EEXIST; Logic error */
  2133. } while (node && entry != last);
  2134. cluster->max_size = max_extent;
  2135. trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
  2136. return 0;
  2137. }
  2138. /*
  2139. * This specifically looks for bitmaps that may work in the cluster, we assume
  2140. * that we have already failed to find extents that will work.
  2141. */
  2142. static noinline int
  2143. setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  2144. struct btrfs_free_cluster *cluster,
  2145. struct list_head *bitmaps, u64 offset, u64 bytes,
  2146. u64 cont1_bytes, u64 min_bytes)
  2147. {
  2148. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2149. struct btrfs_free_space *entry;
  2150. int ret = -ENOSPC;
  2151. u64 bitmap_offset = offset_to_bitmap(ctl, offset);
  2152. if (ctl->total_bitmaps == 0)
  2153. return -ENOSPC;
  2154. /*
  2155. * The bitmap that covers offset won't be in the list unless offset
  2156. * is just its start offset.
  2157. */
  2158. entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
  2159. if (entry->offset != bitmap_offset) {
  2160. entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
  2161. if (entry && list_empty(&entry->list))
  2162. list_add(&entry->list, bitmaps);
  2163. }
  2164. list_for_each_entry(entry, bitmaps, list) {
  2165. if (entry->bytes < bytes)
  2166. continue;
  2167. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  2168. bytes, cont1_bytes, min_bytes);
  2169. if (!ret)
  2170. return 0;
  2171. }
  2172. /*
  2173. * The bitmaps list has all the bitmaps that record free space
  2174. * starting after offset, so no more search is required.
  2175. */
  2176. return -ENOSPC;
  2177. }
  2178. /*
  2179. * here we try to find a cluster of blocks in a block group. The goal
  2180. * is to find at least bytes+empty_size.
  2181. * We might not find them all in one contiguous area.
  2182. *
  2183. * returns zero and sets up cluster if things worked out, otherwise
  2184. * it returns -enospc
  2185. */
  2186. int btrfs_find_space_cluster(struct btrfs_root *root,
  2187. struct btrfs_block_group_cache *block_group,
  2188. struct btrfs_free_cluster *cluster,
  2189. u64 offset, u64 bytes, u64 empty_size)
  2190. {
  2191. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2192. struct btrfs_free_space *entry, *tmp;
  2193. LIST_HEAD(bitmaps);
  2194. u64 min_bytes;
  2195. u64 cont1_bytes;
  2196. int ret;
  2197. /*
  2198. * Choose the minimum extent size we'll require for this
  2199. * cluster. For SSD_SPREAD, don't allow any fragmentation.
  2200. * For metadata, allow allocates with smaller extents. For
  2201. * data, keep it dense.
  2202. */
  2203. if (btrfs_test_opt(root, SSD_SPREAD)) {
  2204. cont1_bytes = min_bytes = bytes + empty_size;
  2205. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  2206. cont1_bytes = bytes;
  2207. min_bytes = block_group->sectorsize;
  2208. } else {
  2209. cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
  2210. min_bytes = block_group->sectorsize;
  2211. }
  2212. spin_lock(&ctl->tree_lock);
  2213. /*
  2214. * If we know we don't have enough space to make a cluster don't even
  2215. * bother doing all the work to try and find one.
  2216. */
  2217. if (ctl->free_space < bytes) {
  2218. spin_unlock(&ctl->tree_lock);
  2219. return -ENOSPC;
  2220. }
  2221. spin_lock(&cluster->lock);
  2222. /* someone already found a cluster, hooray */
  2223. if (cluster->block_group) {
  2224. ret = 0;
  2225. goto out;
  2226. }
  2227. trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
  2228. min_bytes);
  2229. INIT_LIST_HEAD(&bitmaps);
  2230. ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
  2231. bytes + empty_size,
  2232. cont1_bytes, min_bytes);
  2233. if (ret)
  2234. ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
  2235. offset, bytes + empty_size,
  2236. cont1_bytes, min_bytes);
  2237. /* Clear our temporary list */
  2238. list_for_each_entry_safe(entry, tmp, &bitmaps, list)
  2239. list_del_init(&entry->list);
  2240. if (!ret) {
  2241. atomic_inc(&block_group->count);
  2242. list_add_tail(&cluster->block_group_list,
  2243. &block_group->cluster_list);
  2244. cluster->block_group = block_group;
  2245. } else {
  2246. trace_btrfs_failed_cluster_setup(block_group);
  2247. }
  2248. out:
  2249. spin_unlock(&cluster->lock);
  2250. spin_unlock(&ctl->tree_lock);
  2251. return ret;
  2252. }
  2253. /*
  2254. * simple code to zero out a cluster
  2255. */
  2256. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  2257. {
  2258. spin_lock_init(&cluster->lock);
  2259. spin_lock_init(&cluster->refill_lock);
  2260. cluster->root = RB_ROOT;
  2261. cluster->max_size = 0;
  2262. INIT_LIST_HEAD(&cluster->block_group_list);
  2263. cluster->block_group = NULL;
  2264. }
  2265. static int do_trimming(struct btrfs_block_group_cache *block_group,
  2266. u64 *total_trimmed, u64 start, u64 bytes,
  2267. u64 reserved_start, u64 reserved_bytes)
  2268. {
  2269. struct btrfs_space_info *space_info = block_group->space_info;
  2270. struct btrfs_fs_info *fs_info = block_group->fs_info;
  2271. int ret;
  2272. int update = 0;
  2273. u64 trimmed = 0;
  2274. spin_lock(&space_info->lock);
  2275. spin_lock(&block_group->lock);
  2276. if (!block_group->ro) {
  2277. block_group->reserved += reserved_bytes;
  2278. space_info->bytes_reserved += reserved_bytes;
  2279. update = 1;
  2280. }
  2281. spin_unlock(&block_group->lock);
  2282. spin_unlock(&space_info->lock);
  2283. ret = btrfs_error_discard_extent(fs_info->extent_root,
  2284. start, bytes, &trimmed);
  2285. if (!ret)
  2286. *total_trimmed += trimmed;
  2287. btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
  2288. if (update) {
  2289. spin_lock(&space_info->lock);
  2290. spin_lock(&block_group->lock);
  2291. if (block_group->ro)
  2292. space_info->bytes_readonly += reserved_bytes;
  2293. block_group->reserved -= reserved_bytes;
  2294. space_info->bytes_reserved -= reserved_bytes;
  2295. spin_unlock(&space_info->lock);
  2296. spin_unlock(&block_group->lock);
  2297. }
  2298. return ret;
  2299. }
  2300. static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
  2301. u64 *total_trimmed, u64 start, u64 end, u64 minlen)
  2302. {
  2303. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2304. struct btrfs_free_space *entry;
  2305. struct rb_node *node;
  2306. int ret = 0;
  2307. u64 extent_start;
  2308. u64 extent_bytes;
  2309. u64 bytes;
  2310. while (start < end) {
  2311. spin_lock(&ctl->tree_lock);
  2312. if (ctl->free_space < minlen) {
  2313. spin_unlock(&ctl->tree_lock);
  2314. break;
  2315. }
  2316. entry = tree_search_offset(ctl, start, 0, 1);
  2317. if (!entry) {
  2318. spin_unlock(&ctl->tree_lock);
  2319. break;
  2320. }
  2321. /* skip bitmaps */
  2322. while (entry->bitmap) {
  2323. node = rb_next(&entry->offset_index);
  2324. if (!node) {
  2325. spin_unlock(&ctl->tree_lock);
  2326. goto out;
  2327. }
  2328. entry = rb_entry(node, struct btrfs_free_space,
  2329. offset_index);
  2330. }
  2331. if (entry->offset >= end) {
  2332. spin_unlock(&ctl->tree_lock);
  2333. break;
  2334. }
  2335. extent_start = entry->offset;
  2336. extent_bytes = entry->bytes;
  2337. start = max(start, extent_start);
  2338. bytes = min(extent_start + extent_bytes, end) - start;
  2339. if (bytes < minlen) {
  2340. spin_unlock(&ctl->tree_lock);
  2341. goto next;
  2342. }
  2343. unlink_free_space(ctl, entry);
  2344. kmem_cache_free(btrfs_free_space_cachep, entry);
  2345. spin_unlock(&ctl->tree_lock);
  2346. ret = do_trimming(block_group, total_trimmed, start, bytes,
  2347. extent_start, extent_bytes);
  2348. if (ret)
  2349. break;
  2350. next:
  2351. start += bytes;
  2352. if (fatal_signal_pending(current)) {
  2353. ret = -ERESTARTSYS;
  2354. break;
  2355. }
  2356. cond_resched();
  2357. }
  2358. out:
  2359. return ret;
  2360. }
  2361. static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
  2362. u64 *total_trimmed, u64 start, u64 end, u64 minlen)
  2363. {
  2364. struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
  2365. struct btrfs_free_space *entry;
  2366. int ret = 0;
  2367. int ret2;
  2368. u64 bytes;
  2369. u64 offset = offset_to_bitmap(ctl, start);
  2370. while (offset < end) {
  2371. bool next_bitmap = false;
  2372. spin_lock(&ctl->tree_lock);
  2373. if (ctl->free_space < minlen) {
  2374. spin_unlock(&ctl->tree_lock);
  2375. break;
  2376. }
  2377. entry = tree_search_offset(ctl, offset, 1, 0);
  2378. if (!entry) {
  2379. spin_unlock(&ctl->tree_lock);
  2380. next_bitmap = true;
  2381. goto next;
  2382. }
  2383. bytes = minlen;
  2384. ret2 = search_bitmap(ctl, entry, &start, &bytes);
  2385. if (ret2 || start >= end) {
  2386. spin_unlock(&ctl->tree_lock);
  2387. next_bitmap = true;
  2388. goto next;
  2389. }
  2390. bytes = min(bytes, end - start);
  2391. if (bytes < minlen) {
  2392. spin_unlock(&ctl->tree_lock);
  2393. goto next;
  2394. }
  2395. bitmap_clear_bits(ctl, entry, start, bytes);
  2396. if (entry->bytes == 0)
  2397. free_bitmap(ctl, entry);
  2398. spin_unlock(&ctl->tree_lock);
  2399. ret = do_trimming(block_group, total_trimmed, start, bytes,
  2400. start, bytes);
  2401. if (ret)
  2402. break;
  2403. next:
  2404. if (next_bitmap) {
  2405. offset += BITS_PER_BITMAP * ctl->unit;
  2406. } else {
  2407. start += bytes;
  2408. if (start >= offset + BITS_PER_BITMAP * ctl->unit)
  2409. offset += BITS_PER_BITMAP * ctl->unit;
  2410. }
  2411. if (fatal_signal_pending(current)) {
  2412. ret = -ERESTARTSYS;
  2413. break;
  2414. }
  2415. cond_resched();
  2416. }
  2417. return ret;
  2418. }
  2419. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  2420. u64 *trimmed, u64 start, u64 end, u64 minlen)
  2421. {
  2422. int ret;
  2423. *trimmed = 0;
  2424. ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
  2425. if (ret)
  2426. return ret;
  2427. ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
  2428. return ret;
  2429. }
  2430. /*
  2431. * Find the left-most item in the cache tree, and then return the
  2432. * smallest inode number in the item.
  2433. *
  2434. * Note: the returned inode number may not be the smallest one in
  2435. * the tree, if the left-most item is a bitmap.
  2436. */
  2437. u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
  2438. {
  2439. struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
  2440. struct btrfs_free_space *entry = NULL;
  2441. u64 ino = 0;
  2442. spin_lock(&ctl->tree_lock);
  2443. if (RB_EMPTY_ROOT(&ctl->free_space_offset))
  2444. goto out;
  2445. entry = rb_entry(rb_first(&ctl->free_space_offset),
  2446. struct btrfs_free_space, offset_index);
  2447. if (!entry->bitmap) {
  2448. ino = entry->offset;
  2449. unlink_free_space(ctl, entry);
  2450. entry->offset++;
  2451. entry->bytes--;
  2452. if (!entry->bytes)
  2453. kmem_cache_free(btrfs_free_space_cachep, entry);
  2454. else
  2455. link_free_space(ctl, entry);
  2456. } else {
  2457. u64 offset = 0;
  2458. u64 count = 1;
  2459. int ret;
  2460. ret = search_bitmap(ctl, entry, &offset, &count);
  2461. /* Logic error; Should be empty if it can't find anything */
  2462. ASSERT(!ret);
  2463. ino = offset;
  2464. bitmap_clear_bits(ctl, entry, offset, 1);
  2465. if (entry->bytes == 0)
  2466. free_bitmap(ctl, entry);
  2467. }
  2468. out:
  2469. spin_unlock(&ctl->tree_lock);
  2470. return ino;
  2471. }
  2472. struct inode *lookup_free_ino_inode(struct btrfs_root *root,
  2473. struct btrfs_path *path)
  2474. {
  2475. struct inode *inode = NULL;
  2476. spin_lock(&root->cache_lock);
  2477. if (root->cache_inode)
  2478. inode = igrab(root->cache_inode);
  2479. spin_unlock(&root->cache_lock);
  2480. if (inode)
  2481. return inode;
  2482. inode = __lookup_free_space_inode(root, path, 0);
  2483. if (IS_ERR(inode))
  2484. return inode;
  2485. spin_lock(&root->cache_lock);
  2486. if (!btrfs_fs_closing(root->fs_info))
  2487. root->cache_inode = igrab(inode);
  2488. spin_unlock(&root->cache_lock);
  2489. return inode;
  2490. }
  2491. int create_free_ino_inode(struct btrfs_root *root,
  2492. struct btrfs_trans_handle *trans,
  2493. struct btrfs_path *path)
  2494. {
  2495. return __create_free_space_inode(root, trans, path,
  2496. BTRFS_FREE_INO_OBJECTID, 0);
  2497. }
  2498. int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2499. {
  2500. struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
  2501. struct btrfs_path *path;
  2502. struct inode *inode;
  2503. int ret = 0;
  2504. u64 root_gen = btrfs_root_generation(&root->root_item);
  2505. if (!btrfs_test_opt(root, INODE_MAP_CACHE))
  2506. return 0;
  2507. /*
  2508. * If we're unmounting then just return, since this does a search on the
  2509. * normal root and not the commit root and we could deadlock.
  2510. */
  2511. if (btrfs_fs_closing(fs_info))
  2512. return 0;
  2513. path = btrfs_alloc_path();
  2514. if (!path)
  2515. return 0;
  2516. inode = lookup_free_ino_inode(root, path);
  2517. if (IS_ERR(inode))
  2518. goto out;
  2519. if (root_gen != BTRFS_I(inode)->generation)
  2520. goto out_put;
  2521. ret = __load_free_space_cache(root, inode, ctl, path, 0);
  2522. if (ret < 0)
  2523. btrfs_err(fs_info,
  2524. "failed to load free ino cache for root %llu",
  2525. root->root_key.objectid);
  2526. out_put:
  2527. iput(inode);
  2528. out:
  2529. btrfs_free_path(path);
  2530. return ret;
  2531. }
  2532. int btrfs_write_out_ino_cache(struct btrfs_root *root,
  2533. struct btrfs_trans_handle *trans,
  2534. struct btrfs_path *path,
  2535. struct inode *inode)
  2536. {
  2537. struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
  2538. int ret;
  2539. if (!btrfs_test_opt(root, INODE_MAP_CACHE))
  2540. return 0;
  2541. ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
  2542. if (ret) {
  2543. btrfs_delalloc_release_metadata(inode, inode->i_size);
  2544. #ifdef DEBUG
  2545. btrfs_err(root->fs_info,
  2546. "failed to write free ino cache for root %llu",
  2547. root->root_key.objectid);
  2548. #endif
  2549. }
  2550. return ret;
  2551. }
  2552. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  2553. /*
  2554. * Use this if you need to make a bitmap or extent entry specifically, it
  2555. * doesn't do any of the merging that add_free_space does, this acts a lot like
  2556. * how the free space cache loading stuff works, so you can get really weird
  2557. * configurations.
  2558. */
  2559. int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
  2560. u64 offset, u64 bytes, bool bitmap)
  2561. {
  2562. struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
  2563. struct btrfs_free_space *info = NULL, *bitmap_info;
  2564. void *map = NULL;
  2565. u64 bytes_added;
  2566. int ret;
  2567. again:
  2568. if (!info) {
  2569. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  2570. if (!info)
  2571. return -ENOMEM;
  2572. }
  2573. if (!bitmap) {
  2574. spin_lock(&ctl->tree_lock);
  2575. info->offset = offset;
  2576. info->bytes = bytes;
  2577. ret = link_free_space(ctl, info);
  2578. spin_unlock(&ctl->tree_lock);
  2579. if (ret)
  2580. kmem_cache_free(btrfs_free_space_cachep, info);
  2581. return ret;
  2582. }
  2583. if (!map) {
  2584. map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  2585. if (!map) {
  2586. kmem_cache_free(btrfs_free_space_cachep, info);
  2587. return -ENOMEM;
  2588. }
  2589. }
  2590. spin_lock(&ctl->tree_lock);
  2591. bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  2592. 1, 0);
  2593. if (!bitmap_info) {
  2594. info->bitmap = map;
  2595. map = NULL;
  2596. add_new_bitmap(ctl, info, offset);
  2597. bitmap_info = info;
  2598. }
  2599. bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
  2600. bytes -= bytes_added;
  2601. offset += bytes_added;
  2602. spin_unlock(&ctl->tree_lock);
  2603. if (bytes)
  2604. goto again;
  2605. if (map)
  2606. kfree(map);
  2607. return 0;
  2608. }
  2609. /*
  2610. * Checks to see if the given range is in the free space cache. This is really
  2611. * just used to check the absence of space, so if there is free space in the
  2612. * range at all we will return 1.
  2613. */
  2614. int test_check_exists(struct btrfs_block_group_cache *cache,
  2615. u64 offset, u64 bytes)
  2616. {
  2617. struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
  2618. struct btrfs_free_space *info;
  2619. int ret = 0;
  2620. spin_lock(&ctl->tree_lock);
  2621. info = tree_search_offset(ctl, offset, 0, 0);
  2622. if (!info) {
  2623. info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
  2624. 1, 0);
  2625. if (!info)
  2626. goto out;
  2627. }
  2628. have_info:
  2629. if (info->bitmap) {
  2630. u64 bit_off, bit_bytes;
  2631. struct rb_node *n;
  2632. struct btrfs_free_space *tmp;
  2633. bit_off = offset;
  2634. bit_bytes = ctl->unit;
  2635. ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
  2636. if (!ret) {
  2637. if (bit_off == offset) {
  2638. ret = 1;
  2639. goto out;
  2640. } else if (bit_off > offset &&
  2641. offset + bytes > bit_off) {
  2642. ret = 1;
  2643. goto out;
  2644. }
  2645. }
  2646. n = rb_prev(&info->offset_index);
  2647. while (n) {
  2648. tmp = rb_entry(n, struct btrfs_free_space,
  2649. offset_index);
  2650. if (tmp->offset + tmp->bytes < offset)
  2651. break;
  2652. if (offset + bytes < tmp->offset) {
  2653. n = rb_prev(&info->offset_index);
  2654. continue;
  2655. }
  2656. info = tmp;
  2657. goto have_info;
  2658. }
  2659. n = rb_next(&info->offset_index);
  2660. while (n) {
  2661. tmp = rb_entry(n, struct btrfs_free_space,
  2662. offset_index);
  2663. if (offset + bytes < tmp->offset)
  2664. break;
  2665. if (tmp->offset + tmp->bytes < offset) {
  2666. n = rb_next(&info->offset_index);
  2667. continue;
  2668. }
  2669. info = tmp;
  2670. goto have_info;
  2671. }
  2672. goto out;
  2673. }
  2674. if (info->offset == offset) {
  2675. ret = 1;
  2676. goto out;
  2677. }
  2678. if (offset > info->offset && offset < info->offset + info->bytes)
  2679. ret = 1;
  2680. out:
  2681. spin_unlock(&ctl->tree_lock);
  2682. return ret;
  2683. }
  2684. #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */