file.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. static void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. int index;
  264. int ret;
  265. /* get the inode */
  266. key.objectid = defrag->root;
  267. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  268. key.offset = (u64)-1;
  269. index = srcu_read_lock(&fs_info->subvol_srcu);
  270. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  271. if (IS_ERR(inode_root)) {
  272. ret = PTR_ERR(inode_root);
  273. goto cleanup;
  274. }
  275. key.objectid = defrag->ino;
  276. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  277. key.offset = 0;
  278. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  279. if (IS_ERR(inode)) {
  280. ret = PTR_ERR(inode);
  281. goto cleanup;
  282. }
  283. srcu_read_unlock(&fs_info->subvol_srcu, index);
  284. /* do a chunk of defrag */
  285. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  286. memset(&range, 0, sizeof(range));
  287. range.len = (u64)-1;
  288. range.start = defrag->last_offset;
  289. sb_start_write(fs_info->sb);
  290. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  291. BTRFS_DEFRAG_BATCH);
  292. sb_end_write(fs_info->sb);
  293. /*
  294. * if we filled the whole defrag batch, there
  295. * must be more work to do. Queue this defrag
  296. * again
  297. */
  298. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  299. defrag->last_offset = range.start;
  300. btrfs_requeue_inode_defrag(inode, defrag);
  301. } else if (defrag->last_offset && !defrag->cycled) {
  302. /*
  303. * we didn't fill our defrag batch, but
  304. * we didn't start at zero. Make sure we loop
  305. * around to the start of the file.
  306. */
  307. defrag->last_offset = 0;
  308. defrag->cycled = 1;
  309. btrfs_requeue_inode_defrag(inode, defrag);
  310. } else {
  311. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  312. }
  313. iput(inode);
  314. return 0;
  315. cleanup:
  316. srcu_read_unlock(&fs_info->subvol_srcu, index);
  317. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  318. return ret;
  319. }
  320. /*
  321. * run through the list of inodes in the FS that need
  322. * defragging
  323. */
  324. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  325. {
  326. struct inode_defrag *defrag;
  327. u64 first_ino = 0;
  328. u64 root_objectid = 0;
  329. atomic_inc(&fs_info->defrag_running);
  330. while (1) {
  331. /* Pause the auto defragger. */
  332. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  333. &fs_info->fs_state))
  334. break;
  335. if (!__need_auto_defrag(fs_info->tree_root))
  336. break;
  337. /* find an inode to defrag */
  338. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  339. first_ino);
  340. if (!defrag) {
  341. if (root_objectid || first_ino) {
  342. root_objectid = 0;
  343. first_ino = 0;
  344. continue;
  345. } else {
  346. break;
  347. }
  348. }
  349. first_ino = defrag->ino + 1;
  350. root_objectid = defrag->root;
  351. __btrfs_run_defrag_inode(fs_info, defrag);
  352. }
  353. atomic_dec(&fs_info->defrag_running);
  354. /*
  355. * during unmount, we use the transaction_wait queue to
  356. * wait for the defragger to stop
  357. */
  358. wake_up(&fs_info->transaction_wait);
  359. return 0;
  360. }
  361. /* simple helper to fault in pages and copy. This should go away
  362. * and be replaced with calls into generic code.
  363. */
  364. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  365. size_t write_bytes,
  366. struct page **prepared_pages,
  367. struct iov_iter *i)
  368. {
  369. size_t copied = 0;
  370. size_t total_copied = 0;
  371. int pg = 0;
  372. int offset = pos & (PAGE_CACHE_SIZE - 1);
  373. while (write_bytes > 0) {
  374. size_t count = min_t(size_t,
  375. PAGE_CACHE_SIZE - offset, write_bytes);
  376. struct page *page = prepared_pages[pg];
  377. /*
  378. * Copy data from userspace to the current page
  379. *
  380. * Disable pagefault to avoid recursive lock since
  381. * the pages are already locked
  382. */
  383. pagefault_disable();
  384. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  385. pagefault_enable();
  386. /* Flush processor's dcache for this page */
  387. flush_dcache_page(page);
  388. /*
  389. * if we get a partial write, we can end up with
  390. * partially up to date pages. These add
  391. * a lot of complexity, so make sure they don't
  392. * happen by forcing this copy to be retried.
  393. *
  394. * The rest of the btrfs_file_write code will fall
  395. * back to page at a time copies after we return 0.
  396. */
  397. if (!PageUptodate(page) && copied < count)
  398. copied = 0;
  399. iov_iter_advance(i, copied);
  400. write_bytes -= copied;
  401. total_copied += copied;
  402. /* Return to btrfs_file_aio_write to fault page */
  403. if (unlikely(copied == 0))
  404. break;
  405. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  406. offset += copied;
  407. } else {
  408. pg++;
  409. offset = 0;
  410. }
  411. }
  412. return total_copied;
  413. }
  414. /*
  415. * unlocks pages after btrfs_file_write is done with them
  416. */
  417. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  418. {
  419. size_t i;
  420. for (i = 0; i < num_pages; i++) {
  421. /* page checked is some magic around finding pages that
  422. * have been modified without going through btrfs_set_page_dirty
  423. * clear it here
  424. */
  425. ClearPageChecked(pages[i]);
  426. unlock_page(pages[i]);
  427. mark_page_accessed(pages[i]);
  428. page_cache_release(pages[i]);
  429. }
  430. }
  431. /*
  432. * after copy_from_user, pages need to be dirtied and we need to make
  433. * sure holes are created between the current EOF and the start of
  434. * any next extents (if required).
  435. *
  436. * this also makes the decision about creating an inline extent vs
  437. * doing real data extents, marking pages dirty and delalloc as required.
  438. */
  439. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  440. struct page **pages, size_t num_pages,
  441. loff_t pos, size_t write_bytes,
  442. struct extent_state **cached)
  443. {
  444. int err = 0;
  445. int i;
  446. u64 num_bytes;
  447. u64 start_pos;
  448. u64 end_of_last_block;
  449. u64 end_pos = pos + write_bytes;
  450. loff_t isize = i_size_read(inode);
  451. start_pos = pos & ~((u64)root->sectorsize - 1);
  452. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  453. end_of_last_block = start_pos + num_bytes - 1;
  454. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  455. cached);
  456. if (err)
  457. return err;
  458. for (i = 0; i < num_pages; i++) {
  459. struct page *p = pages[i];
  460. SetPageUptodate(p);
  461. ClearPageChecked(p);
  462. set_page_dirty(p);
  463. }
  464. /*
  465. * we've only changed i_size in ram, and we haven't updated
  466. * the disk i_size. There is no need to log the inode
  467. * at this time.
  468. */
  469. if (end_pos > isize)
  470. i_size_write(inode, end_pos);
  471. return 0;
  472. }
  473. /*
  474. * this drops all the extents in the cache that intersect the range
  475. * [start, end]. Existing extents are split as required.
  476. */
  477. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  478. int skip_pinned)
  479. {
  480. struct extent_map *em;
  481. struct extent_map *split = NULL;
  482. struct extent_map *split2 = NULL;
  483. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  484. u64 len = end - start + 1;
  485. u64 gen;
  486. int ret;
  487. int testend = 1;
  488. unsigned long flags;
  489. int compressed = 0;
  490. bool modified;
  491. WARN_ON(end < start);
  492. if (end == (u64)-1) {
  493. len = (u64)-1;
  494. testend = 0;
  495. }
  496. while (1) {
  497. int no_splits = 0;
  498. modified = false;
  499. if (!split)
  500. split = alloc_extent_map();
  501. if (!split2)
  502. split2 = alloc_extent_map();
  503. if (!split || !split2)
  504. no_splits = 1;
  505. write_lock(&em_tree->lock);
  506. em = lookup_extent_mapping(em_tree, start, len);
  507. if (!em) {
  508. write_unlock(&em_tree->lock);
  509. break;
  510. }
  511. flags = em->flags;
  512. gen = em->generation;
  513. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  514. if (testend && em->start + em->len >= start + len) {
  515. free_extent_map(em);
  516. write_unlock(&em_tree->lock);
  517. break;
  518. }
  519. start = em->start + em->len;
  520. if (testend)
  521. len = start + len - (em->start + em->len);
  522. free_extent_map(em);
  523. write_unlock(&em_tree->lock);
  524. continue;
  525. }
  526. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  527. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  528. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  529. modified = !list_empty(&em->list);
  530. remove_extent_mapping(em_tree, em);
  531. if (no_splits)
  532. goto next;
  533. if (em->start < start) {
  534. split->start = em->start;
  535. split->len = start - em->start;
  536. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  537. split->orig_start = em->orig_start;
  538. split->block_start = em->block_start;
  539. if (compressed)
  540. split->block_len = em->block_len;
  541. else
  542. split->block_len = split->len;
  543. split->orig_block_len = max(split->block_len,
  544. em->orig_block_len);
  545. split->ram_bytes = em->ram_bytes;
  546. } else {
  547. split->orig_start = split->start;
  548. split->block_len = 0;
  549. split->block_start = em->block_start;
  550. split->orig_block_len = 0;
  551. split->ram_bytes = split->len;
  552. }
  553. split->generation = gen;
  554. split->bdev = em->bdev;
  555. split->flags = flags;
  556. split->compress_type = em->compress_type;
  557. ret = add_extent_mapping(em_tree, split, modified);
  558. BUG_ON(ret); /* Logic error */
  559. free_extent_map(split);
  560. split = split2;
  561. split2 = NULL;
  562. }
  563. if (testend && em->start + em->len > start + len) {
  564. u64 diff = start + len - em->start;
  565. split->start = start + len;
  566. split->len = em->start + em->len - (start + len);
  567. split->bdev = em->bdev;
  568. split->flags = flags;
  569. split->compress_type = em->compress_type;
  570. split->generation = gen;
  571. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  572. split->orig_block_len = max(em->block_len,
  573. em->orig_block_len);
  574. split->ram_bytes = em->ram_bytes;
  575. if (compressed) {
  576. split->block_len = em->block_len;
  577. split->block_start = em->block_start;
  578. split->orig_start = em->orig_start;
  579. } else {
  580. split->block_len = split->len;
  581. split->block_start = em->block_start
  582. + diff;
  583. split->orig_start = em->orig_start;
  584. }
  585. } else {
  586. split->ram_bytes = split->len;
  587. split->orig_start = split->start;
  588. split->block_len = 0;
  589. split->block_start = em->block_start;
  590. split->orig_block_len = 0;
  591. }
  592. ret = add_extent_mapping(em_tree, split, modified);
  593. BUG_ON(ret); /* Logic error */
  594. free_extent_map(split);
  595. split = NULL;
  596. }
  597. next:
  598. write_unlock(&em_tree->lock);
  599. /* once for us */
  600. free_extent_map(em);
  601. /* once for the tree*/
  602. free_extent_map(em);
  603. }
  604. if (split)
  605. free_extent_map(split);
  606. if (split2)
  607. free_extent_map(split2);
  608. }
  609. /*
  610. * this is very complex, but the basic idea is to drop all extents
  611. * in the range start - end. hint_block is filled in with a block number
  612. * that would be a good hint to the block allocator for this file.
  613. *
  614. * If an extent intersects the range but is not entirely inside the range
  615. * it is either truncated or split. Anything entirely inside the range
  616. * is deleted from the tree.
  617. */
  618. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  619. struct btrfs_root *root, struct inode *inode,
  620. struct btrfs_path *path, u64 start, u64 end,
  621. u64 *drop_end, int drop_cache)
  622. {
  623. struct extent_buffer *leaf;
  624. struct btrfs_file_extent_item *fi;
  625. struct btrfs_key key;
  626. struct btrfs_key new_key;
  627. u64 ino = btrfs_ino(inode);
  628. u64 search_start = start;
  629. u64 disk_bytenr = 0;
  630. u64 num_bytes = 0;
  631. u64 extent_offset = 0;
  632. u64 extent_end = 0;
  633. int del_nr = 0;
  634. int del_slot = 0;
  635. int extent_type;
  636. int recow;
  637. int ret;
  638. int modify_tree = -1;
  639. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  640. int found = 0;
  641. if (drop_cache)
  642. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  643. if (start >= BTRFS_I(inode)->disk_i_size)
  644. modify_tree = 0;
  645. while (1) {
  646. recow = 0;
  647. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  648. search_start, modify_tree);
  649. if (ret < 0)
  650. break;
  651. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  652. leaf = path->nodes[0];
  653. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  654. if (key.objectid == ino &&
  655. key.type == BTRFS_EXTENT_DATA_KEY)
  656. path->slots[0]--;
  657. }
  658. ret = 0;
  659. next_slot:
  660. leaf = path->nodes[0];
  661. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  662. BUG_ON(del_nr > 0);
  663. ret = btrfs_next_leaf(root, path);
  664. if (ret < 0)
  665. break;
  666. if (ret > 0) {
  667. ret = 0;
  668. break;
  669. }
  670. leaf = path->nodes[0];
  671. recow = 1;
  672. }
  673. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  674. if (key.objectid > ino ||
  675. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  676. break;
  677. fi = btrfs_item_ptr(leaf, path->slots[0],
  678. struct btrfs_file_extent_item);
  679. extent_type = btrfs_file_extent_type(leaf, fi);
  680. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  681. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  682. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  683. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  684. extent_offset = btrfs_file_extent_offset(leaf, fi);
  685. extent_end = key.offset +
  686. btrfs_file_extent_num_bytes(leaf, fi);
  687. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  688. extent_end = key.offset +
  689. btrfs_file_extent_inline_len(leaf, fi);
  690. } else {
  691. WARN_ON(1);
  692. extent_end = search_start;
  693. }
  694. if (extent_end <= search_start) {
  695. path->slots[0]++;
  696. goto next_slot;
  697. }
  698. found = 1;
  699. search_start = max(key.offset, start);
  700. if (recow || !modify_tree) {
  701. modify_tree = -1;
  702. btrfs_release_path(path);
  703. continue;
  704. }
  705. /*
  706. * | - range to drop - |
  707. * | -------- extent -------- |
  708. */
  709. if (start > key.offset && end < extent_end) {
  710. BUG_ON(del_nr > 0);
  711. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  712. memcpy(&new_key, &key, sizeof(new_key));
  713. new_key.offset = start;
  714. ret = btrfs_duplicate_item(trans, root, path,
  715. &new_key);
  716. if (ret == -EAGAIN) {
  717. btrfs_release_path(path);
  718. continue;
  719. }
  720. if (ret < 0)
  721. break;
  722. leaf = path->nodes[0];
  723. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  724. struct btrfs_file_extent_item);
  725. btrfs_set_file_extent_num_bytes(leaf, fi,
  726. start - key.offset);
  727. fi = btrfs_item_ptr(leaf, path->slots[0],
  728. struct btrfs_file_extent_item);
  729. extent_offset += start - key.offset;
  730. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  731. btrfs_set_file_extent_num_bytes(leaf, fi,
  732. extent_end - start);
  733. btrfs_mark_buffer_dirty(leaf);
  734. if (update_refs && disk_bytenr > 0) {
  735. ret = btrfs_inc_extent_ref(trans, root,
  736. disk_bytenr, num_bytes, 0,
  737. root->root_key.objectid,
  738. new_key.objectid,
  739. start - extent_offset, 0);
  740. BUG_ON(ret); /* -ENOMEM */
  741. }
  742. key.offset = start;
  743. }
  744. /*
  745. * | ---- range to drop ----- |
  746. * | -------- extent -------- |
  747. */
  748. if (start <= key.offset && end < extent_end) {
  749. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  750. memcpy(&new_key, &key, sizeof(new_key));
  751. new_key.offset = end;
  752. btrfs_set_item_key_safe(root, path, &new_key);
  753. extent_offset += end - key.offset;
  754. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  755. btrfs_set_file_extent_num_bytes(leaf, fi,
  756. extent_end - end);
  757. btrfs_mark_buffer_dirty(leaf);
  758. if (update_refs && disk_bytenr > 0)
  759. inode_sub_bytes(inode, end - key.offset);
  760. break;
  761. }
  762. search_start = extent_end;
  763. /*
  764. * | ---- range to drop ----- |
  765. * | -------- extent -------- |
  766. */
  767. if (start > key.offset && end >= extent_end) {
  768. BUG_ON(del_nr > 0);
  769. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  770. btrfs_set_file_extent_num_bytes(leaf, fi,
  771. start - key.offset);
  772. btrfs_mark_buffer_dirty(leaf);
  773. if (update_refs && disk_bytenr > 0)
  774. inode_sub_bytes(inode, extent_end - start);
  775. if (end == extent_end)
  776. break;
  777. path->slots[0]++;
  778. goto next_slot;
  779. }
  780. /*
  781. * | ---- range to drop ----- |
  782. * | ------ extent ------ |
  783. */
  784. if (start <= key.offset && end >= extent_end) {
  785. if (del_nr == 0) {
  786. del_slot = path->slots[0];
  787. del_nr = 1;
  788. } else {
  789. BUG_ON(del_slot + del_nr != path->slots[0]);
  790. del_nr++;
  791. }
  792. if (update_refs &&
  793. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  794. inode_sub_bytes(inode,
  795. extent_end - key.offset);
  796. extent_end = ALIGN(extent_end,
  797. root->sectorsize);
  798. } else if (update_refs && disk_bytenr > 0) {
  799. ret = btrfs_free_extent(trans, root,
  800. disk_bytenr, num_bytes, 0,
  801. root->root_key.objectid,
  802. key.objectid, key.offset -
  803. extent_offset, 0);
  804. BUG_ON(ret); /* -ENOMEM */
  805. inode_sub_bytes(inode,
  806. extent_end - key.offset);
  807. }
  808. if (end == extent_end)
  809. break;
  810. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  811. path->slots[0]++;
  812. goto next_slot;
  813. }
  814. ret = btrfs_del_items(trans, root, path, del_slot,
  815. del_nr);
  816. if (ret) {
  817. btrfs_abort_transaction(trans, root, ret);
  818. break;
  819. }
  820. del_nr = 0;
  821. del_slot = 0;
  822. btrfs_release_path(path);
  823. continue;
  824. }
  825. BUG_ON(1);
  826. }
  827. if (!ret && del_nr > 0) {
  828. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  829. if (ret)
  830. btrfs_abort_transaction(trans, root, ret);
  831. }
  832. if (drop_end)
  833. *drop_end = found ? min(end, extent_end) : end;
  834. btrfs_release_path(path);
  835. return ret;
  836. }
  837. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  838. struct btrfs_root *root, struct inode *inode, u64 start,
  839. u64 end, int drop_cache)
  840. {
  841. struct btrfs_path *path;
  842. int ret;
  843. path = btrfs_alloc_path();
  844. if (!path)
  845. return -ENOMEM;
  846. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  847. drop_cache);
  848. btrfs_free_path(path);
  849. return ret;
  850. }
  851. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  852. u64 objectid, u64 bytenr, u64 orig_offset,
  853. u64 *start, u64 *end)
  854. {
  855. struct btrfs_file_extent_item *fi;
  856. struct btrfs_key key;
  857. u64 extent_end;
  858. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  859. return 0;
  860. btrfs_item_key_to_cpu(leaf, &key, slot);
  861. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  862. return 0;
  863. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  864. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  865. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  866. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  867. btrfs_file_extent_compression(leaf, fi) ||
  868. btrfs_file_extent_encryption(leaf, fi) ||
  869. btrfs_file_extent_other_encoding(leaf, fi))
  870. return 0;
  871. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  872. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  873. return 0;
  874. *start = key.offset;
  875. *end = extent_end;
  876. return 1;
  877. }
  878. /*
  879. * Mark extent in the range start - end as written.
  880. *
  881. * This changes extent type from 'pre-allocated' to 'regular'. If only
  882. * part of extent is marked as written, the extent will be split into
  883. * two or three.
  884. */
  885. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  886. struct inode *inode, u64 start, u64 end)
  887. {
  888. struct btrfs_root *root = BTRFS_I(inode)->root;
  889. struct extent_buffer *leaf;
  890. struct btrfs_path *path;
  891. struct btrfs_file_extent_item *fi;
  892. struct btrfs_key key;
  893. struct btrfs_key new_key;
  894. u64 bytenr;
  895. u64 num_bytes;
  896. u64 extent_end;
  897. u64 orig_offset;
  898. u64 other_start;
  899. u64 other_end;
  900. u64 split;
  901. int del_nr = 0;
  902. int del_slot = 0;
  903. int recow;
  904. int ret;
  905. u64 ino = btrfs_ino(inode);
  906. path = btrfs_alloc_path();
  907. if (!path)
  908. return -ENOMEM;
  909. again:
  910. recow = 0;
  911. split = start;
  912. key.objectid = ino;
  913. key.type = BTRFS_EXTENT_DATA_KEY;
  914. key.offset = split;
  915. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  916. if (ret < 0)
  917. goto out;
  918. if (ret > 0 && path->slots[0] > 0)
  919. path->slots[0]--;
  920. leaf = path->nodes[0];
  921. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  922. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  923. fi = btrfs_item_ptr(leaf, path->slots[0],
  924. struct btrfs_file_extent_item);
  925. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  926. BTRFS_FILE_EXTENT_PREALLOC);
  927. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  928. BUG_ON(key.offset > start || extent_end < end);
  929. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  930. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  931. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  932. memcpy(&new_key, &key, sizeof(new_key));
  933. if (start == key.offset && end < extent_end) {
  934. other_start = 0;
  935. other_end = start;
  936. if (extent_mergeable(leaf, path->slots[0] - 1,
  937. ino, bytenr, orig_offset,
  938. &other_start, &other_end)) {
  939. new_key.offset = end;
  940. btrfs_set_item_key_safe(root, path, &new_key);
  941. fi = btrfs_item_ptr(leaf, path->slots[0],
  942. struct btrfs_file_extent_item);
  943. btrfs_set_file_extent_generation(leaf, fi,
  944. trans->transid);
  945. btrfs_set_file_extent_num_bytes(leaf, fi,
  946. extent_end - end);
  947. btrfs_set_file_extent_offset(leaf, fi,
  948. end - orig_offset);
  949. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  950. struct btrfs_file_extent_item);
  951. btrfs_set_file_extent_generation(leaf, fi,
  952. trans->transid);
  953. btrfs_set_file_extent_num_bytes(leaf, fi,
  954. end - other_start);
  955. btrfs_mark_buffer_dirty(leaf);
  956. goto out;
  957. }
  958. }
  959. if (start > key.offset && end == extent_end) {
  960. other_start = end;
  961. other_end = 0;
  962. if (extent_mergeable(leaf, path->slots[0] + 1,
  963. ino, bytenr, orig_offset,
  964. &other_start, &other_end)) {
  965. fi = btrfs_item_ptr(leaf, path->slots[0],
  966. struct btrfs_file_extent_item);
  967. btrfs_set_file_extent_num_bytes(leaf, fi,
  968. start - key.offset);
  969. btrfs_set_file_extent_generation(leaf, fi,
  970. trans->transid);
  971. path->slots[0]++;
  972. new_key.offset = start;
  973. btrfs_set_item_key_safe(root, path, &new_key);
  974. fi = btrfs_item_ptr(leaf, path->slots[0],
  975. struct btrfs_file_extent_item);
  976. btrfs_set_file_extent_generation(leaf, fi,
  977. trans->transid);
  978. btrfs_set_file_extent_num_bytes(leaf, fi,
  979. other_end - start);
  980. btrfs_set_file_extent_offset(leaf, fi,
  981. start - orig_offset);
  982. btrfs_mark_buffer_dirty(leaf);
  983. goto out;
  984. }
  985. }
  986. while (start > key.offset || end < extent_end) {
  987. if (key.offset == start)
  988. split = end;
  989. new_key.offset = split;
  990. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  991. if (ret == -EAGAIN) {
  992. btrfs_release_path(path);
  993. goto again;
  994. }
  995. if (ret < 0) {
  996. btrfs_abort_transaction(trans, root, ret);
  997. goto out;
  998. }
  999. leaf = path->nodes[0];
  1000. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1001. struct btrfs_file_extent_item);
  1002. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1003. btrfs_set_file_extent_num_bytes(leaf, fi,
  1004. split - key.offset);
  1005. fi = btrfs_item_ptr(leaf, path->slots[0],
  1006. struct btrfs_file_extent_item);
  1007. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1008. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1009. btrfs_set_file_extent_num_bytes(leaf, fi,
  1010. extent_end - split);
  1011. btrfs_mark_buffer_dirty(leaf);
  1012. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1013. root->root_key.objectid,
  1014. ino, orig_offset, 0);
  1015. BUG_ON(ret); /* -ENOMEM */
  1016. if (split == start) {
  1017. key.offset = start;
  1018. } else {
  1019. BUG_ON(start != key.offset);
  1020. path->slots[0]--;
  1021. extent_end = end;
  1022. }
  1023. recow = 1;
  1024. }
  1025. other_start = end;
  1026. other_end = 0;
  1027. if (extent_mergeable(leaf, path->slots[0] + 1,
  1028. ino, bytenr, orig_offset,
  1029. &other_start, &other_end)) {
  1030. if (recow) {
  1031. btrfs_release_path(path);
  1032. goto again;
  1033. }
  1034. extent_end = other_end;
  1035. del_slot = path->slots[0] + 1;
  1036. del_nr++;
  1037. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1038. 0, root->root_key.objectid,
  1039. ino, orig_offset, 0);
  1040. BUG_ON(ret); /* -ENOMEM */
  1041. }
  1042. other_start = 0;
  1043. other_end = start;
  1044. if (extent_mergeable(leaf, path->slots[0] - 1,
  1045. ino, bytenr, orig_offset,
  1046. &other_start, &other_end)) {
  1047. if (recow) {
  1048. btrfs_release_path(path);
  1049. goto again;
  1050. }
  1051. key.offset = other_start;
  1052. del_slot = path->slots[0];
  1053. del_nr++;
  1054. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1055. 0, root->root_key.objectid,
  1056. ino, orig_offset, 0);
  1057. BUG_ON(ret); /* -ENOMEM */
  1058. }
  1059. if (del_nr == 0) {
  1060. fi = btrfs_item_ptr(leaf, path->slots[0],
  1061. struct btrfs_file_extent_item);
  1062. btrfs_set_file_extent_type(leaf, fi,
  1063. BTRFS_FILE_EXTENT_REG);
  1064. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1065. btrfs_mark_buffer_dirty(leaf);
  1066. } else {
  1067. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1068. struct btrfs_file_extent_item);
  1069. btrfs_set_file_extent_type(leaf, fi,
  1070. BTRFS_FILE_EXTENT_REG);
  1071. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1072. btrfs_set_file_extent_num_bytes(leaf, fi,
  1073. extent_end - key.offset);
  1074. btrfs_mark_buffer_dirty(leaf);
  1075. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1076. if (ret < 0) {
  1077. btrfs_abort_transaction(trans, root, ret);
  1078. goto out;
  1079. }
  1080. }
  1081. out:
  1082. btrfs_free_path(path);
  1083. return 0;
  1084. }
  1085. /*
  1086. * on error we return an unlocked page and the error value
  1087. * on success we return a locked page and 0
  1088. */
  1089. static int prepare_uptodate_page(struct page *page, u64 pos,
  1090. bool force_uptodate)
  1091. {
  1092. int ret = 0;
  1093. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1094. !PageUptodate(page)) {
  1095. ret = btrfs_readpage(NULL, page);
  1096. if (ret)
  1097. return ret;
  1098. lock_page(page);
  1099. if (!PageUptodate(page)) {
  1100. unlock_page(page);
  1101. return -EIO;
  1102. }
  1103. }
  1104. return 0;
  1105. }
  1106. /*
  1107. * this gets pages into the page cache and locks them down, it also properly
  1108. * waits for data=ordered extents to finish before allowing the pages to be
  1109. * modified.
  1110. */
  1111. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1112. struct page **pages, size_t num_pages,
  1113. loff_t pos, unsigned long first_index,
  1114. size_t write_bytes, bool force_uptodate)
  1115. {
  1116. struct extent_state *cached_state = NULL;
  1117. int i;
  1118. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1119. struct inode *inode = file_inode(file);
  1120. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1121. int err = 0;
  1122. int faili = 0;
  1123. u64 start_pos;
  1124. u64 last_pos;
  1125. start_pos = pos & ~((u64)root->sectorsize - 1);
  1126. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1127. again:
  1128. for (i = 0; i < num_pages; i++) {
  1129. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1130. mask | __GFP_WRITE);
  1131. if (!pages[i]) {
  1132. faili = i - 1;
  1133. err = -ENOMEM;
  1134. goto fail;
  1135. }
  1136. if (i == 0)
  1137. err = prepare_uptodate_page(pages[i], pos,
  1138. force_uptodate);
  1139. if (i == num_pages - 1)
  1140. err = prepare_uptodate_page(pages[i],
  1141. pos + write_bytes, false);
  1142. if (err) {
  1143. page_cache_release(pages[i]);
  1144. faili = i - 1;
  1145. goto fail;
  1146. }
  1147. wait_on_page_writeback(pages[i]);
  1148. }
  1149. faili = num_pages - 1;
  1150. err = 0;
  1151. if (start_pos < inode->i_size) {
  1152. struct btrfs_ordered_extent *ordered;
  1153. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1154. start_pos, last_pos - 1, 0, &cached_state);
  1155. ordered = btrfs_lookup_first_ordered_extent(inode,
  1156. last_pos - 1);
  1157. if (ordered &&
  1158. ordered->file_offset + ordered->len > start_pos &&
  1159. ordered->file_offset < last_pos) {
  1160. btrfs_put_ordered_extent(ordered);
  1161. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1162. start_pos, last_pos - 1,
  1163. &cached_state, GFP_NOFS);
  1164. for (i = 0; i < num_pages; i++) {
  1165. unlock_page(pages[i]);
  1166. page_cache_release(pages[i]);
  1167. }
  1168. err = btrfs_wait_ordered_range(inode, start_pos,
  1169. last_pos - start_pos);
  1170. if (err)
  1171. goto fail;
  1172. goto again;
  1173. }
  1174. if (ordered)
  1175. btrfs_put_ordered_extent(ordered);
  1176. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1177. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1178. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1179. 0, 0, &cached_state, GFP_NOFS);
  1180. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1181. start_pos, last_pos - 1, &cached_state,
  1182. GFP_NOFS);
  1183. }
  1184. for (i = 0; i < num_pages; i++) {
  1185. if (clear_page_dirty_for_io(pages[i]))
  1186. account_page_redirty(pages[i]);
  1187. set_page_extent_mapped(pages[i]);
  1188. WARN_ON(!PageLocked(pages[i]));
  1189. }
  1190. return 0;
  1191. fail:
  1192. while (faili >= 0) {
  1193. unlock_page(pages[faili]);
  1194. page_cache_release(pages[faili]);
  1195. faili--;
  1196. }
  1197. return err;
  1198. }
  1199. static noinline int check_can_nocow(struct inode *inode, loff_t pos,
  1200. size_t *write_bytes)
  1201. {
  1202. struct btrfs_root *root = BTRFS_I(inode)->root;
  1203. struct btrfs_ordered_extent *ordered;
  1204. u64 lockstart, lockend;
  1205. u64 num_bytes;
  1206. int ret;
  1207. lockstart = round_down(pos, root->sectorsize);
  1208. lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
  1209. while (1) {
  1210. lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1211. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1212. lockend - lockstart + 1);
  1213. if (!ordered) {
  1214. break;
  1215. }
  1216. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1217. btrfs_start_ordered_extent(inode, ordered, 1);
  1218. btrfs_put_ordered_extent(ordered);
  1219. }
  1220. num_bytes = lockend - lockstart + 1;
  1221. ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
  1222. if (ret <= 0) {
  1223. ret = 0;
  1224. } else {
  1225. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1226. EXTENT_DIRTY | EXTENT_DELALLOC |
  1227. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
  1228. NULL, GFP_NOFS);
  1229. *write_bytes = min_t(size_t, *write_bytes, num_bytes);
  1230. }
  1231. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1232. return ret;
  1233. }
  1234. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1235. struct iov_iter *i,
  1236. loff_t pos)
  1237. {
  1238. struct inode *inode = file_inode(file);
  1239. struct btrfs_root *root = BTRFS_I(inode)->root;
  1240. struct page **pages = NULL;
  1241. u64 release_bytes = 0;
  1242. unsigned long first_index;
  1243. size_t num_written = 0;
  1244. int nrptrs;
  1245. int ret = 0;
  1246. bool only_release_metadata = false;
  1247. bool force_page_uptodate = false;
  1248. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1249. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1250. (sizeof(struct page *)));
  1251. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1252. nrptrs = max(nrptrs, 8);
  1253. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1254. if (!pages)
  1255. return -ENOMEM;
  1256. first_index = pos >> PAGE_CACHE_SHIFT;
  1257. while (iov_iter_count(i) > 0) {
  1258. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1259. size_t write_bytes = min(iov_iter_count(i),
  1260. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1261. offset);
  1262. size_t num_pages = (write_bytes + offset +
  1263. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1264. size_t reserve_bytes;
  1265. size_t dirty_pages;
  1266. size_t copied;
  1267. WARN_ON(num_pages > nrptrs);
  1268. /*
  1269. * Fault pages before locking them in prepare_pages
  1270. * to avoid recursive lock
  1271. */
  1272. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1273. ret = -EFAULT;
  1274. break;
  1275. }
  1276. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1277. ret = btrfs_check_data_free_space(inode, reserve_bytes);
  1278. if (ret == -ENOSPC &&
  1279. (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1280. BTRFS_INODE_PREALLOC))) {
  1281. ret = check_can_nocow(inode, pos, &write_bytes);
  1282. if (ret > 0) {
  1283. only_release_metadata = true;
  1284. /*
  1285. * our prealloc extent may be smaller than
  1286. * write_bytes, so scale down.
  1287. */
  1288. num_pages = (write_bytes + offset +
  1289. PAGE_CACHE_SIZE - 1) >>
  1290. PAGE_CACHE_SHIFT;
  1291. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1292. ret = 0;
  1293. } else {
  1294. ret = -ENOSPC;
  1295. }
  1296. }
  1297. if (ret)
  1298. break;
  1299. ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
  1300. if (ret) {
  1301. if (!only_release_metadata)
  1302. btrfs_free_reserved_data_space(inode,
  1303. reserve_bytes);
  1304. break;
  1305. }
  1306. release_bytes = reserve_bytes;
  1307. /*
  1308. * This is going to setup the pages array with the number of
  1309. * pages we want, so we don't really need to worry about the
  1310. * contents of pages from loop to loop
  1311. */
  1312. ret = prepare_pages(root, file, pages, num_pages,
  1313. pos, first_index, write_bytes,
  1314. force_page_uptodate);
  1315. if (ret)
  1316. break;
  1317. copied = btrfs_copy_from_user(pos, num_pages,
  1318. write_bytes, pages, i);
  1319. /*
  1320. * if we have trouble faulting in the pages, fall
  1321. * back to one page at a time
  1322. */
  1323. if (copied < write_bytes)
  1324. nrptrs = 1;
  1325. if (copied == 0) {
  1326. force_page_uptodate = true;
  1327. dirty_pages = 0;
  1328. } else {
  1329. force_page_uptodate = false;
  1330. dirty_pages = (copied + offset +
  1331. PAGE_CACHE_SIZE - 1) >>
  1332. PAGE_CACHE_SHIFT;
  1333. }
  1334. /*
  1335. * If we had a short copy we need to release the excess delaloc
  1336. * bytes we reserved. We need to increment outstanding_extents
  1337. * because btrfs_delalloc_release_space will decrement it, but
  1338. * we still have an outstanding extent for the chunk we actually
  1339. * managed to copy.
  1340. */
  1341. if (num_pages > dirty_pages) {
  1342. release_bytes = (num_pages - dirty_pages) <<
  1343. PAGE_CACHE_SHIFT;
  1344. if (copied > 0) {
  1345. spin_lock(&BTRFS_I(inode)->lock);
  1346. BTRFS_I(inode)->outstanding_extents++;
  1347. spin_unlock(&BTRFS_I(inode)->lock);
  1348. }
  1349. if (only_release_metadata)
  1350. btrfs_delalloc_release_metadata(inode,
  1351. release_bytes);
  1352. else
  1353. btrfs_delalloc_release_space(inode,
  1354. release_bytes);
  1355. }
  1356. release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
  1357. if (copied > 0) {
  1358. ret = btrfs_dirty_pages(root, inode, pages,
  1359. dirty_pages, pos, copied,
  1360. NULL);
  1361. if (ret) {
  1362. btrfs_drop_pages(pages, num_pages);
  1363. break;
  1364. }
  1365. }
  1366. release_bytes = 0;
  1367. btrfs_drop_pages(pages, num_pages);
  1368. if (only_release_metadata && copied > 0) {
  1369. u64 lockstart = round_down(pos, root->sectorsize);
  1370. u64 lockend = lockstart +
  1371. (dirty_pages << PAGE_CACHE_SHIFT) - 1;
  1372. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1373. lockend, EXTENT_NORESERVE, NULL,
  1374. NULL, GFP_NOFS);
  1375. only_release_metadata = false;
  1376. }
  1377. cond_resched();
  1378. balance_dirty_pages_ratelimited(inode->i_mapping);
  1379. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1380. btrfs_btree_balance_dirty(root);
  1381. pos += copied;
  1382. num_written += copied;
  1383. }
  1384. kfree(pages);
  1385. if (release_bytes) {
  1386. if (only_release_metadata)
  1387. btrfs_delalloc_release_metadata(inode, release_bytes);
  1388. else
  1389. btrfs_delalloc_release_space(inode, release_bytes);
  1390. }
  1391. return num_written ? num_written : ret;
  1392. }
  1393. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1394. const struct iovec *iov,
  1395. unsigned long nr_segs, loff_t pos,
  1396. loff_t *ppos, size_t count, size_t ocount)
  1397. {
  1398. struct file *file = iocb->ki_filp;
  1399. struct iov_iter i;
  1400. ssize_t written;
  1401. ssize_t written_buffered;
  1402. loff_t endbyte;
  1403. int err;
  1404. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1405. count, ocount);
  1406. if (written < 0 || written == count)
  1407. return written;
  1408. pos += written;
  1409. count -= written;
  1410. iov_iter_init(&i, iov, nr_segs, count, written);
  1411. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1412. if (written_buffered < 0) {
  1413. err = written_buffered;
  1414. goto out;
  1415. }
  1416. endbyte = pos + written_buffered - 1;
  1417. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1418. if (err)
  1419. goto out;
  1420. written += written_buffered;
  1421. *ppos = pos + written_buffered;
  1422. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1423. endbyte >> PAGE_CACHE_SHIFT);
  1424. out:
  1425. return written ? written : err;
  1426. }
  1427. static void update_time_for_write(struct inode *inode)
  1428. {
  1429. struct timespec now;
  1430. if (IS_NOCMTIME(inode))
  1431. return;
  1432. now = current_fs_time(inode->i_sb);
  1433. if (!timespec_equal(&inode->i_mtime, &now))
  1434. inode->i_mtime = now;
  1435. if (!timespec_equal(&inode->i_ctime, &now))
  1436. inode->i_ctime = now;
  1437. if (IS_I_VERSION(inode))
  1438. inode_inc_iversion(inode);
  1439. }
  1440. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1441. const struct iovec *iov,
  1442. unsigned long nr_segs, loff_t pos)
  1443. {
  1444. struct file *file = iocb->ki_filp;
  1445. struct inode *inode = file_inode(file);
  1446. struct btrfs_root *root = BTRFS_I(inode)->root;
  1447. loff_t *ppos = &iocb->ki_pos;
  1448. u64 start_pos;
  1449. ssize_t num_written = 0;
  1450. ssize_t err = 0;
  1451. size_t count, ocount;
  1452. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1453. mutex_lock(&inode->i_mutex);
  1454. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1455. if (err) {
  1456. mutex_unlock(&inode->i_mutex);
  1457. goto out;
  1458. }
  1459. count = ocount;
  1460. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1461. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1462. if (err) {
  1463. mutex_unlock(&inode->i_mutex);
  1464. goto out;
  1465. }
  1466. if (count == 0) {
  1467. mutex_unlock(&inode->i_mutex);
  1468. goto out;
  1469. }
  1470. err = file_remove_suid(file);
  1471. if (err) {
  1472. mutex_unlock(&inode->i_mutex);
  1473. goto out;
  1474. }
  1475. /*
  1476. * If BTRFS flips readonly due to some impossible error
  1477. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1478. * although we have opened a file as writable, we have
  1479. * to stop this write operation to ensure FS consistency.
  1480. */
  1481. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1482. mutex_unlock(&inode->i_mutex);
  1483. err = -EROFS;
  1484. goto out;
  1485. }
  1486. /*
  1487. * We reserve space for updating the inode when we reserve space for the
  1488. * extent we are going to write, so we will enospc out there. We don't
  1489. * need to start yet another transaction to update the inode as we will
  1490. * update the inode when we finish writing whatever data we write.
  1491. */
  1492. update_time_for_write(inode);
  1493. start_pos = round_down(pos, root->sectorsize);
  1494. if (start_pos > i_size_read(inode)) {
  1495. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1496. if (err) {
  1497. mutex_unlock(&inode->i_mutex);
  1498. goto out;
  1499. }
  1500. }
  1501. if (sync)
  1502. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1503. if (unlikely(file->f_flags & O_DIRECT)) {
  1504. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1505. pos, ppos, count, ocount);
  1506. } else {
  1507. struct iov_iter i;
  1508. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1509. num_written = __btrfs_buffered_write(file, &i, pos);
  1510. if (num_written > 0)
  1511. *ppos = pos + num_written;
  1512. }
  1513. mutex_unlock(&inode->i_mutex);
  1514. /*
  1515. * we want to make sure fsync finds this change
  1516. * but we haven't joined a transaction running right now.
  1517. *
  1518. * Later on, someone is sure to update the inode and get the
  1519. * real transid recorded.
  1520. *
  1521. * We set last_trans now to the fs_info generation + 1,
  1522. * this will either be one more than the running transaction
  1523. * or the generation used for the next transaction if there isn't
  1524. * one running right now.
  1525. *
  1526. * We also have to set last_sub_trans to the current log transid,
  1527. * otherwise subsequent syncs to a file that's been synced in this
  1528. * transaction will appear to have already occured.
  1529. */
  1530. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1531. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1532. if (num_written > 0) {
  1533. err = generic_write_sync(file, pos, num_written);
  1534. if (err < 0 && num_written > 0)
  1535. num_written = err;
  1536. }
  1537. if (sync)
  1538. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1539. out:
  1540. current->backing_dev_info = NULL;
  1541. return num_written ? num_written : err;
  1542. }
  1543. int btrfs_release_file(struct inode *inode, struct file *filp)
  1544. {
  1545. /*
  1546. * ordered_data_close is set by settattr when we are about to truncate
  1547. * a file from a non-zero size to a zero size. This tries to
  1548. * flush down new bytes that may have been written if the
  1549. * application were using truncate to replace a file in place.
  1550. */
  1551. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1552. &BTRFS_I(inode)->runtime_flags)) {
  1553. struct btrfs_trans_handle *trans;
  1554. struct btrfs_root *root = BTRFS_I(inode)->root;
  1555. /*
  1556. * We need to block on a committing transaction to keep us from
  1557. * throwing a ordered operation on to the list and causing
  1558. * something like sync to deadlock trying to flush out this
  1559. * inode.
  1560. */
  1561. trans = btrfs_start_transaction(root, 0);
  1562. if (IS_ERR(trans))
  1563. return PTR_ERR(trans);
  1564. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1565. btrfs_end_transaction(trans, root);
  1566. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1567. filemap_flush(inode->i_mapping);
  1568. }
  1569. if (filp->private_data)
  1570. btrfs_ioctl_trans_end(filp);
  1571. return 0;
  1572. }
  1573. /*
  1574. * fsync call for both files and directories. This logs the inode into
  1575. * the tree log instead of forcing full commits whenever possible.
  1576. *
  1577. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1578. * in the metadata btree are up to date for copying to the log.
  1579. *
  1580. * It drops the inode mutex before doing the tree log commit. This is an
  1581. * important optimization for directories because holding the mutex prevents
  1582. * new operations on the dir while we write to disk.
  1583. */
  1584. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1585. {
  1586. struct dentry *dentry = file->f_path.dentry;
  1587. struct inode *inode = dentry->d_inode;
  1588. struct btrfs_root *root = BTRFS_I(inode)->root;
  1589. int ret = 0;
  1590. struct btrfs_trans_handle *trans;
  1591. bool full_sync = 0;
  1592. trace_btrfs_sync_file(file, datasync);
  1593. /*
  1594. * We write the dirty pages in the range and wait until they complete
  1595. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1596. * multi-task, and make the performance up. See
  1597. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1598. */
  1599. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1600. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1601. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1602. &BTRFS_I(inode)->runtime_flags))
  1603. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1604. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1605. if (ret)
  1606. return ret;
  1607. mutex_lock(&inode->i_mutex);
  1608. /*
  1609. * We flush the dirty pages again to avoid some dirty pages in the
  1610. * range being left.
  1611. */
  1612. atomic_inc(&root->log_batch);
  1613. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1614. &BTRFS_I(inode)->runtime_flags);
  1615. if (full_sync) {
  1616. ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
  1617. if (ret) {
  1618. mutex_unlock(&inode->i_mutex);
  1619. goto out;
  1620. }
  1621. }
  1622. atomic_inc(&root->log_batch);
  1623. /*
  1624. * check the transaction that last modified this inode
  1625. * and see if its already been committed
  1626. */
  1627. if (!BTRFS_I(inode)->last_trans) {
  1628. mutex_unlock(&inode->i_mutex);
  1629. goto out;
  1630. }
  1631. /*
  1632. * if the last transaction that changed this file was before
  1633. * the current transaction, we can bail out now without any
  1634. * syncing
  1635. */
  1636. smp_mb();
  1637. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1638. BTRFS_I(inode)->last_trans <=
  1639. root->fs_info->last_trans_committed) {
  1640. BTRFS_I(inode)->last_trans = 0;
  1641. /*
  1642. * We'v had everything committed since the last time we were
  1643. * modified so clear this flag in case it was set for whatever
  1644. * reason, it's no longer relevant.
  1645. */
  1646. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1647. &BTRFS_I(inode)->runtime_flags);
  1648. mutex_unlock(&inode->i_mutex);
  1649. goto out;
  1650. }
  1651. /*
  1652. * ok we haven't committed the transaction yet, lets do a commit
  1653. */
  1654. if (file->private_data)
  1655. btrfs_ioctl_trans_end(file);
  1656. trans = btrfs_start_transaction(root, 0);
  1657. if (IS_ERR(trans)) {
  1658. ret = PTR_ERR(trans);
  1659. mutex_unlock(&inode->i_mutex);
  1660. goto out;
  1661. }
  1662. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1663. if (ret < 0) {
  1664. /* Fallthrough and commit/free transaction. */
  1665. ret = 1;
  1666. }
  1667. /* we've logged all the items and now have a consistent
  1668. * version of the file in the log. It is possible that
  1669. * someone will come in and modify the file, but that's
  1670. * fine because the log is consistent on disk, and we
  1671. * have references to all of the file's extents
  1672. *
  1673. * It is possible that someone will come in and log the
  1674. * file again, but that will end up using the synchronization
  1675. * inside btrfs_sync_log to keep things safe.
  1676. */
  1677. mutex_unlock(&inode->i_mutex);
  1678. if (ret != BTRFS_NO_LOG_SYNC) {
  1679. if (!ret) {
  1680. ret = btrfs_sync_log(trans, root);
  1681. if (!ret) {
  1682. ret = btrfs_end_transaction(trans, root);
  1683. goto out;
  1684. }
  1685. }
  1686. if (!full_sync) {
  1687. ret = btrfs_wait_ordered_range(inode, start,
  1688. end - start + 1);
  1689. if (ret)
  1690. goto out;
  1691. }
  1692. ret = btrfs_commit_transaction(trans, root);
  1693. } else {
  1694. ret = btrfs_end_transaction(trans, root);
  1695. }
  1696. out:
  1697. return ret > 0 ? -EIO : ret;
  1698. }
  1699. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1700. .fault = filemap_fault,
  1701. .page_mkwrite = btrfs_page_mkwrite,
  1702. .remap_pages = generic_file_remap_pages,
  1703. };
  1704. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1705. {
  1706. struct address_space *mapping = filp->f_mapping;
  1707. if (!mapping->a_ops->readpage)
  1708. return -ENOEXEC;
  1709. file_accessed(filp);
  1710. vma->vm_ops = &btrfs_file_vm_ops;
  1711. return 0;
  1712. }
  1713. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1714. int slot, u64 start, u64 end)
  1715. {
  1716. struct btrfs_file_extent_item *fi;
  1717. struct btrfs_key key;
  1718. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1719. return 0;
  1720. btrfs_item_key_to_cpu(leaf, &key, slot);
  1721. if (key.objectid != btrfs_ino(inode) ||
  1722. key.type != BTRFS_EXTENT_DATA_KEY)
  1723. return 0;
  1724. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1725. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1726. return 0;
  1727. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1728. return 0;
  1729. if (key.offset == end)
  1730. return 1;
  1731. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1732. return 1;
  1733. return 0;
  1734. }
  1735. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1736. struct btrfs_path *path, u64 offset, u64 end)
  1737. {
  1738. struct btrfs_root *root = BTRFS_I(inode)->root;
  1739. struct extent_buffer *leaf;
  1740. struct btrfs_file_extent_item *fi;
  1741. struct extent_map *hole_em;
  1742. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1743. struct btrfs_key key;
  1744. int ret;
  1745. key.objectid = btrfs_ino(inode);
  1746. key.type = BTRFS_EXTENT_DATA_KEY;
  1747. key.offset = offset;
  1748. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1749. if (ret < 0)
  1750. return ret;
  1751. BUG_ON(!ret);
  1752. leaf = path->nodes[0];
  1753. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1754. u64 num_bytes;
  1755. path->slots[0]--;
  1756. fi = btrfs_item_ptr(leaf, path->slots[0],
  1757. struct btrfs_file_extent_item);
  1758. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1759. end - offset;
  1760. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1761. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1762. btrfs_set_file_extent_offset(leaf, fi, 0);
  1763. btrfs_mark_buffer_dirty(leaf);
  1764. goto out;
  1765. }
  1766. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1767. u64 num_bytes;
  1768. path->slots[0]++;
  1769. key.offset = offset;
  1770. btrfs_set_item_key_safe(root, path, &key);
  1771. fi = btrfs_item_ptr(leaf, path->slots[0],
  1772. struct btrfs_file_extent_item);
  1773. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1774. offset;
  1775. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1776. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1777. btrfs_set_file_extent_offset(leaf, fi, 0);
  1778. btrfs_mark_buffer_dirty(leaf);
  1779. goto out;
  1780. }
  1781. btrfs_release_path(path);
  1782. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1783. 0, 0, end - offset, 0, end - offset,
  1784. 0, 0, 0);
  1785. if (ret)
  1786. return ret;
  1787. out:
  1788. btrfs_release_path(path);
  1789. hole_em = alloc_extent_map();
  1790. if (!hole_em) {
  1791. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1792. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1793. &BTRFS_I(inode)->runtime_flags);
  1794. } else {
  1795. hole_em->start = offset;
  1796. hole_em->len = end - offset;
  1797. hole_em->ram_bytes = hole_em->len;
  1798. hole_em->orig_start = offset;
  1799. hole_em->block_start = EXTENT_MAP_HOLE;
  1800. hole_em->block_len = 0;
  1801. hole_em->orig_block_len = 0;
  1802. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1803. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1804. hole_em->generation = trans->transid;
  1805. do {
  1806. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1807. write_lock(&em_tree->lock);
  1808. ret = add_extent_mapping(em_tree, hole_em, 1);
  1809. write_unlock(&em_tree->lock);
  1810. } while (ret == -EEXIST);
  1811. free_extent_map(hole_em);
  1812. if (ret)
  1813. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1814. &BTRFS_I(inode)->runtime_flags);
  1815. }
  1816. return 0;
  1817. }
  1818. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1819. {
  1820. struct btrfs_root *root = BTRFS_I(inode)->root;
  1821. struct extent_state *cached_state = NULL;
  1822. struct btrfs_path *path;
  1823. struct btrfs_block_rsv *rsv;
  1824. struct btrfs_trans_handle *trans;
  1825. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1826. u64 lockend = round_down(offset + len,
  1827. BTRFS_I(inode)->root->sectorsize) - 1;
  1828. u64 cur_offset = lockstart;
  1829. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1830. u64 drop_end;
  1831. int ret = 0;
  1832. int err = 0;
  1833. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1834. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1835. ret = btrfs_wait_ordered_range(inode, offset, len);
  1836. if (ret)
  1837. return ret;
  1838. mutex_lock(&inode->i_mutex);
  1839. /*
  1840. * We needn't truncate any page which is beyond the end of the file
  1841. * because we are sure there is no data there.
  1842. */
  1843. /*
  1844. * Only do this if we are in the same page and we aren't doing the
  1845. * entire page.
  1846. */
  1847. if (same_page && len < PAGE_CACHE_SIZE) {
  1848. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1849. ret = btrfs_truncate_page(inode, offset, len, 0);
  1850. mutex_unlock(&inode->i_mutex);
  1851. return ret;
  1852. }
  1853. /* zero back part of the first page */
  1854. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1855. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1856. if (ret) {
  1857. mutex_unlock(&inode->i_mutex);
  1858. return ret;
  1859. }
  1860. }
  1861. /* zero the front end of the last page */
  1862. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1863. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1864. if (ret) {
  1865. mutex_unlock(&inode->i_mutex);
  1866. return ret;
  1867. }
  1868. }
  1869. if (lockend < lockstart) {
  1870. mutex_unlock(&inode->i_mutex);
  1871. return 0;
  1872. }
  1873. while (1) {
  1874. struct btrfs_ordered_extent *ordered;
  1875. truncate_pagecache_range(inode, lockstart, lockend);
  1876. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1877. 0, &cached_state);
  1878. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1879. /*
  1880. * We need to make sure we have no ordered extents in this range
  1881. * and nobody raced in and read a page in this range, if we did
  1882. * we need to try again.
  1883. */
  1884. if ((!ordered ||
  1885. (ordered->file_offset + ordered->len < lockstart ||
  1886. ordered->file_offset > lockend)) &&
  1887. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1888. lockend, EXTENT_UPTODATE, 0,
  1889. cached_state)) {
  1890. if (ordered)
  1891. btrfs_put_ordered_extent(ordered);
  1892. break;
  1893. }
  1894. if (ordered)
  1895. btrfs_put_ordered_extent(ordered);
  1896. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1897. lockend, &cached_state, GFP_NOFS);
  1898. ret = btrfs_wait_ordered_range(inode, lockstart,
  1899. lockend - lockstart + 1);
  1900. if (ret) {
  1901. mutex_unlock(&inode->i_mutex);
  1902. return ret;
  1903. }
  1904. }
  1905. path = btrfs_alloc_path();
  1906. if (!path) {
  1907. ret = -ENOMEM;
  1908. goto out;
  1909. }
  1910. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1911. if (!rsv) {
  1912. ret = -ENOMEM;
  1913. goto out_free;
  1914. }
  1915. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1916. rsv->failfast = 1;
  1917. /*
  1918. * 1 - update the inode
  1919. * 1 - removing the extents in the range
  1920. * 1 - adding the hole extent
  1921. */
  1922. trans = btrfs_start_transaction(root, 3);
  1923. if (IS_ERR(trans)) {
  1924. err = PTR_ERR(trans);
  1925. goto out_free;
  1926. }
  1927. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1928. min_size);
  1929. BUG_ON(ret);
  1930. trans->block_rsv = rsv;
  1931. while (cur_offset < lockend) {
  1932. ret = __btrfs_drop_extents(trans, root, inode, path,
  1933. cur_offset, lockend + 1,
  1934. &drop_end, 1);
  1935. if (ret != -ENOSPC)
  1936. break;
  1937. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1938. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1939. if (ret) {
  1940. err = ret;
  1941. break;
  1942. }
  1943. cur_offset = drop_end;
  1944. ret = btrfs_update_inode(trans, root, inode);
  1945. if (ret) {
  1946. err = ret;
  1947. break;
  1948. }
  1949. btrfs_end_transaction(trans, root);
  1950. btrfs_btree_balance_dirty(root);
  1951. trans = btrfs_start_transaction(root, 3);
  1952. if (IS_ERR(trans)) {
  1953. ret = PTR_ERR(trans);
  1954. trans = NULL;
  1955. break;
  1956. }
  1957. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1958. rsv, min_size);
  1959. BUG_ON(ret); /* shouldn't happen */
  1960. trans->block_rsv = rsv;
  1961. }
  1962. if (ret) {
  1963. err = ret;
  1964. goto out_trans;
  1965. }
  1966. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1967. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1968. if (ret) {
  1969. err = ret;
  1970. goto out_trans;
  1971. }
  1972. out_trans:
  1973. if (!trans)
  1974. goto out_free;
  1975. inode_inc_iversion(inode);
  1976. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1977. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1978. ret = btrfs_update_inode(trans, root, inode);
  1979. btrfs_end_transaction(trans, root);
  1980. btrfs_btree_balance_dirty(root);
  1981. out_free:
  1982. btrfs_free_path(path);
  1983. btrfs_free_block_rsv(root, rsv);
  1984. out:
  1985. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1986. &cached_state, GFP_NOFS);
  1987. mutex_unlock(&inode->i_mutex);
  1988. if (ret && !err)
  1989. err = ret;
  1990. return err;
  1991. }
  1992. static long btrfs_fallocate(struct file *file, int mode,
  1993. loff_t offset, loff_t len)
  1994. {
  1995. struct inode *inode = file_inode(file);
  1996. struct extent_state *cached_state = NULL;
  1997. struct btrfs_root *root = BTRFS_I(inode)->root;
  1998. u64 cur_offset;
  1999. u64 last_byte;
  2000. u64 alloc_start;
  2001. u64 alloc_end;
  2002. u64 alloc_hint = 0;
  2003. u64 locked_end;
  2004. struct extent_map *em;
  2005. int blocksize = BTRFS_I(inode)->root->sectorsize;
  2006. int ret;
  2007. alloc_start = round_down(offset, blocksize);
  2008. alloc_end = round_up(offset + len, blocksize);
  2009. /* Make sure we aren't being give some crap mode */
  2010. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  2011. return -EOPNOTSUPP;
  2012. if (mode & FALLOC_FL_PUNCH_HOLE)
  2013. return btrfs_punch_hole(inode, offset, len);
  2014. /*
  2015. * Make sure we have enough space before we do the
  2016. * allocation.
  2017. */
  2018. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  2019. if (ret)
  2020. return ret;
  2021. if (root->fs_info->quota_enabled) {
  2022. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  2023. if (ret)
  2024. goto out_reserve_fail;
  2025. }
  2026. mutex_lock(&inode->i_mutex);
  2027. ret = inode_newsize_ok(inode, alloc_end);
  2028. if (ret)
  2029. goto out;
  2030. if (alloc_start > inode->i_size) {
  2031. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2032. alloc_start);
  2033. if (ret)
  2034. goto out;
  2035. } else {
  2036. /*
  2037. * If we are fallocating from the end of the file onward we
  2038. * need to zero out the end of the page if i_size lands in the
  2039. * middle of a page.
  2040. */
  2041. ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
  2042. if (ret)
  2043. goto out;
  2044. }
  2045. /*
  2046. * wait for ordered IO before we have any locks. We'll loop again
  2047. * below with the locks held.
  2048. */
  2049. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2050. alloc_end - alloc_start);
  2051. if (ret)
  2052. goto out;
  2053. locked_end = alloc_end - 1;
  2054. while (1) {
  2055. struct btrfs_ordered_extent *ordered;
  2056. /* the extent lock is ordered inside the running
  2057. * transaction
  2058. */
  2059. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2060. locked_end, 0, &cached_state);
  2061. ordered = btrfs_lookup_first_ordered_extent(inode,
  2062. alloc_end - 1);
  2063. if (ordered &&
  2064. ordered->file_offset + ordered->len > alloc_start &&
  2065. ordered->file_offset < alloc_end) {
  2066. btrfs_put_ordered_extent(ordered);
  2067. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2068. alloc_start, locked_end,
  2069. &cached_state, GFP_NOFS);
  2070. /*
  2071. * we can't wait on the range with the transaction
  2072. * running or with the extent lock held
  2073. */
  2074. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2075. alloc_end - alloc_start);
  2076. if (ret)
  2077. goto out;
  2078. } else {
  2079. if (ordered)
  2080. btrfs_put_ordered_extent(ordered);
  2081. break;
  2082. }
  2083. }
  2084. cur_offset = alloc_start;
  2085. while (1) {
  2086. u64 actual_end;
  2087. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  2088. alloc_end - cur_offset, 0);
  2089. if (IS_ERR_OR_NULL(em)) {
  2090. if (!em)
  2091. ret = -ENOMEM;
  2092. else
  2093. ret = PTR_ERR(em);
  2094. break;
  2095. }
  2096. last_byte = min(extent_map_end(em), alloc_end);
  2097. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2098. last_byte = ALIGN(last_byte, blocksize);
  2099. if (em->block_start == EXTENT_MAP_HOLE ||
  2100. (cur_offset >= inode->i_size &&
  2101. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2102. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  2103. last_byte - cur_offset,
  2104. 1 << inode->i_blkbits,
  2105. offset + len,
  2106. &alloc_hint);
  2107. if (ret < 0) {
  2108. free_extent_map(em);
  2109. break;
  2110. }
  2111. } else if (actual_end > inode->i_size &&
  2112. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2113. /*
  2114. * We didn't need to allocate any more space, but we
  2115. * still extended the size of the file so we need to
  2116. * update i_size.
  2117. */
  2118. inode->i_ctime = CURRENT_TIME;
  2119. i_size_write(inode, actual_end);
  2120. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2121. }
  2122. free_extent_map(em);
  2123. cur_offset = last_byte;
  2124. if (cur_offset >= alloc_end) {
  2125. ret = 0;
  2126. break;
  2127. }
  2128. }
  2129. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2130. &cached_state, GFP_NOFS);
  2131. out:
  2132. mutex_unlock(&inode->i_mutex);
  2133. if (root->fs_info->quota_enabled)
  2134. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2135. out_reserve_fail:
  2136. /* Let go of our reservation. */
  2137. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2138. return ret;
  2139. }
  2140. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2141. {
  2142. struct btrfs_root *root = BTRFS_I(inode)->root;
  2143. struct extent_map *em = NULL;
  2144. struct extent_state *cached_state = NULL;
  2145. u64 lockstart = *offset;
  2146. u64 lockend = i_size_read(inode);
  2147. u64 start = *offset;
  2148. u64 len = i_size_read(inode);
  2149. int ret = 0;
  2150. lockend = max_t(u64, root->sectorsize, lockend);
  2151. if (lockend <= lockstart)
  2152. lockend = lockstart + root->sectorsize;
  2153. lockend--;
  2154. len = lockend - lockstart + 1;
  2155. len = max_t(u64, len, root->sectorsize);
  2156. if (inode->i_size == 0)
  2157. return -ENXIO;
  2158. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2159. &cached_state);
  2160. while (start < inode->i_size) {
  2161. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2162. if (IS_ERR(em)) {
  2163. ret = PTR_ERR(em);
  2164. em = NULL;
  2165. break;
  2166. }
  2167. if (whence == SEEK_HOLE &&
  2168. (em->block_start == EXTENT_MAP_HOLE ||
  2169. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2170. break;
  2171. else if (whence == SEEK_DATA &&
  2172. (em->block_start != EXTENT_MAP_HOLE &&
  2173. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2174. break;
  2175. start = em->start + em->len;
  2176. free_extent_map(em);
  2177. em = NULL;
  2178. cond_resched();
  2179. }
  2180. free_extent_map(em);
  2181. if (!ret) {
  2182. if (whence == SEEK_DATA && start >= inode->i_size)
  2183. ret = -ENXIO;
  2184. else
  2185. *offset = min_t(loff_t, start, inode->i_size);
  2186. }
  2187. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2188. &cached_state, GFP_NOFS);
  2189. return ret;
  2190. }
  2191. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2192. {
  2193. struct inode *inode = file->f_mapping->host;
  2194. int ret;
  2195. mutex_lock(&inode->i_mutex);
  2196. switch (whence) {
  2197. case SEEK_END:
  2198. case SEEK_CUR:
  2199. offset = generic_file_llseek(file, offset, whence);
  2200. goto out;
  2201. case SEEK_DATA:
  2202. case SEEK_HOLE:
  2203. if (offset >= i_size_read(inode)) {
  2204. mutex_unlock(&inode->i_mutex);
  2205. return -ENXIO;
  2206. }
  2207. ret = find_desired_extent(inode, &offset, whence);
  2208. if (ret) {
  2209. mutex_unlock(&inode->i_mutex);
  2210. return ret;
  2211. }
  2212. }
  2213. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2214. out:
  2215. mutex_unlock(&inode->i_mutex);
  2216. return offset;
  2217. }
  2218. const struct file_operations btrfs_file_operations = {
  2219. .llseek = btrfs_file_llseek,
  2220. .read = do_sync_read,
  2221. .write = do_sync_write,
  2222. .aio_read = generic_file_aio_read,
  2223. .splice_read = generic_file_splice_read,
  2224. .aio_write = btrfs_file_aio_write,
  2225. .mmap = btrfs_file_mmap,
  2226. .open = generic_file_open,
  2227. .release = btrfs_release_file,
  2228. .fsync = btrfs_sync_file,
  2229. .fallocate = btrfs_fallocate,
  2230. .unlocked_ioctl = btrfs_ioctl,
  2231. #ifdef CONFIG_COMPAT
  2232. .compat_ioctl = btrfs_ioctl,
  2233. #endif
  2234. };
  2235. void btrfs_auto_defrag_exit(void)
  2236. {
  2237. if (btrfs_inode_defrag_cachep)
  2238. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2239. }
  2240. int btrfs_auto_defrag_init(void)
  2241. {
  2242. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2243. sizeof(struct inode_defrag), 0,
  2244. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2245. NULL);
  2246. if (!btrfs_inode_defrag_cachep)
  2247. return -ENOMEM;
  2248. return 0;
  2249. }