backref.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 offset = 0;
  37. struct extent_inode_elem *e;
  38. if (!btrfs_file_extent_compression(eb, fi) &&
  39. !btrfs_file_extent_encryption(eb, fi) &&
  40. !btrfs_file_extent_other_encoding(eb, fi)) {
  41. u64 data_offset;
  42. u64 data_len;
  43. data_offset = btrfs_file_extent_offset(eb, fi);
  44. data_len = btrfs_file_extent_num_bytes(eb, fi);
  45. if (extent_item_pos < data_offset ||
  46. extent_item_pos >= data_offset + data_len)
  47. return 1;
  48. offset = extent_item_pos - data_offset;
  49. }
  50. e = kmalloc(sizeof(*e), GFP_NOFS);
  51. if (!e)
  52. return -ENOMEM;
  53. e->next = *eie;
  54. e->inum = key->objectid;
  55. e->offset = key->offset + offset;
  56. *eie = e;
  57. return 0;
  58. }
  59. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  60. u64 extent_item_pos,
  61. struct extent_inode_elem **eie)
  62. {
  63. u64 disk_byte;
  64. struct btrfs_key key;
  65. struct btrfs_file_extent_item *fi;
  66. int slot;
  67. int nritems;
  68. int extent_type;
  69. int ret;
  70. /*
  71. * from the shared data ref, we only have the leaf but we need
  72. * the key. thus, we must look into all items and see that we
  73. * find one (some) with a reference to our extent item.
  74. */
  75. nritems = btrfs_header_nritems(eb);
  76. for (slot = 0; slot < nritems; ++slot) {
  77. btrfs_item_key_to_cpu(eb, &key, slot);
  78. if (key.type != BTRFS_EXTENT_DATA_KEY)
  79. continue;
  80. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  81. extent_type = btrfs_file_extent_type(eb, fi);
  82. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  83. continue;
  84. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  85. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  86. if (disk_byte != wanted_disk_byte)
  87. continue;
  88. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  89. if (ret < 0)
  90. return ret;
  91. }
  92. return 0;
  93. }
  94. /*
  95. * this structure records all encountered refs on the way up to the root
  96. */
  97. struct __prelim_ref {
  98. struct list_head list;
  99. u64 root_id;
  100. struct btrfs_key key_for_search;
  101. int level;
  102. int count;
  103. struct extent_inode_elem *inode_list;
  104. u64 parent;
  105. u64 wanted_disk_byte;
  106. };
  107. static struct kmem_cache *btrfs_prelim_ref_cache;
  108. int __init btrfs_prelim_ref_init(void)
  109. {
  110. btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
  111. sizeof(struct __prelim_ref),
  112. 0,
  113. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  114. NULL);
  115. if (!btrfs_prelim_ref_cache)
  116. return -ENOMEM;
  117. return 0;
  118. }
  119. void btrfs_prelim_ref_exit(void)
  120. {
  121. if (btrfs_prelim_ref_cache)
  122. kmem_cache_destroy(btrfs_prelim_ref_cache);
  123. }
  124. /*
  125. * the rules for all callers of this function are:
  126. * - obtaining the parent is the goal
  127. * - if you add a key, you must know that it is a correct key
  128. * - if you cannot add the parent or a correct key, then we will look into the
  129. * block later to set a correct key
  130. *
  131. * delayed refs
  132. * ============
  133. * backref type | shared | indirect | shared | indirect
  134. * information | tree | tree | data | data
  135. * --------------------+--------+----------+--------+----------
  136. * parent logical | y | - | - | -
  137. * key to resolve | - | y | y | y
  138. * tree block logical | - | - | - | -
  139. * root for resolving | y | y | y | y
  140. *
  141. * - column 1: we've the parent -> done
  142. * - column 2, 3, 4: we use the key to find the parent
  143. *
  144. * on disk refs (inline or keyed)
  145. * ==============================
  146. * backref type | shared | indirect | shared | indirect
  147. * information | tree | tree | data | data
  148. * --------------------+--------+----------+--------+----------
  149. * parent logical | y | - | y | -
  150. * key to resolve | - | - | - | y
  151. * tree block logical | y | y | y | y
  152. * root for resolving | - | y | y | y
  153. *
  154. * - column 1, 3: we've the parent -> done
  155. * - column 2: we take the first key from the block to find the parent
  156. * (see __add_missing_keys)
  157. * - column 4: we use the key to find the parent
  158. *
  159. * additional information that's available but not required to find the parent
  160. * block might help in merging entries to gain some speed.
  161. */
  162. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  163. struct btrfs_key *key, int level,
  164. u64 parent, u64 wanted_disk_byte, int count,
  165. gfp_t gfp_mask)
  166. {
  167. struct __prelim_ref *ref;
  168. if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
  169. return 0;
  170. ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
  171. if (!ref)
  172. return -ENOMEM;
  173. ref->root_id = root_id;
  174. if (key)
  175. ref->key_for_search = *key;
  176. else
  177. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  178. ref->inode_list = NULL;
  179. ref->level = level;
  180. ref->count = count;
  181. ref->parent = parent;
  182. ref->wanted_disk_byte = wanted_disk_byte;
  183. list_add_tail(&ref->list, head);
  184. return 0;
  185. }
  186. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  187. struct ulist *parents, int level,
  188. struct btrfs_key *key_for_search, u64 time_seq,
  189. u64 wanted_disk_byte,
  190. const u64 *extent_item_pos)
  191. {
  192. int ret = 0;
  193. int slot;
  194. struct extent_buffer *eb;
  195. struct btrfs_key key;
  196. struct btrfs_file_extent_item *fi;
  197. struct extent_inode_elem *eie = NULL, *old = NULL;
  198. u64 disk_byte;
  199. if (level != 0) {
  200. eb = path->nodes[level];
  201. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  202. if (ret < 0)
  203. return ret;
  204. return 0;
  205. }
  206. /*
  207. * We normally enter this function with the path already pointing to
  208. * the first item to check. But sometimes, we may enter it with
  209. * slot==nritems. In that case, go to the next leaf before we continue.
  210. */
  211. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  212. ret = btrfs_next_old_leaf(root, path, time_seq);
  213. while (!ret) {
  214. eb = path->nodes[0];
  215. slot = path->slots[0];
  216. btrfs_item_key_to_cpu(eb, &key, slot);
  217. if (key.objectid != key_for_search->objectid ||
  218. key.type != BTRFS_EXTENT_DATA_KEY)
  219. break;
  220. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  221. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  222. if (disk_byte == wanted_disk_byte) {
  223. eie = NULL;
  224. old = NULL;
  225. if (extent_item_pos) {
  226. ret = check_extent_in_eb(&key, eb, fi,
  227. *extent_item_pos,
  228. &eie);
  229. if (ret < 0)
  230. break;
  231. }
  232. if (ret > 0)
  233. goto next;
  234. ret = ulist_add_merge(parents, eb->start,
  235. (uintptr_t)eie,
  236. (u64 *)&old, GFP_NOFS);
  237. if (ret < 0)
  238. break;
  239. if (!ret && extent_item_pos) {
  240. while (old->next)
  241. old = old->next;
  242. old->next = eie;
  243. }
  244. }
  245. next:
  246. ret = btrfs_next_old_item(root, path, time_seq);
  247. }
  248. if (ret > 0)
  249. ret = 0;
  250. return ret;
  251. }
  252. /*
  253. * resolve an indirect backref in the form (root_id, key, level)
  254. * to a logical address
  255. */
  256. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  257. struct btrfs_path *path, u64 time_seq,
  258. struct __prelim_ref *ref,
  259. struct ulist *parents,
  260. const u64 *extent_item_pos)
  261. {
  262. struct btrfs_root *root;
  263. struct btrfs_key root_key;
  264. struct extent_buffer *eb;
  265. int ret = 0;
  266. int root_level;
  267. int level = ref->level;
  268. root_key.objectid = ref->root_id;
  269. root_key.type = BTRFS_ROOT_ITEM_KEY;
  270. root_key.offset = (u64)-1;
  271. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  272. if (IS_ERR(root)) {
  273. ret = PTR_ERR(root);
  274. goto out;
  275. }
  276. root_level = btrfs_old_root_level(root, time_seq);
  277. if (root_level + 1 == level)
  278. goto out;
  279. path->lowest_level = level;
  280. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  281. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  282. "%d for key (%llu %u %llu)\n",
  283. ref->root_id, level, ref->count, ret,
  284. ref->key_for_search.objectid, ref->key_for_search.type,
  285. ref->key_for_search.offset);
  286. if (ret < 0)
  287. goto out;
  288. eb = path->nodes[level];
  289. while (!eb) {
  290. if (WARN_ON(!level)) {
  291. ret = 1;
  292. goto out;
  293. }
  294. level--;
  295. eb = path->nodes[level];
  296. }
  297. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  298. time_seq, ref->wanted_disk_byte,
  299. extent_item_pos);
  300. out:
  301. path->lowest_level = 0;
  302. btrfs_release_path(path);
  303. return ret;
  304. }
  305. /*
  306. * resolve all indirect backrefs from the list
  307. */
  308. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  309. struct btrfs_path *path, u64 time_seq,
  310. struct list_head *head,
  311. const u64 *extent_item_pos)
  312. {
  313. int err;
  314. int ret = 0;
  315. struct __prelim_ref *ref;
  316. struct __prelim_ref *ref_safe;
  317. struct __prelim_ref *new_ref;
  318. struct ulist *parents;
  319. struct ulist_node *node;
  320. struct ulist_iterator uiter;
  321. parents = ulist_alloc(GFP_NOFS);
  322. if (!parents)
  323. return -ENOMEM;
  324. /*
  325. * _safe allows us to insert directly after the current item without
  326. * iterating over the newly inserted items.
  327. * we're also allowed to re-assign ref during iteration.
  328. */
  329. list_for_each_entry_safe(ref, ref_safe, head, list) {
  330. if (ref->parent) /* already direct */
  331. continue;
  332. if (ref->count == 0)
  333. continue;
  334. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  335. parents, extent_item_pos);
  336. if (err == -ENOMEM)
  337. goto out;
  338. if (err)
  339. continue;
  340. /* we put the first parent into the ref at hand */
  341. ULIST_ITER_INIT(&uiter);
  342. node = ulist_next(parents, &uiter);
  343. ref->parent = node ? node->val : 0;
  344. ref->inode_list = node ?
  345. (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
  346. /* additional parents require new refs being added here */
  347. while ((node = ulist_next(parents, &uiter))) {
  348. new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
  349. GFP_NOFS);
  350. if (!new_ref) {
  351. ret = -ENOMEM;
  352. goto out;
  353. }
  354. memcpy(new_ref, ref, sizeof(*ref));
  355. new_ref->parent = node->val;
  356. new_ref->inode_list = (struct extent_inode_elem *)
  357. (uintptr_t)node->aux;
  358. list_add(&new_ref->list, &ref->list);
  359. }
  360. ulist_reinit(parents);
  361. }
  362. out:
  363. ulist_free(parents);
  364. return ret;
  365. }
  366. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  367. struct __prelim_ref *ref2)
  368. {
  369. if (ref1->level != ref2->level)
  370. return 0;
  371. if (ref1->root_id != ref2->root_id)
  372. return 0;
  373. if (ref1->key_for_search.type != ref2->key_for_search.type)
  374. return 0;
  375. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  376. return 0;
  377. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  378. return 0;
  379. if (ref1->parent != ref2->parent)
  380. return 0;
  381. return 1;
  382. }
  383. /*
  384. * read tree blocks and add keys where required.
  385. */
  386. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  387. struct list_head *head)
  388. {
  389. struct list_head *pos;
  390. struct extent_buffer *eb;
  391. list_for_each(pos, head) {
  392. struct __prelim_ref *ref;
  393. ref = list_entry(pos, struct __prelim_ref, list);
  394. if (ref->parent)
  395. continue;
  396. if (ref->key_for_search.type)
  397. continue;
  398. BUG_ON(!ref->wanted_disk_byte);
  399. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  400. fs_info->tree_root->leafsize, 0);
  401. if (!eb || !extent_buffer_uptodate(eb)) {
  402. free_extent_buffer(eb);
  403. return -EIO;
  404. }
  405. btrfs_tree_read_lock(eb);
  406. if (btrfs_header_level(eb) == 0)
  407. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  408. else
  409. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  410. btrfs_tree_read_unlock(eb);
  411. free_extent_buffer(eb);
  412. }
  413. return 0;
  414. }
  415. /*
  416. * merge two lists of backrefs and adjust counts accordingly
  417. *
  418. * mode = 1: merge identical keys, if key is set
  419. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  420. * additionally, we could even add a key range for the blocks we
  421. * looked into to merge even more (-> replace unresolved refs by those
  422. * having a parent).
  423. * mode = 2: merge identical parents
  424. */
  425. static void __merge_refs(struct list_head *head, int mode)
  426. {
  427. struct list_head *pos1;
  428. list_for_each(pos1, head) {
  429. struct list_head *n2;
  430. struct list_head *pos2;
  431. struct __prelim_ref *ref1;
  432. ref1 = list_entry(pos1, struct __prelim_ref, list);
  433. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  434. pos2 = n2, n2 = pos2->next) {
  435. struct __prelim_ref *ref2;
  436. struct __prelim_ref *xchg;
  437. struct extent_inode_elem *eie;
  438. ref2 = list_entry(pos2, struct __prelim_ref, list);
  439. if (mode == 1) {
  440. if (!ref_for_same_block(ref1, ref2))
  441. continue;
  442. if (!ref1->parent && ref2->parent) {
  443. xchg = ref1;
  444. ref1 = ref2;
  445. ref2 = xchg;
  446. }
  447. } else {
  448. if (ref1->parent != ref2->parent)
  449. continue;
  450. }
  451. eie = ref1->inode_list;
  452. while (eie && eie->next)
  453. eie = eie->next;
  454. if (eie)
  455. eie->next = ref2->inode_list;
  456. else
  457. ref1->inode_list = ref2->inode_list;
  458. ref1->count += ref2->count;
  459. list_del(&ref2->list);
  460. kmem_cache_free(btrfs_prelim_ref_cache, ref2);
  461. }
  462. }
  463. }
  464. /*
  465. * add all currently queued delayed refs from this head whose seq nr is
  466. * smaller or equal that seq to the list
  467. */
  468. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  469. struct list_head *prefs)
  470. {
  471. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  472. struct rb_node *n = &head->node.rb_node;
  473. struct btrfs_key key;
  474. struct btrfs_key op_key = {0};
  475. int sgn;
  476. int ret = 0;
  477. if (extent_op && extent_op->update_key)
  478. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  479. while ((n = rb_prev(n))) {
  480. struct btrfs_delayed_ref_node *node;
  481. node = rb_entry(n, struct btrfs_delayed_ref_node,
  482. rb_node);
  483. if (node->bytenr != head->node.bytenr)
  484. break;
  485. WARN_ON(node->is_head);
  486. if (node->seq > seq)
  487. continue;
  488. switch (node->action) {
  489. case BTRFS_ADD_DELAYED_EXTENT:
  490. case BTRFS_UPDATE_DELAYED_HEAD:
  491. WARN_ON(1);
  492. continue;
  493. case BTRFS_ADD_DELAYED_REF:
  494. sgn = 1;
  495. break;
  496. case BTRFS_DROP_DELAYED_REF:
  497. sgn = -1;
  498. break;
  499. default:
  500. BUG_ON(1);
  501. }
  502. switch (node->type) {
  503. case BTRFS_TREE_BLOCK_REF_KEY: {
  504. struct btrfs_delayed_tree_ref *ref;
  505. ref = btrfs_delayed_node_to_tree_ref(node);
  506. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  507. ref->level + 1, 0, node->bytenr,
  508. node->ref_mod * sgn, GFP_ATOMIC);
  509. break;
  510. }
  511. case BTRFS_SHARED_BLOCK_REF_KEY: {
  512. struct btrfs_delayed_tree_ref *ref;
  513. ref = btrfs_delayed_node_to_tree_ref(node);
  514. ret = __add_prelim_ref(prefs, ref->root, NULL,
  515. ref->level + 1, ref->parent,
  516. node->bytenr,
  517. node->ref_mod * sgn, GFP_ATOMIC);
  518. break;
  519. }
  520. case BTRFS_EXTENT_DATA_REF_KEY: {
  521. struct btrfs_delayed_data_ref *ref;
  522. ref = btrfs_delayed_node_to_data_ref(node);
  523. key.objectid = ref->objectid;
  524. key.type = BTRFS_EXTENT_DATA_KEY;
  525. key.offset = ref->offset;
  526. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  527. node->bytenr,
  528. node->ref_mod * sgn, GFP_ATOMIC);
  529. break;
  530. }
  531. case BTRFS_SHARED_DATA_REF_KEY: {
  532. struct btrfs_delayed_data_ref *ref;
  533. ref = btrfs_delayed_node_to_data_ref(node);
  534. key.objectid = ref->objectid;
  535. key.type = BTRFS_EXTENT_DATA_KEY;
  536. key.offset = ref->offset;
  537. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  538. ref->parent, node->bytenr,
  539. node->ref_mod * sgn, GFP_ATOMIC);
  540. break;
  541. }
  542. default:
  543. WARN_ON(1);
  544. }
  545. if (ret)
  546. return ret;
  547. }
  548. return 0;
  549. }
  550. /*
  551. * add all inline backrefs for bytenr to the list
  552. */
  553. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  554. struct btrfs_path *path, u64 bytenr,
  555. int *info_level, struct list_head *prefs)
  556. {
  557. int ret = 0;
  558. int slot;
  559. struct extent_buffer *leaf;
  560. struct btrfs_key key;
  561. struct btrfs_key found_key;
  562. unsigned long ptr;
  563. unsigned long end;
  564. struct btrfs_extent_item *ei;
  565. u64 flags;
  566. u64 item_size;
  567. /*
  568. * enumerate all inline refs
  569. */
  570. leaf = path->nodes[0];
  571. slot = path->slots[0];
  572. item_size = btrfs_item_size_nr(leaf, slot);
  573. BUG_ON(item_size < sizeof(*ei));
  574. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  575. flags = btrfs_extent_flags(leaf, ei);
  576. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  577. ptr = (unsigned long)(ei + 1);
  578. end = (unsigned long)ei + item_size;
  579. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  580. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  581. struct btrfs_tree_block_info *info;
  582. info = (struct btrfs_tree_block_info *)ptr;
  583. *info_level = btrfs_tree_block_level(leaf, info);
  584. ptr += sizeof(struct btrfs_tree_block_info);
  585. BUG_ON(ptr > end);
  586. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  587. *info_level = found_key.offset;
  588. } else {
  589. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  590. }
  591. while (ptr < end) {
  592. struct btrfs_extent_inline_ref *iref;
  593. u64 offset;
  594. int type;
  595. iref = (struct btrfs_extent_inline_ref *)ptr;
  596. type = btrfs_extent_inline_ref_type(leaf, iref);
  597. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  598. switch (type) {
  599. case BTRFS_SHARED_BLOCK_REF_KEY:
  600. ret = __add_prelim_ref(prefs, 0, NULL,
  601. *info_level + 1, offset,
  602. bytenr, 1, GFP_NOFS);
  603. break;
  604. case BTRFS_SHARED_DATA_REF_KEY: {
  605. struct btrfs_shared_data_ref *sdref;
  606. int count;
  607. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  608. count = btrfs_shared_data_ref_count(leaf, sdref);
  609. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  610. bytenr, count, GFP_NOFS);
  611. break;
  612. }
  613. case BTRFS_TREE_BLOCK_REF_KEY:
  614. ret = __add_prelim_ref(prefs, offset, NULL,
  615. *info_level + 1, 0,
  616. bytenr, 1, GFP_NOFS);
  617. break;
  618. case BTRFS_EXTENT_DATA_REF_KEY: {
  619. struct btrfs_extent_data_ref *dref;
  620. int count;
  621. u64 root;
  622. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  623. count = btrfs_extent_data_ref_count(leaf, dref);
  624. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  625. dref);
  626. key.type = BTRFS_EXTENT_DATA_KEY;
  627. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  628. root = btrfs_extent_data_ref_root(leaf, dref);
  629. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  630. bytenr, count, GFP_NOFS);
  631. break;
  632. }
  633. default:
  634. WARN_ON(1);
  635. }
  636. if (ret)
  637. return ret;
  638. ptr += btrfs_extent_inline_ref_size(type);
  639. }
  640. return 0;
  641. }
  642. /*
  643. * add all non-inline backrefs for bytenr to the list
  644. */
  645. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  646. struct btrfs_path *path, u64 bytenr,
  647. int info_level, struct list_head *prefs)
  648. {
  649. struct btrfs_root *extent_root = fs_info->extent_root;
  650. int ret;
  651. int slot;
  652. struct extent_buffer *leaf;
  653. struct btrfs_key key;
  654. while (1) {
  655. ret = btrfs_next_item(extent_root, path);
  656. if (ret < 0)
  657. break;
  658. if (ret) {
  659. ret = 0;
  660. break;
  661. }
  662. slot = path->slots[0];
  663. leaf = path->nodes[0];
  664. btrfs_item_key_to_cpu(leaf, &key, slot);
  665. if (key.objectid != bytenr)
  666. break;
  667. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  668. continue;
  669. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  670. break;
  671. switch (key.type) {
  672. case BTRFS_SHARED_BLOCK_REF_KEY:
  673. ret = __add_prelim_ref(prefs, 0, NULL,
  674. info_level + 1, key.offset,
  675. bytenr, 1, GFP_NOFS);
  676. break;
  677. case BTRFS_SHARED_DATA_REF_KEY: {
  678. struct btrfs_shared_data_ref *sdref;
  679. int count;
  680. sdref = btrfs_item_ptr(leaf, slot,
  681. struct btrfs_shared_data_ref);
  682. count = btrfs_shared_data_ref_count(leaf, sdref);
  683. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  684. bytenr, count, GFP_NOFS);
  685. break;
  686. }
  687. case BTRFS_TREE_BLOCK_REF_KEY:
  688. ret = __add_prelim_ref(prefs, key.offset, NULL,
  689. info_level + 1, 0,
  690. bytenr, 1, GFP_NOFS);
  691. break;
  692. case BTRFS_EXTENT_DATA_REF_KEY: {
  693. struct btrfs_extent_data_ref *dref;
  694. int count;
  695. u64 root;
  696. dref = btrfs_item_ptr(leaf, slot,
  697. struct btrfs_extent_data_ref);
  698. count = btrfs_extent_data_ref_count(leaf, dref);
  699. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  700. dref);
  701. key.type = BTRFS_EXTENT_DATA_KEY;
  702. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  703. root = btrfs_extent_data_ref_root(leaf, dref);
  704. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  705. bytenr, count, GFP_NOFS);
  706. break;
  707. }
  708. default:
  709. WARN_ON(1);
  710. }
  711. if (ret)
  712. return ret;
  713. }
  714. return ret;
  715. }
  716. /*
  717. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  718. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  719. * indirect refs to their parent bytenr.
  720. * When roots are found, they're added to the roots list
  721. *
  722. * FIXME some caching might speed things up
  723. */
  724. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  725. struct btrfs_fs_info *fs_info, u64 bytenr,
  726. u64 time_seq, struct ulist *refs,
  727. struct ulist *roots, const u64 *extent_item_pos)
  728. {
  729. struct btrfs_key key;
  730. struct btrfs_path *path;
  731. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  732. struct btrfs_delayed_ref_head *head;
  733. int info_level = 0;
  734. int ret;
  735. struct list_head prefs_delayed;
  736. struct list_head prefs;
  737. struct __prelim_ref *ref;
  738. INIT_LIST_HEAD(&prefs);
  739. INIT_LIST_HEAD(&prefs_delayed);
  740. key.objectid = bytenr;
  741. key.offset = (u64)-1;
  742. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  743. key.type = BTRFS_METADATA_ITEM_KEY;
  744. else
  745. key.type = BTRFS_EXTENT_ITEM_KEY;
  746. path = btrfs_alloc_path();
  747. if (!path)
  748. return -ENOMEM;
  749. if (!trans)
  750. path->search_commit_root = 1;
  751. /*
  752. * grab both a lock on the path and a lock on the delayed ref head.
  753. * We need both to get a consistent picture of how the refs look
  754. * at a specified point in time
  755. */
  756. again:
  757. head = NULL;
  758. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  759. if (ret < 0)
  760. goto out;
  761. BUG_ON(ret == 0);
  762. if (trans) {
  763. /*
  764. * look if there are updates for this ref queued and lock the
  765. * head
  766. */
  767. delayed_refs = &trans->transaction->delayed_refs;
  768. spin_lock(&delayed_refs->lock);
  769. head = btrfs_find_delayed_ref_head(trans, bytenr);
  770. if (head) {
  771. if (!mutex_trylock(&head->mutex)) {
  772. atomic_inc(&head->node.refs);
  773. spin_unlock(&delayed_refs->lock);
  774. btrfs_release_path(path);
  775. /*
  776. * Mutex was contended, block until it's
  777. * released and try again
  778. */
  779. mutex_lock(&head->mutex);
  780. mutex_unlock(&head->mutex);
  781. btrfs_put_delayed_ref(&head->node);
  782. goto again;
  783. }
  784. ret = __add_delayed_refs(head, time_seq,
  785. &prefs_delayed);
  786. mutex_unlock(&head->mutex);
  787. if (ret) {
  788. spin_unlock(&delayed_refs->lock);
  789. goto out;
  790. }
  791. }
  792. spin_unlock(&delayed_refs->lock);
  793. }
  794. if (path->slots[0]) {
  795. struct extent_buffer *leaf;
  796. int slot;
  797. path->slots[0]--;
  798. leaf = path->nodes[0];
  799. slot = path->slots[0];
  800. btrfs_item_key_to_cpu(leaf, &key, slot);
  801. if (key.objectid == bytenr &&
  802. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  803. key.type == BTRFS_METADATA_ITEM_KEY)) {
  804. ret = __add_inline_refs(fs_info, path, bytenr,
  805. &info_level, &prefs);
  806. if (ret)
  807. goto out;
  808. ret = __add_keyed_refs(fs_info, path, bytenr,
  809. info_level, &prefs);
  810. if (ret)
  811. goto out;
  812. }
  813. }
  814. btrfs_release_path(path);
  815. list_splice_init(&prefs_delayed, &prefs);
  816. ret = __add_missing_keys(fs_info, &prefs);
  817. if (ret)
  818. goto out;
  819. __merge_refs(&prefs, 1);
  820. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  821. extent_item_pos);
  822. if (ret)
  823. goto out;
  824. __merge_refs(&prefs, 2);
  825. while (!list_empty(&prefs)) {
  826. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  827. WARN_ON(ref->count < 0);
  828. if (ref->count && ref->root_id && ref->parent == 0) {
  829. /* no parent == root of tree */
  830. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  831. if (ret < 0)
  832. goto out;
  833. }
  834. if (ref->count && ref->parent) {
  835. struct extent_inode_elem *eie = NULL;
  836. if (extent_item_pos && !ref->inode_list) {
  837. u32 bsz;
  838. struct extent_buffer *eb;
  839. bsz = btrfs_level_size(fs_info->extent_root,
  840. info_level);
  841. eb = read_tree_block(fs_info->extent_root,
  842. ref->parent, bsz, 0);
  843. if (!eb || !extent_buffer_uptodate(eb)) {
  844. free_extent_buffer(eb);
  845. ret = -EIO;
  846. goto out;
  847. }
  848. ret = find_extent_in_eb(eb, bytenr,
  849. *extent_item_pos, &eie);
  850. free_extent_buffer(eb);
  851. if (ret < 0)
  852. goto out;
  853. ref->inode_list = eie;
  854. }
  855. ret = ulist_add_merge(refs, ref->parent,
  856. (uintptr_t)ref->inode_list,
  857. (u64 *)&eie, GFP_NOFS);
  858. if (ret < 0)
  859. goto out;
  860. if (!ret && extent_item_pos) {
  861. /*
  862. * we've recorded that parent, so we must extend
  863. * its inode list here
  864. */
  865. BUG_ON(!eie);
  866. while (eie->next)
  867. eie = eie->next;
  868. eie->next = ref->inode_list;
  869. }
  870. }
  871. list_del(&ref->list);
  872. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  873. }
  874. out:
  875. btrfs_free_path(path);
  876. while (!list_empty(&prefs)) {
  877. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  878. list_del(&ref->list);
  879. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  880. }
  881. while (!list_empty(&prefs_delayed)) {
  882. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  883. list);
  884. list_del(&ref->list);
  885. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  886. }
  887. return ret;
  888. }
  889. static void free_leaf_list(struct ulist *blocks)
  890. {
  891. struct ulist_node *node = NULL;
  892. struct extent_inode_elem *eie;
  893. struct extent_inode_elem *eie_next;
  894. struct ulist_iterator uiter;
  895. ULIST_ITER_INIT(&uiter);
  896. while ((node = ulist_next(blocks, &uiter))) {
  897. if (!node->aux)
  898. continue;
  899. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  900. for (; eie; eie = eie_next) {
  901. eie_next = eie->next;
  902. kfree(eie);
  903. }
  904. node->aux = 0;
  905. }
  906. ulist_free(blocks);
  907. }
  908. /*
  909. * Finds all leafs with a reference to the specified combination of bytenr and
  910. * offset. key_list_head will point to a list of corresponding keys (caller must
  911. * free each list element). The leafs will be stored in the leafs ulist, which
  912. * must be freed with ulist_free.
  913. *
  914. * returns 0 on success, <0 on error
  915. */
  916. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  917. struct btrfs_fs_info *fs_info, u64 bytenr,
  918. u64 time_seq, struct ulist **leafs,
  919. const u64 *extent_item_pos)
  920. {
  921. struct ulist *tmp;
  922. int ret;
  923. tmp = ulist_alloc(GFP_NOFS);
  924. if (!tmp)
  925. return -ENOMEM;
  926. *leafs = ulist_alloc(GFP_NOFS);
  927. if (!*leafs) {
  928. ulist_free(tmp);
  929. return -ENOMEM;
  930. }
  931. ret = find_parent_nodes(trans, fs_info, bytenr,
  932. time_seq, *leafs, tmp, extent_item_pos);
  933. ulist_free(tmp);
  934. if (ret < 0 && ret != -ENOENT) {
  935. free_leaf_list(*leafs);
  936. return ret;
  937. }
  938. return 0;
  939. }
  940. /*
  941. * walk all backrefs for a given extent to find all roots that reference this
  942. * extent. Walking a backref means finding all extents that reference this
  943. * extent and in turn walk the backrefs of those, too. Naturally this is a
  944. * recursive process, but here it is implemented in an iterative fashion: We
  945. * find all referencing extents for the extent in question and put them on a
  946. * list. In turn, we find all referencing extents for those, further appending
  947. * to the list. The way we iterate the list allows adding more elements after
  948. * the current while iterating. The process stops when we reach the end of the
  949. * list. Found roots are added to the roots list.
  950. *
  951. * returns 0 on success, < 0 on error.
  952. */
  953. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  954. struct btrfs_fs_info *fs_info, u64 bytenr,
  955. u64 time_seq, struct ulist **roots)
  956. {
  957. struct ulist *tmp;
  958. struct ulist_node *node = NULL;
  959. struct ulist_iterator uiter;
  960. int ret;
  961. tmp = ulist_alloc(GFP_NOFS);
  962. if (!tmp)
  963. return -ENOMEM;
  964. *roots = ulist_alloc(GFP_NOFS);
  965. if (!*roots) {
  966. ulist_free(tmp);
  967. return -ENOMEM;
  968. }
  969. ULIST_ITER_INIT(&uiter);
  970. while (1) {
  971. ret = find_parent_nodes(trans, fs_info, bytenr,
  972. time_seq, tmp, *roots, NULL);
  973. if (ret < 0 && ret != -ENOENT) {
  974. ulist_free(tmp);
  975. ulist_free(*roots);
  976. return ret;
  977. }
  978. node = ulist_next(tmp, &uiter);
  979. if (!node)
  980. break;
  981. bytenr = node->val;
  982. }
  983. ulist_free(tmp);
  984. return 0;
  985. }
  986. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  987. struct btrfs_root *fs_root, struct btrfs_path *path,
  988. struct btrfs_key *found_key)
  989. {
  990. int ret;
  991. struct btrfs_key key;
  992. struct extent_buffer *eb;
  993. key.type = key_type;
  994. key.objectid = inum;
  995. key.offset = ioff;
  996. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  997. if (ret < 0)
  998. return ret;
  999. eb = path->nodes[0];
  1000. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  1001. ret = btrfs_next_leaf(fs_root, path);
  1002. if (ret)
  1003. return ret;
  1004. eb = path->nodes[0];
  1005. }
  1006. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  1007. if (found_key->type != key.type || found_key->objectid != key.objectid)
  1008. return 1;
  1009. return 0;
  1010. }
  1011. /*
  1012. * this makes the path point to (inum INODE_ITEM ioff)
  1013. */
  1014. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1015. struct btrfs_path *path)
  1016. {
  1017. struct btrfs_key key;
  1018. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  1019. &key);
  1020. }
  1021. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1022. struct btrfs_path *path,
  1023. struct btrfs_key *found_key)
  1024. {
  1025. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  1026. found_key);
  1027. }
  1028. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1029. u64 start_off, struct btrfs_path *path,
  1030. struct btrfs_inode_extref **ret_extref,
  1031. u64 *found_off)
  1032. {
  1033. int ret, slot;
  1034. struct btrfs_key key;
  1035. struct btrfs_key found_key;
  1036. struct btrfs_inode_extref *extref;
  1037. struct extent_buffer *leaf;
  1038. unsigned long ptr;
  1039. key.objectid = inode_objectid;
  1040. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1041. key.offset = start_off;
  1042. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1043. if (ret < 0)
  1044. return ret;
  1045. while (1) {
  1046. leaf = path->nodes[0];
  1047. slot = path->slots[0];
  1048. if (slot >= btrfs_header_nritems(leaf)) {
  1049. /*
  1050. * If the item at offset is not found,
  1051. * btrfs_search_slot will point us to the slot
  1052. * where it should be inserted. In our case
  1053. * that will be the slot directly before the
  1054. * next INODE_REF_KEY_V2 item. In the case
  1055. * that we're pointing to the last slot in a
  1056. * leaf, we must move one leaf over.
  1057. */
  1058. ret = btrfs_next_leaf(root, path);
  1059. if (ret) {
  1060. if (ret >= 1)
  1061. ret = -ENOENT;
  1062. break;
  1063. }
  1064. continue;
  1065. }
  1066. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1067. /*
  1068. * Check that we're still looking at an extended ref key for
  1069. * this particular objectid. If we have different
  1070. * objectid or type then there are no more to be found
  1071. * in the tree and we can exit.
  1072. */
  1073. ret = -ENOENT;
  1074. if (found_key.objectid != inode_objectid)
  1075. break;
  1076. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1077. break;
  1078. ret = 0;
  1079. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1080. extref = (struct btrfs_inode_extref *)ptr;
  1081. *ret_extref = extref;
  1082. if (found_off)
  1083. *found_off = found_key.offset;
  1084. break;
  1085. }
  1086. return ret;
  1087. }
  1088. /*
  1089. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1090. * Elements of the path are separated by '/' and the path is guaranteed to be
  1091. * 0-terminated. the path is only given within the current file system.
  1092. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1093. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1094. * the start point of the resulting string is returned. this pointer is within
  1095. * dest, normally.
  1096. * in case the path buffer would overflow, the pointer is decremented further
  1097. * as if output was written to the buffer, though no more output is actually
  1098. * generated. that way, the caller can determine how much space would be
  1099. * required for the path to fit into the buffer. in that case, the returned
  1100. * value will be smaller than dest. callers must check this!
  1101. */
  1102. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1103. u32 name_len, unsigned long name_off,
  1104. struct extent_buffer *eb_in, u64 parent,
  1105. char *dest, u32 size)
  1106. {
  1107. int slot;
  1108. u64 next_inum;
  1109. int ret;
  1110. s64 bytes_left = ((s64)size) - 1;
  1111. struct extent_buffer *eb = eb_in;
  1112. struct btrfs_key found_key;
  1113. int leave_spinning = path->leave_spinning;
  1114. struct btrfs_inode_ref *iref;
  1115. if (bytes_left >= 0)
  1116. dest[bytes_left] = '\0';
  1117. path->leave_spinning = 1;
  1118. while (1) {
  1119. bytes_left -= name_len;
  1120. if (bytes_left >= 0)
  1121. read_extent_buffer(eb, dest + bytes_left,
  1122. name_off, name_len);
  1123. if (eb != eb_in) {
  1124. btrfs_tree_read_unlock_blocking(eb);
  1125. free_extent_buffer(eb);
  1126. }
  1127. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1128. if (ret > 0)
  1129. ret = -ENOENT;
  1130. if (ret)
  1131. break;
  1132. next_inum = found_key.offset;
  1133. /* regular exit ahead */
  1134. if (parent == next_inum)
  1135. break;
  1136. slot = path->slots[0];
  1137. eb = path->nodes[0];
  1138. /* make sure we can use eb after releasing the path */
  1139. if (eb != eb_in) {
  1140. atomic_inc(&eb->refs);
  1141. btrfs_tree_read_lock(eb);
  1142. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1143. }
  1144. btrfs_release_path(path);
  1145. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1146. name_len = btrfs_inode_ref_name_len(eb, iref);
  1147. name_off = (unsigned long)(iref + 1);
  1148. parent = next_inum;
  1149. --bytes_left;
  1150. if (bytes_left >= 0)
  1151. dest[bytes_left] = '/';
  1152. }
  1153. btrfs_release_path(path);
  1154. path->leave_spinning = leave_spinning;
  1155. if (ret)
  1156. return ERR_PTR(ret);
  1157. return dest + bytes_left;
  1158. }
  1159. /*
  1160. * this makes the path point to (logical EXTENT_ITEM *)
  1161. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1162. * tree blocks and <0 on error.
  1163. */
  1164. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1165. struct btrfs_path *path, struct btrfs_key *found_key,
  1166. u64 *flags_ret)
  1167. {
  1168. int ret;
  1169. u64 flags;
  1170. u64 size = 0;
  1171. u32 item_size;
  1172. struct extent_buffer *eb;
  1173. struct btrfs_extent_item *ei;
  1174. struct btrfs_key key;
  1175. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1176. key.type = BTRFS_METADATA_ITEM_KEY;
  1177. else
  1178. key.type = BTRFS_EXTENT_ITEM_KEY;
  1179. key.objectid = logical;
  1180. key.offset = (u64)-1;
  1181. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1182. if (ret < 0)
  1183. return ret;
  1184. ret = btrfs_previous_item(fs_info->extent_root, path,
  1185. 0, BTRFS_EXTENT_ITEM_KEY);
  1186. if (ret < 0)
  1187. return ret;
  1188. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1189. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1190. size = fs_info->extent_root->leafsize;
  1191. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1192. size = found_key->offset;
  1193. if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
  1194. found_key->type != BTRFS_METADATA_ITEM_KEY) ||
  1195. found_key->objectid > logical ||
  1196. found_key->objectid + size <= logical) {
  1197. pr_debug("logical %llu is not within any extent\n", logical);
  1198. return -ENOENT;
  1199. }
  1200. eb = path->nodes[0];
  1201. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1202. BUG_ON(item_size < sizeof(*ei));
  1203. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1204. flags = btrfs_extent_flags(eb, ei);
  1205. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1206. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1207. logical, logical - found_key->objectid, found_key->objectid,
  1208. found_key->offset, flags, item_size);
  1209. WARN_ON(!flags_ret);
  1210. if (flags_ret) {
  1211. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1212. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1213. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1214. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1215. else
  1216. BUG_ON(1);
  1217. return 0;
  1218. }
  1219. return -EIO;
  1220. }
  1221. /*
  1222. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1223. * for the first call and may be modified. it is used to track state.
  1224. * if more refs exist, 0 is returned and the next call to
  1225. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1226. * next ref. after the last ref was processed, 1 is returned.
  1227. * returns <0 on error
  1228. */
  1229. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1230. struct btrfs_extent_item *ei, u32 item_size,
  1231. struct btrfs_extent_inline_ref **out_eiref,
  1232. int *out_type)
  1233. {
  1234. unsigned long end;
  1235. u64 flags;
  1236. struct btrfs_tree_block_info *info;
  1237. if (!*ptr) {
  1238. /* first call */
  1239. flags = btrfs_extent_flags(eb, ei);
  1240. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1241. info = (struct btrfs_tree_block_info *)(ei + 1);
  1242. *out_eiref =
  1243. (struct btrfs_extent_inline_ref *)(info + 1);
  1244. } else {
  1245. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1246. }
  1247. *ptr = (unsigned long)*out_eiref;
  1248. if ((void *)*ptr >= (void *)ei + item_size)
  1249. return -ENOENT;
  1250. }
  1251. end = (unsigned long)ei + item_size;
  1252. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1253. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1254. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1255. WARN_ON(*ptr > end);
  1256. if (*ptr == end)
  1257. return 1; /* last */
  1258. return 0;
  1259. }
  1260. /*
  1261. * reads the tree block backref for an extent. tree level and root are returned
  1262. * through out_level and out_root. ptr must point to a 0 value for the first
  1263. * call and may be modified (see __get_extent_inline_ref comment).
  1264. * returns 0 if data was provided, 1 if there was no more data to provide or
  1265. * <0 on error.
  1266. */
  1267. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1268. struct btrfs_extent_item *ei, u32 item_size,
  1269. u64 *out_root, u8 *out_level)
  1270. {
  1271. int ret;
  1272. int type;
  1273. struct btrfs_tree_block_info *info;
  1274. struct btrfs_extent_inline_ref *eiref;
  1275. if (*ptr == (unsigned long)-1)
  1276. return 1;
  1277. while (1) {
  1278. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1279. &eiref, &type);
  1280. if (ret < 0)
  1281. return ret;
  1282. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1283. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1284. break;
  1285. if (ret == 1)
  1286. return 1;
  1287. }
  1288. /* we can treat both ref types equally here */
  1289. info = (struct btrfs_tree_block_info *)(ei + 1);
  1290. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1291. *out_level = btrfs_tree_block_level(eb, info);
  1292. if (ret == 1)
  1293. *ptr = (unsigned long)-1;
  1294. return 0;
  1295. }
  1296. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1297. u64 root, u64 extent_item_objectid,
  1298. iterate_extent_inodes_t *iterate, void *ctx)
  1299. {
  1300. struct extent_inode_elem *eie;
  1301. int ret = 0;
  1302. for (eie = inode_list; eie; eie = eie->next) {
  1303. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1304. "root %llu\n", extent_item_objectid,
  1305. eie->inum, eie->offset, root);
  1306. ret = iterate(eie->inum, eie->offset, root, ctx);
  1307. if (ret) {
  1308. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1309. extent_item_objectid, ret);
  1310. break;
  1311. }
  1312. }
  1313. return ret;
  1314. }
  1315. /*
  1316. * calls iterate() for every inode that references the extent identified by
  1317. * the given parameters.
  1318. * when the iterator function returns a non-zero value, iteration stops.
  1319. */
  1320. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1321. u64 extent_item_objectid, u64 extent_item_pos,
  1322. int search_commit_root,
  1323. iterate_extent_inodes_t *iterate, void *ctx)
  1324. {
  1325. int ret;
  1326. struct btrfs_trans_handle *trans = NULL;
  1327. struct ulist *refs = NULL;
  1328. struct ulist *roots = NULL;
  1329. struct ulist_node *ref_node = NULL;
  1330. struct ulist_node *root_node = NULL;
  1331. struct seq_list tree_mod_seq_elem = {};
  1332. struct ulist_iterator ref_uiter;
  1333. struct ulist_iterator root_uiter;
  1334. pr_debug("resolving all inodes for extent %llu\n",
  1335. extent_item_objectid);
  1336. if (!search_commit_root) {
  1337. trans = btrfs_join_transaction(fs_info->extent_root);
  1338. if (IS_ERR(trans))
  1339. return PTR_ERR(trans);
  1340. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1341. }
  1342. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1343. tree_mod_seq_elem.seq, &refs,
  1344. &extent_item_pos);
  1345. if (ret)
  1346. goto out;
  1347. ULIST_ITER_INIT(&ref_uiter);
  1348. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1349. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1350. tree_mod_seq_elem.seq, &roots);
  1351. if (ret)
  1352. break;
  1353. ULIST_ITER_INIT(&root_uiter);
  1354. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1355. pr_debug("root %llu references leaf %llu, data list "
  1356. "%#llx\n", root_node->val, ref_node->val,
  1357. ref_node->aux);
  1358. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1359. (uintptr_t)ref_node->aux,
  1360. root_node->val,
  1361. extent_item_objectid,
  1362. iterate, ctx);
  1363. }
  1364. ulist_free(roots);
  1365. }
  1366. free_leaf_list(refs);
  1367. out:
  1368. if (!search_commit_root) {
  1369. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1370. btrfs_end_transaction(trans, fs_info->extent_root);
  1371. }
  1372. return ret;
  1373. }
  1374. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1375. struct btrfs_path *path,
  1376. iterate_extent_inodes_t *iterate, void *ctx)
  1377. {
  1378. int ret;
  1379. u64 extent_item_pos;
  1380. u64 flags = 0;
  1381. struct btrfs_key found_key;
  1382. int search_commit_root = path->search_commit_root;
  1383. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1384. btrfs_release_path(path);
  1385. if (ret < 0)
  1386. return ret;
  1387. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1388. return -EINVAL;
  1389. extent_item_pos = logical - found_key.objectid;
  1390. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1391. extent_item_pos, search_commit_root,
  1392. iterate, ctx);
  1393. return ret;
  1394. }
  1395. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1396. struct extent_buffer *eb, void *ctx);
  1397. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1398. struct btrfs_path *path,
  1399. iterate_irefs_t *iterate, void *ctx)
  1400. {
  1401. int ret = 0;
  1402. int slot;
  1403. u32 cur;
  1404. u32 len;
  1405. u32 name_len;
  1406. u64 parent = 0;
  1407. int found = 0;
  1408. struct extent_buffer *eb;
  1409. struct btrfs_item *item;
  1410. struct btrfs_inode_ref *iref;
  1411. struct btrfs_key found_key;
  1412. while (!ret) {
  1413. path->leave_spinning = 1;
  1414. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1415. &found_key);
  1416. if (ret < 0)
  1417. break;
  1418. if (ret) {
  1419. ret = found ? 0 : -ENOENT;
  1420. break;
  1421. }
  1422. ++found;
  1423. parent = found_key.offset;
  1424. slot = path->slots[0];
  1425. eb = path->nodes[0];
  1426. /* make sure we can use eb after releasing the path */
  1427. atomic_inc(&eb->refs);
  1428. btrfs_tree_read_lock(eb);
  1429. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1430. btrfs_release_path(path);
  1431. item = btrfs_item_nr(slot);
  1432. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1433. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1434. name_len = btrfs_inode_ref_name_len(eb, iref);
  1435. /* path must be released before calling iterate()! */
  1436. pr_debug("following ref at offset %u for inode %llu in "
  1437. "tree %llu\n", cur, found_key.objectid,
  1438. fs_root->objectid);
  1439. ret = iterate(parent, name_len,
  1440. (unsigned long)(iref + 1), eb, ctx);
  1441. if (ret)
  1442. break;
  1443. len = sizeof(*iref) + name_len;
  1444. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1445. }
  1446. btrfs_tree_read_unlock_blocking(eb);
  1447. free_extent_buffer(eb);
  1448. }
  1449. btrfs_release_path(path);
  1450. return ret;
  1451. }
  1452. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1453. struct btrfs_path *path,
  1454. iterate_irefs_t *iterate, void *ctx)
  1455. {
  1456. int ret;
  1457. int slot;
  1458. u64 offset = 0;
  1459. u64 parent;
  1460. int found = 0;
  1461. struct extent_buffer *eb;
  1462. struct btrfs_inode_extref *extref;
  1463. struct extent_buffer *leaf;
  1464. u32 item_size;
  1465. u32 cur_offset;
  1466. unsigned long ptr;
  1467. while (1) {
  1468. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1469. &offset);
  1470. if (ret < 0)
  1471. break;
  1472. if (ret) {
  1473. ret = found ? 0 : -ENOENT;
  1474. break;
  1475. }
  1476. ++found;
  1477. slot = path->slots[0];
  1478. eb = path->nodes[0];
  1479. /* make sure we can use eb after releasing the path */
  1480. atomic_inc(&eb->refs);
  1481. btrfs_tree_read_lock(eb);
  1482. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1483. btrfs_release_path(path);
  1484. leaf = path->nodes[0];
  1485. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1486. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1487. cur_offset = 0;
  1488. while (cur_offset < item_size) {
  1489. u32 name_len;
  1490. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1491. parent = btrfs_inode_extref_parent(eb, extref);
  1492. name_len = btrfs_inode_extref_name_len(eb, extref);
  1493. ret = iterate(parent, name_len,
  1494. (unsigned long)&extref->name, eb, ctx);
  1495. if (ret)
  1496. break;
  1497. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1498. cur_offset += sizeof(*extref);
  1499. }
  1500. btrfs_tree_read_unlock_blocking(eb);
  1501. free_extent_buffer(eb);
  1502. offset++;
  1503. }
  1504. btrfs_release_path(path);
  1505. return ret;
  1506. }
  1507. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1508. struct btrfs_path *path, iterate_irefs_t *iterate,
  1509. void *ctx)
  1510. {
  1511. int ret;
  1512. int found_refs = 0;
  1513. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1514. if (!ret)
  1515. ++found_refs;
  1516. else if (ret != -ENOENT)
  1517. return ret;
  1518. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1519. if (ret == -ENOENT && found_refs)
  1520. return 0;
  1521. return ret;
  1522. }
  1523. /*
  1524. * returns 0 if the path could be dumped (probably truncated)
  1525. * returns <0 in case of an error
  1526. */
  1527. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1528. struct extent_buffer *eb, void *ctx)
  1529. {
  1530. struct inode_fs_paths *ipath = ctx;
  1531. char *fspath;
  1532. char *fspath_min;
  1533. int i = ipath->fspath->elem_cnt;
  1534. const int s_ptr = sizeof(char *);
  1535. u32 bytes_left;
  1536. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1537. ipath->fspath->bytes_left - s_ptr : 0;
  1538. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1539. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1540. name_off, eb, inum, fspath_min, bytes_left);
  1541. if (IS_ERR(fspath))
  1542. return PTR_ERR(fspath);
  1543. if (fspath > fspath_min) {
  1544. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1545. ++ipath->fspath->elem_cnt;
  1546. ipath->fspath->bytes_left = fspath - fspath_min;
  1547. } else {
  1548. ++ipath->fspath->elem_missed;
  1549. ipath->fspath->bytes_missing += fspath_min - fspath;
  1550. ipath->fspath->bytes_left = 0;
  1551. }
  1552. return 0;
  1553. }
  1554. /*
  1555. * this dumps all file system paths to the inode into the ipath struct, provided
  1556. * is has been created large enough. each path is zero-terminated and accessed
  1557. * from ipath->fspath->val[i].
  1558. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1559. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1560. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1561. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1562. * have been needed to return all paths.
  1563. */
  1564. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1565. {
  1566. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1567. inode_to_path, ipath);
  1568. }
  1569. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1570. {
  1571. struct btrfs_data_container *data;
  1572. size_t alloc_bytes;
  1573. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1574. data = vmalloc(alloc_bytes);
  1575. if (!data)
  1576. return ERR_PTR(-ENOMEM);
  1577. if (total_bytes >= sizeof(*data)) {
  1578. data->bytes_left = total_bytes - sizeof(*data);
  1579. data->bytes_missing = 0;
  1580. } else {
  1581. data->bytes_missing = sizeof(*data) - total_bytes;
  1582. data->bytes_left = 0;
  1583. }
  1584. data->elem_cnt = 0;
  1585. data->elem_missed = 0;
  1586. return data;
  1587. }
  1588. /*
  1589. * allocates space to return multiple file system paths for an inode.
  1590. * total_bytes to allocate are passed, note that space usable for actual path
  1591. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1592. * the returned pointer must be freed with free_ipath() in the end.
  1593. */
  1594. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1595. struct btrfs_path *path)
  1596. {
  1597. struct inode_fs_paths *ifp;
  1598. struct btrfs_data_container *fspath;
  1599. fspath = init_data_container(total_bytes);
  1600. if (IS_ERR(fspath))
  1601. return (void *)fspath;
  1602. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1603. if (!ifp) {
  1604. kfree(fspath);
  1605. return ERR_PTR(-ENOMEM);
  1606. }
  1607. ifp->btrfs_path = path;
  1608. ifp->fspath = fspath;
  1609. ifp->fs_root = fs_root;
  1610. return ifp;
  1611. }
  1612. void free_ipath(struct inode_fs_paths *ipath)
  1613. {
  1614. if (!ipath)
  1615. return;
  1616. vfree(ipath->fspath);
  1617. kfree(ipath);
  1618. }