pci_dma.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. /*
  2. * Copyright IBM Corp. 2012
  3. *
  4. * Author(s):
  5. * Jan Glauber <jang@linux.vnet.ibm.com>
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/export.h>
  10. #include <linux/iommu-helper.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/pci.h>
  14. #include <asm/pci_dma.h>
  15. static struct kmem_cache *dma_region_table_cache;
  16. static struct kmem_cache *dma_page_table_cache;
  17. static unsigned long *dma_alloc_cpu_table(void)
  18. {
  19. unsigned long *table, *entry;
  20. table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
  21. if (!table)
  22. return NULL;
  23. for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
  24. *entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED;
  25. return table;
  26. }
  27. static void dma_free_cpu_table(void *table)
  28. {
  29. kmem_cache_free(dma_region_table_cache, table);
  30. }
  31. static unsigned long *dma_alloc_page_table(void)
  32. {
  33. unsigned long *table, *entry;
  34. table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
  35. if (!table)
  36. return NULL;
  37. for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
  38. *entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED;
  39. return table;
  40. }
  41. static void dma_free_page_table(void *table)
  42. {
  43. kmem_cache_free(dma_page_table_cache, table);
  44. }
  45. static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
  46. {
  47. unsigned long *sto;
  48. if (reg_entry_isvalid(*entry))
  49. sto = get_rt_sto(*entry);
  50. else {
  51. sto = dma_alloc_cpu_table();
  52. if (!sto)
  53. return NULL;
  54. set_rt_sto(entry, sto);
  55. validate_rt_entry(entry);
  56. entry_clr_protected(entry);
  57. }
  58. return sto;
  59. }
  60. static unsigned long *dma_get_page_table_origin(unsigned long *entry)
  61. {
  62. unsigned long *pto;
  63. if (reg_entry_isvalid(*entry))
  64. pto = get_st_pto(*entry);
  65. else {
  66. pto = dma_alloc_page_table();
  67. if (!pto)
  68. return NULL;
  69. set_st_pto(entry, pto);
  70. validate_st_entry(entry);
  71. entry_clr_protected(entry);
  72. }
  73. return pto;
  74. }
  75. static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
  76. {
  77. unsigned long *sto, *pto;
  78. unsigned int rtx, sx, px;
  79. rtx = calc_rtx(dma_addr);
  80. sto = dma_get_seg_table_origin(&rto[rtx]);
  81. if (!sto)
  82. return NULL;
  83. sx = calc_sx(dma_addr);
  84. pto = dma_get_page_table_origin(&sto[sx]);
  85. if (!pto)
  86. return NULL;
  87. px = calc_px(dma_addr);
  88. return &pto[px];
  89. }
  90. static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr,
  91. dma_addr_t dma_addr, int flags)
  92. {
  93. unsigned long *entry;
  94. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  95. if (!entry) {
  96. WARN_ON_ONCE(1);
  97. return;
  98. }
  99. if (flags & ZPCI_PTE_INVALID) {
  100. invalidate_pt_entry(entry);
  101. return;
  102. } else {
  103. set_pt_pfaa(entry, page_addr);
  104. validate_pt_entry(entry);
  105. }
  106. if (flags & ZPCI_TABLE_PROTECTED)
  107. entry_set_protected(entry);
  108. else
  109. entry_clr_protected(entry);
  110. }
  111. static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
  112. dma_addr_t dma_addr, size_t size, int flags)
  113. {
  114. unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  115. u8 *page_addr = (u8 *) (pa & PAGE_MASK);
  116. dma_addr_t start_dma_addr = dma_addr;
  117. unsigned long irq_flags;
  118. int i, rc = 0;
  119. if (!nr_pages)
  120. return -EINVAL;
  121. spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
  122. if (!zdev->dma_table)
  123. goto no_refresh;
  124. for (i = 0; i < nr_pages; i++) {
  125. dma_update_cpu_trans(zdev, page_addr, dma_addr, flags);
  126. page_addr += PAGE_SIZE;
  127. dma_addr += PAGE_SIZE;
  128. }
  129. /*
  130. * rpcit is not required to establish new translations when previously
  131. * invalid translation-table entries are validated, however it is
  132. * required when altering previously valid entries.
  133. */
  134. if (!zdev->tlb_refresh &&
  135. ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
  136. /*
  137. * TODO: also need to check that the old entry is indeed INVALID
  138. * and not only for one page but for the whole range...
  139. * -> now we WARN_ON in that case but with lazy unmap that
  140. * needs to be redone!
  141. */
  142. goto no_refresh;
  143. rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr,
  144. nr_pages * PAGE_SIZE);
  145. no_refresh:
  146. spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
  147. return rc;
  148. }
  149. static void dma_free_seg_table(unsigned long entry)
  150. {
  151. unsigned long *sto = get_rt_sto(entry);
  152. int sx;
  153. for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
  154. if (reg_entry_isvalid(sto[sx]))
  155. dma_free_page_table(get_st_pto(sto[sx]));
  156. dma_free_cpu_table(sto);
  157. }
  158. static void dma_cleanup_tables(struct zpci_dev *zdev)
  159. {
  160. unsigned long *table;
  161. int rtx;
  162. if (!zdev || !zdev->dma_table)
  163. return;
  164. table = zdev->dma_table;
  165. for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
  166. if (reg_entry_isvalid(table[rtx]))
  167. dma_free_seg_table(table[rtx]);
  168. dma_free_cpu_table(table);
  169. zdev->dma_table = NULL;
  170. }
  171. static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev, unsigned long start,
  172. int size)
  173. {
  174. unsigned long boundary_size = 0x1000000;
  175. return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
  176. start, size, 0, boundary_size, 0);
  177. }
  178. static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size)
  179. {
  180. unsigned long offset, flags;
  181. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  182. offset = __dma_alloc_iommu(zdev, zdev->next_bit, size);
  183. if (offset == -1)
  184. offset = __dma_alloc_iommu(zdev, 0, size);
  185. if (offset != -1) {
  186. zdev->next_bit = offset + size;
  187. if (zdev->next_bit >= zdev->iommu_pages)
  188. zdev->next_bit = 0;
  189. }
  190. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  191. return offset;
  192. }
  193. static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size)
  194. {
  195. unsigned long flags;
  196. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  197. if (!zdev->iommu_bitmap)
  198. goto out;
  199. bitmap_clear(zdev->iommu_bitmap, offset, size);
  200. if (offset >= zdev->next_bit)
  201. zdev->next_bit = offset + size;
  202. out:
  203. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  204. }
  205. int dma_set_mask(struct device *dev, u64 mask)
  206. {
  207. if (!dev->dma_mask || !dma_supported(dev, mask))
  208. return -EIO;
  209. *dev->dma_mask = mask;
  210. return 0;
  211. }
  212. EXPORT_SYMBOL_GPL(dma_set_mask);
  213. static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
  214. unsigned long offset, size_t size,
  215. enum dma_data_direction direction,
  216. struct dma_attrs *attrs)
  217. {
  218. struct zpci_dev *zdev = get_zdev(to_pci_dev(dev));
  219. unsigned long nr_pages, iommu_page_index;
  220. unsigned long pa = page_to_phys(page) + offset;
  221. int flags = ZPCI_PTE_VALID;
  222. dma_addr_t dma_addr;
  223. /* This rounds up number of pages based on size and offset */
  224. nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
  225. iommu_page_index = dma_alloc_iommu(zdev, nr_pages);
  226. if (iommu_page_index == -1)
  227. goto out_err;
  228. /* Use rounded up size */
  229. size = nr_pages * PAGE_SIZE;
  230. dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE;
  231. if (dma_addr + size > zdev->end_dma)
  232. goto out_free;
  233. if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
  234. flags |= ZPCI_TABLE_PROTECTED;
  235. if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) {
  236. atomic64_add(nr_pages, (atomic64_t *) &zdev->fmb->mapped_pages);
  237. return dma_addr + (offset & ~PAGE_MASK);
  238. }
  239. out_free:
  240. dma_free_iommu(zdev, iommu_page_index, nr_pages);
  241. out_err:
  242. zpci_err("map error:\n");
  243. zpci_err_hex(&pa, sizeof(pa));
  244. return DMA_ERROR_CODE;
  245. }
  246. static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
  247. size_t size, enum dma_data_direction direction,
  248. struct dma_attrs *attrs)
  249. {
  250. struct zpci_dev *zdev = get_zdev(to_pci_dev(dev));
  251. unsigned long iommu_page_index;
  252. int npages;
  253. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  254. dma_addr = dma_addr & PAGE_MASK;
  255. if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
  256. ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID)) {
  257. zpci_err("unmap error:\n");
  258. zpci_err_hex(&dma_addr, sizeof(dma_addr));
  259. }
  260. atomic64_add(npages, (atomic64_t *) &zdev->fmb->unmapped_pages);
  261. iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
  262. dma_free_iommu(zdev, iommu_page_index, npages);
  263. }
  264. static void *s390_dma_alloc(struct device *dev, size_t size,
  265. dma_addr_t *dma_handle, gfp_t flag,
  266. struct dma_attrs *attrs)
  267. {
  268. struct zpci_dev *zdev = get_zdev(to_pci_dev(dev));
  269. struct page *page;
  270. unsigned long pa;
  271. dma_addr_t map;
  272. size = PAGE_ALIGN(size);
  273. page = alloc_pages(flag, get_order(size));
  274. if (!page)
  275. return NULL;
  276. atomic64_add(size / PAGE_SIZE, (atomic64_t *) &zdev->fmb->allocated_pages);
  277. pa = page_to_phys(page);
  278. memset((void *) pa, 0, size);
  279. map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE,
  280. size, DMA_BIDIRECTIONAL, NULL);
  281. if (dma_mapping_error(dev, map)) {
  282. free_pages(pa, get_order(size));
  283. return NULL;
  284. }
  285. if (dma_handle)
  286. *dma_handle = map;
  287. return (void *) pa;
  288. }
  289. static void s390_dma_free(struct device *dev, size_t size,
  290. void *pa, dma_addr_t dma_handle,
  291. struct dma_attrs *attrs)
  292. {
  293. s390_dma_unmap_pages(dev, dma_handle, PAGE_ALIGN(size),
  294. DMA_BIDIRECTIONAL, NULL);
  295. free_pages((unsigned long) pa, get_order(size));
  296. }
  297. static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
  298. int nr_elements, enum dma_data_direction dir,
  299. struct dma_attrs *attrs)
  300. {
  301. int mapped_elements = 0;
  302. struct scatterlist *s;
  303. int i;
  304. for_each_sg(sg, s, nr_elements, i) {
  305. struct page *page = sg_page(s);
  306. s->dma_address = s390_dma_map_pages(dev, page, s->offset,
  307. s->length, dir, NULL);
  308. if (!dma_mapping_error(dev, s->dma_address)) {
  309. s->dma_length = s->length;
  310. mapped_elements++;
  311. } else
  312. goto unmap;
  313. }
  314. out:
  315. return mapped_elements;
  316. unmap:
  317. for_each_sg(sg, s, mapped_elements, i) {
  318. if (s->dma_address)
  319. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
  320. dir, NULL);
  321. s->dma_address = 0;
  322. s->dma_length = 0;
  323. }
  324. mapped_elements = 0;
  325. goto out;
  326. }
  327. static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  328. int nr_elements, enum dma_data_direction dir,
  329. struct dma_attrs *attrs)
  330. {
  331. struct scatterlist *s;
  332. int i;
  333. for_each_sg(sg, s, nr_elements, i) {
  334. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL);
  335. s->dma_address = 0;
  336. s->dma_length = 0;
  337. }
  338. }
  339. int zpci_dma_init_device(struct zpci_dev *zdev)
  340. {
  341. int rc;
  342. spin_lock_init(&zdev->iommu_bitmap_lock);
  343. spin_lock_init(&zdev->dma_table_lock);
  344. zdev->dma_table = dma_alloc_cpu_table();
  345. if (!zdev->dma_table) {
  346. rc = -ENOMEM;
  347. goto out_clean;
  348. }
  349. zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET;
  350. zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
  351. zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
  352. if (!zdev->iommu_bitmap) {
  353. rc = -ENOMEM;
  354. goto out_reg;
  355. }
  356. rc = zpci_register_ioat(zdev,
  357. 0,
  358. zdev->start_dma + PAGE_OFFSET,
  359. zdev->start_dma + zdev->iommu_size - 1,
  360. (u64) zdev->dma_table);
  361. if (rc)
  362. goto out_reg;
  363. return 0;
  364. out_reg:
  365. dma_free_cpu_table(zdev->dma_table);
  366. out_clean:
  367. return rc;
  368. }
  369. void zpci_dma_exit_device(struct zpci_dev *zdev)
  370. {
  371. zpci_unregister_ioat(zdev, 0);
  372. dma_cleanup_tables(zdev);
  373. vfree(zdev->iommu_bitmap);
  374. zdev->iommu_bitmap = NULL;
  375. zdev->next_bit = 0;
  376. }
  377. static int __init dma_alloc_cpu_table_caches(void)
  378. {
  379. dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
  380. ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
  381. 0, NULL);
  382. if (!dma_region_table_cache)
  383. return -ENOMEM;
  384. dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
  385. ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
  386. 0, NULL);
  387. if (!dma_page_table_cache) {
  388. kmem_cache_destroy(dma_region_table_cache);
  389. return -ENOMEM;
  390. }
  391. return 0;
  392. }
  393. int __init zpci_dma_init(void)
  394. {
  395. return dma_alloc_cpu_table_caches();
  396. }
  397. void zpci_dma_exit(void)
  398. {
  399. kmem_cache_destroy(dma_page_table_cache);
  400. kmem_cache_destroy(dma_region_table_cache);
  401. }
  402. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  403. static int __init dma_debug_do_init(void)
  404. {
  405. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  406. return 0;
  407. }
  408. fs_initcall(dma_debug_do_init);
  409. struct dma_map_ops s390_dma_ops = {
  410. .alloc = s390_dma_alloc,
  411. .free = s390_dma_free,
  412. .map_sg = s390_dma_map_sg,
  413. .unmap_sg = s390_dma_unmap_sg,
  414. .map_page = s390_dma_map_pages,
  415. .unmap_page = s390_dma_unmap_pages,
  416. /* if we support direct DMA this must be conditional */
  417. .is_phys = 0,
  418. /* dma_supported is unconditionally true without a callback */
  419. };
  420. EXPORT_SYMBOL_GPL(s390_dma_ops);