math.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2001
  4. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  5. *
  6. * 'math.c' emulates IEEE instructions on a S390 processor
  7. * that does not have the IEEE fpu (all processors before G5).
  8. */
  9. #include <linux/types.h>
  10. #include <linux/sched.h>
  11. #include <linux/mm.h>
  12. #include <asm/uaccess.h>
  13. #include <asm/lowcore.h>
  14. #include <asm/sfp-util.h>
  15. #include <math-emu/soft-fp.h>
  16. #include <math-emu/single.h>
  17. #include <math-emu/double.h>
  18. #include <math-emu/quad.h>
  19. #define FPC_VALID_MASK 0xF8F8FF03
  20. /*
  21. * I miss a macro to round a floating point number to the
  22. * nearest integer in the same floating point format.
  23. */
  24. #define _FP_TO_FPINT_ROUND(fs, wc, X) \
  25. do { \
  26. switch (X##_c) \
  27. { \
  28. case FP_CLS_NORMAL: \
  29. if (X##_e > _FP_FRACBITS_##fs + _FP_EXPBIAS_##fs) \
  30. { /* floating point number has no bits after the dot. */ \
  31. } \
  32. else if (X##_e <= _FP_FRACBITS_##fs + _FP_EXPBIAS_##fs && \
  33. X##_e > _FP_EXPBIAS_##fs) \
  34. { /* some bits before the dot, some after it. */ \
  35. _FP_FRAC_SRS_##wc(X, _FP_WFRACBITS_##fs, \
  36. X##_e - _FP_EXPBIAS_##fs \
  37. + _FP_FRACBITS_##fs); \
  38. _FP_ROUND(wc, X); \
  39. _FP_FRAC_SLL_##wc(X, X##_e - _FP_EXPBIAS_##fs \
  40. + _FP_FRACBITS_##fs); \
  41. } \
  42. else \
  43. { /* all bits after the dot. */ \
  44. FP_SET_EXCEPTION(FP_EX_INEXACT); \
  45. X##_c = FP_CLS_ZERO; \
  46. } \
  47. break; \
  48. case FP_CLS_NAN: \
  49. case FP_CLS_INF: \
  50. case FP_CLS_ZERO: \
  51. break; \
  52. } \
  53. } while (0)
  54. #define FP_TO_FPINT_ROUND_S(X) _FP_TO_FPINT_ROUND(S,1,X)
  55. #define FP_TO_FPINT_ROUND_D(X) _FP_TO_FPINT_ROUND(D,2,X)
  56. #define FP_TO_FPINT_ROUND_Q(X) _FP_TO_FPINT_ROUND(Q,4,X)
  57. typedef union {
  58. long double ld;
  59. struct {
  60. __u64 high;
  61. __u64 low;
  62. } w;
  63. } mathemu_ldcv;
  64. #ifdef CONFIG_SYSCTL
  65. int sysctl_ieee_emulation_warnings=1;
  66. #endif
  67. #define mathemu_put_user(x, p) \
  68. do { \
  69. if (put_user((x),(p))) \
  70. return SIGSEGV; \
  71. } while (0)
  72. #define mathemu_get_user(x, p) \
  73. do { \
  74. if (get_user((x),(p))) \
  75. return SIGSEGV; \
  76. } while (0)
  77. #define mathemu_copy_from_user(d, s, n)\
  78. do { \
  79. if (copy_from_user((d),(s),(n)) != 0) \
  80. return SIGSEGV; \
  81. } while (0)
  82. #define mathemu_copy_to_user(d, s, n) \
  83. do { \
  84. if (copy_to_user((d),(s),(n)) != 0) \
  85. return SIGSEGV; \
  86. } while (0)
  87. static void display_emulation_not_implemented(struct pt_regs *regs, char *instr)
  88. {
  89. __u16 *location;
  90. #ifdef CONFIG_SYSCTL
  91. if(sysctl_ieee_emulation_warnings)
  92. #endif
  93. {
  94. location = (__u16 *)(regs->psw.addr-S390_lowcore.pgm_ilc);
  95. printk("%s ieee fpu instruction not emulated "
  96. "process name: %s pid: %d \n",
  97. instr, current->comm, current->pid);
  98. printk("%s's PSW: %08lx %08lx\n", instr,
  99. (unsigned long) regs->psw.mask,
  100. (unsigned long) location);
  101. }
  102. }
  103. static inline void emu_set_CC (struct pt_regs *regs, int cc)
  104. {
  105. regs->psw.mask = (regs->psw.mask & 0xFFFFCFFF) | ((cc&3) << 12);
  106. }
  107. /*
  108. * Set the condition code in the user psw.
  109. * 0 : Result is zero
  110. * 1 : Result is less than zero
  111. * 2 : Result is greater than zero
  112. * 3 : Result is NaN or INF
  113. */
  114. static inline void emu_set_CC_cs(struct pt_regs *regs, int class, int sign)
  115. {
  116. switch (class) {
  117. case FP_CLS_NORMAL:
  118. case FP_CLS_INF:
  119. emu_set_CC(regs, sign ? 1 : 2);
  120. break;
  121. case FP_CLS_ZERO:
  122. emu_set_CC(regs, 0);
  123. break;
  124. case FP_CLS_NAN:
  125. emu_set_CC(regs, 3);
  126. break;
  127. }
  128. }
  129. /* Add long double */
  130. static int emu_axbr (struct pt_regs *regs, int rx, int ry) {
  131. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  132. FP_DECL_EX;
  133. mathemu_ldcv cvt;
  134. int mode;
  135. mode = current->thread.fp_regs.fpc & 3;
  136. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  137. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  138. FP_UNPACK_QP(QA, &cvt.ld);
  139. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  140. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  141. FP_UNPACK_QP(QB, &cvt.ld);
  142. FP_ADD_Q(QR, QA, QB);
  143. FP_PACK_QP(&cvt.ld, QR);
  144. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  145. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  146. emu_set_CC_cs(regs, QR_c, QR_s);
  147. return _fex;
  148. }
  149. /* Add double */
  150. static int emu_adbr (struct pt_regs *regs, int rx, int ry) {
  151. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  152. FP_DECL_EX;
  153. int mode;
  154. mode = current->thread.fp_regs.fpc & 3;
  155. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  156. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  157. FP_ADD_D(DR, DA, DB);
  158. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  159. emu_set_CC_cs(regs, DR_c, DR_s);
  160. return _fex;
  161. }
  162. /* Add double */
  163. static int emu_adb (struct pt_regs *regs, int rx, double *val) {
  164. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  165. FP_DECL_EX;
  166. int mode;
  167. mode = current->thread.fp_regs.fpc & 3;
  168. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  169. FP_UNPACK_DP(DB, val);
  170. FP_ADD_D(DR, DA, DB);
  171. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  172. emu_set_CC_cs(regs, DR_c, DR_s);
  173. return _fex;
  174. }
  175. /* Add float */
  176. static int emu_aebr (struct pt_regs *regs, int rx, int ry) {
  177. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  178. FP_DECL_EX;
  179. int mode;
  180. mode = current->thread.fp_regs.fpc & 3;
  181. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  182. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  183. FP_ADD_S(SR, SA, SB);
  184. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  185. emu_set_CC_cs(regs, SR_c, SR_s);
  186. return _fex;
  187. }
  188. /* Add float */
  189. static int emu_aeb (struct pt_regs *regs, int rx, float *val) {
  190. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  191. FP_DECL_EX;
  192. int mode;
  193. mode = current->thread.fp_regs.fpc & 3;
  194. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  195. FP_UNPACK_SP(SB, val);
  196. FP_ADD_S(SR, SA, SB);
  197. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  198. emu_set_CC_cs(regs, SR_c, SR_s);
  199. return _fex;
  200. }
  201. /* Compare long double */
  202. static int emu_cxbr (struct pt_regs *regs, int rx, int ry) {
  203. FP_DECL_Q(QA); FP_DECL_Q(QB);
  204. mathemu_ldcv cvt;
  205. int IR;
  206. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  207. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  208. FP_UNPACK_RAW_QP(QA, &cvt.ld);
  209. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  210. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  211. FP_UNPACK_RAW_QP(QB, &cvt.ld);
  212. FP_CMP_Q(IR, QA, QB, 3);
  213. /*
  214. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  215. * IR == 1 if DA > DB and IR == 3 if unorderded
  216. */
  217. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  218. return 0;
  219. }
  220. /* Compare double */
  221. static int emu_cdbr (struct pt_regs *regs, int rx, int ry) {
  222. FP_DECL_D(DA); FP_DECL_D(DB);
  223. int IR;
  224. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  225. FP_UNPACK_RAW_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  226. FP_CMP_D(IR, DA, DB, 3);
  227. /*
  228. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  229. * IR == 1 if DA > DB and IR == 3 if unorderded
  230. */
  231. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  232. return 0;
  233. }
  234. /* Compare double */
  235. static int emu_cdb (struct pt_regs *regs, int rx, double *val) {
  236. FP_DECL_D(DA); FP_DECL_D(DB);
  237. int IR;
  238. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  239. FP_UNPACK_RAW_DP(DB, val);
  240. FP_CMP_D(IR, DA, DB, 3);
  241. /*
  242. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  243. * IR == 1 if DA > DB and IR == 3 if unorderded
  244. */
  245. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  246. return 0;
  247. }
  248. /* Compare float */
  249. static int emu_cebr (struct pt_regs *regs, int rx, int ry) {
  250. FP_DECL_S(SA); FP_DECL_S(SB);
  251. int IR;
  252. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  253. FP_UNPACK_RAW_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  254. FP_CMP_S(IR, SA, SB, 3);
  255. /*
  256. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  257. * IR == 1 if DA > DB and IR == 3 if unorderded
  258. */
  259. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  260. return 0;
  261. }
  262. /* Compare float */
  263. static int emu_ceb (struct pt_regs *regs, int rx, float *val) {
  264. FP_DECL_S(SA); FP_DECL_S(SB);
  265. int IR;
  266. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  267. FP_UNPACK_RAW_SP(SB, val);
  268. FP_CMP_S(IR, SA, SB, 3);
  269. /*
  270. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  271. * IR == 1 if DA > DB and IR == 3 if unorderded
  272. */
  273. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  274. return 0;
  275. }
  276. /* Compare and signal long double */
  277. static int emu_kxbr (struct pt_regs *regs, int rx, int ry) {
  278. FP_DECL_Q(QA); FP_DECL_Q(QB);
  279. FP_DECL_EX;
  280. mathemu_ldcv cvt;
  281. int IR;
  282. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  283. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  284. FP_UNPACK_RAW_QP(QA, &cvt.ld);
  285. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  286. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  287. FP_UNPACK_QP(QB, &cvt.ld);
  288. FP_CMP_Q(IR, QA, QB, 3);
  289. /*
  290. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  291. * IR == 1 if DA > DB and IR == 3 if unorderded
  292. */
  293. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  294. if (IR == 3)
  295. FP_SET_EXCEPTION (FP_EX_INVALID);
  296. return _fex;
  297. }
  298. /* Compare and signal double */
  299. static int emu_kdbr (struct pt_regs *regs, int rx, int ry) {
  300. FP_DECL_D(DA); FP_DECL_D(DB);
  301. FP_DECL_EX;
  302. int IR;
  303. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  304. FP_UNPACK_RAW_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  305. FP_CMP_D(IR, DA, DB, 3);
  306. /*
  307. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  308. * IR == 1 if DA > DB and IR == 3 if unorderded
  309. */
  310. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  311. if (IR == 3)
  312. FP_SET_EXCEPTION (FP_EX_INVALID);
  313. return _fex;
  314. }
  315. /* Compare and signal double */
  316. static int emu_kdb (struct pt_regs *regs, int rx, double *val) {
  317. FP_DECL_D(DA); FP_DECL_D(DB);
  318. FP_DECL_EX;
  319. int IR;
  320. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  321. FP_UNPACK_RAW_DP(DB, val);
  322. FP_CMP_D(IR, DA, DB, 3);
  323. /*
  324. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  325. * IR == 1 if DA > DB and IR == 3 if unorderded
  326. */
  327. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  328. if (IR == 3)
  329. FP_SET_EXCEPTION (FP_EX_INVALID);
  330. return _fex;
  331. }
  332. /* Compare and signal float */
  333. static int emu_kebr (struct pt_regs *regs, int rx, int ry) {
  334. FP_DECL_S(SA); FP_DECL_S(SB);
  335. FP_DECL_EX;
  336. int IR;
  337. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  338. FP_UNPACK_RAW_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  339. FP_CMP_S(IR, SA, SB, 3);
  340. /*
  341. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  342. * IR == 1 if DA > DB and IR == 3 if unorderded
  343. */
  344. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  345. if (IR == 3)
  346. FP_SET_EXCEPTION (FP_EX_INVALID);
  347. return _fex;
  348. }
  349. /* Compare and signal float */
  350. static int emu_keb (struct pt_regs *regs, int rx, float *val) {
  351. FP_DECL_S(SA); FP_DECL_S(SB);
  352. FP_DECL_EX;
  353. int IR;
  354. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  355. FP_UNPACK_RAW_SP(SB, val);
  356. FP_CMP_S(IR, SA, SB, 3);
  357. /*
  358. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  359. * IR == 1 if DA > DB and IR == 3 if unorderded
  360. */
  361. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  362. if (IR == 3)
  363. FP_SET_EXCEPTION (FP_EX_INVALID);
  364. return _fex;
  365. }
  366. /* Convert from fixed long double */
  367. static int emu_cxfbr (struct pt_regs *regs, int rx, int ry) {
  368. FP_DECL_Q(QR);
  369. FP_DECL_EX;
  370. mathemu_ldcv cvt;
  371. __s32 si;
  372. int mode;
  373. mode = current->thread.fp_regs.fpc & 3;
  374. si = regs->gprs[ry];
  375. FP_FROM_INT_Q(QR, si, 32, int);
  376. FP_PACK_QP(&cvt.ld, QR);
  377. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  378. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  379. return _fex;
  380. }
  381. /* Convert from fixed double */
  382. static int emu_cdfbr (struct pt_regs *regs, int rx, int ry) {
  383. FP_DECL_D(DR);
  384. FP_DECL_EX;
  385. __s32 si;
  386. int mode;
  387. mode = current->thread.fp_regs.fpc & 3;
  388. si = regs->gprs[ry];
  389. FP_FROM_INT_D(DR, si, 32, int);
  390. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  391. return _fex;
  392. }
  393. /* Convert from fixed float */
  394. static int emu_cefbr (struct pt_regs *regs, int rx, int ry) {
  395. FP_DECL_S(SR);
  396. FP_DECL_EX;
  397. __s32 si;
  398. int mode;
  399. mode = current->thread.fp_regs.fpc & 3;
  400. si = regs->gprs[ry];
  401. FP_FROM_INT_S(SR, si, 32, int);
  402. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  403. return _fex;
  404. }
  405. /* Convert to fixed long double */
  406. static int emu_cfxbr (struct pt_regs *regs, int rx, int ry, int mask) {
  407. FP_DECL_Q(QA);
  408. FP_DECL_EX;
  409. mathemu_ldcv cvt;
  410. __s32 si;
  411. int mode;
  412. if (mask == 0)
  413. mode = current->thread.fp_regs.fpc & 3;
  414. else if (mask == 1)
  415. mode = FP_RND_NEAREST;
  416. else
  417. mode = mask - 4;
  418. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  419. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  420. FP_UNPACK_QP(QA, &cvt.ld);
  421. FP_TO_INT_ROUND_Q(si, QA, 32, 1);
  422. regs->gprs[rx] = si;
  423. emu_set_CC_cs(regs, QA_c, QA_s);
  424. return _fex;
  425. }
  426. /* Convert to fixed double */
  427. static int emu_cfdbr (struct pt_regs *regs, int rx, int ry, int mask) {
  428. FP_DECL_D(DA);
  429. FP_DECL_EX;
  430. __s32 si;
  431. int mode;
  432. if (mask == 0)
  433. mode = current->thread.fp_regs.fpc & 3;
  434. else if (mask == 1)
  435. mode = FP_RND_NEAREST;
  436. else
  437. mode = mask - 4;
  438. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  439. FP_TO_INT_ROUND_D(si, DA, 32, 1);
  440. regs->gprs[rx] = si;
  441. emu_set_CC_cs(regs, DA_c, DA_s);
  442. return _fex;
  443. }
  444. /* Convert to fixed float */
  445. static int emu_cfebr (struct pt_regs *regs, int rx, int ry, int mask) {
  446. FP_DECL_S(SA);
  447. FP_DECL_EX;
  448. __s32 si;
  449. int mode;
  450. if (mask == 0)
  451. mode = current->thread.fp_regs.fpc & 3;
  452. else if (mask == 1)
  453. mode = FP_RND_NEAREST;
  454. else
  455. mode = mask - 4;
  456. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  457. FP_TO_INT_ROUND_S(si, SA, 32, 1);
  458. regs->gprs[rx] = si;
  459. emu_set_CC_cs(regs, SA_c, SA_s);
  460. return _fex;
  461. }
  462. /* Divide long double */
  463. static int emu_dxbr (struct pt_regs *regs, int rx, int ry) {
  464. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  465. FP_DECL_EX;
  466. mathemu_ldcv cvt;
  467. int mode;
  468. mode = current->thread.fp_regs.fpc & 3;
  469. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  470. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  471. FP_UNPACK_QP(QA, &cvt.ld);
  472. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  473. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  474. FP_UNPACK_QP(QB, &cvt.ld);
  475. FP_DIV_Q(QR, QA, QB);
  476. FP_PACK_QP(&cvt.ld, QR);
  477. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  478. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  479. return _fex;
  480. }
  481. /* Divide double */
  482. static int emu_ddbr (struct pt_regs *regs, int rx, int ry) {
  483. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  484. FP_DECL_EX;
  485. int mode;
  486. mode = current->thread.fp_regs.fpc & 3;
  487. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  488. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  489. FP_DIV_D(DR, DA, DB);
  490. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  491. return _fex;
  492. }
  493. /* Divide double */
  494. static int emu_ddb (struct pt_regs *regs, int rx, double *val) {
  495. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  496. FP_DECL_EX;
  497. int mode;
  498. mode = current->thread.fp_regs.fpc & 3;
  499. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  500. FP_UNPACK_DP(DB, val);
  501. FP_DIV_D(DR, DA, DB);
  502. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  503. return _fex;
  504. }
  505. /* Divide float */
  506. static int emu_debr (struct pt_regs *regs, int rx, int ry) {
  507. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  508. FP_DECL_EX;
  509. int mode;
  510. mode = current->thread.fp_regs.fpc & 3;
  511. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  512. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  513. FP_DIV_S(SR, SA, SB);
  514. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  515. return _fex;
  516. }
  517. /* Divide float */
  518. static int emu_deb (struct pt_regs *regs, int rx, float *val) {
  519. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  520. FP_DECL_EX;
  521. int mode;
  522. mode = current->thread.fp_regs.fpc & 3;
  523. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  524. FP_UNPACK_SP(SB, val);
  525. FP_DIV_S(SR, SA, SB);
  526. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  527. return _fex;
  528. }
  529. /* Divide to integer double */
  530. static int emu_didbr (struct pt_regs *regs, int rx, int ry, int mask) {
  531. display_emulation_not_implemented(regs, "didbr");
  532. return 0;
  533. }
  534. /* Divide to integer float */
  535. static int emu_diebr (struct pt_regs *regs, int rx, int ry, int mask) {
  536. display_emulation_not_implemented(regs, "diebr");
  537. return 0;
  538. }
  539. /* Extract fpc */
  540. static int emu_efpc (struct pt_regs *regs, int rx, int ry) {
  541. regs->gprs[rx] = current->thread.fp_regs.fpc;
  542. return 0;
  543. }
  544. /* Load and test long double */
  545. static int emu_ltxbr (struct pt_regs *regs, int rx, int ry) {
  546. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  547. mathemu_ldcv cvt;
  548. FP_DECL_Q(QA);
  549. FP_DECL_EX;
  550. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  551. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  552. FP_UNPACK_QP(QA, &cvt.ld);
  553. fp_regs->fprs[rx].ui = fp_regs->fprs[ry].ui;
  554. fp_regs->fprs[rx+2].ui = fp_regs->fprs[ry+2].ui;
  555. emu_set_CC_cs(regs, QA_c, QA_s);
  556. return _fex;
  557. }
  558. /* Load and test double */
  559. static int emu_ltdbr (struct pt_regs *regs, int rx, int ry) {
  560. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  561. FP_DECL_D(DA);
  562. FP_DECL_EX;
  563. FP_UNPACK_DP(DA, &fp_regs->fprs[ry].d);
  564. fp_regs->fprs[rx].ui = fp_regs->fprs[ry].ui;
  565. emu_set_CC_cs(regs, DA_c, DA_s);
  566. return _fex;
  567. }
  568. /* Load and test double */
  569. static int emu_ltebr (struct pt_regs *regs, int rx, int ry) {
  570. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  571. FP_DECL_S(SA);
  572. FP_DECL_EX;
  573. FP_UNPACK_SP(SA, &fp_regs->fprs[ry].f);
  574. fp_regs->fprs[rx].ui = fp_regs->fprs[ry].ui;
  575. emu_set_CC_cs(regs, SA_c, SA_s);
  576. return _fex;
  577. }
  578. /* Load complement long double */
  579. static int emu_lcxbr (struct pt_regs *regs, int rx, int ry) {
  580. FP_DECL_Q(QA); FP_DECL_Q(QR);
  581. FP_DECL_EX;
  582. mathemu_ldcv cvt;
  583. int mode;
  584. mode = current->thread.fp_regs.fpc & 3;
  585. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  586. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  587. FP_UNPACK_QP(QA, &cvt.ld);
  588. FP_NEG_Q(QR, QA);
  589. FP_PACK_QP(&cvt.ld, QR);
  590. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  591. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  592. emu_set_CC_cs(regs, QR_c, QR_s);
  593. return _fex;
  594. }
  595. /* Load complement double */
  596. static int emu_lcdbr (struct pt_regs *regs, int rx, int ry) {
  597. FP_DECL_D(DA); FP_DECL_D(DR);
  598. FP_DECL_EX;
  599. int mode;
  600. mode = current->thread.fp_regs.fpc & 3;
  601. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  602. FP_NEG_D(DR, DA);
  603. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  604. emu_set_CC_cs(regs, DR_c, DR_s);
  605. return _fex;
  606. }
  607. /* Load complement float */
  608. static int emu_lcebr (struct pt_regs *regs, int rx, int ry) {
  609. FP_DECL_S(SA); FP_DECL_S(SR);
  610. FP_DECL_EX;
  611. int mode;
  612. mode = current->thread.fp_regs.fpc & 3;
  613. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  614. FP_NEG_S(SR, SA);
  615. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  616. emu_set_CC_cs(regs, SR_c, SR_s);
  617. return _fex;
  618. }
  619. /* Load floating point integer long double */
  620. static int emu_fixbr (struct pt_regs *regs, int rx, int ry, int mask) {
  621. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  622. FP_DECL_Q(QA);
  623. FP_DECL_EX;
  624. mathemu_ldcv cvt;
  625. __s32 si;
  626. int mode;
  627. if (mask == 0)
  628. mode = fp_regs->fpc & 3;
  629. else if (mask == 1)
  630. mode = FP_RND_NEAREST;
  631. else
  632. mode = mask - 4;
  633. cvt.w.high = fp_regs->fprs[ry].ui;
  634. cvt.w.low = fp_regs->fprs[ry+2].ui;
  635. FP_UNPACK_QP(QA, &cvt.ld);
  636. FP_TO_FPINT_ROUND_Q(QA);
  637. FP_PACK_QP(&cvt.ld, QA);
  638. fp_regs->fprs[rx].ui = cvt.w.high;
  639. fp_regs->fprs[rx+2].ui = cvt.w.low;
  640. return _fex;
  641. }
  642. /* Load floating point integer double */
  643. static int emu_fidbr (struct pt_regs *regs, int rx, int ry, int mask) {
  644. /* FIXME: rounding mode !! */
  645. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  646. FP_DECL_D(DA);
  647. FP_DECL_EX;
  648. __s32 si;
  649. int mode;
  650. if (mask == 0)
  651. mode = fp_regs->fpc & 3;
  652. else if (mask == 1)
  653. mode = FP_RND_NEAREST;
  654. else
  655. mode = mask - 4;
  656. FP_UNPACK_DP(DA, &fp_regs->fprs[ry].d);
  657. FP_TO_FPINT_ROUND_D(DA);
  658. FP_PACK_DP(&fp_regs->fprs[rx].d, DA);
  659. return _fex;
  660. }
  661. /* Load floating point integer float */
  662. static int emu_fiebr (struct pt_regs *regs, int rx, int ry, int mask) {
  663. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  664. FP_DECL_S(SA);
  665. FP_DECL_EX;
  666. __s32 si;
  667. int mode;
  668. if (mask == 0)
  669. mode = fp_regs->fpc & 3;
  670. else if (mask == 1)
  671. mode = FP_RND_NEAREST;
  672. else
  673. mode = mask - 4;
  674. FP_UNPACK_SP(SA, &fp_regs->fprs[ry].f);
  675. FP_TO_FPINT_ROUND_S(SA);
  676. FP_PACK_SP(&fp_regs->fprs[rx].f, SA);
  677. return _fex;
  678. }
  679. /* Load lengthened double to long double */
  680. static int emu_lxdbr (struct pt_regs *regs, int rx, int ry) {
  681. FP_DECL_D(DA); FP_DECL_Q(QR);
  682. FP_DECL_EX;
  683. mathemu_ldcv cvt;
  684. int mode;
  685. mode = current->thread.fp_regs.fpc & 3;
  686. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  687. FP_CONV (Q, D, 4, 2, QR, DA);
  688. FP_PACK_QP(&cvt.ld, QR);
  689. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  690. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  691. return _fex;
  692. }
  693. /* Load lengthened double to long double */
  694. static int emu_lxdb (struct pt_regs *regs, int rx, double *val) {
  695. FP_DECL_D(DA); FP_DECL_Q(QR);
  696. FP_DECL_EX;
  697. mathemu_ldcv cvt;
  698. int mode;
  699. mode = current->thread.fp_regs.fpc & 3;
  700. FP_UNPACK_DP(DA, val);
  701. FP_CONV (Q, D, 4, 2, QR, DA);
  702. FP_PACK_QP(&cvt.ld, QR);
  703. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  704. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  705. return _fex;
  706. }
  707. /* Load lengthened float to long double */
  708. static int emu_lxebr (struct pt_regs *regs, int rx, int ry) {
  709. FP_DECL_S(SA); FP_DECL_Q(QR);
  710. FP_DECL_EX;
  711. mathemu_ldcv cvt;
  712. int mode;
  713. mode = current->thread.fp_regs.fpc & 3;
  714. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  715. FP_CONV (Q, S, 4, 1, QR, SA);
  716. FP_PACK_QP(&cvt.ld, QR);
  717. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  718. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  719. return _fex;
  720. }
  721. /* Load lengthened float to long double */
  722. static int emu_lxeb (struct pt_regs *regs, int rx, float *val) {
  723. FP_DECL_S(SA); FP_DECL_Q(QR);
  724. FP_DECL_EX;
  725. mathemu_ldcv cvt;
  726. int mode;
  727. mode = current->thread.fp_regs.fpc & 3;
  728. FP_UNPACK_SP(SA, val);
  729. FP_CONV (Q, S, 4, 1, QR, SA);
  730. FP_PACK_QP(&cvt.ld, QR);
  731. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  732. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  733. return _fex;
  734. }
  735. /* Load lengthened float to double */
  736. static int emu_ldebr (struct pt_regs *regs, int rx, int ry) {
  737. FP_DECL_S(SA); FP_DECL_D(DR);
  738. FP_DECL_EX;
  739. int mode;
  740. mode = current->thread.fp_regs.fpc & 3;
  741. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  742. FP_CONV (D, S, 2, 1, DR, SA);
  743. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  744. return _fex;
  745. }
  746. /* Load lengthened float to double */
  747. static int emu_ldeb (struct pt_regs *regs, int rx, float *val) {
  748. FP_DECL_S(SA); FP_DECL_D(DR);
  749. FP_DECL_EX;
  750. int mode;
  751. mode = current->thread.fp_regs.fpc & 3;
  752. FP_UNPACK_SP(SA, val);
  753. FP_CONV (D, S, 2, 1, DR, SA);
  754. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  755. return _fex;
  756. }
  757. /* Load negative long double */
  758. static int emu_lnxbr (struct pt_regs *regs, int rx, int ry) {
  759. FP_DECL_Q(QA); FP_DECL_Q(QR);
  760. FP_DECL_EX;
  761. mathemu_ldcv cvt;
  762. int mode;
  763. mode = current->thread.fp_regs.fpc & 3;
  764. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  765. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  766. FP_UNPACK_QP(QA, &cvt.ld);
  767. if (QA_s == 0) {
  768. FP_NEG_Q(QR, QA);
  769. FP_PACK_QP(&cvt.ld, QR);
  770. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  771. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  772. } else {
  773. current->thread.fp_regs.fprs[rx].ui =
  774. current->thread.fp_regs.fprs[ry].ui;
  775. current->thread.fp_regs.fprs[rx+2].ui =
  776. current->thread.fp_regs.fprs[ry+2].ui;
  777. }
  778. emu_set_CC_cs(regs, QR_c, QR_s);
  779. return _fex;
  780. }
  781. /* Load negative double */
  782. static int emu_lndbr (struct pt_regs *regs, int rx, int ry) {
  783. FP_DECL_D(DA); FP_DECL_D(DR);
  784. FP_DECL_EX;
  785. int mode;
  786. mode = current->thread.fp_regs.fpc & 3;
  787. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  788. if (DA_s == 0) {
  789. FP_NEG_D(DR, DA);
  790. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  791. } else
  792. current->thread.fp_regs.fprs[rx].ui =
  793. current->thread.fp_regs.fprs[ry].ui;
  794. emu_set_CC_cs(regs, DR_c, DR_s);
  795. return _fex;
  796. }
  797. /* Load negative float */
  798. static int emu_lnebr (struct pt_regs *regs, int rx, int ry) {
  799. FP_DECL_S(SA); FP_DECL_S(SR);
  800. FP_DECL_EX;
  801. int mode;
  802. mode = current->thread.fp_regs.fpc & 3;
  803. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  804. if (SA_s == 0) {
  805. FP_NEG_S(SR, SA);
  806. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  807. } else
  808. current->thread.fp_regs.fprs[rx].ui =
  809. current->thread.fp_regs.fprs[ry].ui;
  810. emu_set_CC_cs(regs, SR_c, SR_s);
  811. return _fex;
  812. }
  813. /* Load positive long double */
  814. static int emu_lpxbr (struct pt_regs *regs, int rx, int ry) {
  815. FP_DECL_Q(QA); FP_DECL_Q(QR);
  816. FP_DECL_EX;
  817. mathemu_ldcv cvt;
  818. int mode;
  819. mode = current->thread.fp_regs.fpc & 3;
  820. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  821. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  822. FP_UNPACK_QP(QA, &cvt.ld);
  823. if (QA_s != 0) {
  824. FP_NEG_Q(QR, QA);
  825. FP_PACK_QP(&cvt.ld, QR);
  826. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  827. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  828. } else{
  829. current->thread.fp_regs.fprs[rx].ui =
  830. current->thread.fp_regs.fprs[ry].ui;
  831. current->thread.fp_regs.fprs[rx+2].ui =
  832. current->thread.fp_regs.fprs[ry+2].ui;
  833. }
  834. emu_set_CC_cs(regs, QR_c, QR_s);
  835. return _fex;
  836. }
  837. /* Load positive double */
  838. static int emu_lpdbr (struct pt_regs *regs, int rx, int ry) {
  839. FP_DECL_D(DA); FP_DECL_D(DR);
  840. FP_DECL_EX;
  841. int mode;
  842. mode = current->thread.fp_regs.fpc & 3;
  843. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  844. if (DA_s != 0) {
  845. FP_NEG_D(DR, DA);
  846. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  847. } else
  848. current->thread.fp_regs.fprs[rx].ui =
  849. current->thread.fp_regs.fprs[ry].ui;
  850. emu_set_CC_cs(regs, DR_c, DR_s);
  851. return _fex;
  852. }
  853. /* Load positive float */
  854. static int emu_lpebr (struct pt_regs *regs, int rx, int ry) {
  855. FP_DECL_S(SA); FP_DECL_S(SR);
  856. FP_DECL_EX;
  857. int mode;
  858. mode = current->thread.fp_regs.fpc & 3;
  859. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  860. if (SA_s != 0) {
  861. FP_NEG_S(SR, SA);
  862. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  863. } else
  864. current->thread.fp_regs.fprs[rx].ui =
  865. current->thread.fp_regs.fprs[ry].ui;
  866. emu_set_CC_cs(regs, SR_c, SR_s);
  867. return _fex;
  868. }
  869. /* Load rounded long double to double */
  870. static int emu_ldxbr (struct pt_regs *regs, int rx, int ry) {
  871. FP_DECL_Q(QA); FP_DECL_D(DR);
  872. FP_DECL_EX;
  873. mathemu_ldcv cvt;
  874. int mode;
  875. mode = current->thread.fp_regs.fpc & 3;
  876. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  877. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  878. FP_UNPACK_QP(QA, &cvt.ld);
  879. FP_CONV (D, Q, 2, 4, DR, QA);
  880. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].f, DR);
  881. return _fex;
  882. }
  883. /* Load rounded long double to float */
  884. static int emu_lexbr (struct pt_regs *regs, int rx, int ry) {
  885. FP_DECL_Q(QA); FP_DECL_S(SR);
  886. FP_DECL_EX;
  887. mathemu_ldcv cvt;
  888. int mode;
  889. mode = current->thread.fp_regs.fpc & 3;
  890. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  891. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  892. FP_UNPACK_QP(QA, &cvt.ld);
  893. FP_CONV (S, Q, 1, 4, SR, QA);
  894. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  895. return _fex;
  896. }
  897. /* Load rounded double to float */
  898. static int emu_ledbr (struct pt_regs *regs, int rx, int ry) {
  899. FP_DECL_D(DA); FP_DECL_S(SR);
  900. FP_DECL_EX;
  901. int mode;
  902. mode = current->thread.fp_regs.fpc & 3;
  903. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  904. FP_CONV (S, D, 1, 2, SR, DA);
  905. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  906. return _fex;
  907. }
  908. /* Multiply long double */
  909. static int emu_mxbr (struct pt_regs *regs, int rx, int ry) {
  910. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  911. FP_DECL_EX;
  912. mathemu_ldcv cvt;
  913. int mode;
  914. mode = current->thread.fp_regs.fpc & 3;
  915. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  916. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  917. FP_UNPACK_QP(QA, &cvt.ld);
  918. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  919. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  920. FP_UNPACK_QP(QB, &cvt.ld);
  921. FP_MUL_Q(QR, QA, QB);
  922. FP_PACK_QP(&cvt.ld, QR);
  923. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  924. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  925. return _fex;
  926. }
  927. /* Multiply double */
  928. static int emu_mdbr (struct pt_regs *regs, int rx, int ry) {
  929. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  930. FP_DECL_EX;
  931. int mode;
  932. mode = current->thread.fp_regs.fpc & 3;
  933. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  934. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  935. FP_MUL_D(DR, DA, DB);
  936. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  937. return _fex;
  938. }
  939. /* Multiply double */
  940. static int emu_mdb (struct pt_regs *regs, int rx, double *val) {
  941. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  942. FP_DECL_EX;
  943. int mode;
  944. mode = current->thread.fp_regs.fpc & 3;
  945. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  946. FP_UNPACK_DP(DB, val);
  947. FP_MUL_D(DR, DA, DB);
  948. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  949. return _fex;
  950. }
  951. /* Multiply double to long double */
  952. static int emu_mxdbr (struct pt_regs *regs, int rx, int ry) {
  953. FP_DECL_D(DA); FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  954. FP_DECL_EX;
  955. mathemu_ldcv cvt;
  956. int mode;
  957. mode = current->thread.fp_regs.fpc & 3;
  958. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  959. FP_CONV (Q, D, 4, 2, QA, DA);
  960. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  961. FP_CONV (Q, D, 4, 2, QB, DA);
  962. FP_MUL_Q(QR, QA, QB);
  963. FP_PACK_QP(&cvt.ld, QR);
  964. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  965. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  966. return _fex;
  967. }
  968. /* Multiply double to long double */
  969. static int emu_mxdb (struct pt_regs *regs, int rx, long double *val) {
  970. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  971. FP_DECL_EX;
  972. mathemu_ldcv cvt;
  973. int mode;
  974. mode = current->thread.fp_regs.fpc & 3;
  975. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  976. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  977. FP_UNPACK_QP(QA, &cvt.ld);
  978. FP_UNPACK_QP(QB, val);
  979. FP_MUL_Q(QR, QA, QB);
  980. FP_PACK_QP(&cvt.ld, QR);
  981. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  982. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  983. return _fex;
  984. }
  985. /* Multiply float */
  986. static int emu_meebr (struct pt_regs *regs, int rx, int ry) {
  987. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  988. FP_DECL_EX;
  989. int mode;
  990. mode = current->thread.fp_regs.fpc & 3;
  991. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  992. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  993. FP_MUL_S(SR, SA, SB);
  994. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  995. return _fex;
  996. }
  997. /* Multiply float */
  998. static int emu_meeb (struct pt_regs *regs, int rx, float *val) {
  999. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  1000. FP_DECL_EX;
  1001. int mode;
  1002. mode = current->thread.fp_regs.fpc & 3;
  1003. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1004. FP_UNPACK_SP(SB, val);
  1005. FP_MUL_S(SR, SA, SB);
  1006. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1007. return _fex;
  1008. }
  1009. /* Multiply float to double */
  1010. static int emu_mdebr (struct pt_regs *regs, int rx, int ry) {
  1011. FP_DECL_S(SA); FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1012. FP_DECL_EX;
  1013. int mode;
  1014. mode = current->thread.fp_regs.fpc & 3;
  1015. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1016. FP_CONV (D, S, 2, 1, DA, SA);
  1017. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  1018. FP_CONV (D, S, 2, 1, DB, SA);
  1019. FP_MUL_D(DR, DA, DB);
  1020. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1021. return _fex;
  1022. }
  1023. /* Multiply float to double */
  1024. static int emu_mdeb (struct pt_regs *regs, int rx, float *val) {
  1025. FP_DECL_S(SA); FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1026. FP_DECL_EX;
  1027. int mode;
  1028. mode = current->thread.fp_regs.fpc & 3;
  1029. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1030. FP_CONV (D, S, 2, 1, DA, SA);
  1031. FP_UNPACK_SP(SA, val);
  1032. FP_CONV (D, S, 2, 1, DB, SA);
  1033. FP_MUL_D(DR, DA, DB);
  1034. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1035. return _fex;
  1036. }
  1037. /* Multiply and add double */
  1038. static int emu_madbr (struct pt_regs *regs, int rx, int ry, int rz) {
  1039. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1040. FP_DECL_EX;
  1041. int mode;
  1042. mode = current->thread.fp_regs.fpc & 3;
  1043. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1044. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  1045. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1046. FP_MUL_D(DR, DA, DB);
  1047. FP_ADD_D(DR, DR, DC);
  1048. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1049. return _fex;
  1050. }
  1051. /* Multiply and add double */
  1052. static int emu_madb (struct pt_regs *regs, int rx, double *val, int rz) {
  1053. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1054. FP_DECL_EX;
  1055. int mode;
  1056. mode = current->thread.fp_regs.fpc & 3;
  1057. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1058. FP_UNPACK_DP(DB, val);
  1059. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1060. FP_MUL_D(DR, DA, DB);
  1061. FP_ADD_D(DR, DR, DC);
  1062. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1063. return _fex;
  1064. }
  1065. /* Multiply and add float */
  1066. static int emu_maebr (struct pt_regs *regs, int rx, int ry, int rz) {
  1067. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1068. FP_DECL_EX;
  1069. int mode;
  1070. mode = current->thread.fp_regs.fpc & 3;
  1071. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1072. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  1073. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1074. FP_MUL_S(SR, SA, SB);
  1075. FP_ADD_S(SR, SR, SC);
  1076. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1077. return _fex;
  1078. }
  1079. /* Multiply and add float */
  1080. static int emu_maeb (struct pt_regs *regs, int rx, float *val, int rz) {
  1081. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1082. FP_DECL_EX;
  1083. int mode;
  1084. mode = current->thread.fp_regs.fpc & 3;
  1085. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1086. FP_UNPACK_SP(SB, val);
  1087. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1088. FP_MUL_S(SR, SA, SB);
  1089. FP_ADD_S(SR, SR, SC);
  1090. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1091. return _fex;
  1092. }
  1093. /* Multiply and subtract double */
  1094. static int emu_msdbr (struct pt_regs *regs, int rx, int ry, int rz) {
  1095. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1096. FP_DECL_EX;
  1097. int mode;
  1098. mode = current->thread.fp_regs.fpc & 3;
  1099. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1100. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  1101. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1102. FP_MUL_D(DR, DA, DB);
  1103. FP_SUB_D(DR, DR, DC);
  1104. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1105. return _fex;
  1106. }
  1107. /* Multiply and subtract double */
  1108. static int emu_msdb (struct pt_regs *regs, int rx, double *val, int rz) {
  1109. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1110. FP_DECL_EX;
  1111. int mode;
  1112. mode = current->thread.fp_regs.fpc & 3;
  1113. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1114. FP_UNPACK_DP(DB, val);
  1115. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1116. FP_MUL_D(DR, DA, DB);
  1117. FP_SUB_D(DR, DR, DC);
  1118. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1119. return _fex;
  1120. }
  1121. /* Multiply and subtract float */
  1122. static int emu_msebr (struct pt_regs *regs, int rx, int ry, int rz) {
  1123. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1124. FP_DECL_EX;
  1125. int mode;
  1126. mode = current->thread.fp_regs.fpc & 3;
  1127. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1128. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  1129. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1130. FP_MUL_S(SR, SA, SB);
  1131. FP_SUB_S(SR, SR, SC);
  1132. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1133. return _fex;
  1134. }
  1135. /* Multiply and subtract float */
  1136. static int emu_mseb (struct pt_regs *regs, int rx, float *val, int rz) {
  1137. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1138. FP_DECL_EX;
  1139. int mode;
  1140. mode = current->thread.fp_regs.fpc & 3;
  1141. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1142. FP_UNPACK_SP(SB, val);
  1143. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1144. FP_MUL_S(SR, SA, SB);
  1145. FP_SUB_S(SR, SR, SC);
  1146. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1147. return _fex;
  1148. }
  1149. /* Set floating point control word */
  1150. static int emu_sfpc (struct pt_regs *regs, int rx, int ry) {
  1151. __u32 temp;
  1152. temp = regs->gprs[rx];
  1153. if ((temp & ~FPC_VALID_MASK) != 0)
  1154. return SIGILL;
  1155. current->thread.fp_regs.fpc = temp;
  1156. return 0;
  1157. }
  1158. /* Square root long double */
  1159. static int emu_sqxbr (struct pt_regs *regs, int rx, int ry) {
  1160. FP_DECL_Q(QA); FP_DECL_Q(QR);
  1161. FP_DECL_EX;
  1162. mathemu_ldcv cvt;
  1163. int mode;
  1164. mode = current->thread.fp_regs.fpc & 3;
  1165. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  1166. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  1167. FP_UNPACK_QP(QA, &cvt.ld);
  1168. FP_SQRT_Q(QR, QA);
  1169. FP_PACK_QP(&cvt.ld, QR);
  1170. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  1171. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  1172. emu_set_CC_cs(regs, QR_c, QR_s);
  1173. return _fex;
  1174. }
  1175. /* Square root double */
  1176. static int emu_sqdbr (struct pt_regs *regs, int rx, int ry) {
  1177. FP_DECL_D(DA); FP_DECL_D(DR);
  1178. FP_DECL_EX;
  1179. int mode;
  1180. mode = current->thread.fp_regs.fpc & 3;
  1181. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  1182. FP_SQRT_D(DR, DA);
  1183. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1184. emu_set_CC_cs(regs, DR_c, DR_s);
  1185. return _fex;
  1186. }
  1187. /* Square root double */
  1188. static int emu_sqdb (struct pt_regs *regs, int rx, double *val) {
  1189. FP_DECL_D(DA); FP_DECL_D(DR);
  1190. FP_DECL_EX;
  1191. int mode;
  1192. mode = current->thread.fp_regs.fpc & 3;
  1193. FP_UNPACK_DP(DA, val);
  1194. FP_SQRT_D(DR, DA);
  1195. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1196. emu_set_CC_cs(regs, DR_c, DR_s);
  1197. return _fex;
  1198. }
  1199. /* Square root float */
  1200. static int emu_sqebr (struct pt_regs *regs, int rx, int ry) {
  1201. FP_DECL_S(SA); FP_DECL_S(SR);
  1202. FP_DECL_EX;
  1203. int mode;
  1204. mode = current->thread.fp_regs.fpc & 3;
  1205. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  1206. FP_SQRT_S(SR, SA);
  1207. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1208. emu_set_CC_cs(regs, SR_c, SR_s);
  1209. return _fex;
  1210. }
  1211. /* Square root float */
  1212. static int emu_sqeb (struct pt_regs *regs, int rx, float *val) {
  1213. FP_DECL_S(SA); FP_DECL_S(SR);
  1214. FP_DECL_EX;
  1215. int mode;
  1216. mode = current->thread.fp_regs.fpc & 3;
  1217. FP_UNPACK_SP(SA, val);
  1218. FP_SQRT_S(SR, SA);
  1219. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1220. emu_set_CC_cs(regs, SR_c, SR_s);
  1221. return _fex;
  1222. }
  1223. /* Subtract long double */
  1224. static int emu_sxbr (struct pt_regs *regs, int rx, int ry) {
  1225. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  1226. FP_DECL_EX;
  1227. mathemu_ldcv cvt;
  1228. int mode;
  1229. mode = current->thread.fp_regs.fpc & 3;
  1230. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  1231. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  1232. FP_UNPACK_QP(QA, &cvt.ld);
  1233. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  1234. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  1235. FP_UNPACK_QP(QB, &cvt.ld);
  1236. FP_SUB_Q(QR, QA, QB);
  1237. FP_PACK_QP(&cvt.ld, QR);
  1238. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  1239. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  1240. emu_set_CC_cs(regs, QR_c, QR_s);
  1241. return _fex;
  1242. }
  1243. /* Subtract double */
  1244. static int emu_sdbr (struct pt_regs *regs, int rx, int ry) {
  1245. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1246. FP_DECL_EX;
  1247. int mode;
  1248. mode = current->thread.fp_regs.fpc & 3;
  1249. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1250. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  1251. FP_SUB_D(DR, DA, DB);
  1252. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1253. emu_set_CC_cs(regs, DR_c, DR_s);
  1254. return _fex;
  1255. }
  1256. /* Subtract double */
  1257. static int emu_sdb (struct pt_regs *regs, int rx, double *val) {
  1258. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1259. FP_DECL_EX;
  1260. int mode;
  1261. mode = current->thread.fp_regs.fpc & 3;
  1262. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1263. FP_UNPACK_DP(DB, val);
  1264. FP_SUB_D(DR, DA, DB);
  1265. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1266. emu_set_CC_cs(regs, DR_c, DR_s);
  1267. return _fex;
  1268. }
  1269. /* Subtract float */
  1270. static int emu_sebr (struct pt_regs *regs, int rx, int ry) {
  1271. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  1272. FP_DECL_EX;
  1273. int mode;
  1274. mode = current->thread.fp_regs.fpc & 3;
  1275. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1276. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  1277. FP_SUB_S(SR, SA, SB);
  1278. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1279. emu_set_CC_cs(regs, SR_c, SR_s);
  1280. return _fex;
  1281. }
  1282. /* Subtract float */
  1283. static int emu_seb (struct pt_regs *regs, int rx, float *val) {
  1284. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  1285. FP_DECL_EX;
  1286. int mode;
  1287. mode = current->thread.fp_regs.fpc & 3;
  1288. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1289. FP_UNPACK_SP(SB, val);
  1290. FP_SUB_S(SR, SA, SB);
  1291. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1292. emu_set_CC_cs(regs, SR_c, SR_s);
  1293. return _fex;
  1294. }
  1295. /* Test data class long double */
  1296. static int emu_tcxb (struct pt_regs *regs, int rx, long val) {
  1297. FP_DECL_Q(QA);
  1298. mathemu_ldcv cvt;
  1299. int bit;
  1300. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  1301. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  1302. FP_UNPACK_RAW_QP(QA, &cvt.ld);
  1303. switch (QA_e) {
  1304. default:
  1305. bit = 8; /* normalized number */
  1306. break;
  1307. case 0:
  1308. if (_FP_FRAC_ZEROP_4(QA))
  1309. bit = 10; /* zero */
  1310. else
  1311. bit = 6; /* denormalized number */
  1312. break;
  1313. case _FP_EXPMAX_Q:
  1314. if (_FP_FRAC_ZEROP_4(QA))
  1315. bit = 4; /* infinity */
  1316. else if (_FP_FRAC_HIGH_RAW_Q(QA) & _FP_QNANBIT_Q)
  1317. bit = 2; /* quiet NAN */
  1318. else
  1319. bit = 0; /* signaling NAN */
  1320. break;
  1321. }
  1322. if (!QA_s)
  1323. bit++;
  1324. emu_set_CC(regs, ((__u32) val >> bit) & 1);
  1325. return 0;
  1326. }
  1327. /* Test data class double */
  1328. static int emu_tcdb (struct pt_regs *regs, int rx, long val) {
  1329. FP_DECL_D(DA);
  1330. int bit;
  1331. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1332. switch (DA_e) {
  1333. default:
  1334. bit = 8; /* normalized number */
  1335. break;
  1336. case 0:
  1337. if (_FP_FRAC_ZEROP_2(DA))
  1338. bit = 10; /* zero */
  1339. else
  1340. bit = 6; /* denormalized number */
  1341. break;
  1342. case _FP_EXPMAX_D:
  1343. if (_FP_FRAC_ZEROP_2(DA))
  1344. bit = 4; /* infinity */
  1345. else if (_FP_FRAC_HIGH_RAW_D(DA) & _FP_QNANBIT_D)
  1346. bit = 2; /* quiet NAN */
  1347. else
  1348. bit = 0; /* signaling NAN */
  1349. break;
  1350. }
  1351. if (!DA_s)
  1352. bit++;
  1353. emu_set_CC(regs, ((__u32) val >> bit) & 1);
  1354. return 0;
  1355. }
  1356. /* Test data class float */
  1357. static int emu_tceb (struct pt_regs *regs, int rx, long val) {
  1358. FP_DECL_S(SA);
  1359. int bit;
  1360. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1361. switch (SA_e) {
  1362. default:
  1363. bit = 8; /* normalized number */
  1364. break;
  1365. case 0:
  1366. if (_FP_FRAC_ZEROP_1(SA))
  1367. bit = 10; /* zero */
  1368. else
  1369. bit = 6; /* denormalized number */
  1370. break;
  1371. case _FP_EXPMAX_S:
  1372. if (_FP_FRAC_ZEROP_1(SA))
  1373. bit = 4; /* infinity */
  1374. else if (_FP_FRAC_HIGH_RAW_S(SA) & _FP_QNANBIT_S)
  1375. bit = 2; /* quiet NAN */
  1376. else
  1377. bit = 0; /* signaling NAN */
  1378. break;
  1379. }
  1380. if (!SA_s)
  1381. bit++;
  1382. emu_set_CC(regs, ((__u32) val >> bit) & 1);
  1383. return 0;
  1384. }
  1385. static inline void emu_load_regd(int reg) {
  1386. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1387. return;
  1388. asm volatile( /* load reg from fp_regs.fprs[reg] */
  1389. " bras 1,0f\n"
  1390. " ld 0,0(%1)\n"
  1391. "0: ex %0,0(1)"
  1392. : /* no output */
  1393. : "a" (reg<<4),"a" (&current->thread.fp_regs.fprs[reg].d)
  1394. : "1");
  1395. }
  1396. static inline void emu_load_rege(int reg) {
  1397. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1398. return;
  1399. asm volatile( /* load reg from fp_regs.fprs[reg] */
  1400. " bras 1,0f\n"
  1401. " le 0,0(%1)\n"
  1402. "0: ex %0,0(1)"
  1403. : /* no output */
  1404. : "a" (reg<<4), "a" (&current->thread.fp_regs.fprs[reg].f)
  1405. : "1");
  1406. }
  1407. static inline void emu_store_regd(int reg) {
  1408. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1409. return;
  1410. asm volatile( /* store reg to fp_regs.fprs[reg] */
  1411. " bras 1,0f\n"
  1412. " std 0,0(%1)\n"
  1413. "0: ex %0,0(1)"
  1414. : /* no output */
  1415. : "a" (reg<<4), "a" (&current->thread.fp_regs.fprs[reg].d)
  1416. : "1");
  1417. }
  1418. static inline void emu_store_rege(int reg) {
  1419. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1420. return;
  1421. asm volatile( /* store reg to fp_regs.fprs[reg] */
  1422. " bras 1,0f\n"
  1423. " ste 0,0(%1)\n"
  1424. "0: ex %0,0(1)"
  1425. : /* no output */
  1426. : "a" (reg<<4), "a" (&current->thread.fp_regs.fprs[reg].f)
  1427. : "1");
  1428. }
  1429. int math_emu_b3(__u8 *opcode, struct pt_regs * regs) {
  1430. int _fex = 0;
  1431. static const __u8 format_table[256] = {
  1432. [0x00] = 0x03,[0x01] = 0x03,[0x02] = 0x03,[0x03] = 0x03,
  1433. [0x04] = 0x0f,[0x05] = 0x0d,[0x06] = 0x0e,[0x07] = 0x0d,
  1434. [0x08] = 0x03,[0x09] = 0x03,[0x0a] = 0x03,[0x0b] = 0x03,
  1435. [0x0c] = 0x0f,[0x0d] = 0x03,[0x0e] = 0x06,[0x0f] = 0x06,
  1436. [0x10] = 0x02,[0x11] = 0x02,[0x12] = 0x02,[0x13] = 0x02,
  1437. [0x14] = 0x03,[0x15] = 0x02,[0x16] = 0x01,[0x17] = 0x03,
  1438. [0x18] = 0x02,[0x19] = 0x02,[0x1a] = 0x02,[0x1b] = 0x02,
  1439. [0x1c] = 0x02,[0x1d] = 0x02,[0x1e] = 0x05,[0x1f] = 0x05,
  1440. [0x40] = 0x01,[0x41] = 0x01,[0x42] = 0x01,[0x43] = 0x01,
  1441. [0x44] = 0x12,[0x45] = 0x0d,[0x46] = 0x11,[0x47] = 0x04,
  1442. [0x48] = 0x01,[0x49] = 0x01,[0x4a] = 0x01,[0x4b] = 0x01,
  1443. [0x4c] = 0x01,[0x4d] = 0x01,[0x53] = 0x06,[0x57] = 0x06,
  1444. [0x5b] = 0x05,[0x5f] = 0x05,[0x84] = 0x13,[0x8c] = 0x13,
  1445. [0x94] = 0x09,[0x95] = 0x08,[0x96] = 0x07,[0x98] = 0x0c,
  1446. [0x99] = 0x0b,[0x9a] = 0x0a
  1447. };
  1448. static const void *jump_table[256]= {
  1449. [0x00] = emu_lpebr,[0x01] = emu_lnebr,[0x02] = emu_ltebr,
  1450. [0x03] = emu_lcebr,[0x04] = emu_ldebr,[0x05] = emu_lxdbr,
  1451. [0x06] = emu_lxebr,[0x07] = emu_mxdbr,[0x08] = emu_kebr,
  1452. [0x09] = emu_cebr, [0x0a] = emu_aebr, [0x0b] = emu_sebr,
  1453. [0x0c] = emu_mdebr,[0x0d] = emu_debr, [0x0e] = emu_maebr,
  1454. [0x0f] = emu_msebr,[0x10] = emu_lpdbr,[0x11] = emu_lndbr,
  1455. [0x12] = emu_ltdbr,[0x13] = emu_lcdbr,[0x14] = emu_sqebr,
  1456. [0x15] = emu_sqdbr,[0x16] = emu_sqxbr,[0x17] = emu_meebr,
  1457. [0x18] = emu_kdbr, [0x19] = emu_cdbr, [0x1a] = emu_adbr,
  1458. [0x1b] = emu_sdbr, [0x1c] = emu_mdbr, [0x1d] = emu_ddbr,
  1459. [0x1e] = emu_madbr,[0x1f] = emu_msdbr,[0x40] = emu_lpxbr,
  1460. [0x41] = emu_lnxbr,[0x42] = emu_ltxbr,[0x43] = emu_lcxbr,
  1461. [0x44] = emu_ledbr,[0x45] = emu_ldxbr,[0x46] = emu_lexbr,
  1462. [0x47] = emu_fixbr,[0x48] = emu_kxbr, [0x49] = emu_cxbr,
  1463. [0x4a] = emu_axbr, [0x4b] = emu_sxbr, [0x4c] = emu_mxbr,
  1464. [0x4d] = emu_dxbr, [0x53] = emu_diebr,[0x57] = emu_fiebr,
  1465. [0x5b] = emu_didbr,[0x5f] = emu_fidbr,[0x84] = emu_sfpc,
  1466. [0x8c] = emu_efpc, [0x94] = emu_cefbr,[0x95] = emu_cdfbr,
  1467. [0x96] = emu_cxfbr,[0x98] = emu_cfebr,[0x99] = emu_cfdbr,
  1468. [0x9a] = emu_cfxbr
  1469. };
  1470. switch (format_table[opcode[1]]) {
  1471. case 1: /* RRE format, long double operation */
  1472. if (opcode[3] & 0x22)
  1473. return SIGILL;
  1474. emu_store_regd((opcode[3] >> 4) & 15);
  1475. emu_store_regd(((opcode[3] >> 4) & 15) + 2);
  1476. emu_store_regd(opcode[3] & 15);
  1477. emu_store_regd((opcode[3] & 15) + 2);
  1478. /* call the emulation function */
  1479. _fex = ((int (*)(struct pt_regs *,int, int))
  1480. jump_table[opcode[1]])
  1481. (regs, opcode[3] >> 4, opcode[3] & 15);
  1482. emu_load_regd((opcode[3] >> 4) & 15);
  1483. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1484. emu_load_regd(opcode[3] & 15);
  1485. emu_load_regd((opcode[3] & 15) + 2);
  1486. break;
  1487. case 2: /* RRE format, double operation */
  1488. emu_store_regd((opcode[3] >> 4) & 15);
  1489. emu_store_regd(opcode[3] & 15);
  1490. /* call the emulation function */
  1491. _fex = ((int (*)(struct pt_regs *, int, int))
  1492. jump_table[opcode[1]])
  1493. (regs, opcode[3] >> 4, opcode[3] & 15);
  1494. emu_load_regd((opcode[3] >> 4) & 15);
  1495. emu_load_regd(opcode[3] & 15);
  1496. break;
  1497. case 3: /* RRE format, float operation */
  1498. emu_store_rege((opcode[3] >> 4) & 15);
  1499. emu_store_rege(opcode[3] & 15);
  1500. /* call the emulation function */
  1501. _fex = ((int (*)(struct pt_regs *, int, int))
  1502. jump_table[opcode[1]])
  1503. (regs, opcode[3] >> 4, opcode[3] & 15);
  1504. emu_load_rege((opcode[3] >> 4) & 15);
  1505. emu_load_rege(opcode[3] & 15);
  1506. break;
  1507. case 4: /* RRF format, long double operation */
  1508. if (opcode[3] & 0x22)
  1509. return SIGILL;
  1510. emu_store_regd((opcode[3] >> 4) & 15);
  1511. emu_store_regd(((opcode[3] >> 4) & 15) + 2);
  1512. emu_store_regd(opcode[3] & 15);
  1513. emu_store_regd((opcode[3] & 15) + 2);
  1514. /* call the emulation function */
  1515. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1516. jump_table[opcode[1]])
  1517. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1518. emu_load_regd((opcode[3] >> 4) & 15);
  1519. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1520. emu_load_regd(opcode[3] & 15);
  1521. emu_load_regd((opcode[3] & 15) + 2);
  1522. break;
  1523. case 5: /* RRF format, double operation */
  1524. emu_store_regd((opcode[2] >> 4) & 15);
  1525. emu_store_regd((opcode[3] >> 4) & 15);
  1526. emu_store_regd(opcode[3] & 15);
  1527. /* call the emulation function */
  1528. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1529. jump_table[opcode[1]])
  1530. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1531. emu_load_regd((opcode[2] >> 4) & 15);
  1532. emu_load_regd((opcode[3] >> 4) & 15);
  1533. emu_load_regd(opcode[3] & 15);
  1534. break;
  1535. case 6: /* RRF format, float operation */
  1536. emu_store_rege((opcode[2] >> 4) & 15);
  1537. emu_store_rege((opcode[3] >> 4) & 15);
  1538. emu_store_rege(opcode[3] & 15);
  1539. /* call the emulation function */
  1540. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1541. jump_table[opcode[1]])
  1542. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1543. emu_load_rege((opcode[2] >> 4) & 15);
  1544. emu_load_rege((opcode[3] >> 4) & 15);
  1545. emu_load_rege(opcode[3] & 15);
  1546. break;
  1547. case 7: /* RRE format, cxfbr instruction */
  1548. /* call the emulation function */
  1549. if (opcode[3] & 0x20)
  1550. return SIGILL;
  1551. _fex = ((int (*)(struct pt_regs *, int, int))
  1552. jump_table[opcode[1]])
  1553. (regs, opcode[3] >> 4, opcode[3] & 15);
  1554. emu_load_regd((opcode[3] >> 4) & 15);
  1555. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1556. break;
  1557. case 8: /* RRE format, cdfbr instruction */
  1558. /* call the emulation function */
  1559. _fex = ((int (*)(struct pt_regs *, int, int))
  1560. jump_table[opcode[1]])
  1561. (regs, opcode[3] >> 4, opcode[3] & 15);
  1562. emu_load_regd((opcode[3] >> 4) & 15);
  1563. break;
  1564. case 9: /* RRE format, cefbr instruction */
  1565. /* call the emulation function */
  1566. _fex = ((int (*)(struct pt_regs *, int, int))
  1567. jump_table[opcode[1]])
  1568. (regs, opcode[3] >> 4, opcode[3] & 15);
  1569. emu_load_rege((opcode[3] >> 4) & 15);
  1570. break;
  1571. case 10: /* RRF format, cfxbr instruction */
  1572. if ((opcode[2] & 128) == 128 || (opcode[2] & 96) == 32)
  1573. /* mask of { 2,3,8-15 } is invalid */
  1574. return SIGILL;
  1575. if (opcode[3] & 2)
  1576. return SIGILL;
  1577. emu_store_regd(opcode[3] & 15);
  1578. emu_store_regd((opcode[3] & 15) + 2);
  1579. /* call the emulation function */
  1580. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1581. jump_table[opcode[1]])
  1582. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1583. break;
  1584. case 11: /* RRF format, cfdbr instruction */
  1585. if ((opcode[2] & 128) == 128 || (opcode[2] & 96) == 32)
  1586. /* mask of { 2,3,8-15 } is invalid */
  1587. return SIGILL;
  1588. emu_store_regd(opcode[3] & 15);
  1589. /* call the emulation function */
  1590. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1591. jump_table[opcode[1]])
  1592. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1593. break;
  1594. case 12: /* RRF format, cfebr instruction */
  1595. if ((opcode[2] & 128) == 128 || (opcode[2] & 96) == 32)
  1596. /* mask of { 2,3,8-15 } is invalid */
  1597. return SIGILL;
  1598. emu_store_rege(opcode[3] & 15);
  1599. /* call the emulation function */
  1600. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1601. jump_table[opcode[1]])
  1602. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1603. break;
  1604. case 13: /* RRE format, ldxbr & mdxbr instruction */
  1605. /* double store but long double load */
  1606. if (opcode[3] & 0x20)
  1607. return SIGILL;
  1608. emu_store_regd((opcode[3] >> 4) & 15);
  1609. emu_store_regd(opcode[3] & 15);
  1610. /* call the emulation function */
  1611. _fex = ((int (*)(struct pt_regs *, int, int))
  1612. jump_table[opcode[1]])
  1613. (regs, opcode[3] >> 4, opcode[3] & 15);
  1614. emu_load_regd((opcode[3] >> 4) & 15);
  1615. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1616. break;
  1617. case 14: /* RRE format, ldxbr & mdxbr instruction */
  1618. /* float store but long double load */
  1619. if (opcode[3] & 0x20)
  1620. return SIGILL;
  1621. emu_store_rege((opcode[3] >> 4) & 15);
  1622. emu_store_rege(opcode[3] & 15);
  1623. /* call the emulation function */
  1624. _fex = ((int (*)(struct pt_regs *, int, int))
  1625. jump_table[opcode[1]])
  1626. (regs, opcode[3] >> 4, opcode[3] & 15);
  1627. emu_load_regd((opcode[3] >> 4) & 15);
  1628. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1629. break;
  1630. case 15: /* RRE format, ldebr & mdebr instruction */
  1631. /* float store but double load */
  1632. emu_store_rege((opcode[3] >> 4) & 15);
  1633. emu_store_rege(opcode[3] & 15);
  1634. /* call the emulation function */
  1635. _fex = ((int (*)(struct pt_regs *, int, int))
  1636. jump_table[opcode[1]])
  1637. (regs, opcode[3] >> 4, opcode[3] & 15);
  1638. emu_load_regd((opcode[3] >> 4) & 15);
  1639. break;
  1640. case 16: /* RRE format, ldxbr instruction */
  1641. /* long double store but double load */
  1642. if (opcode[3] & 2)
  1643. return SIGILL;
  1644. emu_store_regd(opcode[3] & 15);
  1645. emu_store_regd((opcode[3] & 15) + 2);
  1646. /* call the emulation function */
  1647. _fex = ((int (*)(struct pt_regs *, int, int))
  1648. jump_table[opcode[1]])
  1649. (regs, opcode[3] >> 4, opcode[3] & 15);
  1650. emu_load_regd((opcode[3] >> 4) & 15);
  1651. break;
  1652. case 17: /* RRE format, ldxbr instruction */
  1653. /* long double store but float load */
  1654. if (opcode[3] & 2)
  1655. return SIGILL;
  1656. emu_store_regd(opcode[3] & 15);
  1657. emu_store_regd((opcode[3] & 15) + 2);
  1658. /* call the emulation function */
  1659. _fex = ((int (*)(struct pt_regs *, int, int))
  1660. jump_table[opcode[1]])
  1661. (regs, opcode[3] >> 4, opcode[3] & 15);
  1662. emu_load_rege((opcode[3] >> 4) & 15);
  1663. break;
  1664. case 18: /* RRE format, ledbr instruction */
  1665. /* double store but float load */
  1666. emu_store_regd(opcode[3] & 15);
  1667. /* call the emulation function */
  1668. _fex = ((int (*)(struct pt_regs *, int, int))
  1669. jump_table[opcode[1]])
  1670. (regs, opcode[3] >> 4, opcode[3] & 15);
  1671. emu_load_rege((opcode[3] >> 4) & 15);
  1672. break;
  1673. case 19: /* RRE format, efpc & sfpc instruction */
  1674. /* call the emulation function */
  1675. _fex = ((int (*)(struct pt_regs *, int, int))
  1676. jump_table[opcode[1]])
  1677. (regs, opcode[3] >> 4, opcode[3] & 15);
  1678. break;
  1679. default: /* invalid operation */
  1680. return SIGILL;
  1681. }
  1682. if (_fex != 0) {
  1683. current->thread.fp_regs.fpc |= _fex;
  1684. if (current->thread.fp_regs.fpc & (_fex << 8))
  1685. return SIGFPE;
  1686. }
  1687. return 0;
  1688. }
  1689. static void* calc_addr(struct pt_regs *regs, int rx, int rb, int disp)
  1690. {
  1691. addr_t addr;
  1692. rx &= 15;
  1693. rb &= 15;
  1694. addr = disp & 0xfff;
  1695. addr += (rx != 0) ? regs->gprs[rx] : 0; /* + index */
  1696. addr += (rb != 0) ? regs->gprs[rb] : 0; /* + base */
  1697. return (void*) addr;
  1698. }
  1699. int math_emu_ed(__u8 *opcode, struct pt_regs * regs) {
  1700. int _fex = 0;
  1701. static const __u8 format_table[256] = {
  1702. [0x04] = 0x06,[0x05] = 0x05,[0x06] = 0x07,[0x07] = 0x05,
  1703. [0x08] = 0x02,[0x09] = 0x02,[0x0a] = 0x02,[0x0b] = 0x02,
  1704. [0x0c] = 0x06,[0x0d] = 0x02,[0x0e] = 0x04,[0x0f] = 0x04,
  1705. [0x10] = 0x08,[0x11] = 0x09,[0x12] = 0x0a,[0x14] = 0x02,
  1706. [0x15] = 0x01,[0x17] = 0x02,[0x18] = 0x01,[0x19] = 0x01,
  1707. [0x1a] = 0x01,[0x1b] = 0x01,[0x1c] = 0x01,[0x1d] = 0x01,
  1708. [0x1e] = 0x03,[0x1f] = 0x03,
  1709. };
  1710. static const void *jump_table[]= {
  1711. [0x04] = emu_ldeb,[0x05] = emu_lxdb,[0x06] = emu_lxeb,
  1712. [0x07] = emu_mxdb,[0x08] = emu_keb, [0x09] = emu_ceb,
  1713. [0x0a] = emu_aeb, [0x0b] = emu_seb, [0x0c] = emu_mdeb,
  1714. [0x0d] = emu_deb, [0x0e] = emu_maeb,[0x0f] = emu_mseb,
  1715. [0x10] = emu_tceb,[0x11] = emu_tcdb,[0x12] = emu_tcxb,
  1716. [0x14] = emu_sqeb,[0x15] = emu_sqdb,[0x17] = emu_meeb,
  1717. [0x18] = emu_kdb, [0x19] = emu_cdb, [0x1a] = emu_adb,
  1718. [0x1b] = emu_sdb, [0x1c] = emu_mdb, [0x1d] = emu_ddb,
  1719. [0x1e] = emu_madb,[0x1f] = emu_msdb
  1720. };
  1721. switch (format_table[opcode[5]]) {
  1722. case 1: /* RXE format, double constant */ {
  1723. __u64 *dxb, temp;
  1724. __u32 opc;
  1725. emu_store_regd((opcode[1] >> 4) & 15);
  1726. opc = *((__u32 *) opcode);
  1727. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1728. mathemu_copy_from_user(&temp, dxb, 8);
  1729. /* call the emulation function */
  1730. _fex = ((int (*)(struct pt_regs *, int, double *))
  1731. jump_table[opcode[5]])
  1732. (regs, opcode[1] >> 4, (double *) &temp);
  1733. emu_load_regd((opcode[1] >> 4) & 15);
  1734. break;
  1735. }
  1736. case 2: /* RXE format, float constant */ {
  1737. __u32 *dxb, temp;
  1738. __u32 opc;
  1739. emu_store_rege((opcode[1] >> 4) & 15);
  1740. opc = *((__u32 *) opcode);
  1741. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1742. mathemu_get_user(temp, dxb);
  1743. /* call the emulation function */
  1744. _fex = ((int (*)(struct pt_regs *, int, float *))
  1745. jump_table[opcode[5]])
  1746. (regs, opcode[1] >> 4, (float *) &temp);
  1747. emu_load_rege((opcode[1] >> 4) & 15);
  1748. break;
  1749. }
  1750. case 3: /* RXF format, double constant */ {
  1751. __u64 *dxb, temp;
  1752. __u32 opc;
  1753. emu_store_regd((opcode[1] >> 4) & 15);
  1754. emu_store_regd((opcode[4] >> 4) & 15);
  1755. opc = *((__u32 *) opcode);
  1756. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1757. mathemu_copy_from_user(&temp, dxb, 8);
  1758. /* call the emulation function */
  1759. _fex = ((int (*)(struct pt_regs *, int, double *, int))
  1760. jump_table[opcode[5]])
  1761. (regs, opcode[1] >> 4, (double *) &temp, opcode[4] >> 4);
  1762. emu_load_regd((opcode[1] >> 4) & 15);
  1763. break;
  1764. }
  1765. case 4: /* RXF format, float constant */ {
  1766. __u32 *dxb, temp;
  1767. __u32 opc;
  1768. emu_store_rege((opcode[1] >> 4) & 15);
  1769. emu_store_rege((opcode[4] >> 4) & 15);
  1770. opc = *((__u32 *) opcode);
  1771. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1772. mathemu_get_user(temp, dxb);
  1773. /* call the emulation function */
  1774. _fex = ((int (*)(struct pt_regs *, int, float *, int))
  1775. jump_table[opcode[5]])
  1776. (regs, opcode[1] >> 4, (float *) &temp, opcode[4] >> 4);
  1777. emu_load_rege((opcode[4] >> 4) & 15);
  1778. break;
  1779. }
  1780. case 5: /* RXE format, double constant */
  1781. /* store double and load long double */
  1782. {
  1783. __u64 *dxb, temp;
  1784. __u32 opc;
  1785. if ((opcode[1] >> 4) & 0x20)
  1786. return SIGILL;
  1787. emu_store_regd((opcode[1] >> 4) & 15);
  1788. opc = *((__u32 *) opcode);
  1789. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1790. mathemu_copy_from_user(&temp, dxb, 8);
  1791. /* call the emulation function */
  1792. _fex = ((int (*)(struct pt_regs *, int, double *))
  1793. jump_table[opcode[5]])
  1794. (regs, opcode[1] >> 4, (double *) &temp);
  1795. emu_load_regd((opcode[1] >> 4) & 15);
  1796. emu_load_regd(((opcode[1] >> 4) & 15) + 2);
  1797. break;
  1798. }
  1799. case 6: /* RXE format, float constant */
  1800. /* store float and load double */
  1801. {
  1802. __u32 *dxb, temp;
  1803. __u32 opc;
  1804. emu_store_rege((opcode[1] >> 4) & 15);
  1805. opc = *((__u32 *) opcode);
  1806. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1807. mathemu_get_user(temp, dxb);
  1808. /* call the emulation function */
  1809. _fex = ((int (*)(struct pt_regs *, int, float *))
  1810. jump_table[opcode[5]])
  1811. (regs, opcode[1] >> 4, (float *) &temp);
  1812. emu_load_regd((opcode[1] >> 4) & 15);
  1813. break;
  1814. }
  1815. case 7: /* RXE format, float constant */
  1816. /* store float and load long double */
  1817. {
  1818. __u32 *dxb, temp;
  1819. __u32 opc;
  1820. if ((opcode[1] >> 4) & 0x20)
  1821. return SIGILL;
  1822. emu_store_rege((opcode[1] >> 4) & 15);
  1823. opc = *((__u32 *) opcode);
  1824. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1825. mathemu_get_user(temp, dxb);
  1826. /* call the emulation function */
  1827. _fex = ((int (*)(struct pt_regs *, int, float *))
  1828. jump_table[opcode[5]])
  1829. (regs, opcode[1] >> 4, (float *) &temp);
  1830. emu_load_regd((opcode[1] >> 4) & 15);
  1831. emu_load_regd(((opcode[1] >> 4) & 15) + 2);
  1832. break;
  1833. }
  1834. case 8: /* RXE format, RX address used as int value */ {
  1835. __u64 dxb;
  1836. __u32 opc;
  1837. emu_store_rege((opcode[1] >> 4) & 15);
  1838. opc = *((__u32 *) opcode);
  1839. dxb = (__u64) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1840. /* call the emulation function */
  1841. _fex = ((int (*)(struct pt_regs *, int, long))
  1842. jump_table[opcode[5]])
  1843. (regs, opcode[1] >> 4, dxb);
  1844. break;
  1845. }
  1846. case 9: /* RXE format, RX address used as int value */ {
  1847. __u64 dxb;
  1848. __u32 opc;
  1849. emu_store_regd((opcode[1] >> 4) & 15);
  1850. opc = *((__u32 *) opcode);
  1851. dxb = (__u64) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1852. /* call the emulation function */
  1853. _fex = ((int (*)(struct pt_regs *, int, long))
  1854. jump_table[opcode[5]])
  1855. (regs, opcode[1] >> 4, dxb);
  1856. break;
  1857. }
  1858. case 10: /* RXE format, RX address used as int value */ {
  1859. __u64 dxb;
  1860. __u32 opc;
  1861. if ((opcode[1] >> 4) & 2)
  1862. return SIGILL;
  1863. emu_store_regd((opcode[1] >> 4) & 15);
  1864. emu_store_regd(((opcode[1] >> 4) & 15) + 2);
  1865. opc = *((__u32 *) opcode);
  1866. dxb = (__u64) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1867. /* call the emulation function */
  1868. _fex = ((int (*)(struct pt_regs *, int, long))
  1869. jump_table[opcode[5]])
  1870. (regs, opcode[1] >> 4, dxb);
  1871. break;
  1872. }
  1873. default: /* invalid operation */
  1874. return SIGILL;
  1875. }
  1876. if (_fex != 0) {
  1877. current->thread.fp_regs.fpc |= _fex;
  1878. if (current->thread.fp_regs.fpc & (_fex << 8))
  1879. return SIGFPE;
  1880. }
  1881. return 0;
  1882. }
  1883. /*
  1884. * Emulate LDR Rx,Ry with Rx or Ry not in {0, 2, 4, 6}
  1885. */
  1886. int math_emu_ldr(__u8 *opcode) {
  1887. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1888. __u16 opc = *((__u16 *) opcode);
  1889. if ((opc & 0x90) == 0) { /* test if rx in {0,2,4,6} */
  1890. /* we got an exception therefore ry can't be in {0,2,4,6} */
  1891. asm volatile( /* load rx from fp_regs.fprs[ry] */
  1892. " bras 1,0f\n"
  1893. " ld 0,0(%1)\n"
  1894. "0: ex %0,0(1)"
  1895. : /* no output */
  1896. : "a" (opc & 0xf0), "a" (&fp_regs->fprs[opc & 0xf].d)
  1897. : "1");
  1898. } else if ((opc & 0x9) == 0) { /* test if ry in {0,2,4,6} */
  1899. asm volatile ( /* store ry to fp_regs.fprs[rx] */
  1900. " bras 1,0f\n"
  1901. " std 0,0(%1)\n"
  1902. "0: ex %0,0(1)"
  1903. : /* no output */
  1904. : "a" ((opc & 0xf) << 4),
  1905. "a" (&fp_regs->fprs[(opc & 0xf0)>>4].d)
  1906. : "1");
  1907. } else /* move fp_regs.fprs[ry] to fp_regs.fprs[rx] */
  1908. fp_regs->fprs[(opc & 0xf0) >> 4] = fp_regs->fprs[opc & 0xf];
  1909. return 0;
  1910. }
  1911. /*
  1912. * Emulate LER Rx,Ry with Rx or Ry not in {0, 2, 4, 6}
  1913. */
  1914. int math_emu_ler(__u8 *opcode) {
  1915. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1916. __u16 opc = *((__u16 *) opcode);
  1917. if ((opc & 0x90) == 0) { /* test if rx in {0,2,4,6} */
  1918. /* we got an exception therefore ry can't be in {0,2,4,6} */
  1919. asm volatile( /* load rx from fp_regs.fprs[ry] */
  1920. " bras 1,0f\n"
  1921. " le 0,0(%1)\n"
  1922. "0: ex %0,0(1)"
  1923. : /* no output */
  1924. : "a" (opc & 0xf0), "a" (&fp_regs->fprs[opc & 0xf].f)
  1925. : "1");
  1926. } else if ((opc & 0x9) == 0) { /* test if ry in {0,2,4,6} */
  1927. asm volatile( /* store ry to fp_regs.fprs[rx] */
  1928. " bras 1,0f\n"
  1929. " ste 0,0(%1)\n"
  1930. "0: ex %0,0(1)"
  1931. : /* no output */
  1932. : "a" ((opc & 0xf) << 4),
  1933. "a" (&fp_regs->fprs[(opc & 0xf0) >> 4].f)
  1934. : "1");
  1935. } else /* move fp_regs.fprs[ry] to fp_regs.fprs[rx] */
  1936. fp_regs->fprs[(opc & 0xf0) >> 4] = fp_regs->fprs[opc & 0xf];
  1937. return 0;
  1938. }
  1939. /*
  1940. * Emulate LD R,D(X,B) with R not in {0, 2, 4, 6}
  1941. */
  1942. int math_emu_ld(__u8 *opcode, struct pt_regs * regs) {
  1943. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1944. __u32 opc = *((__u32 *) opcode);
  1945. __u64 *dxb;
  1946. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1947. mathemu_copy_from_user(&fp_regs->fprs[(opc >> 20) & 0xf].d, dxb, 8);
  1948. return 0;
  1949. }
  1950. /*
  1951. * Emulate LE R,D(X,B) with R not in {0, 2, 4, 6}
  1952. */
  1953. int math_emu_le(__u8 *opcode, struct pt_regs * regs) {
  1954. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1955. __u32 opc = *((__u32 *) opcode);
  1956. __u32 *mem, *dxb;
  1957. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1958. mem = (__u32 *) (&fp_regs->fprs[(opc >> 20) & 0xf].f);
  1959. mathemu_get_user(mem[0], dxb);
  1960. return 0;
  1961. }
  1962. /*
  1963. * Emulate STD R,D(X,B) with R not in {0, 2, 4, 6}
  1964. */
  1965. int math_emu_std(__u8 *opcode, struct pt_regs * regs) {
  1966. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1967. __u32 opc = *((__u32 *) opcode);
  1968. __u64 *dxb;
  1969. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1970. mathemu_copy_to_user(dxb, &fp_regs->fprs[(opc >> 20) & 0xf].d, 8);
  1971. return 0;
  1972. }
  1973. /*
  1974. * Emulate STE R,D(X,B) with R not in {0, 2, 4, 6}
  1975. */
  1976. int math_emu_ste(__u8 *opcode, struct pt_regs * regs) {
  1977. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1978. __u32 opc = *((__u32 *) opcode);
  1979. __u32 *mem, *dxb;
  1980. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1981. mem = (__u32 *) (&fp_regs->fprs[(opc >> 20) & 0xf].f);
  1982. mathemu_put_user(mem[0], dxb);
  1983. return 0;
  1984. }
  1985. /*
  1986. * Emulate LFPC D(B)
  1987. */
  1988. int math_emu_lfpc(__u8 *opcode, struct pt_regs *regs) {
  1989. __u32 opc = *((__u32 *) opcode);
  1990. __u32 *dxb, temp;
  1991. dxb= (__u32 *) calc_addr(regs, 0, opc>>12, opc);
  1992. mathemu_get_user(temp, dxb);
  1993. if ((temp & ~FPC_VALID_MASK) != 0)
  1994. return SIGILL;
  1995. current->thread.fp_regs.fpc = temp;
  1996. return 0;
  1997. }
  1998. /*
  1999. * Emulate STFPC D(B)
  2000. */
  2001. int math_emu_stfpc(__u8 *opcode, struct pt_regs *regs) {
  2002. __u32 opc = *((__u32 *) opcode);
  2003. __u32 *dxb;
  2004. dxb= (__u32 *) calc_addr(regs, 0, opc>>12, opc);
  2005. mathemu_put_user(current->thread.fp_regs.fpc, dxb);
  2006. return 0;
  2007. }
  2008. /*
  2009. * Emulate SRNM D(B)
  2010. */
  2011. int math_emu_srnm(__u8 *opcode, struct pt_regs *regs) {
  2012. __u32 opc = *((__u32 *) opcode);
  2013. __u32 temp;
  2014. temp = calc_addr(regs, 0, opc>>12, opc);
  2015. current->thread.fp_regs.fpc &= ~3;
  2016. current->thread.fp_regs.fpc |= (temp & 3);
  2017. return 0;
  2018. }
  2019. /* broken compiler ... */
  2020. long long
  2021. __negdi2 (long long u)
  2022. {
  2023. union lll {
  2024. long long ll;
  2025. long s[2];
  2026. };
  2027. union lll w,uu;
  2028. uu.ll = u;
  2029. w.s[1] = -uu.s[1];
  2030. w.s[0] = -uu.s[0] - ((int) w.s[1] != 0);
  2031. return w.ll;
  2032. }