book3s_64_mmu_hv.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16. */
  17. #include <linux/types.h>
  18. #include <linux/string.h>
  19. #include <linux/kvm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/highmem.h>
  22. #include <linux/gfp.h>
  23. #include <linux/slab.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/srcu.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/file.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/kvm_ppc.h>
  31. #include <asm/kvm_book3s.h>
  32. #include <asm/mmu-hash64.h>
  33. #include <asm/hvcall.h>
  34. #include <asm/synch.h>
  35. #include <asm/ppc-opcode.h>
  36. #include <asm/cputable.h>
  37. #include "book3s_hv_cma.h"
  38. /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
  39. #define MAX_LPID_970 63
  40. /* Power architecture requires HPT is at least 256kB */
  41. #define PPC_MIN_HPT_ORDER 18
  42. static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  43. long pte_index, unsigned long pteh,
  44. unsigned long ptel, unsigned long *pte_idx_ret);
  45. static void kvmppc_rmap_reset(struct kvm *kvm);
  46. long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  47. {
  48. unsigned long hpt;
  49. struct revmap_entry *rev;
  50. struct page *page = NULL;
  51. long order = KVM_DEFAULT_HPT_ORDER;
  52. if (htab_orderp) {
  53. order = *htab_orderp;
  54. if (order < PPC_MIN_HPT_ORDER)
  55. order = PPC_MIN_HPT_ORDER;
  56. }
  57. kvm->arch.hpt_cma_alloc = 0;
  58. /*
  59. * try first to allocate it from the kernel page allocator.
  60. * We keep the CMA reserved for failed allocation.
  61. */
  62. hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
  63. __GFP_NOWARN, order - PAGE_SHIFT);
  64. /* Next try to allocate from the preallocated pool */
  65. if (!hpt) {
  66. VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
  67. page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
  68. if (page) {
  69. hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  70. kvm->arch.hpt_cma_alloc = 1;
  71. } else
  72. --order;
  73. }
  74. /* Lastly try successively smaller sizes from the page allocator */
  75. while (!hpt && order > PPC_MIN_HPT_ORDER) {
  76. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  77. __GFP_NOWARN, order - PAGE_SHIFT);
  78. if (!hpt)
  79. --order;
  80. }
  81. if (!hpt)
  82. return -ENOMEM;
  83. kvm->arch.hpt_virt = hpt;
  84. kvm->arch.hpt_order = order;
  85. /* HPTEs are 2**4 bytes long */
  86. kvm->arch.hpt_npte = 1ul << (order - 4);
  87. /* 128 (2**7) bytes in each HPTEG */
  88. kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  89. /* Allocate reverse map array */
  90. rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  91. if (!rev) {
  92. pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  93. goto out_freehpt;
  94. }
  95. kvm->arch.revmap = rev;
  96. kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  97. pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
  98. hpt, order, kvm->arch.lpid);
  99. if (htab_orderp)
  100. *htab_orderp = order;
  101. return 0;
  102. out_freehpt:
  103. if (kvm->arch.hpt_cma_alloc)
  104. kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
  105. else
  106. free_pages(hpt, order - PAGE_SHIFT);
  107. return -ENOMEM;
  108. }
  109. long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
  110. {
  111. long err = -EBUSY;
  112. long order;
  113. mutex_lock(&kvm->lock);
  114. if (kvm->arch.rma_setup_done) {
  115. kvm->arch.rma_setup_done = 0;
  116. /* order rma_setup_done vs. vcpus_running */
  117. smp_mb();
  118. if (atomic_read(&kvm->arch.vcpus_running)) {
  119. kvm->arch.rma_setup_done = 1;
  120. goto out;
  121. }
  122. }
  123. if (kvm->arch.hpt_virt) {
  124. order = kvm->arch.hpt_order;
  125. /* Set the entire HPT to 0, i.e. invalid HPTEs */
  126. memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
  127. /*
  128. * Reset all the reverse-mapping chains for all memslots
  129. */
  130. kvmppc_rmap_reset(kvm);
  131. /* Ensure that each vcpu will flush its TLB on next entry. */
  132. cpumask_setall(&kvm->arch.need_tlb_flush);
  133. *htab_orderp = order;
  134. err = 0;
  135. } else {
  136. err = kvmppc_alloc_hpt(kvm, htab_orderp);
  137. order = *htab_orderp;
  138. }
  139. out:
  140. mutex_unlock(&kvm->lock);
  141. return err;
  142. }
  143. void kvmppc_free_hpt(struct kvm *kvm)
  144. {
  145. kvmppc_free_lpid(kvm->arch.lpid);
  146. vfree(kvm->arch.revmap);
  147. if (kvm->arch.hpt_cma_alloc)
  148. kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
  149. 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
  150. else
  151. free_pages(kvm->arch.hpt_virt,
  152. kvm->arch.hpt_order - PAGE_SHIFT);
  153. }
  154. /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
  155. static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
  156. {
  157. return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
  158. }
  159. /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
  160. static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
  161. {
  162. return (pgsize == 0x10000) ? 0x1000 : 0;
  163. }
  164. void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
  165. unsigned long porder)
  166. {
  167. unsigned long i;
  168. unsigned long npages;
  169. unsigned long hp_v, hp_r;
  170. unsigned long addr, hash;
  171. unsigned long psize;
  172. unsigned long hp0, hp1;
  173. unsigned long idx_ret;
  174. long ret;
  175. struct kvm *kvm = vcpu->kvm;
  176. psize = 1ul << porder;
  177. npages = memslot->npages >> (porder - PAGE_SHIFT);
  178. /* VRMA can't be > 1TB */
  179. if (npages > 1ul << (40 - porder))
  180. npages = 1ul << (40 - porder);
  181. /* Can't use more than 1 HPTE per HPTEG */
  182. if (npages > kvm->arch.hpt_mask + 1)
  183. npages = kvm->arch.hpt_mask + 1;
  184. hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
  185. HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
  186. hp1 = hpte1_pgsize_encoding(psize) |
  187. HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
  188. for (i = 0; i < npages; ++i) {
  189. addr = i << porder;
  190. /* can't use hpt_hash since va > 64 bits */
  191. hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
  192. /*
  193. * We assume that the hash table is empty and no
  194. * vcpus are using it at this stage. Since we create
  195. * at most one HPTE per HPTEG, we just assume entry 7
  196. * is available and use it.
  197. */
  198. hash = (hash << 3) + 7;
  199. hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
  200. hp_r = hp1 | addr;
  201. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
  202. &idx_ret);
  203. if (ret != H_SUCCESS) {
  204. pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
  205. addr, ret);
  206. break;
  207. }
  208. }
  209. }
  210. int kvmppc_mmu_hv_init(void)
  211. {
  212. unsigned long host_lpid, rsvd_lpid;
  213. if (!cpu_has_feature(CPU_FTR_HVMODE))
  214. return -EINVAL;
  215. /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
  216. if (cpu_has_feature(CPU_FTR_ARCH_206)) {
  217. host_lpid = mfspr(SPRN_LPID); /* POWER7 */
  218. rsvd_lpid = LPID_RSVD;
  219. } else {
  220. host_lpid = 0; /* PPC970 */
  221. rsvd_lpid = MAX_LPID_970;
  222. }
  223. kvmppc_init_lpid(rsvd_lpid + 1);
  224. kvmppc_claim_lpid(host_lpid);
  225. /* rsvd_lpid is reserved for use in partition switching */
  226. kvmppc_claim_lpid(rsvd_lpid);
  227. return 0;
  228. }
  229. static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
  230. {
  231. kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
  232. }
  233. /*
  234. * This is called to get a reference to a guest page if there isn't
  235. * one already in the memslot->arch.slot_phys[] array.
  236. */
  237. static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
  238. struct kvm_memory_slot *memslot,
  239. unsigned long psize)
  240. {
  241. unsigned long start;
  242. long np, err;
  243. struct page *page, *hpage, *pages[1];
  244. unsigned long s, pgsize;
  245. unsigned long *physp;
  246. unsigned int is_io, got, pgorder;
  247. struct vm_area_struct *vma;
  248. unsigned long pfn, i, npages;
  249. physp = memslot->arch.slot_phys;
  250. if (!physp)
  251. return -EINVAL;
  252. if (physp[gfn - memslot->base_gfn])
  253. return 0;
  254. is_io = 0;
  255. got = 0;
  256. page = NULL;
  257. pgsize = psize;
  258. err = -EINVAL;
  259. start = gfn_to_hva_memslot(memslot, gfn);
  260. /* Instantiate and get the page we want access to */
  261. np = get_user_pages_fast(start, 1, 1, pages);
  262. if (np != 1) {
  263. /* Look up the vma for the page */
  264. down_read(&current->mm->mmap_sem);
  265. vma = find_vma(current->mm, start);
  266. if (!vma || vma->vm_start > start ||
  267. start + psize > vma->vm_end ||
  268. !(vma->vm_flags & VM_PFNMAP))
  269. goto up_err;
  270. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  271. pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  272. /* check alignment of pfn vs. requested page size */
  273. if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
  274. goto up_err;
  275. up_read(&current->mm->mmap_sem);
  276. } else {
  277. page = pages[0];
  278. got = KVMPPC_GOT_PAGE;
  279. /* See if this is a large page */
  280. s = PAGE_SIZE;
  281. if (PageHuge(page)) {
  282. hpage = compound_head(page);
  283. s <<= compound_order(hpage);
  284. /* Get the whole large page if slot alignment is ok */
  285. if (s > psize && slot_is_aligned(memslot, s) &&
  286. !(memslot->userspace_addr & (s - 1))) {
  287. start &= ~(s - 1);
  288. pgsize = s;
  289. get_page(hpage);
  290. put_page(page);
  291. page = hpage;
  292. }
  293. }
  294. if (s < psize)
  295. goto out;
  296. pfn = page_to_pfn(page);
  297. }
  298. npages = pgsize >> PAGE_SHIFT;
  299. pgorder = __ilog2(npages);
  300. physp += (gfn - memslot->base_gfn) & ~(npages - 1);
  301. spin_lock(&kvm->arch.slot_phys_lock);
  302. for (i = 0; i < npages; ++i) {
  303. if (!physp[i]) {
  304. physp[i] = ((pfn + i) << PAGE_SHIFT) +
  305. got + is_io + pgorder;
  306. got = 0;
  307. }
  308. }
  309. spin_unlock(&kvm->arch.slot_phys_lock);
  310. err = 0;
  311. out:
  312. if (got)
  313. put_page(page);
  314. return err;
  315. up_err:
  316. up_read(&current->mm->mmap_sem);
  317. return err;
  318. }
  319. long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  320. long pte_index, unsigned long pteh,
  321. unsigned long ptel, unsigned long *pte_idx_ret)
  322. {
  323. unsigned long psize, gpa, gfn;
  324. struct kvm_memory_slot *memslot;
  325. long ret;
  326. if (kvm->arch.using_mmu_notifiers)
  327. goto do_insert;
  328. psize = hpte_page_size(pteh, ptel);
  329. if (!psize)
  330. return H_PARAMETER;
  331. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  332. /* Find the memslot (if any) for this address */
  333. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  334. gfn = gpa >> PAGE_SHIFT;
  335. memslot = gfn_to_memslot(kvm, gfn);
  336. if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
  337. if (!slot_is_aligned(memslot, psize))
  338. return H_PARAMETER;
  339. if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
  340. return H_PARAMETER;
  341. }
  342. do_insert:
  343. /* Protect linux PTE lookup from page table destruction */
  344. rcu_read_lock_sched(); /* this disables preemption too */
  345. ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
  346. current->mm->pgd, false, pte_idx_ret);
  347. rcu_read_unlock_sched();
  348. if (ret == H_TOO_HARD) {
  349. /* this can't happen */
  350. pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
  351. ret = H_RESOURCE; /* or something */
  352. }
  353. return ret;
  354. }
  355. /*
  356. * We come here on a H_ENTER call from the guest when we are not
  357. * using mmu notifiers and we don't have the requested page pinned
  358. * already.
  359. */
  360. long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  361. long pte_index, unsigned long pteh,
  362. unsigned long ptel)
  363. {
  364. return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
  365. pteh, ptel, &vcpu->arch.gpr[4]);
  366. }
  367. static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
  368. gva_t eaddr)
  369. {
  370. u64 mask;
  371. int i;
  372. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  373. if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
  374. continue;
  375. if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
  376. mask = ESID_MASK_1T;
  377. else
  378. mask = ESID_MASK;
  379. if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
  380. return &vcpu->arch.slb[i];
  381. }
  382. return NULL;
  383. }
  384. static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
  385. unsigned long ea)
  386. {
  387. unsigned long ra_mask;
  388. ra_mask = hpte_page_size(v, r) - 1;
  389. return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
  390. }
  391. static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  392. struct kvmppc_pte *gpte, bool data, bool iswrite)
  393. {
  394. struct kvm *kvm = vcpu->kvm;
  395. struct kvmppc_slb *slbe;
  396. unsigned long slb_v;
  397. unsigned long pp, key;
  398. unsigned long v, gr;
  399. unsigned long *hptep;
  400. int index;
  401. int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
  402. /* Get SLB entry */
  403. if (virtmode) {
  404. slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
  405. if (!slbe)
  406. return -EINVAL;
  407. slb_v = slbe->origv;
  408. } else {
  409. /* real mode access */
  410. slb_v = vcpu->kvm->arch.vrma_slb_v;
  411. }
  412. /* Find the HPTE in the hash table */
  413. index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
  414. HPTE_V_VALID | HPTE_V_ABSENT);
  415. if (index < 0)
  416. return -ENOENT;
  417. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  418. v = hptep[0] & ~HPTE_V_HVLOCK;
  419. gr = kvm->arch.revmap[index].guest_rpte;
  420. /* Unlock the HPTE */
  421. asm volatile("lwsync" : : : "memory");
  422. hptep[0] = v;
  423. gpte->eaddr = eaddr;
  424. gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
  425. /* Get PP bits and key for permission check */
  426. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  427. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  428. key &= slb_v;
  429. /* Calculate permissions */
  430. gpte->may_read = hpte_read_permission(pp, key);
  431. gpte->may_write = hpte_write_permission(pp, key);
  432. gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
  433. /* Storage key permission check for POWER7 */
  434. if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
  435. int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
  436. if (amrfield & 1)
  437. gpte->may_read = 0;
  438. if (amrfield & 2)
  439. gpte->may_write = 0;
  440. }
  441. /* Get the guest physical address */
  442. gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
  443. return 0;
  444. }
  445. /*
  446. * Quick test for whether an instruction is a load or a store.
  447. * If the instruction is a load or a store, then this will indicate
  448. * which it is, at least on server processors. (Embedded processors
  449. * have some external PID instructions that don't follow the rule
  450. * embodied here.) If the instruction isn't a load or store, then
  451. * this doesn't return anything useful.
  452. */
  453. static int instruction_is_store(unsigned int instr)
  454. {
  455. unsigned int mask;
  456. mask = 0x10000000;
  457. if ((instr & 0xfc000000) == 0x7c000000)
  458. mask = 0x100; /* major opcode 31 */
  459. return (instr & mask) != 0;
  460. }
  461. static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
  462. unsigned long gpa, gva_t ea, int is_store)
  463. {
  464. int ret;
  465. u32 last_inst;
  466. unsigned long srr0 = kvmppc_get_pc(vcpu);
  467. /* We try to load the last instruction. We don't let
  468. * emulate_instruction do it as it doesn't check what
  469. * kvmppc_ld returns.
  470. * If we fail, we just return to the guest and try executing it again.
  471. */
  472. if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
  473. ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
  474. if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
  475. return RESUME_GUEST;
  476. vcpu->arch.last_inst = last_inst;
  477. }
  478. /*
  479. * WARNING: We do not know for sure whether the instruction we just
  480. * read from memory is the same that caused the fault in the first
  481. * place. If the instruction we read is neither an load or a store,
  482. * then it can't access memory, so we don't need to worry about
  483. * enforcing access permissions. So, assuming it is a load or
  484. * store, we just check that its direction (load or store) is
  485. * consistent with the original fault, since that's what we
  486. * checked the access permissions against. If there is a mismatch
  487. * we just return and retry the instruction.
  488. */
  489. if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
  490. return RESUME_GUEST;
  491. /*
  492. * Emulated accesses are emulated by looking at the hash for
  493. * translation once, then performing the access later. The
  494. * translation could be invalidated in the meantime in which
  495. * point performing the subsequent memory access on the old
  496. * physical address could possibly be a security hole for the
  497. * guest (but not the host).
  498. *
  499. * This is less of an issue for MMIO stores since they aren't
  500. * globally visible. It could be an issue for MMIO loads to
  501. * a certain extent but we'll ignore it for now.
  502. */
  503. vcpu->arch.paddr_accessed = gpa;
  504. vcpu->arch.vaddr_accessed = ea;
  505. return kvmppc_emulate_mmio(run, vcpu);
  506. }
  507. int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  508. unsigned long ea, unsigned long dsisr)
  509. {
  510. struct kvm *kvm = vcpu->kvm;
  511. unsigned long *hptep, hpte[3], r;
  512. unsigned long mmu_seq, psize, pte_size;
  513. unsigned long gpa, gfn, hva, pfn;
  514. struct kvm_memory_slot *memslot;
  515. unsigned long *rmap;
  516. struct revmap_entry *rev;
  517. struct page *page, *pages[1];
  518. long index, ret, npages;
  519. unsigned long is_io;
  520. unsigned int writing, write_ok;
  521. struct vm_area_struct *vma;
  522. unsigned long rcbits;
  523. /*
  524. * Real-mode code has already searched the HPT and found the
  525. * entry we're interested in. Lock the entry and check that
  526. * it hasn't changed. If it has, just return and re-execute the
  527. * instruction.
  528. */
  529. if (ea != vcpu->arch.pgfault_addr)
  530. return RESUME_GUEST;
  531. index = vcpu->arch.pgfault_index;
  532. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  533. rev = &kvm->arch.revmap[index];
  534. preempt_disable();
  535. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  536. cpu_relax();
  537. hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
  538. hpte[1] = hptep[1];
  539. hpte[2] = r = rev->guest_rpte;
  540. asm volatile("lwsync" : : : "memory");
  541. hptep[0] = hpte[0];
  542. preempt_enable();
  543. if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
  544. hpte[1] != vcpu->arch.pgfault_hpte[1])
  545. return RESUME_GUEST;
  546. /* Translate the logical address and get the page */
  547. psize = hpte_page_size(hpte[0], r);
  548. gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
  549. gfn = gpa >> PAGE_SHIFT;
  550. memslot = gfn_to_memslot(kvm, gfn);
  551. /* No memslot means it's an emulated MMIO region */
  552. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  553. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  554. dsisr & DSISR_ISSTORE);
  555. if (!kvm->arch.using_mmu_notifiers)
  556. return -EFAULT; /* should never get here */
  557. /* used to check for invalidations in progress */
  558. mmu_seq = kvm->mmu_notifier_seq;
  559. smp_rmb();
  560. is_io = 0;
  561. pfn = 0;
  562. page = NULL;
  563. pte_size = PAGE_SIZE;
  564. writing = (dsisr & DSISR_ISSTORE) != 0;
  565. /* If writing != 0, then the HPTE must allow writing, if we get here */
  566. write_ok = writing;
  567. hva = gfn_to_hva_memslot(memslot, gfn);
  568. npages = get_user_pages_fast(hva, 1, writing, pages);
  569. if (npages < 1) {
  570. /* Check if it's an I/O mapping */
  571. down_read(&current->mm->mmap_sem);
  572. vma = find_vma(current->mm, hva);
  573. if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
  574. (vma->vm_flags & VM_PFNMAP)) {
  575. pfn = vma->vm_pgoff +
  576. ((hva - vma->vm_start) >> PAGE_SHIFT);
  577. pte_size = psize;
  578. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  579. write_ok = vma->vm_flags & VM_WRITE;
  580. }
  581. up_read(&current->mm->mmap_sem);
  582. if (!pfn)
  583. return -EFAULT;
  584. } else {
  585. page = pages[0];
  586. if (PageHuge(page)) {
  587. page = compound_head(page);
  588. pte_size <<= compound_order(page);
  589. }
  590. /* if the guest wants write access, see if that is OK */
  591. if (!writing && hpte_is_writable(r)) {
  592. unsigned int hugepage_shift;
  593. pte_t *ptep, pte;
  594. /*
  595. * We need to protect against page table destruction
  596. * while looking up and updating the pte.
  597. */
  598. rcu_read_lock_sched();
  599. ptep = find_linux_pte_or_hugepte(current->mm->pgd,
  600. hva, &hugepage_shift);
  601. if (ptep) {
  602. pte = kvmppc_read_update_linux_pte(ptep, 1,
  603. hugepage_shift);
  604. if (pte_write(pte))
  605. write_ok = 1;
  606. }
  607. rcu_read_unlock_sched();
  608. }
  609. pfn = page_to_pfn(page);
  610. }
  611. ret = -EFAULT;
  612. if (psize > pte_size)
  613. goto out_put;
  614. /* Check WIMG vs. the actual page we're accessing */
  615. if (!hpte_cache_flags_ok(r, is_io)) {
  616. if (is_io)
  617. return -EFAULT;
  618. /*
  619. * Allow guest to map emulated device memory as
  620. * uncacheable, but actually make it cacheable.
  621. */
  622. r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
  623. }
  624. /* Set the HPTE to point to pfn */
  625. r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
  626. if (hpte_is_writable(r) && !write_ok)
  627. r = hpte_make_readonly(r);
  628. ret = RESUME_GUEST;
  629. preempt_disable();
  630. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  631. cpu_relax();
  632. if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
  633. rev->guest_rpte != hpte[2])
  634. /* HPTE has been changed under us; let the guest retry */
  635. goto out_unlock;
  636. hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  637. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  638. lock_rmap(rmap);
  639. /* Check if we might have been invalidated; let the guest retry if so */
  640. ret = RESUME_GUEST;
  641. if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
  642. unlock_rmap(rmap);
  643. goto out_unlock;
  644. }
  645. /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
  646. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  647. r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  648. if (hptep[0] & HPTE_V_VALID) {
  649. /* HPTE was previously valid, so we need to invalidate it */
  650. unlock_rmap(rmap);
  651. hptep[0] |= HPTE_V_ABSENT;
  652. kvmppc_invalidate_hpte(kvm, hptep, index);
  653. /* don't lose previous R and C bits */
  654. r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
  655. } else {
  656. kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
  657. }
  658. hptep[1] = r;
  659. eieio();
  660. hptep[0] = hpte[0];
  661. asm volatile("ptesync" : : : "memory");
  662. preempt_enable();
  663. if (page && hpte_is_writable(r))
  664. SetPageDirty(page);
  665. out_put:
  666. if (page) {
  667. /*
  668. * We drop pages[0] here, not page because page might
  669. * have been set to the head page of a compound, but
  670. * we have to drop the reference on the correct tail
  671. * page to match the get inside gup()
  672. */
  673. put_page(pages[0]);
  674. }
  675. return ret;
  676. out_unlock:
  677. hptep[0] &= ~HPTE_V_HVLOCK;
  678. preempt_enable();
  679. goto out_put;
  680. }
  681. static void kvmppc_rmap_reset(struct kvm *kvm)
  682. {
  683. struct kvm_memslots *slots;
  684. struct kvm_memory_slot *memslot;
  685. int srcu_idx;
  686. srcu_idx = srcu_read_lock(&kvm->srcu);
  687. slots = kvm->memslots;
  688. kvm_for_each_memslot(memslot, slots) {
  689. /*
  690. * This assumes it is acceptable to lose reference and
  691. * change bits across a reset.
  692. */
  693. memset(memslot->arch.rmap, 0,
  694. memslot->npages * sizeof(*memslot->arch.rmap));
  695. }
  696. srcu_read_unlock(&kvm->srcu, srcu_idx);
  697. }
  698. static int kvm_handle_hva_range(struct kvm *kvm,
  699. unsigned long start,
  700. unsigned long end,
  701. int (*handler)(struct kvm *kvm,
  702. unsigned long *rmapp,
  703. unsigned long gfn))
  704. {
  705. int ret;
  706. int retval = 0;
  707. struct kvm_memslots *slots;
  708. struct kvm_memory_slot *memslot;
  709. slots = kvm_memslots(kvm);
  710. kvm_for_each_memslot(memslot, slots) {
  711. unsigned long hva_start, hva_end;
  712. gfn_t gfn, gfn_end;
  713. hva_start = max(start, memslot->userspace_addr);
  714. hva_end = min(end, memslot->userspace_addr +
  715. (memslot->npages << PAGE_SHIFT));
  716. if (hva_start >= hva_end)
  717. continue;
  718. /*
  719. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  720. * {gfn, gfn+1, ..., gfn_end-1}.
  721. */
  722. gfn = hva_to_gfn_memslot(hva_start, memslot);
  723. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  724. for (; gfn < gfn_end; ++gfn) {
  725. gfn_t gfn_offset = gfn - memslot->base_gfn;
  726. ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
  727. retval |= ret;
  728. }
  729. }
  730. return retval;
  731. }
  732. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  733. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  734. unsigned long gfn))
  735. {
  736. return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
  737. }
  738. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  739. unsigned long gfn)
  740. {
  741. struct revmap_entry *rev = kvm->arch.revmap;
  742. unsigned long h, i, j;
  743. unsigned long *hptep;
  744. unsigned long ptel, psize, rcbits;
  745. for (;;) {
  746. lock_rmap(rmapp);
  747. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  748. unlock_rmap(rmapp);
  749. break;
  750. }
  751. /*
  752. * To avoid an ABBA deadlock with the HPTE lock bit,
  753. * we can't spin on the HPTE lock while holding the
  754. * rmap chain lock.
  755. */
  756. i = *rmapp & KVMPPC_RMAP_INDEX;
  757. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  758. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  759. /* unlock rmap before spinning on the HPTE lock */
  760. unlock_rmap(rmapp);
  761. while (hptep[0] & HPTE_V_HVLOCK)
  762. cpu_relax();
  763. continue;
  764. }
  765. j = rev[i].forw;
  766. if (j == i) {
  767. /* chain is now empty */
  768. *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  769. } else {
  770. /* remove i from chain */
  771. h = rev[i].back;
  772. rev[h].forw = j;
  773. rev[j].back = h;
  774. rev[i].forw = rev[i].back = i;
  775. *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
  776. }
  777. /* Now check and modify the HPTE */
  778. ptel = rev[i].guest_rpte;
  779. psize = hpte_page_size(hptep[0], ptel);
  780. if ((hptep[0] & HPTE_V_VALID) &&
  781. hpte_rpn(ptel, psize) == gfn) {
  782. if (kvm->arch.using_mmu_notifiers)
  783. hptep[0] |= HPTE_V_ABSENT;
  784. kvmppc_invalidate_hpte(kvm, hptep, i);
  785. /* Harvest R and C */
  786. rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
  787. *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  788. if (rcbits & ~rev[i].guest_rpte) {
  789. rev[i].guest_rpte = ptel | rcbits;
  790. note_hpte_modification(kvm, &rev[i]);
  791. }
  792. }
  793. unlock_rmap(rmapp);
  794. hptep[0] &= ~HPTE_V_HVLOCK;
  795. }
  796. return 0;
  797. }
  798. int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
  799. {
  800. if (kvm->arch.using_mmu_notifiers)
  801. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  802. return 0;
  803. }
  804. int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
  805. {
  806. if (kvm->arch.using_mmu_notifiers)
  807. kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
  808. return 0;
  809. }
  810. void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
  811. struct kvm_memory_slot *memslot)
  812. {
  813. unsigned long *rmapp;
  814. unsigned long gfn;
  815. unsigned long n;
  816. rmapp = memslot->arch.rmap;
  817. gfn = memslot->base_gfn;
  818. for (n = memslot->npages; n; --n) {
  819. /*
  820. * Testing the present bit without locking is OK because
  821. * the memslot has been marked invalid already, and hence
  822. * no new HPTEs referencing this page can be created,
  823. * thus the present bit can't go from 0 to 1.
  824. */
  825. if (*rmapp & KVMPPC_RMAP_PRESENT)
  826. kvm_unmap_rmapp(kvm, rmapp, gfn);
  827. ++rmapp;
  828. ++gfn;
  829. }
  830. }
  831. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  832. unsigned long gfn)
  833. {
  834. struct revmap_entry *rev = kvm->arch.revmap;
  835. unsigned long head, i, j;
  836. unsigned long *hptep;
  837. int ret = 0;
  838. retry:
  839. lock_rmap(rmapp);
  840. if (*rmapp & KVMPPC_RMAP_REFERENCED) {
  841. *rmapp &= ~KVMPPC_RMAP_REFERENCED;
  842. ret = 1;
  843. }
  844. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  845. unlock_rmap(rmapp);
  846. return ret;
  847. }
  848. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  849. do {
  850. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  851. j = rev[i].forw;
  852. /* If this HPTE isn't referenced, ignore it */
  853. if (!(hptep[1] & HPTE_R_R))
  854. continue;
  855. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  856. /* unlock rmap before spinning on the HPTE lock */
  857. unlock_rmap(rmapp);
  858. while (hptep[0] & HPTE_V_HVLOCK)
  859. cpu_relax();
  860. goto retry;
  861. }
  862. /* Now check and modify the HPTE */
  863. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
  864. kvmppc_clear_ref_hpte(kvm, hptep, i);
  865. if (!(rev[i].guest_rpte & HPTE_R_R)) {
  866. rev[i].guest_rpte |= HPTE_R_R;
  867. note_hpte_modification(kvm, &rev[i]);
  868. }
  869. ret = 1;
  870. }
  871. hptep[0] &= ~HPTE_V_HVLOCK;
  872. } while ((i = j) != head);
  873. unlock_rmap(rmapp);
  874. return ret;
  875. }
  876. int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
  877. {
  878. if (!kvm->arch.using_mmu_notifiers)
  879. return 0;
  880. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  881. }
  882. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  883. unsigned long gfn)
  884. {
  885. struct revmap_entry *rev = kvm->arch.revmap;
  886. unsigned long head, i, j;
  887. unsigned long *hp;
  888. int ret = 1;
  889. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  890. return 1;
  891. lock_rmap(rmapp);
  892. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  893. goto out;
  894. if (*rmapp & KVMPPC_RMAP_PRESENT) {
  895. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  896. do {
  897. hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
  898. j = rev[i].forw;
  899. if (hp[1] & HPTE_R_R)
  900. goto out;
  901. } while ((i = j) != head);
  902. }
  903. ret = 0;
  904. out:
  905. unlock_rmap(rmapp);
  906. return ret;
  907. }
  908. int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
  909. {
  910. if (!kvm->arch.using_mmu_notifiers)
  911. return 0;
  912. return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
  913. }
  914. void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
  915. {
  916. if (!kvm->arch.using_mmu_notifiers)
  917. return;
  918. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  919. }
  920. static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  921. {
  922. struct revmap_entry *rev = kvm->arch.revmap;
  923. unsigned long head, i, j;
  924. unsigned long *hptep;
  925. int ret = 0;
  926. retry:
  927. lock_rmap(rmapp);
  928. if (*rmapp & KVMPPC_RMAP_CHANGED) {
  929. *rmapp &= ~KVMPPC_RMAP_CHANGED;
  930. ret = 1;
  931. }
  932. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  933. unlock_rmap(rmapp);
  934. return ret;
  935. }
  936. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  937. do {
  938. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  939. j = rev[i].forw;
  940. if (!(hptep[1] & HPTE_R_C))
  941. continue;
  942. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  943. /* unlock rmap before spinning on the HPTE lock */
  944. unlock_rmap(rmapp);
  945. while (hptep[0] & HPTE_V_HVLOCK)
  946. cpu_relax();
  947. goto retry;
  948. }
  949. /* Now check and modify the HPTE */
  950. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
  951. /* need to make it temporarily absent to clear C */
  952. hptep[0] |= HPTE_V_ABSENT;
  953. kvmppc_invalidate_hpte(kvm, hptep, i);
  954. hptep[1] &= ~HPTE_R_C;
  955. eieio();
  956. hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  957. if (!(rev[i].guest_rpte & HPTE_R_C)) {
  958. rev[i].guest_rpte |= HPTE_R_C;
  959. note_hpte_modification(kvm, &rev[i]);
  960. }
  961. ret = 1;
  962. }
  963. hptep[0] &= ~HPTE_V_HVLOCK;
  964. } while ((i = j) != head);
  965. unlock_rmap(rmapp);
  966. return ret;
  967. }
  968. static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
  969. struct kvm_memory_slot *memslot,
  970. unsigned long *map)
  971. {
  972. unsigned long gfn;
  973. if (!vpa->dirty || !vpa->pinned_addr)
  974. return;
  975. gfn = vpa->gpa >> PAGE_SHIFT;
  976. if (gfn < memslot->base_gfn ||
  977. gfn >= memslot->base_gfn + memslot->npages)
  978. return;
  979. vpa->dirty = false;
  980. if (map)
  981. __set_bit_le(gfn - memslot->base_gfn, map);
  982. }
  983. long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
  984. unsigned long *map)
  985. {
  986. unsigned long i;
  987. unsigned long *rmapp;
  988. struct kvm_vcpu *vcpu;
  989. preempt_disable();
  990. rmapp = memslot->arch.rmap;
  991. for (i = 0; i < memslot->npages; ++i) {
  992. if (kvm_test_clear_dirty(kvm, rmapp) && map)
  993. __set_bit_le(i, map);
  994. ++rmapp;
  995. }
  996. /* Harvest dirty bits from VPA and DTL updates */
  997. /* Note: we never modify the SLB shadow buffer areas */
  998. kvm_for_each_vcpu(i, vcpu, kvm) {
  999. spin_lock(&vcpu->arch.vpa_update_lock);
  1000. harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
  1001. harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
  1002. spin_unlock(&vcpu->arch.vpa_update_lock);
  1003. }
  1004. preempt_enable();
  1005. return 0;
  1006. }
  1007. void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
  1008. unsigned long *nb_ret)
  1009. {
  1010. struct kvm_memory_slot *memslot;
  1011. unsigned long gfn = gpa >> PAGE_SHIFT;
  1012. struct page *page, *pages[1];
  1013. int npages;
  1014. unsigned long hva, offset;
  1015. unsigned long pa;
  1016. unsigned long *physp;
  1017. int srcu_idx;
  1018. srcu_idx = srcu_read_lock(&kvm->srcu);
  1019. memslot = gfn_to_memslot(kvm, gfn);
  1020. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1021. goto err;
  1022. if (!kvm->arch.using_mmu_notifiers) {
  1023. physp = memslot->arch.slot_phys;
  1024. if (!physp)
  1025. goto err;
  1026. physp += gfn - memslot->base_gfn;
  1027. pa = *physp;
  1028. if (!pa) {
  1029. if (kvmppc_get_guest_page(kvm, gfn, memslot,
  1030. PAGE_SIZE) < 0)
  1031. goto err;
  1032. pa = *physp;
  1033. }
  1034. page = pfn_to_page(pa >> PAGE_SHIFT);
  1035. get_page(page);
  1036. } else {
  1037. hva = gfn_to_hva_memslot(memslot, gfn);
  1038. npages = get_user_pages_fast(hva, 1, 1, pages);
  1039. if (npages < 1)
  1040. goto err;
  1041. page = pages[0];
  1042. }
  1043. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1044. offset = gpa & (PAGE_SIZE - 1);
  1045. if (nb_ret)
  1046. *nb_ret = PAGE_SIZE - offset;
  1047. return page_address(page) + offset;
  1048. err:
  1049. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1050. return NULL;
  1051. }
  1052. void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
  1053. bool dirty)
  1054. {
  1055. struct page *page = virt_to_page(va);
  1056. struct kvm_memory_slot *memslot;
  1057. unsigned long gfn;
  1058. unsigned long *rmap;
  1059. int srcu_idx;
  1060. put_page(page);
  1061. if (!dirty || !kvm->arch.using_mmu_notifiers)
  1062. return;
  1063. /* We need to mark this page dirty in the rmap chain */
  1064. gfn = gpa >> PAGE_SHIFT;
  1065. srcu_idx = srcu_read_lock(&kvm->srcu);
  1066. memslot = gfn_to_memslot(kvm, gfn);
  1067. if (memslot) {
  1068. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  1069. lock_rmap(rmap);
  1070. *rmap |= KVMPPC_RMAP_CHANGED;
  1071. unlock_rmap(rmap);
  1072. }
  1073. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1074. }
  1075. /*
  1076. * Functions for reading and writing the hash table via reads and
  1077. * writes on a file descriptor.
  1078. *
  1079. * Reads return the guest view of the hash table, which has to be
  1080. * pieced together from the real hash table and the guest_rpte
  1081. * values in the revmap array.
  1082. *
  1083. * On writes, each HPTE written is considered in turn, and if it
  1084. * is valid, it is written to the HPT as if an H_ENTER with the
  1085. * exact flag set was done. When the invalid count is non-zero
  1086. * in the header written to the stream, the kernel will make
  1087. * sure that that many HPTEs are invalid, and invalidate them
  1088. * if not.
  1089. */
  1090. struct kvm_htab_ctx {
  1091. unsigned long index;
  1092. unsigned long flags;
  1093. struct kvm *kvm;
  1094. int first_pass;
  1095. };
  1096. #define HPTE_SIZE (2 * sizeof(unsigned long))
  1097. /*
  1098. * Returns 1 if this HPT entry has been modified or has pending
  1099. * R/C bit changes.
  1100. */
  1101. static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
  1102. {
  1103. unsigned long rcbits_unset;
  1104. if (revp->guest_rpte & HPTE_GR_MODIFIED)
  1105. return 1;
  1106. /* Also need to consider changes in reference and changed bits */
  1107. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1108. if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
  1109. return 1;
  1110. return 0;
  1111. }
  1112. static long record_hpte(unsigned long flags, unsigned long *hptp,
  1113. unsigned long *hpte, struct revmap_entry *revp,
  1114. int want_valid, int first_pass)
  1115. {
  1116. unsigned long v, r;
  1117. unsigned long rcbits_unset;
  1118. int ok = 1;
  1119. int valid, dirty;
  1120. /* Unmodified entries are uninteresting except on the first pass */
  1121. dirty = hpte_dirty(revp, hptp);
  1122. if (!first_pass && !dirty)
  1123. return 0;
  1124. valid = 0;
  1125. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  1126. valid = 1;
  1127. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
  1128. !(hptp[0] & HPTE_V_BOLTED))
  1129. valid = 0;
  1130. }
  1131. if (valid != want_valid)
  1132. return 0;
  1133. v = r = 0;
  1134. if (valid || dirty) {
  1135. /* lock the HPTE so it's stable and read it */
  1136. preempt_disable();
  1137. while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
  1138. cpu_relax();
  1139. v = hptp[0];
  1140. /* re-evaluate valid and dirty from synchronized HPTE value */
  1141. valid = !!(v & HPTE_V_VALID);
  1142. dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
  1143. /* Harvest R and C into guest view if necessary */
  1144. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1145. if (valid && (rcbits_unset & hptp[1])) {
  1146. revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
  1147. HPTE_GR_MODIFIED;
  1148. dirty = 1;
  1149. }
  1150. if (v & HPTE_V_ABSENT) {
  1151. v &= ~HPTE_V_ABSENT;
  1152. v |= HPTE_V_VALID;
  1153. valid = 1;
  1154. }
  1155. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
  1156. valid = 0;
  1157. r = revp->guest_rpte;
  1158. /* only clear modified if this is the right sort of entry */
  1159. if (valid == want_valid && dirty) {
  1160. r &= ~HPTE_GR_MODIFIED;
  1161. revp->guest_rpte = r;
  1162. }
  1163. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  1164. hptp[0] &= ~HPTE_V_HVLOCK;
  1165. preempt_enable();
  1166. if (!(valid == want_valid && (first_pass || dirty)))
  1167. ok = 0;
  1168. }
  1169. hpte[0] = v;
  1170. hpte[1] = r;
  1171. return ok;
  1172. }
  1173. static ssize_t kvm_htab_read(struct file *file, char __user *buf,
  1174. size_t count, loff_t *ppos)
  1175. {
  1176. struct kvm_htab_ctx *ctx = file->private_data;
  1177. struct kvm *kvm = ctx->kvm;
  1178. struct kvm_get_htab_header hdr;
  1179. unsigned long *hptp;
  1180. struct revmap_entry *revp;
  1181. unsigned long i, nb, nw;
  1182. unsigned long __user *lbuf;
  1183. struct kvm_get_htab_header __user *hptr;
  1184. unsigned long flags;
  1185. int first_pass;
  1186. unsigned long hpte[2];
  1187. if (!access_ok(VERIFY_WRITE, buf, count))
  1188. return -EFAULT;
  1189. first_pass = ctx->first_pass;
  1190. flags = ctx->flags;
  1191. i = ctx->index;
  1192. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1193. revp = kvm->arch.revmap + i;
  1194. lbuf = (unsigned long __user *)buf;
  1195. nb = 0;
  1196. while (nb + sizeof(hdr) + HPTE_SIZE < count) {
  1197. /* Initialize header */
  1198. hptr = (struct kvm_get_htab_header __user *)buf;
  1199. hdr.n_valid = 0;
  1200. hdr.n_invalid = 0;
  1201. nw = nb;
  1202. nb += sizeof(hdr);
  1203. lbuf = (unsigned long __user *)(buf + sizeof(hdr));
  1204. /* Skip uninteresting entries, i.e. clean on not-first pass */
  1205. if (!first_pass) {
  1206. while (i < kvm->arch.hpt_npte &&
  1207. !hpte_dirty(revp, hptp)) {
  1208. ++i;
  1209. hptp += 2;
  1210. ++revp;
  1211. }
  1212. }
  1213. hdr.index = i;
  1214. /* Grab a series of valid entries */
  1215. while (i < kvm->arch.hpt_npte &&
  1216. hdr.n_valid < 0xffff &&
  1217. nb + HPTE_SIZE < count &&
  1218. record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
  1219. /* valid entry, write it out */
  1220. ++hdr.n_valid;
  1221. if (__put_user(hpte[0], lbuf) ||
  1222. __put_user(hpte[1], lbuf + 1))
  1223. return -EFAULT;
  1224. nb += HPTE_SIZE;
  1225. lbuf += 2;
  1226. ++i;
  1227. hptp += 2;
  1228. ++revp;
  1229. }
  1230. /* Now skip invalid entries while we can */
  1231. while (i < kvm->arch.hpt_npte &&
  1232. hdr.n_invalid < 0xffff &&
  1233. record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
  1234. /* found an invalid entry */
  1235. ++hdr.n_invalid;
  1236. ++i;
  1237. hptp += 2;
  1238. ++revp;
  1239. }
  1240. if (hdr.n_valid || hdr.n_invalid) {
  1241. /* write back the header */
  1242. if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
  1243. return -EFAULT;
  1244. nw = nb;
  1245. buf = (char __user *)lbuf;
  1246. } else {
  1247. nb = nw;
  1248. }
  1249. /* Check if we've wrapped around the hash table */
  1250. if (i >= kvm->arch.hpt_npte) {
  1251. i = 0;
  1252. ctx->first_pass = 0;
  1253. break;
  1254. }
  1255. }
  1256. ctx->index = i;
  1257. return nb;
  1258. }
  1259. static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
  1260. size_t count, loff_t *ppos)
  1261. {
  1262. struct kvm_htab_ctx *ctx = file->private_data;
  1263. struct kvm *kvm = ctx->kvm;
  1264. struct kvm_get_htab_header hdr;
  1265. unsigned long i, j;
  1266. unsigned long v, r;
  1267. unsigned long __user *lbuf;
  1268. unsigned long *hptp;
  1269. unsigned long tmp[2];
  1270. ssize_t nb;
  1271. long int err, ret;
  1272. int rma_setup;
  1273. if (!access_ok(VERIFY_READ, buf, count))
  1274. return -EFAULT;
  1275. /* lock out vcpus from running while we're doing this */
  1276. mutex_lock(&kvm->lock);
  1277. rma_setup = kvm->arch.rma_setup_done;
  1278. if (rma_setup) {
  1279. kvm->arch.rma_setup_done = 0; /* temporarily */
  1280. /* order rma_setup_done vs. vcpus_running */
  1281. smp_mb();
  1282. if (atomic_read(&kvm->arch.vcpus_running)) {
  1283. kvm->arch.rma_setup_done = 1;
  1284. mutex_unlock(&kvm->lock);
  1285. return -EBUSY;
  1286. }
  1287. }
  1288. err = 0;
  1289. for (nb = 0; nb + sizeof(hdr) <= count; ) {
  1290. err = -EFAULT;
  1291. if (__copy_from_user(&hdr, buf, sizeof(hdr)))
  1292. break;
  1293. err = 0;
  1294. if (nb + hdr.n_valid * HPTE_SIZE > count)
  1295. break;
  1296. nb += sizeof(hdr);
  1297. buf += sizeof(hdr);
  1298. err = -EINVAL;
  1299. i = hdr.index;
  1300. if (i >= kvm->arch.hpt_npte ||
  1301. i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
  1302. break;
  1303. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1304. lbuf = (unsigned long __user *)buf;
  1305. for (j = 0; j < hdr.n_valid; ++j) {
  1306. err = -EFAULT;
  1307. if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
  1308. goto out;
  1309. err = -EINVAL;
  1310. if (!(v & HPTE_V_VALID))
  1311. goto out;
  1312. lbuf += 2;
  1313. nb += HPTE_SIZE;
  1314. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1315. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1316. err = -EIO;
  1317. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
  1318. tmp);
  1319. if (ret != H_SUCCESS) {
  1320. pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
  1321. "r=%lx\n", ret, i, v, r);
  1322. goto out;
  1323. }
  1324. if (!rma_setup && is_vrma_hpte(v)) {
  1325. unsigned long psize = hpte_page_size(v, r);
  1326. unsigned long senc = slb_pgsize_encoding(psize);
  1327. unsigned long lpcr;
  1328. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1329. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1330. lpcr = senc << (LPCR_VRMASD_SH - 4);
  1331. kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
  1332. rma_setup = 1;
  1333. }
  1334. ++i;
  1335. hptp += 2;
  1336. }
  1337. for (j = 0; j < hdr.n_invalid; ++j) {
  1338. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1339. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1340. ++i;
  1341. hptp += 2;
  1342. }
  1343. err = 0;
  1344. }
  1345. out:
  1346. /* Order HPTE updates vs. rma_setup_done */
  1347. smp_wmb();
  1348. kvm->arch.rma_setup_done = rma_setup;
  1349. mutex_unlock(&kvm->lock);
  1350. if (err)
  1351. return err;
  1352. return nb;
  1353. }
  1354. static int kvm_htab_release(struct inode *inode, struct file *filp)
  1355. {
  1356. struct kvm_htab_ctx *ctx = filp->private_data;
  1357. filp->private_data = NULL;
  1358. if (!(ctx->flags & KVM_GET_HTAB_WRITE))
  1359. atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
  1360. kvm_put_kvm(ctx->kvm);
  1361. kfree(ctx);
  1362. return 0;
  1363. }
  1364. static const struct file_operations kvm_htab_fops = {
  1365. .read = kvm_htab_read,
  1366. .write = kvm_htab_write,
  1367. .llseek = default_llseek,
  1368. .release = kvm_htab_release,
  1369. };
  1370. int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
  1371. {
  1372. int ret;
  1373. struct kvm_htab_ctx *ctx;
  1374. int rwflag;
  1375. /* reject flags we don't recognize */
  1376. if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
  1377. return -EINVAL;
  1378. ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
  1379. if (!ctx)
  1380. return -ENOMEM;
  1381. kvm_get_kvm(kvm);
  1382. ctx->kvm = kvm;
  1383. ctx->index = ghf->start_index;
  1384. ctx->flags = ghf->flags;
  1385. ctx->first_pass = 1;
  1386. rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
  1387. ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
  1388. if (ret < 0) {
  1389. kvm_put_kvm(kvm);
  1390. return ret;
  1391. }
  1392. if (rwflag == O_RDONLY) {
  1393. mutex_lock(&kvm->slots_lock);
  1394. atomic_inc(&kvm->arch.hpte_mod_interest);
  1395. /* make sure kvmppc_do_h_enter etc. see the increment */
  1396. synchronize_srcu_expedited(&kvm->srcu);
  1397. mutex_unlock(&kvm->slots_lock);
  1398. }
  1399. return ret;
  1400. }
  1401. void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
  1402. {
  1403. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  1404. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1405. vcpu->arch.slb_nr = 32; /* POWER7 */
  1406. else
  1407. vcpu->arch.slb_nr = 64;
  1408. mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
  1409. mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
  1410. vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
  1411. }