uaccess.h 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. #ifndef __PARISC_UACCESS_H
  2. #define __PARISC_UACCESS_H
  3. /*
  4. * User space memory access functions
  5. */
  6. #include <asm/page.h>
  7. #include <asm/cache.h>
  8. #include <asm/errno.h>
  9. #include <asm-generic/uaccess-unaligned.h>
  10. #define VERIFY_READ 0
  11. #define VERIFY_WRITE 1
  12. #define KERNEL_DS ((mm_segment_t){0})
  13. #define USER_DS ((mm_segment_t){1})
  14. #define segment_eq(a,b) ((a).seg == (b).seg)
  15. #define get_ds() (KERNEL_DS)
  16. #define get_fs() (current_thread_info()->addr_limit)
  17. #define set_fs(x) (current_thread_info()->addr_limit = (x))
  18. /*
  19. * Note that since kernel addresses are in a separate address space on
  20. * parisc, we don't need to do anything for access_ok().
  21. * We just let the page fault handler do the right thing. This also means
  22. * that put_user is the same as __put_user, etc.
  23. */
  24. extern int __get_kernel_bad(void);
  25. extern int __get_user_bad(void);
  26. extern int __put_kernel_bad(void);
  27. extern int __put_user_bad(void);
  28. static inline long access_ok(int type, const void __user * addr,
  29. unsigned long size)
  30. {
  31. return 1;
  32. }
  33. #define put_user __put_user
  34. #define get_user __get_user
  35. #if !defined(CONFIG_64BIT)
  36. #define LDD_KERNEL(ptr) __get_kernel_bad();
  37. #define LDD_USER(ptr) __get_user_bad();
  38. #define STD_KERNEL(x, ptr) __put_kernel_asm64(x,ptr)
  39. #define STD_USER(x, ptr) __put_user_asm64(x,ptr)
  40. #define ASM_WORD_INSN ".word\t"
  41. #else
  42. #define LDD_KERNEL(ptr) __get_kernel_asm("ldd",ptr)
  43. #define LDD_USER(ptr) __get_user_asm("ldd",ptr)
  44. #define STD_KERNEL(x, ptr) __put_kernel_asm("std",x,ptr)
  45. #define STD_USER(x, ptr) __put_user_asm("std",x,ptr)
  46. #define ASM_WORD_INSN ".dword\t"
  47. #endif
  48. /*
  49. * The exception table contains two values: the first is an address
  50. * for an instruction that is allowed to fault, and the second is
  51. * the address to the fixup routine. Even on a 64bit kernel we could
  52. * use a 32bit (unsigned int) address here.
  53. */
  54. struct exception_table_entry {
  55. unsigned long insn; /* address of insn that is allowed to fault. */
  56. unsigned long fixup; /* fixup routine */
  57. };
  58. #define ASM_EXCEPTIONTABLE_ENTRY( fault_addr, except_addr )\
  59. ".section __ex_table,\"aw\"\n" \
  60. ASM_WORD_INSN #fault_addr ", " #except_addr "\n\t" \
  61. ".previous\n"
  62. /*
  63. * The page fault handler stores, in a per-cpu area, the following information
  64. * if a fixup routine is available.
  65. */
  66. struct exception_data {
  67. unsigned long fault_ip;
  68. unsigned long fault_space;
  69. unsigned long fault_addr;
  70. };
  71. #define __get_user(x,ptr) \
  72. ({ \
  73. register long __gu_err __asm__ ("r8") = 0; \
  74. register long __gu_val __asm__ ("r9") = 0; \
  75. \
  76. if (segment_eq(get_fs(),KERNEL_DS)) { \
  77. switch (sizeof(*(ptr))) { \
  78. case 1: __get_kernel_asm("ldb",ptr); break; \
  79. case 2: __get_kernel_asm("ldh",ptr); break; \
  80. case 4: __get_kernel_asm("ldw",ptr); break; \
  81. case 8: LDD_KERNEL(ptr); break; \
  82. default: __get_kernel_bad(); break; \
  83. } \
  84. } \
  85. else { \
  86. switch (sizeof(*(ptr))) { \
  87. case 1: __get_user_asm("ldb",ptr); break; \
  88. case 2: __get_user_asm("ldh",ptr); break; \
  89. case 4: __get_user_asm("ldw",ptr); break; \
  90. case 8: LDD_USER(ptr); break; \
  91. default: __get_user_bad(); break; \
  92. } \
  93. } \
  94. \
  95. (x) = (__typeof__(*(ptr))) __gu_val; \
  96. __gu_err; \
  97. })
  98. #define __get_kernel_asm(ldx,ptr) \
  99. __asm__("\n1:\t" ldx "\t0(%2),%0\n\t" \
  100. ASM_EXCEPTIONTABLE_ENTRY(1b, fixup_get_user_skip_1)\
  101. : "=r"(__gu_val), "=r"(__gu_err) \
  102. : "r"(ptr), "1"(__gu_err) \
  103. : "r1");
  104. #define __get_user_asm(ldx,ptr) \
  105. __asm__("\n1:\t" ldx "\t0(%%sr3,%2),%0\n\t" \
  106. ASM_EXCEPTIONTABLE_ENTRY(1b,fixup_get_user_skip_1)\
  107. : "=r"(__gu_val), "=r"(__gu_err) \
  108. : "r"(ptr), "1"(__gu_err) \
  109. : "r1");
  110. #define __put_user(x,ptr) \
  111. ({ \
  112. register long __pu_err __asm__ ("r8") = 0; \
  113. __typeof__(*(ptr)) __x = (__typeof__(*(ptr)))(x); \
  114. \
  115. if (segment_eq(get_fs(),KERNEL_DS)) { \
  116. switch (sizeof(*(ptr))) { \
  117. case 1: __put_kernel_asm("stb",__x,ptr); break; \
  118. case 2: __put_kernel_asm("sth",__x,ptr); break; \
  119. case 4: __put_kernel_asm("stw",__x,ptr); break; \
  120. case 8: STD_KERNEL(__x,ptr); break; \
  121. default: __put_kernel_bad(); break; \
  122. } \
  123. } \
  124. else { \
  125. switch (sizeof(*(ptr))) { \
  126. case 1: __put_user_asm("stb",__x,ptr); break; \
  127. case 2: __put_user_asm("sth",__x,ptr); break; \
  128. case 4: __put_user_asm("stw",__x,ptr); break; \
  129. case 8: STD_USER(__x,ptr); break; \
  130. default: __put_user_bad(); break; \
  131. } \
  132. } \
  133. \
  134. __pu_err; \
  135. })
  136. /*
  137. * The "__put_user/kernel_asm()" macros tell gcc they read from memory
  138. * instead of writing. This is because they do not write to any memory
  139. * gcc knows about, so there are no aliasing issues. These macros must
  140. * also be aware that "fixup_put_user_skip_[12]" are executed in the
  141. * context of the fault, and any registers used there must be listed
  142. * as clobbers. In this case only "r1" is used by the current routines.
  143. * r8/r9 are already listed as err/val.
  144. */
  145. #define __put_kernel_asm(stx,x,ptr) \
  146. __asm__ __volatile__ ( \
  147. "\n1:\t" stx "\t%2,0(%1)\n\t" \
  148. ASM_EXCEPTIONTABLE_ENTRY(1b,fixup_put_user_skip_1)\
  149. : "=r"(__pu_err) \
  150. : "r"(ptr), "r"(x), "0"(__pu_err) \
  151. : "r1")
  152. #define __put_user_asm(stx,x,ptr) \
  153. __asm__ __volatile__ ( \
  154. "\n1:\t" stx "\t%2,0(%%sr3,%1)\n\t" \
  155. ASM_EXCEPTIONTABLE_ENTRY(1b,fixup_put_user_skip_1)\
  156. : "=r"(__pu_err) \
  157. : "r"(ptr), "r"(x), "0"(__pu_err) \
  158. : "r1")
  159. #if !defined(CONFIG_64BIT)
  160. #define __put_kernel_asm64(__val,ptr) do { \
  161. __asm__ __volatile__ ( \
  162. "\n1:\tstw %2,0(%1)" \
  163. "\n2:\tstw %R2,4(%1)\n\t" \
  164. ASM_EXCEPTIONTABLE_ENTRY(1b,fixup_put_user_skip_2)\
  165. ASM_EXCEPTIONTABLE_ENTRY(2b,fixup_put_user_skip_1)\
  166. : "=r"(__pu_err) \
  167. : "r"(ptr), "r"(__val), "0"(__pu_err) \
  168. : "r1"); \
  169. } while (0)
  170. #define __put_user_asm64(__val,ptr) do { \
  171. __asm__ __volatile__ ( \
  172. "\n1:\tstw %2,0(%%sr3,%1)" \
  173. "\n2:\tstw %R2,4(%%sr3,%1)\n\t" \
  174. ASM_EXCEPTIONTABLE_ENTRY(1b,fixup_put_user_skip_2)\
  175. ASM_EXCEPTIONTABLE_ENTRY(2b,fixup_put_user_skip_1)\
  176. : "=r"(__pu_err) \
  177. : "r"(ptr), "r"(__val), "0"(__pu_err) \
  178. : "r1"); \
  179. } while (0)
  180. #endif /* !defined(CONFIG_64BIT) */
  181. /*
  182. * Complex access routines -- external declarations
  183. */
  184. extern unsigned long lcopy_to_user(void __user *, const void *, unsigned long);
  185. extern unsigned long lcopy_from_user(void *, const void __user *, unsigned long);
  186. extern unsigned long lcopy_in_user(void __user *, const void __user *, unsigned long);
  187. extern long strncpy_from_user(char *, const char __user *, long);
  188. extern unsigned lclear_user(void __user *,unsigned long);
  189. extern long lstrnlen_user(const char __user *,long);
  190. /*
  191. * Complex access routines -- macros
  192. */
  193. #define user_addr_max() (~0UL)
  194. #define strnlen_user lstrnlen_user
  195. #define strlen_user(str) lstrnlen_user(str, 0x7fffffffL)
  196. #define clear_user lclear_user
  197. #define __clear_user lclear_user
  198. unsigned long copy_to_user(void __user *dst, const void *src, unsigned long len);
  199. #define __copy_to_user copy_to_user
  200. unsigned long __copy_from_user(void *dst, const void __user *src, unsigned long len);
  201. unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len);
  202. #define __copy_in_user copy_in_user
  203. #define __copy_to_user_inatomic __copy_to_user
  204. #define __copy_from_user_inatomic __copy_from_user
  205. extern void copy_from_user_overflow(void)
  206. #ifdef CONFIG_DEBUG_STRICT_USER_COPY_CHECKS
  207. __compiletime_error("copy_from_user() buffer size is not provably correct")
  208. #else
  209. __compiletime_warning("copy_from_user() buffer size is not provably correct")
  210. #endif
  211. ;
  212. static inline unsigned long __must_check copy_from_user(void *to,
  213. const void __user *from,
  214. unsigned long n)
  215. {
  216. int sz = __compiletime_object_size(to);
  217. int ret = -EFAULT;
  218. if (likely(sz == -1 || !__builtin_constant_p(n) || sz >= n))
  219. ret = __copy_from_user(to, from, n);
  220. else
  221. copy_from_user_overflow();
  222. return ret;
  223. }
  224. struct pt_regs;
  225. int fixup_exception(struct pt_regs *regs);
  226. #endif /* __PARISC_UACCESS_H */