tlbex.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/init.h>
  29. #include <linux/cache.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu-type.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/war.h>
  34. #include <asm/uasm.h>
  35. #include <asm/setup.h>
  36. /*
  37. * TLB load/store/modify handlers.
  38. *
  39. * Only the fastpath gets synthesized at runtime, the slowpath for
  40. * do_page_fault remains normal asm.
  41. */
  42. extern void tlb_do_page_fault_0(void);
  43. extern void tlb_do_page_fault_1(void);
  44. struct work_registers {
  45. int r1;
  46. int r2;
  47. int r3;
  48. };
  49. struct tlb_reg_save {
  50. unsigned long a;
  51. unsigned long b;
  52. } ____cacheline_aligned_in_smp;
  53. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  54. static inline int r45k_bvahwbug(void)
  55. {
  56. /* XXX: We should probe for the presence of this bug, but we don't. */
  57. return 0;
  58. }
  59. static inline int r4k_250MHZhwbug(void)
  60. {
  61. /* XXX: We should probe for the presence of this bug, but we don't. */
  62. return 0;
  63. }
  64. static inline int __maybe_unused bcm1250_m3_war(void)
  65. {
  66. return BCM1250_M3_WAR;
  67. }
  68. static inline int __maybe_unused r10000_llsc_war(void)
  69. {
  70. return R10000_LLSC_WAR;
  71. }
  72. static int use_bbit_insns(void)
  73. {
  74. switch (current_cpu_type()) {
  75. case CPU_CAVIUM_OCTEON:
  76. case CPU_CAVIUM_OCTEON_PLUS:
  77. case CPU_CAVIUM_OCTEON2:
  78. case CPU_CAVIUM_OCTEON3:
  79. return 1;
  80. default:
  81. return 0;
  82. }
  83. }
  84. static int use_lwx_insns(void)
  85. {
  86. switch (current_cpu_type()) {
  87. case CPU_CAVIUM_OCTEON2:
  88. case CPU_CAVIUM_OCTEON3:
  89. return 1;
  90. default:
  91. return 0;
  92. }
  93. }
  94. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  95. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  96. static bool scratchpad_available(void)
  97. {
  98. return true;
  99. }
  100. static int scratchpad_offset(int i)
  101. {
  102. /*
  103. * CVMSEG starts at address -32768 and extends for
  104. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  105. */
  106. i += 1; /* Kernel use starts at the top and works down. */
  107. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  108. }
  109. #else
  110. static bool scratchpad_available(void)
  111. {
  112. return false;
  113. }
  114. static int scratchpad_offset(int i)
  115. {
  116. BUG();
  117. /* Really unreachable, but evidently some GCC want this. */
  118. return 0;
  119. }
  120. #endif
  121. /*
  122. * Found by experiment: At least some revisions of the 4kc throw under
  123. * some circumstances a machine check exception, triggered by invalid
  124. * values in the index register. Delaying the tlbp instruction until
  125. * after the next branch, plus adding an additional nop in front of
  126. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  127. * why; it's not an issue caused by the core RTL.
  128. *
  129. */
  130. static int m4kc_tlbp_war(void)
  131. {
  132. return (current_cpu_data.processor_id & 0xffff00) ==
  133. (PRID_COMP_MIPS | PRID_IMP_4KC);
  134. }
  135. /* Handle labels (which must be positive integers). */
  136. enum label_id {
  137. label_second_part = 1,
  138. label_leave,
  139. label_vmalloc,
  140. label_vmalloc_done,
  141. label_tlbw_hazard_0,
  142. label_split = label_tlbw_hazard_0 + 8,
  143. label_tlbl_goaround1,
  144. label_tlbl_goaround2,
  145. label_nopage_tlbl,
  146. label_nopage_tlbs,
  147. label_nopage_tlbm,
  148. label_smp_pgtable_change,
  149. label_r3000_write_probe_fail,
  150. label_large_segbits_fault,
  151. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  152. label_tlb_huge_update,
  153. #endif
  154. };
  155. UASM_L_LA(_second_part)
  156. UASM_L_LA(_leave)
  157. UASM_L_LA(_vmalloc)
  158. UASM_L_LA(_vmalloc_done)
  159. /* _tlbw_hazard_x is handled differently. */
  160. UASM_L_LA(_split)
  161. UASM_L_LA(_tlbl_goaround1)
  162. UASM_L_LA(_tlbl_goaround2)
  163. UASM_L_LA(_nopage_tlbl)
  164. UASM_L_LA(_nopage_tlbs)
  165. UASM_L_LA(_nopage_tlbm)
  166. UASM_L_LA(_smp_pgtable_change)
  167. UASM_L_LA(_r3000_write_probe_fail)
  168. UASM_L_LA(_large_segbits_fault)
  169. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  170. UASM_L_LA(_tlb_huge_update)
  171. #endif
  172. static int hazard_instance;
  173. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  174. {
  175. switch (instance) {
  176. case 0 ... 7:
  177. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  178. return;
  179. default:
  180. BUG();
  181. }
  182. }
  183. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  184. {
  185. switch (instance) {
  186. case 0 ... 7:
  187. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  188. break;
  189. default:
  190. BUG();
  191. }
  192. }
  193. /*
  194. * pgtable bits are assigned dynamically depending on processor feature
  195. * and statically based on kernel configuration. This spits out the actual
  196. * values the kernel is using. Required to make sense from disassembled
  197. * TLB exception handlers.
  198. */
  199. static void output_pgtable_bits_defines(void)
  200. {
  201. #define pr_define(fmt, ...) \
  202. pr_debug("#define " fmt, ##__VA_ARGS__)
  203. pr_debug("#include <asm/asm.h>\n");
  204. pr_debug("#include <asm/regdef.h>\n");
  205. pr_debug("\n");
  206. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  207. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  208. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  209. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  210. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  211. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  212. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  213. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  214. #endif
  215. if (cpu_has_rixi) {
  216. #ifdef _PAGE_NO_EXEC_SHIFT
  217. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  218. #endif
  219. #ifdef _PAGE_NO_READ_SHIFT
  220. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  221. #endif
  222. }
  223. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  224. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  225. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  226. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  227. pr_debug("\n");
  228. }
  229. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  230. {
  231. int i;
  232. pr_debug("LEAF(%s)\n", symbol);
  233. pr_debug("\t.set push\n");
  234. pr_debug("\t.set noreorder\n");
  235. for (i = 0; i < count; i++)
  236. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  237. pr_debug("\t.set\tpop\n");
  238. pr_debug("\tEND(%s)\n", symbol);
  239. }
  240. /* The only general purpose registers allowed in TLB handlers. */
  241. #define K0 26
  242. #define K1 27
  243. /* Some CP0 registers */
  244. #define C0_INDEX 0, 0
  245. #define C0_ENTRYLO0 2, 0
  246. #define C0_TCBIND 2, 2
  247. #define C0_ENTRYLO1 3, 0
  248. #define C0_CONTEXT 4, 0
  249. #define C0_PAGEMASK 5, 0
  250. #define C0_BADVADDR 8, 0
  251. #define C0_ENTRYHI 10, 0
  252. #define C0_EPC 14, 0
  253. #define C0_XCONTEXT 20, 0
  254. #ifdef CONFIG_64BIT
  255. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  256. #else
  257. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  258. #endif
  259. /* The worst case length of the handler is around 18 instructions for
  260. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  261. * Maximum space available is 32 instructions for R3000 and 64
  262. * instructions for R4000.
  263. *
  264. * We deliberately chose a buffer size of 128, so we won't scribble
  265. * over anything important on overflow before we panic.
  266. */
  267. static u32 tlb_handler[128];
  268. /* simply assume worst case size for labels and relocs */
  269. static struct uasm_label labels[128];
  270. static struct uasm_reloc relocs[128];
  271. static int check_for_high_segbits;
  272. static unsigned int kscratch_used_mask;
  273. static inline int __maybe_unused c0_kscratch(void)
  274. {
  275. switch (current_cpu_type()) {
  276. case CPU_XLP:
  277. case CPU_XLR:
  278. return 22;
  279. default:
  280. return 31;
  281. }
  282. }
  283. static int allocate_kscratch(void)
  284. {
  285. int r;
  286. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  287. r = ffs(a);
  288. if (r == 0)
  289. return -1;
  290. r--; /* make it zero based */
  291. kscratch_used_mask |= (1 << r);
  292. return r;
  293. }
  294. static int scratch_reg;
  295. static int pgd_reg;
  296. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  297. static struct work_registers build_get_work_registers(u32 **p)
  298. {
  299. struct work_registers r;
  300. if (scratch_reg >= 0) {
  301. /* Save in CPU local C0_KScratch? */
  302. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  303. r.r1 = K0;
  304. r.r2 = K1;
  305. r.r3 = 1;
  306. return r;
  307. }
  308. if (num_possible_cpus() > 1) {
  309. /* Get smp_processor_id */
  310. UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
  311. UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
  312. /* handler_reg_save index in K0 */
  313. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  314. UASM_i_LA(p, K1, (long)&handler_reg_save);
  315. UASM_i_ADDU(p, K0, K0, K1);
  316. } else {
  317. UASM_i_LA(p, K0, (long)&handler_reg_save);
  318. }
  319. /* K0 now points to save area, save $1 and $2 */
  320. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  321. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  322. r.r1 = K1;
  323. r.r2 = 1;
  324. r.r3 = 2;
  325. return r;
  326. }
  327. static void build_restore_work_registers(u32 **p)
  328. {
  329. if (scratch_reg >= 0) {
  330. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  331. return;
  332. }
  333. /* K0 already points to save area, restore $1 and $2 */
  334. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  335. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  336. }
  337. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  338. /*
  339. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  340. * we cannot do r3000 under these circumstances.
  341. *
  342. * Declare pgd_current here instead of including mmu_context.h to avoid type
  343. * conflicts for tlbmiss_handler_setup_pgd
  344. */
  345. extern unsigned long pgd_current[];
  346. /*
  347. * The R3000 TLB handler is simple.
  348. */
  349. static void build_r3000_tlb_refill_handler(void)
  350. {
  351. long pgdc = (long)pgd_current;
  352. u32 *p;
  353. memset(tlb_handler, 0, sizeof(tlb_handler));
  354. p = tlb_handler;
  355. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  356. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  357. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  358. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  359. uasm_i_sll(&p, K0, K0, 2);
  360. uasm_i_addu(&p, K1, K1, K0);
  361. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  362. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  363. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  364. uasm_i_addu(&p, K1, K1, K0);
  365. uasm_i_lw(&p, K0, 0, K1);
  366. uasm_i_nop(&p); /* load delay */
  367. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  368. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  369. uasm_i_tlbwr(&p); /* cp0 delay */
  370. uasm_i_jr(&p, K1);
  371. uasm_i_rfe(&p); /* branch delay */
  372. if (p > tlb_handler + 32)
  373. panic("TLB refill handler space exceeded");
  374. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  375. (unsigned int)(p - tlb_handler));
  376. memcpy((void *)ebase, tlb_handler, 0x80);
  377. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  378. }
  379. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  380. /*
  381. * The R4000 TLB handler is much more complicated. We have two
  382. * consecutive handler areas with 32 instructions space each.
  383. * Since they aren't used at the same time, we can overflow in the
  384. * other one.To keep things simple, we first assume linear space,
  385. * then we relocate it to the final handler layout as needed.
  386. */
  387. static u32 final_handler[64];
  388. /*
  389. * Hazards
  390. *
  391. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  392. * 2. A timing hazard exists for the TLBP instruction.
  393. *
  394. * stalling_instruction
  395. * TLBP
  396. *
  397. * The JTLB is being read for the TLBP throughout the stall generated by the
  398. * previous instruction. This is not really correct as the stalling instruction
  399. * can modify the address used to access the JTLB. The failure symptom is that
  400. * the TLBP instruction will use an address created for the stalling instruction
  401. * and not the address held in C0_ENHI and thus report the wrong results.
  402. *
  403. * The software work-around is to not allow the instruction preceding the TLBP
  404. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  405. *
  406. * Errata 2 will not be fixed. This errata is also on the R5000.
  407. *
  408. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  409. */
  410. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  411. {
  412. switch (current_cpu_type()) {
  413. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  414. case CPU_R4600:
  415. case CPU_R4700:
  416. case CPU_R5000:
  417. case CPU_NEVADA:
  418. uasm_i_nop(p);
  419. uasm_i_tlbp(p);
  420. break;
  421. default:
  422. uasm_i_tlbp(p);
  423. break;
  424. }
  425. }
  426. /*
  427. * Write random or indexed TLB entry, and care about the hazards from
  428. * the preceding mtc0 and for the following eret.
  429. */
  430. enum tlb_write_entry { tlb_random, tlb_indexed };
  431. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  432. struct uasm_reloc **r,
  433. enum tlb_write_entry wmode)
  434. {
  435. void(*tlbw)(u32 **) = NULL;
  436. switch (wmode) {
  437. case tlb_random: tlbw = uasm_i_tlbwr; break;
  438. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  439. }
  440. if (cpu_has_mips_r2) {
  441. /*
  442. * The architecture spec says an ehb is required here,
  443. * but a number of cores do not have the hazard and
  444. * using an ehb causes an expensive pipeline stall.
  445. */
  446. switch (current_cpu_type()) {
  447. case CPU_M14KC:
  448. case CPU_74K:
  449. break;
  450. default:
  451. uasm_i_ehb(p);
  452. break;
  453. }
  454. tlbw(p);
  455. return;
  456. }
  457. switch (current_cpu_type()) {
  458. case CPU_R4000PC:
  459. case CPU_R4000SC:
  460. case CPU_R4000MC:
  461. case CPU_R4400PC:
  462. case CPU_R4400SC:
  463. case CPU_R4400MC:
  464. /*
  465. * This branch uses up a mtc0 hazard nop slot and saves
  466. * two nops after the tlbw instruction.
  467. */
  468. uasm_bgezl_hazard(p, r, hazard_instance);
  469. tlbw(p);
  470. uasm_bgezl_label(l, p, hazard_instance);
  471. hazard_instance++;
  472. uasm_i_nop(p);
  473. break;
  474. case CPU_R4600:
  475. case CPU_R4700:
  476. uasm_i_nop(p);
  477. tlbw(p);
  478. uasm_i_nop(p);
  479. break;
  480. case CPU_R5000:
  481. case CPU_NEVADA:
  482. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  483. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  484. tlbw(p);
  485. break;
  486. case CPU_R4300:
  487. case CPU_5KC:
  488. case CPU_TX49XX:
  489. case CPU_PR4450:
  490. case CPU_XLR:
  491. uasm_i_nop(p);
  492. tlbw(p);
  493. break;
  494. case CPU_R10000:
  495. case CPU_R12000:
  496. case CPU_R14000:
  497. case CPU_4KC:
  498. case CPU_4KEC:
  499. case CPU_M14KC:
  500. case CPU_M14KEC:
  501. case CPU_SB1:
  502. case CPU_SB1A:
  503. case CPU_4KSC:
  504. case CPU_20KC:
  505. case CPU_25KF:
  506. case CPU_BMIPS32:
  507. case CPU_BMIPS3300:
  508. case CPU_BMIPS4350:
  509. case CPU_BMIPS4380:
  510. case CPU_BMIPS5000:
  511. case CPU_LOONGSON2:
  512. case CPU_R5500:
  513. if (m4kc_tlbp_war())
  514. uasm_i_nop(p);
  515. case CPU_ALCHEMY:
  516. tlbw(p);
  517. break;
  518. case CPU_RM7000:
  519. uasm_i_nop(p);
  520. uasm_i_nop(p);
  521. uasm_i_nop(p);
  522. uasm_i_nop(p);
  523. tlbw(p);
  524. break;
  525. case CPU_VR4111:
  526. case CPU_VR4121:
  527. case CPU_VR4122:
  528. case CPU_VR4181:
  529. case CPU_VR4181A:
  530. uasm_i_nop(p);
  531. uasm_i_nop(p);
  532. tlbw(p);
  533. uasm_i_nop(p);
  534. uasm_i_nop(p);
  535. break;
  536. case CPU_VR4131:
  537. case CPU_VR4133:
  538. case CPU_R5432:
  539. uasm_i_nop(p);
  540. uasm_i_nop(p);
  541. tlbw(p);
  542. break;
  543. case CPU_JZRISC:
  544. tlbw(p);
  545. uasm_i_nop(p);
  546. break;
  547. default:
  548. panic("No TLB refill handler yet (CPU type: %d)",
  549. current_cpu_data.cputype);
  550. break;
  551. }
  552. }
  553. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  554. unsigned int reg)
  555. {
  556. if (cpu_has_rixi) {
  557. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  558. } else {
  559. #ifdef CONFIG_64BIT_PHYS_ADDR
  560. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  561. #else
  562. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  563. #endif
  564. }
  565. }
  566. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  567. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  568. unsigned int tmp, enum label_id lid,
  569. int restore_scratch)
  570. {
  571. if (restore_scratch) {
  572. /* Reset default page size */
  573. if (PM_DEFAULT_MASK >> 16) {
  574. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  575. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  576. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  577. uasm_il_b(p, r, lid);
  578. } else if (PM_DEFAULT_MASK) {
  579. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  580. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  581. uasm_il_b(p, r, lid);
  582. } else {
  583. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  584. uasm_il_b(p, r, lid);
  585. }
  586. if (scratch_reg >= 0)
  587. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  588. else
  589. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  590. } else {
  591. /* Reset default page size */
  592. if (PM_DEFAULT_MASK >> 16) {
  593. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  594. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  595. uasm_il_b(p, r, lid);
  596. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  597. } else if (PM_DEFAULT_MASK) {
  598. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  599. uasm_il_b(p, r, lid);
  600. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  601. } else {
  602. uasm_il_b(p, r, lid);
  603. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  604. }
  605. }
  606. }
  607. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  608. struct uasm_reloc **r,
  609. unsigned int tmp,
  610. enum tlb_write_entry wmode,
  611. int restore_scratch)
  612. {
  613. /* Set huge page tlb entry size */
  614. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  615. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  616. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  617. build_tlb_write_entry(p, l, r, wmode);
  618. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  619. }
  620. /*
  621. * Check if Huge PTE is present, if so then jump to LABEL.
  622. */
  623. static void
  624. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  625. unsigned int pmd, int lid)
  626. {
  627. UASM_i_LW(p, tmp, 0, pmd);
  628. if (use_bbit_insns()) {
  629. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  630. } else {
  631. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  632. uasm_il_bnez(p, r, tmp, lid);
  633. }
  634. }
  635. static void build_huge_update_entries(u32 **p, unsigned int pte,
  636. unsigned int tmp)
  637. {
  638. int small_sequence;
  639. /*
  640. * A huge PTE describes an area the size of the
  641. * configured huge page size. This is twice the
  642. * of the large TLB entry size we intend to use.
  643. * A TLB entry half the size of the configured
  644. * huge page size is configured into entrylo0
  645. * and entrylo1 to cover the contiguous huge PTE
  646. * address space.
  647. */
  648. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  649. /* We can clobber tmp. It isn't used after this.*/
  650. if (!small_sequence)
  651. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  652. build_convert_pte_to_entrylo(p, pte);
  653. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  654. /* convert to entrylo1 */
  655. if (small_sequence)
  656. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  657. else
  658. UASM_i_ADDU(p, pte, pte, tmp);
  659. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  660. }
  661. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  662. struct uasm_label **l,
  663. unsigned int pte,
  664. unsigned int ptr)
  665. {
  666. #ifdef CONFIG_SMP
  667. UASM_i_SC(p, pte, 0, ptr);
  668. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  669. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  670. #else
  671. UASM_i_SW(p, pte, 0, ptr);
  672. #endif
  673. build_huge_update_entries(p, pte, ptr);
  674. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  675. }
  676. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  677. #ifdef CONFIG_64BIT
  678. /*
  679. * TMP and PTR are scratch.
  680. * TMP will be clobbered, PTR will hold the pmd entry.
  681. */
  682. static void
  683. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  684. unsigned int tmp, unsigned int ptr)
  685. {
  686. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  687. long pgdc = (long)pgd_current;
  688. #endif
  689. /*
  690. * The vmalloc handling is not in the hotpath.
  691. */
  692. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  693. if (check_for_high_segbits) {
  694. /*
  695. * The kernel currently implicitely assumes that the
  696. * MIPS SEGBITS parameter for the processor is
  697. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  698. * allocate virtual addresses outside the maximum
  699. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  700. * that doesn't prevent user code from accessing the
  701. * higher xuseg addresses. Here, we make sure that
  702. * everything but the lower xuseg addresses goes down
  703. * the module_alloc/vmalloc path.
  704. */
  705. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  706. uasm_il_bnez(p, r, ptr, label_vmalloc);
  707. } else {
  708. uasm_il_bltz(p, r, tmp, label_vmalloc);
  709. }
  710. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  711. if (pgd_reg != -1) {
  712. /* pgd is in pgd_reg */
  713. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  714. } else {
  715. #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
  716. /*
  717. * &pgd << 11 stored in CONTEXT [23..63].
  718. */
  719. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  720. /* Clear lower 23 bits of context. */
  721. uasm_i_dins(p, ptr, 0, 0, 23);
  722. /* 1 0 1 0 1 << 6 xkphys cached */
  723. uasm_i_ori(p, ptr, ptr, 0x540);
  724. uasm_i_drotr(p, ptr, ptr, 11);
  725. #elif defined(CONFIG_SMP)
  726. UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
  727. uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  728. UASM_i_LA_mostly(p, tmp, pgdc);
  729. uasm_i_daddu(p, ptr, ptr, tmp);
  730. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  731. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  732. #else
  733. UASM_i_LA_mostly(p, ptr, pgdc);
  734. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  735. #endif
  736. }
  737. uasm_l_vmalloc_done(l, *p);
  738. /* get pgd offset in bytes */
  739. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  740. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  741. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  742. #ifndef __PAGETABLE_PMD_FOLDED
  743. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  744. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  745. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  746. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  747. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  748. #endif
  749. }
  750. /*
  751. * BVADDR is the faulting address, PTR is scratch.
  752. * PTR will hold the pgd for vmalloc.
  753. */
  754. static void
  755. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  756. unsigned int bvaddr, unsigned int ptr,
  757. enum vmalloc64_mode mode)
  758. {
  759. long swpd = (long)swapper_pg_dir;
  760. int single_insn_swpd;
  761. int did_vmalloc_branch = 0;
  762. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  763. uasm_l_vmalloc(l, *p);
  764. if (mode != not_refill && check_for_high_segbits) {
  765. if (single_insn_swpd) {
  766. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  767. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  768. did_vmalloc_branch = 1;
  769. /* fall through */
  770. } else {
  771. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  772. }
  773. }
  774. if (!did_vmalloc_branch) {
  775. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  776. uasm_il_b(p, r, label_vmalloc_done);
  777. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  778. } else {
  779. UASM_i_LA_mostly(p, ptr, swpd);
  780. uasm_il_b(p, r, label_vmalloc_done);
  781. if (uasm_in_compat_space_p(swpd))
  782. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  783. else
  784. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  785. }
  786. }
  787. if (mode != not_refill && check_for_high_segbits) {
  788. uasm_l_large_segbits_fault(l, *p);
  789. /*
  790. * We get here if we are an xsseg address, or if we are
  791. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  792. *
  793. * Ignoring xsseg (assume disabled so would generate
  794. * (address errors?), the only remaining possibility
  795. * is the upper xuseg addresses. On processors with
  796. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  797. * addresses would have taken an address error. We try
  798. * to mimic that here by taking a load/istream page
  799. * fault.
  800. */
  801. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  802. uasm_i_jr(p, ptr);
  803. if (mode == refill_scratch) {
  804. if (scratch_reg >= 0)
  805. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  806. else
  807. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  808. } else {
  809. uasm_i_nop(p);
  810. }
  811. }
  812. }
  813. #else /* !CONFIG_64BIT */
  814. /*
  815. * TMP and PTR are scratch.
  816. * TMP will be clobbered, PTR will hold the pgd entry.
  817. */
  818. static void __maybe_unused
  819. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  820. {
  821. if (pgd_reg != -1) {
  822. /* pgd is in pgd_reg */
  823. uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
  824. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  825. } else {
  826. long pgdc = (long)pgd_current;
  827. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  828. #ifdef CONFIG_SMP
  829. uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
  830. UASM_i_LA_mostly(p, tmp, pgdc);
  831. uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  832. uasm_i_addu(p, ptr, tmp, ptr);
  833. #else
  834. UASM_i_LA_mostly(p, ptr, pgdc);
  835. #endif
  836. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  837. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  838. }
  839. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  840. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  841. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  842. }
  843. #endif /* !CONFIG_64BIT */
  844. static void build_adjust_context(u32 **p, unsigned int ctx)
  845. {
  846. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  847. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  848. switch (current_cpu_type()) {
  849. case CPU_VR41XX:
  850. case CPU_VR4111:
  851. case CPU_VR4121:
  852. case CPU_VR4122:
  853. case CPU_VR4131:
  854. case CPU_VR4181:
  855. case CPU_VR4181A:
  856. case CPU_VR4133:
  857. shift += 2;
  858. break;
  859. default:
  860. break;
  861. }
  862. if (shift)
  863. UASM_i_SRL(p, ctx, ctx, shift);
  864. uasm_i_andi(p, ctx, ctx, mask);
  865. }
  866. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  867. {
  868. /*
  869. * Bug workaround for the Nevada. It seems as if under certain
  870. * circumstances the move from cp0_context might produce a
  871. * bogus result when the mfc0 instruction and its consumer are
  872. * in a different cacheline or a load instruction, probably any
  873. * memory reference, is between them.
  874. */
  875. switch (current_cpu_type()) {
  876. case CPU_NEVADA:
  877. UASM_i_LW(p, ptr, 0, ptr);
  878. GET_CONTEXT(p, tmp); /* get context reg */
  879. break;
  880. default:
  881. GET_CONTEXT(p, tmp); /* get context reg */
  882. UASM_i_LW(p, ptr, 0, ptr);
  883. break;
  884. }
  885. build_adjust_context(p, tmp);
  886. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  887. }
  888. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  889. {
  890. /*
  891. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  892. * Kernel is a special case. Only a few CPUs use it.
  893. */
  894. #ifdef CONFIG_64BIT_PHYS_ADDR
  895. if (cpu_has_64bits) {
  896. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  897. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  898. if (cpu_has_rixi) {
  899. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  900. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  901. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  902. } else {
  903. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  904. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  905. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  906. }
  907. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  908. } else {
  909. int pte_off_even = sizeof(pte_t) / 2;
  910. int pte_off_odd = pte_off_even + sizeof(pte_t);
  911. /* The pte entries are pre-shifted */
  912. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  913. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  914. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  915. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  916. }
  917. #else
  918. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  919. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  920. if (r45k_bvahwbug())
  921. build_tlb_probe_entry(p);
  922. if (cpu_has_rixi) {
  923. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  924. if (r4k_250MHZhwbug())
  925. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  926. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  927. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  928. } else {
  929. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  930. if (r4k_250MHZhwbug())
  931. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  932. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  933. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  934. if (r45k_bvahwbug())
  935. uasm_i_mfc0(p, tmp, C0_INDEX);
  936. }
  937. if (r4k_250MHZhwbug())
  938. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  939. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  940. #endif
  941. }
  942. struct mips_huge_tlb_info {
  943. int huge_pte;
  944. int restore_scratch;
  945. };
  946. static struct mips_huge_tlb_info
  947. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  948. struct uasm_reloc **r, unsigned int tmp,
  949. unsigned int ptr, int c0_scratch_reg)
  950. {
  951. struct mips_huge_tlb_info rv;
  952. unsigned int even, odd;
  953. int vmalloc_branch_delay_filled = 0;
  954. const int scratch = 1; /* Our extra working register */
  955. rv.huge_pte = scratch;
  956. rv.restore_scratch = 0;
  957. if (check_for_high_segbits) {
  958. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  959. if (pgd_reg != -1)
  960. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  961. else
  962. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  963. if (c0_scratch_reg >= 0)
  964. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  965. else
  966. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  967. uasm_i_dsrl_safe(p, scratch, tmp,
  968. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  969. uasm_il_bnez(p, r, scratch, label_vmalloc);
  970. if (pgd_reg == -1) {
  971. vmalloc_branch_delay_filled = 1;
  972. /* Clear lower 23 bits of context. */
  973. uasm_i_dins(p, ptr, 0, 0, 23);
  974. }
  975. } else {
  976. if (pgd_reg != -1)
  977. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  978. else
  979. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  980. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  981. if (c0_scratch_reg >= 0)
  982. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  983. else
  984. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  985. if (pgd_reg == -1)
  986. /* Clear lower 23 bits of context. */
  987. uasm_i_dins(p, ptr, 0, 0, 23);
  988. uasm_il_bltz(p, r, tmp, label_vmalloc);
  989. }
  990. if (pgd_reg == -1) {
  991. vmalloc_branch_delay_filled = 1;
  992. /* 1 0 1 0 1 << 6 xkphys cached */
  993. uasm_i_ori(p, ptr, ptr, 0x540);
  994. uasm_i_drotr(p, ptr, ptr, 11);
  995. }
  996. #ifdef __PAGETABLE_PMD_FOLDED
  997. #define LOC_PTEP scratch
  998. #else
  999. #define LOC_PTEP ptr
  1000. #endif
  1001. if (!vmalloc_branch_delay_filled)
  1002. /* get pgd offset in bytes */
  1003. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1004. uasm_l_vmalloc_done(l, *p);
  1005. /*
  1006. * tmp ptr
  1007. * fall-through case = badvaddr *pgd_current
  1008. * vmalloc case = badvaddr swapper_pg_dir
  1009. */
  1010. if (vmalloc_branch_delay_filled)
  1011. /* get pgd offset in bytes */
  1012. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1013. #ifdef __PAGETABLE_PMD_FOLDED
  1014. GET_CONTEXT(p, tmp); /* get context reg */
  1015. #endif
  1016. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1017. if (use_lwx_insns()) {
  1018. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1019. } else {
  1020. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1021. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1022. }
  1023. #ifndef __PAGETABLE_PMD_FOLDED
  1024. /* get pmd offset in bytes */
  1025. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1026. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1027. GET_CONTEXT(p, tmp); /* get context reg */
  1028. if (use_lwx_insns()) {
  1029. UASM_i_LWX(p, scratch, scratch, ptr);
  1030. } else {
  1031. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1032. UASM_i_LW(p, scratch, 0, ptr);
  1033. }
  1034. #endif
  1035. /* Adjust the context during the load latency. */
  1036. build_adjust_context(p, tmp);
  1037. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1038. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1039. /*
  1040. * The in the LWX case we don't want to do the load in the
  1041. * delay slot. It cannot issue in the same cycle and may be
  1042. * speculative and unneeded.
  1043. */
  1044. if (use_lwx_insns())
  1045. uasm_i_nop(p);
  1046. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1047. /* build_update_entries */
  1048. if (use_lwx_insns()) {
  1049. even = ptr;
  1050. odd = tmp;
  1051. UASM_i_LWX(p, even, scratch, tmp);
  1052. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1053. UASM_i_LWX(p, odd, scratch, tmp);
  1054. } else {
  1055. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1056. even = tmp;
  1057. odd = ptr;
  1058. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1059. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1060. }
  1061. if (cpu_has_rixi) {
  1062. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1063. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1064. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1065. } else {
  1066. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1067. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1068. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1069. }
  1070. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1071. if (c0_scratch_reg >= 0) {
  1072. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1073. build_tlb_write_entry(p, l, r, tlb_random);
  1074. uasm_l_leave(l, *p);
  1075. rv.restore_scratch = 1;
  1076. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1077. build_tlb_write_entry(p, l, r, tlb_random);
  1078. uasm_l_leave(l, *p);
  1079. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1080. } else {
  1081. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1082. build_tlb_write_entry(p, l, r, tlb_random);
  1083. uasm_l_leave(l, *p);
  1084. rv.restore_scratch = 1;
  1085. }
  1086. uasm_i_eret(p); /* return from trap */
  1087. return rv;
  1088. }
  1089. /*
  1090. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1091. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1092. * slots before the XTLB refill exception handler which belong to the
  1093. * unused TLB refill exception.
  1094. */
  1095. #define MIPS64_REFILL_INSNS 32
  1096. static void build_r4000_tlb_refill_handler(void)
  1097. {
  1098. u32 *p = tlb_handler;
  1099. struct uasm_label *l = labels;
  1100. struct uasm_reloc *r = relocs;
  1101. u32 *f;
  1102. unsigned int final_len;
  1103. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1104. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1105. memset(tlb_handler, 0, sizeof(tlb_handler));
  1106. memset(labels, 0, sizeof(labels));
  1107. memset(relocs, 0, sizeof(relocs));
  1108. memset(final_handler, 0, sizeof(final_handler));
  1109. if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1110. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1111. scratch_reg);
  1112. vmalloc_mode = refill_scratch;
  1113. } else {
  1114. htlb_info.huge_pte = K0;
  1115. htlb_info.restore_scratch = 0;
  1116. vmalloc_mode = refill_noscratch;
  1117. /*
  1118. * create the plain linear handler
  1119. */
  1120. if (bcm1250_m3_war()) {
  1121. unsigned int segbits = 44;
  1122. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1123. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1124. uasm_i_xor(&p, K0, K0, K1);
  1125. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1126. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1127. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1128. uasm_i_or(&p, K0, K0, K1);
  1129. uasm_il_bnez(&p, &r, K0, label_leave);
  1130. /* No need for uasm_i_nop */
  1131. }
  1132. #ifdef CONFIG_64BIT
  1133. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1134. #else
  1135. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1136. #endif
  1137. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1138. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1139. #endif
  1140. build_get_ptep(&p, K0, K1);
  1141. build_update_entries(&p, K0, K1);
  1142. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1143. uasm_l_leave(&l, p);
  1144. uasm_i_eret(&p); /* return from trap */
  1145. }
  1146. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1147. uasm_l_tlb_huge_update(&l, p);
  1148. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1149. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1150. htlb_info.restore_scratch);
  1151. #endif
  1152. #ifdef CONFIG_64BIT
  1153. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1154. #endif
  1155. /*
  1156. * Overflow check: For the 64bit handler, we need at least one
  1157. * free instruction slot for the wrap-around branch. In worst
  1158. * case, if the intended insertion point is a delay slot, we
  1159. * need three, with the second nop'ed and the third being
  1160. * unused.
  1161. */
  1162. switch (boot_cpu_type()) {
  1163. default:
  1164. if (sizeof(long) == 4) {
  1165. case CPU_LOONGSON2:
  1166. /* Loongson2 ebase is different than r4k, we have more space */
  1167. if ((p - tlb_handler) > 64)
  1168. panic("TLB refill handler space exceeded");
  1169. /*
  1170. * Now fold the handler in the TLB refill handler space.
  1171. */
  1172. f = final_handler;
  1173. /* Simplest case, just copy the handler. */
  1174. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1175. final_len = p - tlb_handler;
  1176. break;
  1177. } else {
  1178. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1179. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1180. && uasm_insn_has_bdelay(relocs,
  1181. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1182. panic("TLB refill handler space exceeded");
  1183. /*
  1184. * Now fold the handler in the TLB refill handler space.
  1185. */
  1186. f = final_handler + MIPS64_REFILL_INSNS;
  1187. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1188. /* Just copy the handler. */
  1189. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1190. final_len = p - tlb_handler;
  1191. } else {
  1192. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1193. const enum label_id ls = label_tlb_huge_update;
  1194. #else
  1195. const enum label_id ls = label_vmalloc;
  1196. #endif
  1197. u32 *split;
  1198. int ov = 0;
  1199. int i;
  1200. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1201. ;
  1202. BUG_ON(i == ARRAY_SIZE(labels));
  1203. split = labels[i].addr;
  1204. /*
  1205. * See if we have overflown one way or the other.
  1206. */
  1207. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1208. split < p - MIPS64_REFILL_INSNS)
  1209. ov = 1;
  1210. if (ov) {
  1211. /*
  1212. * Split two instructions before the end. One
  1213. * for the branch and one for the instruction
  1214. * in the delay slot.
  1215. */
  1216. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1217. /*
  1218. * If the branch would fall in a delay slot,
  1219. * we must back up an additional instruction
  1220. * so that it is no longer in a delay slot.
  1221. */
  1222. if (uasm_insn_has_bdelay(relocs, split - 1))
  1223. split--;
  1224. }
  1225. /* Copy first part of the handler. */
  1226. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1227. f += split - tlb_handler;
  1228. if (ov) {
  1229. /* Insert branch. */
  1230. uasm_l_split(&l, final_handler);
  1231. uasm_il_b(&f, &r, label_split);
  1232. if (uasm_insn_has_bdelay(relocs, split))
  1233. uasm_i_nop(&f);
  1234. else {
  1235. uasm_copy_handler(relocs, labels,
  1236. split, split + 1, f);
  1237. uasm_move_labels(labels, f, f + 1, -1);
  1238. f++;
  1239. split++;
  1240. }
  1241. }
  1242. /* Copy the rest of the handler. */
  1243. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1244. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1245. (p - split);
  1246. }
  1247. }
  1248. break;
  1249. }
  1250. uasm_resolve_relocs(relocs, labels);
  1251. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1252. final_len);
  1253. memcpy((void *)ebase, final_handler, 0x100);
  1254. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1255. }
  1256. extern u32 handle_tlbl[], handle_tlbl_end[];
  1257. extern u32 handle_tlbs[], handle_tlbs_end[];
  1258. extern u32 handle_tlbm[], handle_tlbm_end[];
  1259. extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
  1260. static void build_setup_pgd(void)
  1261. {
  1262. const int a0 = 4;
  1263. const int __maybe_unused a1 = 5;
  1264. const int __maybe_unused a2 = 6;
  1265. u32 *p = tlbmiss_handler_setup_pgd;
  1266. const int tlbmiss_handler_setup_pgd_size =
  1267. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
  1268. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1269. long pgdc = (long)pgd_current;
  1270. #endif
  1271. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1272. sizeof(tlbmiss_handler_setup_pgd[0]));
  1273. memset(labels, 0, sizeof(labels));
  1274. memset(relocs, 0, sizeof(relocs));
  1275. pgd_reg = allocate_kscratch();
  1276. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1277. if (pgd_reg == -1) {
  1278. struct uasm_label *l = labels;
  1279. struct uasm_reloc *r = relocs;
  1280. /* PGD << 11 in c0_Context */
  1281. /*
  1282. * If it is a ckseg0 address, convert to a physical
  1283. * address. Shifting right by 29 and adding 4 will
  1284. * result in zero for these addresses.
  1285. *
  1286. */
  1287. UASM_i_SRA(&p, a1, a0, 29);
  1288. UASM_i_ADDIU(&p, a1, a1, 4);
  1289. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1290. uasm_i_nop(&p);
  1291. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1292. uasm_l_tlbl_goaround1(&l, p);
  1293. UASM_i_SLL(&p, a0, a0, 11);
  1294. uasm_i_jr(&p, 31);
  1295. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1296. } else {
  1297. /* PGD in c0_KScratch */
  1298. uasm_i_jr(&p, 31);
  1299. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1300. }
  1301. #else
  1302. #ifdef CONFIG_SMP
  1303. /* Save PGD to pgd_current[smp_processor_id()] */
  1304. UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
  1305. UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
  1306. UASM_i_LA_mostly(&p, a2, pgdc);
  1307. UASM_i_ADDU(&p, a2, a2, a1);
  1308. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1309. #else
  1310. UASM_i_LA_mostly(&p, a2, pgdc);
  1311. UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
  1312. #endif /* SMP */
  1313. uasm_i_jr(&p, 31);
  1314. /* if pgd_reg is allocated, save PGD also to scratch register */
  1315. if (pgd_reg != -1)
  1316. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1317. else
  1318. uasm_i_nop(&p);
  1319. #endif
  1320. if (p >= tlbmiss_handler_setup_pgd_end)
  1321. panic("tlbmiss_handler_setup_pgd space exceeded");
  1322. uasm_resolve_relocs(relocs, labels);
  1323. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1324. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1325. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1326. tlbmiss_handler_setup_pgd_size);
  1327. }
  1328. static void
  1329. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1330. {
  1331. #ifdef CONFIG_SMP
  1332. # ifdef CONFIG_64BIT_PHYS_ADDR
  1333. if (cpu_has_64bits)
  1334. uasm_i_lld(p, pte, 0, ptr);
  1335. else
  1336. # endif
  1337. UASM_i_LL(p, pte, 0, ptr);
  1338. #else
  1339. # ifdef CONFIG_64BIT_PHYS_ADDR
  1340. if (cpu_has_64bits)
  1341. uasm_i_ld(p, pte, 0, ptr);
  1342. else
  1343. # endif
  1344. UASM_i_LW(p, pte, 0, ptr);
  1345. #endif
  1346. }
  1347. static void
  1348. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1349. unsigned int mode)
  1350. {
  1351. #ifdef CONFIG_64BIT_PHYS_ADDR
  1352. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1353. #endif
  1354. uasm_i_ori(p, pte, pte, mode);
  1355. #ifdef CONFIG_SMP
  1356. # ifdef CONFIG_64BIT_PHYS_ADDR
  1357. if (cpu_has_64bits)
  1358. uasm_i_scd(p, pte, 0, ptr);
  1359. else
  1360. # endif
  1361. UASM_i_SC(p, pte, 0, ptr);
  1362. if (r10000_llsc_war())
  1363. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1364. else
  1365. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1366. # ifdef CONFIG_64BIT_PHYS_ADDR
  1367. if (!cpu_has_64bits) {
  1368. /* no uasm_i_nop needed */
  1369. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1370. uasm_i_ori(p, pte, pte, hwmode);
  1371. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1372. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1373. /* no uasm_i_nop needed */
  1374. uasm_i_lw(p, pte, 0, ptr);
  1375. } else
  1376. uasm_i_nop(p);
  1377. # else
  1378. uasm_i_nop(p);
  1379. # endif
  1380. #else
  1381. # ifdef CONFIG_64BIT_PHYS_ADDR
  1382. if (cpu_has_64bits)
  1383. uasm_i_sd(p, pte, 0, ptr);
  1384. else
  1385. # endif
  1386. UASM_i_SW(p, pte, 0, ptr);
  1387. # ifdef CONFIG_64BIT_PHYS_ADDR
  1388. if (!cpu_has_64bits) {
  1389. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1390. uasm_i_ori(p, pte, pte, hwmode);
  1391. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1392. uasm_i_lw(p, pte, 0, ptr);
  1393. }
  1394. # endif
  1395. #endif
  1396. }
  1397. /*
  1398. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1399. * the page table where this PTE is located, PTE will be re-loaded
  1400. * with it's original value.
  1401. */
  1402. static void
  1403. build_pte_present(u32 **p, struct uasm_reloc **r,
  1404. int pte, int ptr, int scratch, enum label_id lid)
  1405. {
  1406. int t = scratch >= 0 ? scratch : pte;
  1407. if (cpu_has_rixi) {
  1408. if (use_bbit_insns()) {
  1409. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1410. uasm_i_nop(p);
  1411. } else {
  1412. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1413. uasm_il_beqz(p, r, t, lid);
  1414. if (pte == t)
  1415. /* You lose the SMP race :-(*/
  1416. iPTE_LW(p, pte, ptr);
  1417. }
  1418. } else {
  1419. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1420. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1421. uasm_il_bnez(p, r, t, lid);
  1422. if (pte == t)
  1423. /* You lose the SMP race :-(*/
  1424. iPTE_LW(p, pte, ptr);
  1425. }
  1426. }
  1427. /* Make PTE valid, store result in PTR. */
  1428. static void
  1429. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1430. unsigned int ptr)
  1431. {
  1432. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1433. iPTE_SW(p, r, pte, ptr, mode);
  1434. }
  1435. /*
  1436. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1437. * restore PTE with value from PTR when done.
  1438. */
  1439. static void
  1440. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1441. unsigned int pte, unsigned int ptr, int scratch,
  1442. enum label_id lid)
  1443. {
  1444. int t = scratch >= 0 ? scratch : pte;
  1445. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1446. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1447. uasm_il_bnez(p, r, t, lid);
  1448. if (pte == t)
  1449. /* You lose the SMP race :-(*/
  1450. iPTE_LW(p, pte, ptr);
  1451. else
  1452. uasm_i_nop(p);
  1453. }
  1454. /* Make PTE writable, update software status bits as well, then store
  1455. * at PTR.
  1456. */
  1457. static void
  1458. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1459. unsigned int ptr)
  1460. {
  1461. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1462. | _PAGE_DIRTY);
  1463. iPTE_SW(p, r, pte, ptr, mode);
  1464. }
  1465. /*
  1466. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1467. * restore PTE with value from PTR when done.
  1468. */
  1469. static void
  1470. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1471. unsigned int pte, unsigned int ptr, int scratch,
  1472. enum label_id lid)
  1473. {
  1474. if (use_bbit_insns()) {
  1475. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1476. uasm_i_nop(p);
  1477. } else {
  1478. int t = scratch >= 0 ? scratch : pte;
  1479. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1480. uasm_il_beqz(p, r, t, lid);
  1481. if (pte == t)
  1482. /* You lose the SMP race :-(*/
  1483. iPTE_LW(p, pte, ptr);
  1484. }
  1485. }
  1486. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1487. /*
  1488. * R3000 style TLB load/store/modify handlers.
  1489. */
  1490. /*
  1491. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1492. * Then it returns.
  1493. */
  1494. static void
  1495. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1496. {
  1497. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1498. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1499. uasm_i_tlbwi(p);
  1500. uasm_i_jr(p, tmp);
  1501. uasm_i_rfe(p); /* branch delay */
  1502. }
  1503. /*
  1504. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1505. * or tlbwr as appropriate. This is because the index register
  1506. * may have the probe fail bit set as a result of a trap on a
  1507. * kseg2 access, i.e. without refill. Then it returns.
  1508. */
  1509. static void
  1510. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1511. struct uasm_reloc **r, unsigned int pte,
  1512. unsigned int tmp)
  1513. {
  1514. uasm_i_mfc0(p, tmp, C0_INDEX);
  1515. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1516. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1517. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1518. uasm_i_tlbwi(p); /* cp0 delay */
  1519. uasm_i_jr(p, tmp);
  1520. uasm_i_rfe(p); /* branch delay */
  1521. uasm_l_r3000_write_probe_fail(l, *p);
  1522. uasm_i_tlbwr(p); /* cp0 delay */
  1523. uasm_i_jr(p, tmp);
  1524. uasm_i_rfe(p); /* branch delay */
  1525. }
  1526. static void
  1527. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1528. unsigned int ptr)
  1529. {
  1530. long pgdc = (long)pgd_current;
  1531. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1532. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1533. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1534. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1535. uasm_i_sll(p, pte, pte, 2);
  1536. uasm_i_addu(p, ptr, ptr, pte);
  1537. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1538. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1539. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1540. uasm_i_addu(p, ptr, ptr, pte);
  1541. uasm_i_lw(p, pte, 0, ptr);
  1542. uasm_i_tlbp(p); /* load delay */
  1543. }
  1544. static void build_r3000_tlb_load_handler(void)
  1545. {
  1546. u32 *p = handle_tlbl;
  1547. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1548. struct uasm_label *l = labels;
  1549. struct uasm_reloc *r = relocs;
  1550. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1551. memset(labels, 0, sizeof(labels));
  1552. memset(relocs, 0, sizeof(relocs));
  1553. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1554. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1555. uasm_i_nop(&p); /* load delay */
  1556. build_make_valid(&p, &r, K0, K1);
  1557. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1558. uasm_l_nopage_tlbl(&l, p);
  1559. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1560. uasm_i_nop(&p);
  1561. if (p >= handle_tlbl_end)
  1562. panic("TLB load handler fastpath space exceeded");
  1563. uasm_resolve_relocs(relocs, labels);
  1564. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1565. (unsigned int)(p - handle_tlbl));
  1566. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1567. }
  1568. static void build_r3000_tlb_store_handler(void)
  1569. {
  1570. u32 *p = handle_tlbs;
  1571. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1572. struct uasm_label *l = labels;
  1573. struct uasm_reloc *r = relocs;
  1574. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1575. memset(labels, 0, sizeof(labels));
  1576. memset(relocs, 0, sizeof(relocs));
  1577. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1578. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1579. uasm_i_nop(&p); /* load delay */
  1580. build_make_write(&p, &r, K0, K1);
  1581. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1582. uasm_l_nopage_tlbs(&l, p);
  1583. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1584. uasm_i_nop(&p);
  1585. if (p >= handle_tlbs_end)
  1586. panic("TLB store handler fastpath space exceeded");
  1587. uasm_resolve_relocs(relocs, labels);
  1588. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1589. (unsigned int)(p - handle_tlbs));
  1590. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1591. }
  1592. static void build_r3000_tlb_modify_handler(void)
  1593. {
  1594. u32 *p = handle_tlbm;
  1595. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1596. struct uasm_label *l = labels;
  1597. struct uasm_reloc *r = relocs;
  1598. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1599. memset(labels, 0, sizeof(labels));
  1600. memset(relocs, 0, sizeof(relocs));
  1601. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1602. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1603. uasm_i_nop(&p); /* load delay */
  1604. build_make_write(&p, &r, K0, K1);
  1605. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1606. uasm_l_nopage_tlbm(&l, p);
  1607. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1608. uasm_i_nop(&p);
  1609. if (p >= handle_tlbm_end)
  1610. panic("TLB modify handler fastpath space exceeded");
  1611. uasm_resolve_relocs(relocs, labels);
  1612. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1613. (unsigned int)(p - handle_tlbm));
  1614. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1615. }
  1616. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1617. /*
  1618. * R4000 style TLB load/store/modify handlers.
  1619. */
  1620. static struct work_registers
  1621. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1622. struct uasm_reloc **r)
  1623. {
  1624. struct work_registers wr = build_get_work_registers(p);
  1625. #ifdef CONFIG_64BIT
  1626. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1627. #else
  1628. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1629. #endif
  1630. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1631. /*
  1632. * For huge tlb entries, pmd doesn't contain an address but
  1633. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1634. * see if we need to jump to huge tlb processing.
  1635. */
  1636. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1637. #endif
  1638. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1639. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1640. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1641. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1642. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1643. #ifdef CONFIG_SMP
  1644. uasm_l_smp_pgtable_change(l, *p);
  1645. #endif
  1646. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1647. if (!m4kc_tlbp_war())
  1648. build_tlb_probe_entry(p);
  1649. return wr;
  1650. }
  1651. static void
  1652. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1653. struct uasm_reloc **r, unsigned int tmp,
  1654. unsigned int ptr)
  1655. {
  1656. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1657. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1658. build_update_entries(p, tmp, ptr);
  1659. build_tlb_write_entry(p, l, r, tlb_indexed);
  1660. uasm_l_leave(l, *p);
  1661. build_restore_work_registers(p);
  1662. uasm_i_eret(p); /* return from trap */
  1663. #ifdef CONFIG_64BIT
  1664. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1665. #endif
  1666. }
  1667. static void build_r4000_tlb_load_handler(void)
  1668. {
  1669. u32 *p = handle_tlbl;
  1670. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1671. struct uasm_label *l = labels;
  1672. struct uasm_reloc *r = relocs;
  1673. struct work_registers wr;
  1674. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1675. memset(labels, 0, sizeof(labels));
  1676. memset(relocs, 0, sizeof(relocs));
  1677. if (bcm1250_m3_war()) {
  1678. unsigned int segbits = 44;
  1679. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1680. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1681. uasm_i_xor(&p, K0, K0, K1);
  1682. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1683. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1684. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1685. uasm_i_or(&p, K0, K0, K1);
  1686. uasm_il_bnez(&p, &r, K0, label_leave);
  1687. /* No need for uasm_i_nop */
  1688. }
  1689. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1690. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1691. if (m4kc_tlbp_war())
  1692. build_tlb_probe_entry(&p);
  1693. if (cpu_has_rixi) {
  1694. /*
  1695. * If the page is not _PAGE_VALID, RI or XI could not
  1696. * have triggered it. Skip the expensive test..
  1697. */
  1698. if (use_bbit_insns()) {
  1699. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1700. label_tlbl_goaround1);
  1701. } else {
  1702. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1703. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1704. }
  1705. uasm_i_nop(&p);
  1706. uasm_i_tlbr(&p);
  1707. switch (current_cpu_type()) {
  1708. default:
  1709. if (cpu_has_mips_r2) {
  1710. uasm_i_ehb(&p);
  1711. case CPU_CAVIUM_OCTEON:
  1712. case CPU_CAVIUM_OCTEON_PLUS:
  1713. case CPU_CAVIUM_OCTEON2:
  1714. break;
  1715. }
  1716. }
  1717. /* Examine entrylo 0 or 1 based on ptr. */
  1718. if (use_bbit_insns()) {
  1719. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1720. } else {
  1721. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1722. uasm_i_beqz(&p, wr.r3, 8);
  1723. }
  1724. /* load it in the delay slot*/
  1725. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1726. /* load it if ptr is odd */
  1727. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1728. /*
  1729. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1730. * XI must have triggered it.
  1731. */
  1732. if (use_bbit_insns()) {
  1733. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1734. uasm_i_nop(&p);
  1735. uasm_l_tlbl_goaround1(&l, p);
  1736. } else {
  1737. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1738. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1739. uasm_i_nop(&p);
  1740. }
  1741. uasm_l_tlbl_goaround1(&l, p);
  1742. }
  1743. build_make_valid(&p, &r, wr.r1, wr.r2);
  1744. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1745. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1746. /*
  1747. * This is the entry point when build_r4000_tlbchange_handler_head
  1748. * spots a huge page.
  1749. */
  1750. uasm_l_tlb_huge_update(&l, p);
  1751. iPTE_LW(&p, wr.r1, wr.r2);
  1752. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1753. build_tlb_probe_entry(&p);
  1754. if (cpu_has_rixi) {
  1755. /*
  1756. * If the page is not _PAGE_VALID, RI or XI could not
  1757. * have triggered it. Skip the expensive test..
  1758. */
  1759. if (use_bbit_insns()) {
  1760. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1761. label_tlbl_goaround2);
  1762. } else {
  1763. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1764. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1765. }
  1766. uasm_i_nop(&p);
  1767. uasm_i_tlbr(&p);
  1768. switch (current_cpu_type()) {
  1769. default:
  1770. if (cpu_has_mips_r2) {
  1771. uasm_i_ehb(&p);
  1772. case CPU_CAVIUM_OCTEON:
  1773. case CPU_CAVIUM_OCTEON_PLUS:
  1774. case CPU_CAVIUM_OCTEON2:
  1775. break;
  1776. }
  1777. }
  1778. /* Examine entrylo 0 or 1 based on ptr. */
  1779. if (use_bbit_insns()) {
  1780. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1781. } else {
  1782. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1783. uasm_i_beqz(&p, wr.r3, 8);
  1784. }
  1785. /* load it in the delay slot*/
  1786. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1787. /* load it if ptr is odd */
  1788. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1789. /*
  1790. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1791. * XI must have triggered it.
  1792. */
  1793. if (use_bbit_insns()) {
  1794. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1795. } else {
  1796. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1797. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1798. }
  1799. if (PM_DEFAULT_MASK == 0)
  1800. uasm_i_nop(&p);
  1801. /*
  1802. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1803. * it is restored in build_huge_tlb_write_entry.
  1804. */
  1805. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1806. uasm_l_tlbl_goaround2(&l, p);
  1807. }
  1808. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1809. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1810. #endif
  1811. uasm_l_nopage_tlbl(&l, p);
  1812. build_restore_work_registers(&p);
  1813. #ifdef CONFIG_CPU_MICROMIPS
  1814. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1815. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1816. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1817. uasm_i_jr(&p, K0);
  1818. } else
  1819. #endif
  1820. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1821. uasm_i_nop(&p);
  1822. if (p >= handle_tlbl_end)
  1823. panic("TLB load handler fastpath space exceeded");
  1824. uasm_resolve_relocs(relocs, labels);
  1825. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1826. (unsigned int)(p - handle_tlbl));
  1827. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1828. }
  1829. static void build_r4000_tlb_store_handler(void)
  1830. {
  1831. u32 *p = handle_tlbs;
  1832. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1833. struct uasm_label *l = labels;
  1834. struct uasm_reloc *r = relocs;
  1835. struct work_registers wr;
  1836. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1837. memset(labels, 0, sizeof(labels));
  1838. memset(relocs, 0, sizeof(relocs));
  1839. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1840. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1841. if (m4kc_tlbp_war())
  1842. build_tlb_probe_entry(&p);
  1843. build_make_write(&p, &r, wr.r1, wr.r2);
  1844. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1845. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1846. /*
  1847. * This is the entry point when
  1848. * build_r4000_tlbchange_handler_head spots a huge page.
  1849. */
  1850. uasm_l_tlb_huge_update(&l, p);
  1851. iPTE_LW(&p, wr.r1, wr.r2);
  1852. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1853. build_tlb_probe_entry(&p);
  1854. uasm_i_ori(&p, wr.r1, wr.r1,
  1855. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1856. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1857. #endif
  1858. uasm_l_nopage_tlbs(&l, p);
  1859. build_restore_work_registers(&p);
  1860. #ifdef CONFIG_CPU_MICROMIPS
  1861. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1862. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1863. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1864. uasm_i_jr(&p, K0);
  1865. } else
  1866. #endif
  1867. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1868. uasm_i_nop(&p);
  1869. if (p >= handle_tlbs_end)
  1870. panic("TLB store handler fastpath space exceeded");
  1871. uasm_resolve_relocs(relocs, labels);
  1872. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1873. (unsigned int)(p - handle_tlbs));
  1874. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1875. }
  1876. static void build_r4000_tlb_modify_handler(void)
  1877. {
  1878. u32 *p = handle_tlbm;
  1879. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1880. struct uasm_label *l = labels;
  1881. struct uasm_reloc *r = relocs;
  1882. struct work_registers wr;
  1883. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1884. memset(labels, 0, sizeof(labels));
  1885. memset(relocs, 0, sizeof(relocs));
  1886. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1887. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1888. if (m4kc_tlbp_war())
  1889. build_tlb_probe_entry(&p);
  1890. /* Present and writable bits set, set accessed and dirty bits. */
  1891. build_make_write(&p, &r, wr.r1, wr.r2);
  1892. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1893. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1894. /*
  1895. * This is the entry point when
  1896. * build_r4000_tlbchange_handler_head spots a huge page.
  1897. */
  1898. uasm_l_tlb_huge_update(&l, p);
  1899. iPTE_LW(&p, wr.r1, wr.r2);
  1900. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1901. build_tlb_probe_entry(&p);
  1902. uasm_i_ori(&p, wr.r1, wr.r1,
  1903. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1904. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1905. #endif
  1906. uasm_l_nopage_tlbm(&l, p);
  1907. build_restore_work_registers(&p);
  1908. #ifdef CONFIG_CPU_MICROMIPS
  1909. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1910. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1911. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1912. uasm_i_jr(&p, K0);
  1913. } else
  1914. #endif
  1915. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1916. uasm_i_nop(&p);
  1917. if (p >= handle_tlbm_end)
  1918. panic("TLB modify handler fastpath space exceeded");
  1919. uasm_resolve_relocs(relocs, labels);
  1920. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1921. (unsigned int)(p - handle_tlbm));
  1922. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1923. }
  1924. static void flush_tlb_handlers(void)
  1925. {
  1926. local_flush_icache_range((unsigned long)handle_tlbl,
  1927. (unsigned long)handle_tlbl_end);
  1928. local_flush_icache_range((unsigned long)handle_tlbs,
  1929. (unsigned long)handle_tlbs_end);
  1930. local_flush_icache_range((unsigned long)handle_tlbm,
  1931. (unsigned long)handle_tlbm_end);
  1932. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1933. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1934. }
  1935. void build_tlb_refill_handler(void)
  1936. {
  1937. /*
  1938. * The refill handler is generated per-CPU, multi-node systems
  1939. * may have local storage for it. The other handlers are only
  1940. * needed once.
  1941. */
  1942. static int run_once = 0;
  1943. output_pgtable_bits_defines();
  1944. #ifdef CONFIG_64BIT
  1945. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1946. #endif
  1947. switch (current_cpu_type()) {
  1948. case CPU_R2000:
  1949. case CPU_R3000:
  1950. case CPU_R3000A:
  1951. case CPU_R3081E:
  1952. case CPU_TX3912:
  1953. case CPU_TX3922:
  1954. case CPU_TX3927:
  1955. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1956. if (cpu_has_local_ebase)
  1957. build_r3000_tlb_refill_handler();
  1958. if (!run_once) {
  1959. if (!cpu_has_local_ebase)
  1960. build_r3000_tlb_refill_handler();
  1961. build_setup_pgd();
  1962. build_r3000_tlb_load_handler();
  1963. build_r3000_tlb_store_handler();
  1964. build_r3000_tlb_modify_handler();
  1965. flush_tlb_handlers();
  1966. run_once++;
  1967. }
  1968. #else
  1969. panic("No R3000 TLB refill handler");
  1970. #endif
  1971. break;
  1972. case CPU_R6000:
  1973. case CPU_R6000A:
  1974. panic("No R6000 TLB refill handler yet");
  1975. break;
  1976. case CPU_R8000:
  1977. panic("No R8000 TLB refill handler yet");
  1978. break;
  1979. default:
  1980. if (!run_once) {
  1981. scratch_reg = allocate_kscratch();
  1982. build_setup_pgd();
  1983. build_r4000_tlb_load_handler();
  1984. build_r4000_tlb_store_handler();
  1985. build_r4000_tlb_modify_handler();
  1986. if (!cpu_has_local_ebase)
  1987. build_r4000_tlb_refill_handler();
  1988. flush_tlb_handlers();
  1989. run_once++;
  1990. }
  1991. if (cpu_has_local_ebase)
  1992. build_r4000_tlb_refill_handler();
  1993. }
  1994. }