mmio.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License, version 2, as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. */
  18. #include <linux/kvm_host.h>
  19. #include <asm/kvm_mmio.h>
  20. #include <asm/kvm_emulate.h>
  21. #include <trace/events/kvm.h>
  22. #include "trace.h"
  23. static void mmio_write_buf(char *buf, unsigned int len, unsigned long data)
  24. {
  25. void *datap = NULL;
  26. union {
  27. u8 byte;
  28. u16 hword;
  29. u32 word;
  30. u64 dword;
  31. } tmp;
  32. switch (len) {
  33. case 1:
  34. tmp.byte = data;
  35. datap = &tmp.byte;
  36. break;
  37. case 2:
  38. tmp.hword = data;
  39. datap = &tmp.hword;
  40. break;
  41. case 4:
  42. tmp.word = data;
  43. datap = &tmp.word;
  44. break;
  45. case 8:
  46. tmp.dword = data;
  47. datap = &tmp.dword;
  48. break;
  49. }
  50. memcpy(buf, datap, len);
  51. }
  52. static unsigned long mmio_read_buf(char *buf, unsigned int len)
  53. {
  54. unsigned long data = 0;
  55. union {
  56. u16 hword;
  57. u32 word;
  58. u64 dword;
  59. } tmp;
  60. switch (len) {
  61. case 1:
  62. data = buf[0];
  63. break;
  64. case 2:
  65. memcpy(&tmp.hword, buf, len);
  66. data = tmp.hword;
  67. break;
  68. case 4:
  69. memcpy(&tmp.word, buf, len);
  70. data = tmp.word;
  71. break;
  72. case 8:
  73. memcpy(&tmp.dword, buf, len);
  74. data = tmp.dword;
  75. break;
  76. }
  77. return data;
  78. }
  79. /**
  80. * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
  81. * @vcpu: The VCPU pointer
  82. * @run: The VCPU run struct containing the mmio data
  83. *
  84. * This should only be called after returning from userspace for MMIO load
  85. * emulation.
  86. */
  87. int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
  88. {
  89. unsigned long data;
  90. unsigned int len;
  91. int mask;
  92. if (!run->mmio.is_write) {
  93. len = run->mmio.len;
  94. if (len > sizeof(unsigned long))
  95. return -EINVAL;
  96. data = mmio_read_buf(run->mmio.data, len);
  97. if (vcpu->arch.mmio_decode.sign_extend &&
  98. len < sizeof(unsigned long)) {
  99. mask = 1U << ((len * 8) - 1);
  100. data = (data ^ mask) - mask;
  101. }
  102. trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
  103. data);
  104. data = vcpu_data_host_to_guest(vcpu, data, len);
  105. *vcpu_reg(vcpu, vcpu->arch.mmio_decode.rt) = data;
  106. }
  107. return 0;
  108. }
  109. static int decode_hsr(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
  110. struct kvm_exit_mmio *mmio)
  111. {
  112. unsigned long rt;
  113. int len;
  114. bool is_write, sign_extend;
  115. if (kvm_vcpu_dabt_isextabt(vcpu)) {
  116. /* cache operation on I/O addr, tell guest unsupported */
  117. kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
  118. return 1;
  119. }
  120. if (kvm_vcpu_dabt_iss1tw(vcpu)) {
  121. /* page table accesses IO mem: tell guest to fix its TTBR */
  122. kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
  123. return 1;
  124. }
  125. len = kvm_vcpu_dabt_get_as(vcpu);
  126. if (unlikely(len < 0))
  127. return len;
  128. is_write = kvm_vcpu_dabt_iswrite(vcpu);
  129. sign_extend = kvm_vcpu_dabt_issext(vcpu);
  130. rt = kvm_vcpu_dabt_get_rd(vcpu);
  131. mmio->is_write = is_write;
  132. mmio->phys_addr = fault_ipa;
  133. mmio->len = len;
  134. vcpu->arch.mmio_decode.sign_extend = sign_extend;
  135. vcpu->arch.mmio_decode.rt = rt;
  136. /*
  137. * The MMIO instruction is emulated and should not be re-executed
  138. * in the guest.
  139. */
  140. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  141. return 0;
  142. }
  143. int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
  144. phys_addr_t fault_ipa)
  145. {
  146. struct kvm_exit_mmio mmio;
  147. unsigned long data;
  148. unsigned long rt;
  149. int ret;
  150. /*
  151. * Prepare MMIO operation. First stash it in a private
  152. * structure that we can use for in-kernel emulation. If the
  153. * kernel can't handle it, copy it into run->mmio and let user
  154. * space do its magic.
  155. */
  156. if (kvm_vcpu_dabt_isvalid(vcpu)) {
  157. ret = decode_hsr(vcpu, fault_ipa, &mmio);
  158. if (ret)
  159. return ret;
  160. } else {
  161. kvm_err("load/store instruction decoding not implemented\n");
  162. return -ENOSYS;
  163. }
  164. rt = vcpu->arch.mmio_decode.rt;
  165. data = vcpu_data_guest_to_host(vcpu, *vcpu_reg(vcpu, rt), mmio.len);
  166. trace_kvm_mmio((mmio.is_write) ? KVM_TRACE_MMIO_WRITE :
  167. KVM_TRACE_MMIO_READ_UNSATISFIED,
  168. mmio.len, fault_ipa,
  169. (mmio.is_write) ? data : 0);
  170. if (mmio.is_write)
  171. mmio_write_buf(mmio.data, mmio.len, data);
  172. if (vgic_handle_mmio(vcpu, run, &mmio))
  173. return 1;
  174. kvm_prepare_mmio(run, &mmio);
  175. return 0;
  176. }