coproc.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/cputype.h>
  28. #include <trace/events/kvm.h>
  29. #include <asm/vfp.h>
  30. #include "../vfp/vfpinstr.h"
  31. #include "trace.h"
  32. #include "coproc.h"
  33. /******************************************************************************
  34. * Co-processor emulation
  35. *****************************************************************************/
  36. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  37. static u32 cache_levels;
  38. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  39. #define CSSELR_MAX 12
  40. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  41. {
  42. kvm_inject_undefined(vcpu);
  43. return 1;
  44. }
  45. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  46. {
  47. /*
  48. * We can get here, if the host has been built without VFPv3 support,
  49. * but the guest attempted a floating point operation.
  50. */
  51. kvm_inject_undefined(vcpu);
  52. return 1;
  53. }
  54. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  55. {
  56. kvm_inject_undefined(vcpu);
  57. return 1;
  58. }
  59. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  60. {
  61. kvm_inject_undefined(vcpu);
  62. return 1;
  63. }
  64. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  65. {
  66. /*
  67. * Compute guest MPIDR. We build a virtual cluster out of the
  68. * vcpu_id, but we read the 'U' bit from the underlying
  69. * hardware directly.
  70. */
  71. vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  72. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  73. (vcpu->vcpu_id & 3));
  74. }
  75. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  76. static bool access_actlr(struct kvm_vcpu *vcpu,
  77. const struct coproc_params *p,
  78. const struct coproc_reg *r)
  79. {
  80. if (p->is_write)
  81. return ignore_write(vcpu, p);
  82. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  83. return true;
  84. }
  85. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  86. static bool access_cbar(struct kvm_vcpu *vcpu,
  87. const struct coproc_params *p,
  88. const struct coproc_reg *r)
  89. {
  90. if (p->is_write)
  91. return write_to_read_only(vcpu, p);
  92. return read_zero(vcpu, p);
  93. }
  94. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  95. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  96. const struct coproc_params *p,
  97. const struct coproc_reg *r)
  98. {
  99. if (p->is_write)
  100. return ignore_write(vcpu, p);
  101. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
  102. return true;
  103. }
  104. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  105. {
  106. u32 l2ctlr, ncores;
  107. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  108. l2ctlr &= ~(3 << 24);
  109. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  110. /* How many cores in the current cluster and the next ones */
  111. ncores -= (vcpu->vcpu_id & ~3);
  112. /* Cap it to the maximum number of cores in a single cluster */
  113. ncores = min(ncores, 3U);
  114. l2ctlr |= (ncores & 3) << 24;
  115. vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
  116. }
  117. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  118. {
  119. u32 actlr;
  120. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  121. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  122. /* Make the SMP bit consistent with the guest configuration */
  123. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  124. actlr |= 1U << 6;
  125. else
  126. actlr &= ~(1U << 6);
  127. vcpu->arch.cp15[c1_ACTLR] = actlr;
  128. }
  129. /*
  130. * TRM entries: A7:4.3.50, A15:4.3.49
  131. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  132. */
  133. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  134. const struct coproc_params *p,
  135. const struct coproc_reg *r)
  136. {
  137. if (p->is_write)
  138. return ignore_write(vcpu, p);
  139. *vcpu_reg(vcpu, p->Rt1) = 0;
  140. return true;
  141. }
  142. /* See note at ARM ARM B1.14.4 */
  143. static bool access_dcsw(struct kvm_vcpu *vcpu,
  144. const struct coproc_params *p,
  145. const struct coproc_reg *r)
  146. {
  147. unsigned long val;
  148. int cpu;
  149. if (!p->is_write)
  150. return read_from_write_only(vcpu, p);
  151. cpu = get_cpu();
  152. cpumask_setall(&vcpu->arch.require_dcache_flush);
  153. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  154. /* If we were already preempted, take the long way around */
  155. if (cpu != vcpu->arch.last_pcpu) {
  156. flush_cache_all();
  157. goto done;
  158. }
  159. val = *vcpu_reg(vcpu, p->Rt1);
  160. switch (p->CRm) {
  161. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  162. case 14: /* DCCISW */
  163. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  164. break;
  165. case 10: /* DCCSW */
  166. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  167. break;
  168. }
  169. done:
  170. put_cpu();
  171. return true;
  172. }
  173. /*
  174. * We could trap ID_DFR0 and tell the guest we don't support performance
  175. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  176. * NAKed, so it will read the PMCR anyway.
  177. *
  178. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  179. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  180. * all PM registers, which doesn't crash the guest kernel at least.
  181. */
  182. static bool pm_fake(struct kvm_vcpu *vcpu,
  183. const struct coproc_params *p,
  184. const struct coproc_reg *r)
  185. {
  186. if (p->is_write)
  187. return ignore_write(vcpu, p);
  188. else
  189. return read_zero(vcpu, p);
  190. }
  191. #define access_pmcr pm_fake
  192. #define access_pmcntenset pm_fake
  193. #define access_pmcntenclr pm_fake
  194. #define access_pmovsr pm_fake
  195. #define access_pmselr pm_fake
  196. #define access_pmceid0 pm_fake
  197. #define access_pmceid1 pm_fake
  198. #define access_pmccntr pm_fake
  199. #define access_pmxevtyper pm_fake
  200. #define access_pmxevcntr pm_fake
  201. #define access_pmuserenr pm_fake
  202. #define access_pmintenset pm_fake
  203. #define access_pmintenclr pm_fake
  204. /* Architected CP15 registers.
  205. * CRn denotes the primary register number, but is copied to the CRm in the
  206. * user space API for 64-bit register access in line with the terminology used
  207. * in the ARM ARM.
  208. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  209. * registers preceding 32-bit ones.
  210. */
  211. static const struct coproc_reg cp15_regs[] = {
  212. /* MPIDR: we use VMPIDR for guest access. */
  213. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  214. NULL, reset_mpidr, c0_MPIDR },
  215. /* CSSELR: swapped by interrupt.S. */
  216. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  217. NULL, reset_unknown, c0_CSSELR },
  218. /* ACTLR: trapped by HCR.TAC bit. */
  219. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  220. access_actlr, reset_actlr, c1_ACTLR },
  221. /* CPACR: swapped by interrupt.S. */
  222. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  223. NULL, reset_val, c1_CPACR, 0x00000000 },
  224. /* TTBR0/TTBR1: swapped by interrupt.S. */
  225. { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
  226. { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
  227. /* TTBCR: swapped by interrupt.S. */
  228. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  229. NULL, reset_val, c2_TTBCR, 0x00000000 },
  230. /* DACR: swapped by interrupt.S. */
  231. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  232. NULL, reset_unknown, c3_DACR },
  233. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  234. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  235. NULL, reset_unknown, c5_DFSR },
  236. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  237. NULL, reset_unknown, c5_IFSR },
  238. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  239. NULL, reset_unknown, c5_ADFSR },
  240. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  241. NULL, reset_unknown, c5_AIFSR },
  242. /* DFAR/IFAR: swapped by interrupt.S. */
  243. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  244. NULL, reset_unknown, c6_DFAR },
  245. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  246. NULL, reset_unknown, c6_IFAR },
  247. /* PAR swapped by interrupt.S */
  248. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  249. /*
  250. * DC{C,I,CI}SW operations:
  251. */
  252. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  253. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  254. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  255. /*
  256. * L2CTLR access (guest wants to know #CPUs).
  257. */
  258. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  259. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  260. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  261. /*
  262. * Dummy performance monitor implementation.
  263. */
  264. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  265. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  266. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  267. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  268. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  269. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  270. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  271. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  272. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  273. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  274. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  275. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  276. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  277. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  278. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  279. NULL, reset_unknown, c10_PRRR},
  280. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  281. NULL, reset_unknown, c10_NMRR},
  282. /* VBAR: swapped by interrupt.S. */
  283. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  284. NULL, reset_val, c12_VBAR, 0x00000000 },
  285. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  286. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  287. NULL, reset_val, c13_CID, 0x00000000 },
  288. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  289. NULL, reset_unknown, c13_TID_URW },
  290. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  291. NULL, reset_unknown, c13_TID_URO },
  292. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  293. NULL, reset_unknown, c13_TID_PRIV },
  294. /* CNTKCTL: swapped by interrupt.S. */
  295. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  296. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  297. /* The Configuration Base Address Register. */
  298. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  299. };
  300. /* Target specific emulation tables */
  301. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  302. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  303. {
  304. unsigned int i;
  305. for (i = 1; i < table->num; i++)
  306. BUG_ON(cmp_reg(&table->table[i-1],
  307. &table->table[i]) >= 0);
  308. target_tables[table->target] = table;
  309. }
  310. /* Get specific register table for this target. */
  311. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  312. {
  313. struct kvm_coproc_target_table *table;
  314. table = target_tables[target];
  315. *num = table->num;
  316. return table->table;
  317. }
  318. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  319. const struct coproc_reg table[],
  320. unsigned int num)
  321. {
  322. unsigned int i;
  323. for (i = 0; i < num; i++) {
  324. const struct coproc_reg *r = &table[i];
  325. if (params->is_64bit != r->is_64)
  326. continue;
  327. if (params->CRn != r->CRn)
  328. continue;
  329. if (params->CRm != r->CRm)
  330. continue;
  331. if (params->Op1 != r->Op1)
  332. continue;
  333. if (params->Op2 != r->Op2)
  334. continue;
  335. return r;
  336. }
  337. return NULL;
  338. }
  339. static int emulate_cp15(struct kvm_vcpu *vcpu,
  340. const struct coproc_params *params)
  341. {
  342. size_t num;
  343. const struct coproc_reg *table, *r;
  344. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  345. params->CRm, params->Op2, params->is_write);
  346. table = get_target_table(vcpu->arch.target, &num);
  347. /* Search target-specific then generic table. */
  348. r = find_reg(params, table, num);
  349. if (!r)
  350. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  351. if (likely(r)) {
  352. /* If we don't have an accessor, we should never get here! */
  353. BUG_ON(!r->access);
  354. if (likely(r->access(vcpu, params, r))) {
  355. /* Skip instruction, since it was emulated */
  356. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  357. return 1;
  358. }
  359. /* If access function fails, it should complain. */
  360. } else {
  361. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  362. *vcpu_pc(vcpu));
  363. print_cp_instr(params);
  364. }
  365. kvm_inject_undefined(vcpu);
  366. return 1;
  367. }
  368. /**
  369. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  370. * @vcpu: The VCPU pointer
  371. * @run: The kvm_run struct
  372. */
  373. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  374. {
  375. struct coproc_params params;
  376. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  377. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  378. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  379. params.is_64bit = true;
  380. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  381. params.Op2 = 0;
  382. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  383. params.CRn = 0;
  384. return emulate_cp15(vcpu, &params);
  385. }
  386. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  387. const struct coproc_reg *table, size_t num)
  388. {
  389. unsigned long i;
  390. for (i = 0; i < num; i++)
  391. if (table[i].reset)
  392. table[i].reset(vcpu, &table[i]);
  393. }
  394. /**
  395. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  396. * @vcpu: The VCPU pointer
  397. * @run: The kvm_run struct
  398. */
  399. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  400. {
  401. struct coproc_params params;
  402. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  403. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  404. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  405. params.is_64bit = false;
  406. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  407. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  408. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  409. params.Rt2 = 0;
  410. return emulate_cp15(vcpu, &params);
  411. }
  412. /******************************************************************************
  413. * Userspace API
  414. *****************************************************************************/
  415. static bool index_to_params(u64 id, struct coproc_params *params)
  416. {
  417. switch (id & KVM_REG_SIZE_MASK) {
  418. case KVM_REG_SIZE_U32:
  419. /* Any unused index bits means it's not valid. */
  420. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  421. | KVM_REG_ARM_COPROC_MASK
  422. | KVM_REG_ARM_32_CRN_MASK
  423. | KVM_REG_ARM_CRM_MASK
  424. | KVM_REG_ARM_OPC1_MASK
  425. | KVM_REG_ARM_32_OPC2_MASK))
  426. return false;
  427. params->is_64bit = false;
  428. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  429. >> KVM_REG_ARM_32_CRN_SHIFT);
  430. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  431. >> KVM_REG_ARM_CRM_SHIFT);
  432. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  433. >> KVM_REG_ARM_OPC1_SHIFT);
  434. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  435. >> KVM_REG_ARM_32_OPC2_SHIFT);
  436. return true;
  437. case KVM_REG_SIZE_U64:
  438. /* Any unused index bits means it's not valid. */
  439. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  440. | KVM_REG_ARM_COPROC_MASK
  441. | KVM_REG_ARM_CRM_MASK
  442. | KVM_REG_ARM_OPC1_MASK))
  443. return false;
  444. params->is_64bit = true;
  445. /* CRm to CRn: see cp15_to_index for details */
  446. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  447. >> KVM_REG_ARM_CRM_SHIFT);
  448. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  449. >> KVM_REG_ARM_OPC1_SHIFT);
  450. params->Op2 = 0;
  451. params->CRm = 0;
  452. return true;
  453. default:
  454. return false;
  455. }
  456. }
  457. /* Decode an index value, and find the cp15 coproc_reg entry. */
  458. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  459. u64 id)
  460. {
  461. size_t num;
  462. const struct coproc_reg *table, *r;
  463. struct coproc_params params;
  464. /* We only do cp15 for now. */
  465. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  466. return NULL;
  467. if (!index_to_params(id, &params))
  468. return NULL;
  469. table = get_target_table(vcpu->arch.target, &num);
  470. r = find_reg(&params, table, num);
  471. if (!r)
  472. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  473. /* Not saved in the cp15 array? */
  474. if (r && !r->reg)
  475. r = NULL;
  476. return r;
  477. }
  478. /*
  479. * These are the invariant cp15 registers: we let the guest see the host
  480. * versions of these, so they're part of the guest state.
  481. *
  482. * A future CPU may provide a mechanism to present different values to
  483. * the guest, or a future kvm may trap them.
  484. */
  485. /* Unfortunately, there's no register-argument for mrc, so generate. */
  486. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  487. static void get_##name(struct kvm_vcpu *v, \
  488. const struct coproc_reg *r) \
  489. { \
  490. u32 val; \
  491. \
  492. asm volatile("mrc p15, " __stringify(op1) \
  493. ", %0, c" __stringify(crn) \
  494. ", c" __stringify(crm) \
  495. ", " __stringify(op2) "\n" : "=r" (val)); \
  496. ((struct coproc_reg *)r)->val = val; \
  497. }
  498. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  499. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  500. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  501. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  502. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  503. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  504. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  505. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  506. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  507. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  508. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  509. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  510. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  511. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  512. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  513. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  514. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  515. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  516. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  517. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  518. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  519. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  520. static struct coproc_reg invariant_cp15[] = {
  521. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  522. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  523. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  524. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  525. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  526. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  527. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  528. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  529. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  530. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  531. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  532. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  533. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  534. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  535. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  536. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  537. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  538. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  539. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  540. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  541. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  542. };
  543. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  544. {
  545. /* This Just Works because we are little endian. */
  546. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  547. return -EFAULT;
  548. return 0;
  549. }
  550. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  551. {
  552. /* This Just Works because we are little endian. */
  553. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  554. return -EFAULT;
  555. return 0;
  556. }
  557. static int get_invariant_cp15(u64 id, void __user *uaddr)
  558. {
  559. struct coproc_params params;
  560. const struct coproc_reg *r;
  561. if (!index_to_params(id, &params))
  562. return -ENOENT;
  563. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  564. if (!r)
  565. return -ENOENT;
  566. return reg_to_user(uaddr, &r->val, id);
  567. }
  568. static int set_invariant_cp15(u64 id, void __user *uaddr)
  569. {
  570. struct coproc_params params;
  571. const struct coproc_reg *r;
  572. int err;
  573. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  574. if (!index_to_params(id, &params))
  575. return -ENOENT;
  576. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  577. if (!r)
  578. return -ENOENT;
  579. err = reg_from_user(&val, uaddr, id);
  580. if (err)
  581. return err;
  582. /* This is what we mean by invariant: you can't change it. */
  583. if (r->val != val)
  584. return -EINVAL;
  585. return 0;
  586. }
  587. static bool is_valid_cache(u32 val)
  588. {
  589. u32 level, ctype;
  590. if (val >= CSSELR_MAX)
  591. return -ENOENT;
  592. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  593. level = (val >> 1);
  594. ctype = (cache_levels >> (level * 3)) & 7;
  595. switch (ctype) {
  596. case 0: /* No cache */
  597. return false;
  598. case 1: /* Instruction cache only */
  599. return (val & 1);
  600. case 2: /* Data cache only */
  601. case 4: /* Unified cache */
  602. return !(val & 1);
  603. case 3: /* Separate instruction and data caches */
  604. return true;
  605. default: /* Reserved: we can't know instruction or data. */
  606. return false;
  607. }
  608. }
  609. /* Which cache CCSIDR represents depends on CSSELR value. */
  610. static u32 get_ccsidr(u32 csselr)
  611. {
  612. u32 ccsidr;
  613. /* Make sure noone else changes CSSELR during this! */
  614. local_irq_disable();
  615. /* Put value into CSSELR */
  616. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  617. isb();
  618. /* Read result out of CCSIDR */
  619. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  620. local_irq_enable();
  621. return ccsidr;
  622. }
  623. static int demux_c15_get(u64 id, void __user *uaddr)
  624. {
  625. u32 val;
  626. u32 __user *uval = uaddr;
  627. /* Fail if we have unknown bits set. */
  628. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  629. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  630. return -ENOENT;
  631. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  632. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  633. if (KVM_REG_SIZE(id) != 4)
  634. return -ENOENT;
  635. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  636. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  637. if (!is_valid_cache(val))
  638. return -ENOENT;
  639. return put_user(get_ccsidr(val), uval);
  640. default:
  641. return -ENOENT;
  642. }
  643. }
  644. static int demux_c15_set(u64 id, void __user *uaddr)
  645. {
  646. u32 val, newval;
  647. u32 __user *uval = uaddr;
  648. /* Fail if we have unknown bits set. */
  649. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  650. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  651. return -ENOENT;
  652. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  653. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  654. if (KVM_REG_SIZE(id) != 4)
  655. return -ENOENT;
  656. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  657. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  658. if (!is_valid_cache(val))
  659. return -ENOENT;
  660. if (get_user(newval, uval))
  661. return -EFAULT;
  662. /* This is also invariant: you can't change it. */
  663. if (newval != get_ccsidr(val))
  664. return -EINVAL;
  665. return 0;
  666. default:
  667. return -ENOENT;
  668. }
  669. }
  670. #ifdef CONFIG_VFPv3
  671. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  672. KVM_REG_ARM_VFP_FPSCR,
  673. KVM_REG_ARM_VFP_FPINST,
  674. KVM_REG_ARM_VFP_FPINST2,
  675. KVM_REG_ARM_VFP_MVFR0,
  676. KVM_REG_ARM_VFP_MVFR1,
  677. KVM_REG_ARM_VFP_FPSID };
  678. static unsigned int num_fp_regs(void)
  679. {
  680. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  681. return 32;
  682. else
  683. return 16;
  684. }
  685. static unsigned int num_vfp_regs(void)
  686. {
  687. /* Normal FP regs + control regs. */
  688. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  689. }
  690. static int copy_vfp_regids(u64 __user *uindices)
  691. {
  692. unsigned int i;
  693. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  694. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  695. for (i = 0; i < num_fp_regs(); i++) {
  696. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  697. uindices))
  698. return -EFAULT;
  699. uindices++;
  700. }
  701. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  702. if (put_user(u32reg | vfp_sysregs[i], uindices))
  703. return -EFAULT;
  704. uindices++;
  705. }
  706. return num_vfp_regs();
  707. }
  708. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  709. {
  710. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  711. u32 val;
  712. /* Fail if we have unknown bits set. */
  713. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  714. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  715. return -ENOENT;
  716. if (vfpid < num_fp_regs()) {
  717. if (KVM_REG_SIZE(id) != 8)
  718. return -ENOENT;
  719. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  720. id);
  721. }
  722. /* FP control registers are all 32 bit. */
  723. if (KVM_REG_SIZE(id) != 4)
  724. return -ENOENT;
  725. switch (vfpid) {
  726. case KVM_REG_ARM_VFP_FPEXC:
  727. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  728. case KVM_REG_ARM_VFP_FPSCR:
  729. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  730. case KVM_REG_ARM_VFP_FPINST:
  731. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  732. case KVM_REG_ARM_VFP_FPINST2:
  733. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  734. case KVM_REG_ARM_VFP_MVFR0:
  735. val = fmrx(MVFR0);
  736. return reg_to_user(uaddr, &val, id);
  737. case KVM_REG_ARM_VFP_MVFR1:
  738. val = fmrx(MVFR1);
  739. return reg_to_user(uaddr, &val, id);
  740. case KVM_REG_ARM_VFP_FPSID:
  741. val = fmrx(FPSID);
  742. return reg_to_user(uaddr, &val, id);
  743. default:
  744. return -ENOENT;
  745. }
  746. }
  747. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  748. {
  749. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  750. u32 val;
  751. /* Fail if we have unknown bits set. */
  752. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  753. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  754. return -ENOENT;
  755. if (vfpid < num_fp_regs()) {
  756. if (KVM_REG_SIZE(id) != 8)
  757. return -ENOENT;
  758. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  759. uaddr, id);
  760. }
  761. /* FP control registers are all 32 bit. */
  762. if (KVM_REG_SIZE(id) != 4)
  763. return -ENOENT;
  764. switch (vfpid) {
  765. case KVM_REG_ARM_VFP_FPEXC:
  766. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  767. case KVM_REG_ARM_VFP_FPSCR:
  768. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  769. case KVM_REG_ARM_VFP_FPINST:
  770. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  771. case KVM_REG_ARM_VFP_FPINST2:
  772. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  773. /* These are invariant. */
  774. case KVM_REG_ARM_VFP_MVFR0:
  775. if (reg_from_user(&val, uaddr, id))
  776. return -EFAULT;
  777. if (val != fmrx(MVFR0))
  778. return -EINVAL;
  779. return 0;
  780. case KVM_REG_ARM_VFP_MVFR1:
  781. if (reg_from_user(&val, uaddr, id))
  782. return -EFAULT;
  783. if (val != fmrx(MVFR1))
  784. return -EINVAL;
  785. return 0;
  786. case KVM_REG_ARM_VFP_FPSID:
  787. if (reg_from_user(&val, uaddr, id))
  788. return -EFAULT;
  789. if (val != fmrx(FPSID))
  790. return -EINVAL;
  791. return 0;
  792. default:
  793. return -ENOENT;
  794. }
  795. }
  796. #else /* !CONFIG_VFPv3 */
  797. static unsigned int num_vfp_regs(void)
  798. {
  799. return 0;
  800. }
  801. static int copy_vfp_regids(u64 __user *uindices)
  802. {
  803. return 0;
  804. }
  805. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  806. {
  807. return -ENOENT;
  808. }
  809. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  810. {
  811. return -ENOENT;
  812. }
  813. #endif /* !CONFIG_VFPv3 */
  814. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  815. {
  816. const struct coproc_reg *r;
  817. void __user *uaddr = (void __user *)(long)reg->addr;
  818. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  819. return demux_c15_get(reg->id, uaddr);
  820. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  821. return vfp_get_reg(vcpu, reg->id, uaddr);
  822. r = index_to_coproc_reg(vcpu, reg->id);
  823. if (!r)
  824. return get_invariant_cp15(reg->id, uaddr);
  825. /* Note: copies two regs if size is 64 bit. */
  826. return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  827. }
  828. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  829. {
  830. const struct coproc_reg *r;
  831. void __user *uaddr = (void __user *)(long)reg->addr;
  832. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  833. return demux_c15_set(reg->id, uaddr);
  834. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  835. return vfp_set_reg(vcpu, reg->id, uaddr);
  836. r = index_to_coproc_reg(vcpu, reg->id);
  837. if (!r)
  838. return set_invariant_cp15(reg->id, uaddr);
  839. /* Note: copies two regs if size is 64 bit */
  840. return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  841. }
  842. static unsigned int num_demux_regs(void)
  843. {
  844. unsigned int i, count = 0;
  845. for (i = 0; i < CSSELR_MAX; i++)
  846. if (is_valid_cache(i))
  847. count++;
  848. return count;
  849. }
  850. static int write_demux_regids(u64 __user *uindices)
  851. {
  852. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  853. unsigned int i;
  854. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  855. for (i = 0; i < CSSELR_MAX; i++) {
  856. if (!is_valid_cache(i))
  857. continue;
  858. if (put_user(val | i, uindices))
  859. return -EFAULT;
  860. uindices++;
  861. }
  862. return 0;
  863. }
  864. static u64 cp15_to_index(const struct coproc_reg *reg)
  865. {
  866. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  867. if (reg->is_64) {
  868. val |= KVM_REG_SIZE_U64;
  869. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  870. /*
  871. * CRn always denotes the primary coproc. reg. nr. for the
  872. * in-kernel representation, but the user space API uses the
  873. * CRm for the encoding, because it is modelled after the
  874. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  875. * B3-1445
  876. */
  877. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  878. } else {
  879. val |= KVM_REG_SIZE_U32;
  880. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  881. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  882. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  883. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  884. }
  885. return val;
  886. }
  887. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  888. {
  889. if (!*uind)
  890. return true;
  891. if (put_user(cp15_to_index(reg), *uind))
  892. return false;
  893. (*uind)++;
  894. return true;
  895. }
  896. /* Assumed ordered tables, see kvm_coproc_table_init. */
  897. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  898. {
  899. const struct coproc_reg *i1, *i2, *end1, *end2;
  900. unsigned int total = 0;
  901. size_t num;
  902. /* We check for duplicates here, to allow arch-specific overrides. */
  903. i1 = get_target_table(vcpu->arch.target, &num);
  904. end1 = i1 + num;
  905. i2 = cp15_regs;
  906. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  907. BUG_ON(i1 == end1 || i2 == end2);
  908. /* Walk carefully, as both tables may refer to the same register. */
  909. while (i1 || i2) {
  910. int cmp = cmp_reg(i1, i2);
  911. /* target-specific overrides generic entry. */
  912. if (cmp <= 0) {
  913. /* Ignore registers we trap but don't save. */
  914. if (i1->reg) {
  915. if (!copy_reg_to_user(i1, &uind))
  916. return -EFAULT;
  917. total++;
  918. }
  919. } else {
  920. /* Ignore registers we trap but don't save. */
  921. if (i2->reg) {
  922. if (!copy_reg_to_user(i2, &uind))
  923. return -EFAULT;
  924. total++;
  925. }
  926. }
  927. if (cmp <= 0 && ++i1 == end1)
  928. i1 = NULL;
  929. if (cmp >= 0 && ++i2 == end2)
  930. i2 = NULL;
  931. }
  932. return total;
  933. }
  934. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  935. {
  936. return ARRAY_SIZE(invariant_cp15)
  937. + num_demux_regs()
  938. + num_vfp_regs()
  939. + walk_cp15(vcpu, (u64 __user *)NULL);
  940. }
  941. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  942. {
  943. unsigned int i;
  944. int err;
  945. /* Then give them all the invariant registers' indices. */
  946. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  947. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  948. return -EFAULT;
  949. uindices++;
  950. }
  951. err = walk_cp15(vcpu, uindices);
  952. if (err < 0)
  953. return err;
  954. uindices += err;
  955. err = copy_vfp_regids(uindices);
  956. if (err < 0)
  957. return err;
  958. uindices += err;
  959. return write_demux_regids(uindices);
  960. }
  961. void kvm_coproc_table_init(void)
  962. {
  963. unsigned int i;
  964. /* Make sure tables are unique and in order. */
  965. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  966. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  967. /* We abuse the reset function to overwrite the table itself. */
  968. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  969. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  970. /*
  971. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  972. *
  973. * If software reads the Cache Type fields from Ctype1
  974. * upwards, once it has seen a value of 0b000, no caches
  975. * exist at further-out levels of the hierarchy. So, for
  976. * example, if Ctype3 is the first Cache Type field with a
  977. * value of 0b000, the values of Ctype4 to Ctype7 must be
  978. * ignored.
  979. */
  980. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  981. for (i = 0; i < 7; i++)
  982. if (((cache_levels >> (i*3)) & 7) == 0)
  983. break;
  984. /* Clear all higher bits. */
  985. cache_levels &= (1 << (i*3))-1;
  986. }
  987. /**
  988. * kvm_reset_coprocs - sets cp15 registers to reset value
  989. * @vcpu: The VCPU pointer
  990. *
  991. * This function finds the right table above and sets the registers on the
  992. * virtual CPU struct to their architecturally defined reset values.
  993. */
  994. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  995. {
  996. size_t num;
  997. const struct coproc_reg *table;
  998. /* Catch someone adding a register without putting in reset entry. */
  999. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  1000. /* Generic chip reset first (so target could override). */
  1001. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1002. table = get_target_table(vcpu->arch.target, &num);
  1003. reset_coproc_regs(vcpu, table, num);
  1004. for (num = 1; num < NR_CP15_REGS; num++)
  1005. if (vcpu->arch.cp15[num] == 0x42424242)
  1006. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  1007. }