smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/irq_work.h>
  29. #include <linux/atomic.h>
  30. #include <asm/smp.h>
  31. #include <asm/cacheflush.h>
  32. #include <asm/cpu.h>
  33. #include <asm/cputype.h>
  34. #include <asm/exception.h>
  35. #include <asm/idmap.h>
  36. #include <asm/topology.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/processor.h>
  41. #include <asm/sections.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/ptrace.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mpu.h>
  48. /*
  49. * as from 2.5, kernels no longer have an init_tasks structure
  50. * so we need some other way of telling a new secondary core
  51. * where to place its SVC stack
  52. */
  53. struct secondary_data secondary_data;
  54. /*
  55. * control for which core is the next to come out of the secondary
  56. * boot "holding pen"
  57. */
  58. volatile int pen_release = -1;
  59. enum ipi_msg_type {
  60. IPI_WAKEUP,
  61. IPI_TIMER,
  62. IPI_RESCHEDULE,
  63. IPI_CALL_FUNC,
  64. IPI_CALL_FUNC_SINGLE,
  65. IPI_CPU_STOP,
  66. IPI_IRQ_WORK,
  67. IPI_COMPLETION,
  68. };
  69. static DECLARE_COMPLETION(cpu_running);
  70. static struct smp_operations smp_ops;
  71. void __init smp_set_ops(struct smp_operations *ops)
  72. {
  73. if (ops)
  74. smp_ops = *ops;
  75. };
  76. static unsigned long get_arch_pgd(pgd_t *pgd)
  77. {
  78. phys_addr_t pgdir = virt_to_idmap(pgd);
  79. BUG_ON(pgdir & ARCH_PGD_MASK);
  80. return pgdir >> ARCH_PGD_SHIFT;
  81. }
  82. int __cpu_up(unsigned int cpu, struct task_struct *idle)
  83. {
  84. int ret;
  85. /*
  86. * We need to tell the secondary core where to find
  87. * its stack and the page tables.
  88. */
  89. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  90. #ifdef CONFIG_ARM_MPU
  91. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  92. #endif
  93. #ifdef CONFIG_MMU
  94. secondary_data.pgdir = get_arch_pgd(idmap_pgd);
  95. secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
  96. #endif
  97. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  98. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  99. /*
  100. * Now bring the CPU into our world.
  101. */
  102. ret = boot_secondary(cpu, idle);
  103. if (ret == 0) {
  104. /*
  105. * CPU was successfully started, wait for it
  106. * to come online or time out.
  107. */
  108. wait_for_completion_timeout(&cpu_running,
  109. msecs_to_jiffies(1000));
  110. if (!cpu_online(cpu)) {
  111. pr_crit("CPU%u: failed to come online\n", cpu);
  112. ret = -EIO;
  113. }
  114. } else {
  115. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  116. }
  117. memset(&secondary_data, 0, sizeof(secondary_data));
  118. return ret;
  119. }
  120. /* platform specific SMP operations */
  121. void __init smp_init_cpus(void)
  122. {
  123. if (smp_ops.smp_init_cpus)
  124. smp_ops.smp_init_cpus();
  125. }
  126. int boot_secondary(unsigned int cpu, struct task_struct *idle)
  127. {
  128. if (smp_ops.smp_boot_secondary)
  129. return smp_ops.smp_boot_secondary(cpu, idle);
  130. return -ENOSYS;
  131. }
  132. int platform_can_cpu_hotplug(void)
  133. {
  134. #ifdef CONFIG_HOTPLUG_CPU
  135. if (smp_ops.cpu_kill)
  136. return 1;
  137. #endif
  138. return 0;
  139. }
  140. #ifdef CONFIG_HOTPLUG_CPU
  141. static int platform_cpu_kill(unsigned int cpu)
  142. {
  143. if (smp_ops.cpu_kill)
  144. return smp_ops.cpu_kill(cpu);
  145. return 1;
  146. }
  147. static int platform_cpu_disable(unsigned int cpu)
  148. {
  149. if (smp_ops.cpu_disable)
  150. return smp_ops.cpu_disable(cpu);
  151. /*
  152. * By default, allow disabling all CPUs except the first one,
  153. * since this is special on a lot of platforms, e.g. because
  154. * of clock tick interrupts.
  155. */
  156. return cpu == 0 ? -EPERM : 0;
  157. }
  158. /*
  159. * __cpu_disable runs on the processor to be shutdown.
  160. */
  161. int __cpu_disable(void)
  162. {
  163. unsigned int cpu = smp_processor_id();
  164. int ret;
  165. ret = platform_cpu_disable(cpu);
  166. if (ret)
  167. return ret;
  168. /*
  169. * Take this CPU offline. Once we clear this, we can't return,
  170. * and we must not schedule until we're ready to give up the cpu.
  171. */
  172. set_cpu_online(cpu, false);
  173. /*
  174. * OK - migrate IRQs away from this CPU
  175. */
  176. migrate_irqs();
  177. /*
  178. * Flush user cache and TLB mappings, and then remove this CPU
  179. * from the vm mask set of all processes.
  180. *
  181. * Caches are flushed to the Level of Unification Inner Shareable
  182. * to write-back dirty lines to unified caches shared by all CPUs.
  183. */
  184. flush_cache_louis();
  185. local_flush_tlb_all();
  186. clear_tasks_mm_cpumask(cpu);
  187. return 0;
  188. }
  189. static DECLARE_COMPLETION(cpu_died);
  190. /*
  191. * called on the thread which is asking for a CPU to be shutdown -
  192. * waits until shutdown has completed, or it is timed out.
  193. */
  194. void __cpu_die(unsigned int cpu)
  195. {
  196. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  197. pr_err("CPU%u: cpu didn't die\n", cpu);
  198. return;
  199. }
  200. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  201. /*
  202. * platform_cpu_kill() is generally expected to do the powering off
  203. * and/or cutting of clocks to the dying CPU. Optionally, this may
  204. * be done by the CPU which is dying in preference to supporting
  205. * this call, but that means there is _no_ synchronisation between
  206. * the requesting CPU and the dying CPU actually losing power.
  207. */
  208. if (!platform_cpu_kill(cpu))
  209. printk("CPU%u: unable to kill\n", cpu);
  210. }
  211. /*
  212. * Called from the idle thread for the CPU which has been shutdown.
  213. *
  214. * Note that we disable IRQs here, but do not re-enable them
  215. * before returning to the caller. This is also the behaviour
  216. * of the other hotplug-cpu capable cores, so presumably coming
  217. * out of idle fixes this.
  218. */
  219. void __ref cpu_die(void)
  220. {
  221. unsigned int cpu = smp_processor_id();
  222. idle_task_exit();
  223. local_irq_disable();
  224. /*
  225. * Flush the data out of the L1 cache for this CPU. This must be
  226. * before the completion to ensure that data is safely written out
  227. * before platform_cpu_kill() gets called - which may disable
  228. * *this* CPU and power down its cache.
  229. */
  230. flush_cache_louis();
  231. /*
  232. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  233. * this returns, power and/or clocks can be removed at any point
  234. * from this CPU and its cache by platform_cpu_kill().
  235. */
  236. complete(&cpu_died);
  237. /*
  238. * Ensure that the cache lines associated with that completion are
  239. * written out. This covers the case where _this_ CPU is doing the
  240. * powering down, to ensure that the completion is visible to the
  241. * CPU waiting for this one.
  242. */
  243. flush_cache_louis();
  244. /*
  245. * The actual CPU shutdown procedure is at least platform (if not
  246. * CPU) specific. This may remove power, or it may simply spin.
  247. *
  248. * Platforms are generally expected *NOT* to return from this call,
  249. * although there are some which do because they have no way to
  250. * power down the CPU. These platforms are the _only_ reason we
  251. * have a return path which uses the fragment of assembly below.
  252. *
  253. * The return path should not be used for platforms which can
  254. * power off the CPU.
  255. */
  256. if (smp_ops.cpu_die)
  257. smp_ops.cpu_die(cpu);
  258. /*
  259. * Do not return to the idle loop - jump back to the secondary
  260. * cpu initialisation. There's some initialisation which needs
  261. * to be repeated to undo the effects of taking the CPU offline.
  262. */
  263. __asm__("mov sp, %0\n"
  264. " mov fp, #0\n"
  265. " b secondary_start_kernel"
  266. :
  267. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  268. }
  269. #endif /* CONFIG_HOTPLUG_CPU */
  270. /*
  271. * Called by both boot and secondaries to move global data into
  272. * per-processor storage.
  273. */
  274. static void smp_store_cpu_info(unsigned int cpuid)
  275. {
  276. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  277. cpu_info->loops_per_jiffy = loops_per_jiffy;
  278. cpu_info->cpuid = read_cpuid_id();
  279. store_cpu_topology(cpuid);
  280. }
  281. /*
  282. * This is the secondary CPU boot entry. We're using this CPUs
  283. * idle thread stack, but a set of temporary page tables.
  284. */
  285. asmlinkage void secondary_start_kernel(void)
  286. {
  287. struct mm_struct *mm = &init_mm;
  288. unsigned int cpu;
  289. /*
  290. * The identity mapping is uncached (strongly ordered), so
  291. * switch away from it before attempting any exclusive accesses.
  292. */
  293. cpu_switch_mm(mm->pgd, mm);
  294. local_flush_bp_all();
  295. enter_lazy_tlb(mm, current);
  296. local_flush_tlb_all();
  297. /*
  298. * All kernel threads share the same mm context; grab a
  299. * reference and switch to it.
  300. */
  301. cpu = smp_processor_id();
  302. atomic_inc(&mm->mm_count);
  303. current->active_mm = mm;
  304. cpumask_set_cpu(cpu, mm_cpumask(mm));
  305. cpu_init();
  306. printk("CPU%u: Booted secondary processor\n", cpu);
  307. preempt_disable();
  308. trace_hardirqs_off();
  309. /*
  310. * Give the platform a chance to do its own initialisation.
  311. */
  312. if (smp_ops.smp_secondary_init)
  313. smp_ops.smp_secondary_init(cpu);
  314. notify_cpu_starting(cpu);
  315. calibrate_delay();
  316. smp_store_cpu_info(cpu);
  317. /*
  318. * OK, now it's safe to let the boot CPU continue. Wait for
  319. * the CPU migration code to notice that the CPU is online
  320. * before we continue - which happens after __cpu_up returns.
  321. */
  322. set_cpu_online(cpu, true);
  323. complete(&cpu_running);
  324. local_irq_enable();
  325. local_fiq_enable();
  326. /*
  327. * OK, it's off to the idle thread for us
  328. */
  329. cpu_startup_entry(CPUHP_ONLINE);
  330. }
  331. void __init smp_cpus_done(unsigned int max_cpus)
  332. {
  333. printk(KERN_INFO "SMP: Total of %d processors activated.\n",
  334. num_online_cpus());
  335. hyp_mode_check();
  336. }
  337. void __init smp_prepare_boot_cpu(void)
  338. {
  339. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  340. }
  341. void __init smp_prepare_cpus(unsigned int max_cpus)
  342. {
  343. unsigned int ncores = num_possible_cpus();
  344. init_cpu_topology();
  345. smp_store_cpu_info(smp_processor_id());
  346. /*
  347. * are we trying to boot more cores than exist?
  348. */
  349. if (max_cpus > ncores)
  350. max_cpus = ncores;
  351. if (ncores > 1 && max_cpus) {
  352. /*
  353. * Initialise the present map, which describes the set of CPUs
  354. * actually populated at the present time. A platform should
  355. * re-initialize the map in the platforms smp_prepare_cpus()
  356. * if present != possible (e.g. physical hotplug).
  357. */
  358. init_cpu_present(cpu_possible_mask);
  359. /*
  360. * Initialise the SCU if there are more than one CPU
  361. * and let them know where to start.
  362. */
  363. if (smp_ops.smp_prepare_cpus)
  364. smp_ops.smp_prepare_cpus(max_cpus);
  365. }
  366. }
  367. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  368. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  369. {
  370. if (!smp_cross_call)
  371. smp_cross_call = fn;
  372. }
  373. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  374. {
  375. smp_cross_call(mask, IPI_CALL_FUNC);
  376. }
  377. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  378. {
  379. smp_cross_call(mask, IPI_WAKEUP);
  380. }
  381. void arch_send_call_function_single_ipi(int cpu)
  382. {
  383. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  384. }
  385. #ifdef CONFIG_IRQ_WORK
  386. void arch_irq_work_raise(void)
  387. {
  388. if (is_smp())
  389. smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
  390. }
  391. #endif
  392. static const char *ipi_types[NR_IPI] = {
  393. #define S(x,s) [x] = s
  394. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  395. S(IPI_TIMER, "Timer broadcast interrupts"),
  396. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  397. S(IPI_CALL_FUNC, "Function call interrupts"),
  398. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  399. S(IPI_CPU_STOP, "CPU stop interrupts"),
  400. S(IPI_IRQ_WORK, "IRQ work interrupts"),
  401. S(IPI_COMPLETION, "completion interrupts"),
  402. };
  403. void show_ipi_list(struct seq_file *p, int prec)
  404. {
  405. unsigned int cpu, i;
  406. for (i = 0; i < NR_IPI; i++) {
  407. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  408. for_each_online_cpu(cpu)
  409. seq_printf(p, "%10u ",
  410. __get_irq_stat(cpu, ipi_irqs[i]));
  411. seq_printf(p, " %s\n", ipi_types[i]);
  412. }
  413. }
  414. u64 smp_irq_stat_cpu(unsigned int cpu)
  415. {
  416. u64 sum = 0;
  417. int i;
  418. for (i = 0; i < NR_IPI; i++)
  419. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  420. return sum;
  421. }
  422. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  423. void tick_broadcast(const struct cpumask *mask)
  424. {
  425. smp_cross_call(mask, IPI_TIMER);
  426. }
  427. #endif
  428. static DEFINE_RAW_SPINLOCK(stop_lock);
  429. /*
  430. * ipi_cpu_stop - handle IPI from smp_send_stop()
  431. */
  432. static void ipi_cpu_stop(unsigned int cpu)
  433. {
  434. if (system_state == SYSTEM_BOOTING ||
  435. system_state == SYSTEM_RUNNING) {
  436. raw_spin_lock(&stop_lock);
  437. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  438. dump_stack();
  439. raw_spin_unlock(&stop_lock);
  440. }
  441. set_cpu_online(cpu, false);
  442. local_fiq_disable();
  443. local_irq_disable();
  444. while (1)
  445. cpu_relax();
  446. }
  447. static DEFINE_PER_CPU(struct completion *, cpu_completion);
  448. int register_ipi_completion(struct completion *completion, int cpu)
  449. {
  450. per_cpu(cpu_completion, cpu) = completion;
  451. return IPI_COMPLETION;
  452. }
  453. static void ipi_complete(unsigned int cpu)
  454. {
  455. complete(per_cpu(cpu_completion, cpu));
  456. }
  457. /*
  458. * Main handler for inter-processor interrupts
  459. */
  460. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  461. {
  462. handle_IPI(ipinr, regs);
  463. }
  464. void handle_IPI(int ipinr, struct pt_regs *regs)
  465. {
  466. unsigned int cpu = smp_processor_id();
  467. struct pt_regs *old_regs = set_irq_regs(regs);
  468. if (ipinr < NR_IPI)
  469. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  470. switch (ipinr) {
  471. case IPI_WAKEUP:
  472. break;
  473. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  474. case IPI_TIMER:
  475. irq_enter();
  476. tick_receive_broadcast();
  477. irq_exit();
  478. break;
  479. #endif
  480. case IPI_RESCHEDULE:
  481. scheduler_ipi();
  482. break;
  483. case IPI_CALL_FUNC:
  484. irq_enter();
  485. generic_smp_call_function_interrupt();
  486. irq_exit();
  487. break;
  488. case IPI_CALL_FUNC_SINGLE:
  489. irq_enter();
  490. generic_smp_call_function_single_interrupt();
  491. irq_exit();
  492. break;
  493. case IPI_CPU_STOP:
  494. irq_enter();
  495. ipi_cpu_stop(cpu);
  496. irq_exit();
  497. break;
  498. #ifdef CONFIG_IRQ_WORK
  499. case IPI_IRQ_WORK:
  500. irq_enter();
  501. irq_work_run();
  502. irq_exit();
  503. break;
  504. #endif
  505. case IPI_COMPLETION:
  506. irq_enter();
  507. ipi_complete(cpu);
  508. irq_exit();
  509. break;
  510. default:
  511. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  512. cpu, ipinr);
  513. break;
  514. }
  515. set_irq_regs(old_regs);
  516. }
  517. void smp_send_reschedule(int cpu)
  518. {
  519. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  520. }
  521. void smp_send_stop(void)
  522. {
  523. unsigned long timeout;
  524. struct cpumask mask;
  525. cpumask_copy(&mask, cpu_online_mask);
  526. cpumask_clear_cpu(smp_processor_id(), &mask);
  527. if (!cpumask_empty(&mask))
  528. smp_cross_call(&mask, IPI_CPU_STOP);
  529. /* Wait up to one second for other CPUs to stop */
  530. timeout = USEC_PER_SEC;
  531. while (num_online_cpus() > 1 && timeout--)
  532. udelay(1);
  533. if (num_online_cpus() > 1)
  534. pr_warning("SMP: failed to stop secondary CPUs\n");
  535. }
  536. /*
  537. * not supported here
  538. */
  539. int setup_profiling_timer(unsigned int multiplier)
  540. {
  541. return -EINVAL;
  542. }
  543. #ifdef CONFIG_CPU_FREQ
  544. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  545. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  546. static unsigned long global_l_p_j_ref;
  547. static unsigned long global_l_p_j_ref_freq;
  548. static int cpufreq_callback(struct notifier_block *nb,
  549. unsigned long val, void *data)
  550. {
  551. struct cpufreq_freqs *freq = data;
  552. int cpu = freq->cpu;
  553. if (freq->flags & CPUFREQ_CONST_LOOPS)
  554. return NOTIFY_OK;
  555. if (!per_cpu(l_p_j_ref, cpu)) {
  556. per_cpu(l_p_j_ref, cpu) =
  557. per_cpu(cpu_data, cpu).loops_per_jiffy;
  558. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  559. if (!global_l_p_j_ref) {
  560. global_l_p_j_ref = loops_per_jiffy;
  561. global_l_p_j_ref_freq = freq->old;
  562. }
  563. }
  564. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  565. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  566. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  567. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  568. global_l_p_j_ref_freq,
  569. freq->new);
  570. per_cpu(cpu_data, cpu).loops_per_jiffy =
  571. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  572. per_cpu(l_p_j_ref_freq, cpu),
  573. freq->new);
  574. }
  575. return NOTIFY_OK;
  576. }
  577. static struct notifier_block cpufreq_notifier = {
  578. .notifier_call = cpufreq_callback,
  579. };
  580. static int __init register_cpufreq_notifier(void)
  581. {
  582. return cpufreq_register_notifier(&cpufreq_notifier,
  583. CPUFREQ_TRANSITION_NOTIFIER);
  584. }
  585. core_initcall(register_cpufreq_notifier);
  586. #endif