amd64_edac.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
  16. /*
  17. * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
  18. * for DDR2 DRAM mapping.
  19. */
  20. u32 revf_quad_ddr2_shift[] = {
  21. 0, /* 0000b NULL DIMM (128mb) */
  22. 28, /* 0001b 256mb */
  23. 29, /* 0010b 512mb */
  24. 29, /* 0011b 512mb */
  25. 29, /* 0100b 512mb */
  26. 30, /* 0101b 1gb */
  27. 30, /* 0110b 1gb */
  28. 31, /* 0111b 2gb */
  29. 31, /* 1000b 2gb */
  30. 32, /* 1001b 4gb */
  31. 32, /* 1010b 4gb */
  32. 33, /* 1011b 8gb */
  33. 0, /* 1100b future */
  34. 0, /* 1101b future */
  35. 0, /* 1110b future */
  36. 0 /* 1111b future */
  37. };
  38. /*
  39. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  40. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  41. * or higher value'.
  42. *
  43. *FIXME: Produce a better mapping/linearisation.
  44. */
  45. struct scrubrate scrubrates[] = {
  46. { 0x01, 1600000000UL},
  47. { 0x02, 800000000UL},
  48. { 0x03, 400000000UL},
  49. { 0x04, 200000000UL},
  50. { 0x05, 100000000UL},
  51. { 0x06, 50000000UL},
  52. { 0x07, 25000000UL},
  53. { 0x08, 12284069UL},
  54. { 0x09, 6274509UL},
  55. { 0x0A, 3121951UL},
  56. { 0x0B, 1560975UL},
  57. { 0x0C, 781440UL},
  58. { 0x0D, 390720UL},
  59. { 0x0E, 195300UL},
  60. { 0x0F, 97650UL},
  61. { 0x10, 48854UL},
  62. { 0x11, 24427UL},
  63. { 0x12, 12213UL},
  64. { 0x13, 6101UL},
  65. { 0x14, 3051UL},
  66. { 0x15, 1523UL},
  67. { 0x16, 761UL},
  68. { 0x00, 0UL}, /* scrubbing off */
  69. };
  70. /*
  71. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  72. * hardware and can involve L2 cache, dcache as well as the main memory. With
  73. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  74. * functionality.
  75. *
  76. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  77. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  78. * bytes/sec for the setting.
  79. *
  80. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  81. * other archs, we might not have access to the caches directly.
  82. */
  83. /*
  84. * scan the scrub rate mapping table for a close or matching bandwidth value to
  85. * issue. If requested is too big, then use last maximum value found.
  86. */
  87. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  88. u32 min_scrubrate)
  89. {
  90. u32 scrubval;
  91. int i;
  92. /*
  93. * map the configured rate (new_bw) to a value specific to the AMD64
  94. * memory controller and apply to register. Search for the first
  95. * bandwidth entry that is greater or equal than the setting requested
  96. * and program that. If at last entry, turn off DRAM scrubbing.
  97. */
  98. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  99. /*
  100. * skip scrub rates which aren't recommended
  101. * (see F10 BKDG, F3x58)
  102. */
  103. if (scrubrates[i].scrubval < min_scrubrate)
  104. continue;
  105. if (scrubrates[i].bandwidth <= new_bw)
  106. break;
  107. /*
  108. * if no suitable bandwidth found, turn off DRAM scrubbing
  109. * entirely by falling back to the last element in the
  110. * scrubrates array.
  111. */
  112. }
  113. scrubval = scrubrates[i].scrubval;
  114. if (scrubval)
  115. edac_printk(KERN_DEBUG, EDAC_MC,
  116. "Setting scrub rate bandwidth: %u\n",
  117. scrubrates[i].bandwidth);
  118. else
  119. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  120. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  121. return 0;
  122. }
  123. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  124. {
  125. struct amd64_pvt *pvt = mci->pvt_info;
  126. u32 min_scrubrate = 0x0;
  127. switch (boot_cpu_data.x86) {
  128. case 0xf:
  129. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  130. break;
  131. case 0x10:
  132. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  133. break;
  134. case 0x11:
  135. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  136. break;
  137. default:
  138. amd64_printk(KERN_ERR, "Unsupported family!\n");
  139. break;
  140. }
  141. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  142. min_scrubrate);
  143. }
  144. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  145. {
  146. struct amd64_pvt *pvt = mci->pvt_info;
  147. u32 scrubval = 0;
  148. int status = -1, i, ret = 0;
  149. ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  150. if (ret)
  151. debugf0("Reading K8_SCRCTRL failed\n");
  152. scrubval = scrubval & 0x001F;
  153. edac_printk(KERN_DEBUG, EDAC_MC,
  154. "pci-read, sdram scrub control value: %d \n", scrubval);
  155. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  156. if (scrubrates[i].scrubval == scrubval) {
  157. *bw = scrubrates[i].bandwidth;
  158. status = 0;
  159. break;
  160. }
  161. }
  162. return status;
  163. }
  164. /* Map from a CSROW entry to the mask entry that operates on it */
  165. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  166. {
  167. return csrow >> (pvt->num_dcsm >> 3);
  168. }
  169. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  170. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  171. {
  172. if (dct == 0)
  173. return pvt->dcsb0[csrow];
  174. else
  175. return pvt->dcsb1[csrow];
  176. }
  177. /*
  178. * Return the 'mask' address the i'th CS entry. This function is needed because
  179. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  180. * different.
  181. */
  182. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  183. {
  184. if (dct == 0)
  185. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  186. else
  187. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  188. }
  189. /*
  190. * In *base and *limit, pass back the full 40-bit base and limit physical
  191. * addresses for the node given by node_id. This information is obtained from
  192. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  193. * base and limit addresses are of type SysAddr, as defined at the start of
  194. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  195. * in the address range they represent.
  196. */
  197. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  198. u64 *base, u64 *limit)
  199. {
  200. *base = pvt->dram_base[node_id];
  201. *limit = pvt->dram_limit[node_id];
  202. }
  203. /*
  204. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  205. * with node_id
  206. */
  207. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  208. u64 sys_addr, int node_id)
  209. {
  210. u64 base, limit, addr;
  211. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  212. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  213. * all ones if the most significant implemented address bit is 1.
  214. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  215. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  216. * Application Programming.
  217. */
  218. addr = sys_addr & 0x000000ffffffffffull;
  219. return (addr >= base) && (addr <= limit);
  220. }
  221. /*
  222. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  223. * mem_ctl_info structure for the node that the SysAddr maps to.
  224. *
  225. * On failure, return NULL.
  226. */
  227. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  228. u64 sys_addr)
  229. {
  230. struct amd64_pvt *pvt;
  231. int node_id;
  232. u32 intlv_en, bits;
  233. /*
  234. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  235. * 3.4.4.2) registers to map the SysAddr to a node ID.
  236. */
  237. pvt = mci->pvt_info;
  238. /*
  239. * The value of this field should be the same for all DRAM Base
  240. * registers. Therefore we arbitrarily choose to read it from the
  241. * register for node 0.
  242. */
  243. intlv_en = pvt->dram_IntlvEn[0];
  244. if (intlv_en == 0) {
  245. for (node_id = 0; ; ) {
  246. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  247. break;
  248. if (++node_id >= DRAM_REG_COUNT)
  249. goto err_no_match;
  250. }
  251. goto found;
  252. }
  253. if (unlikely((intlv_en != (0x01 << 8)) &&
  254. (intlv_en != (0x03 << 8)) &&
  255. (intlv_en != (0x07 << 8)))) {
  256. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  257. "IntlvEn field of DRAM Base Register for node 0: "
  258. "This probably indicates a BIOS bug.\n", intlv_en);
  259. return NULL;
  260. }
  261. bits = (((u32) sys_addr) >> 12) & intlv_en;
  262. for (node_id = 0; ; ) {
  263. if ((pvt->dram_limit[node_id] & intlv_en) == bits)
  264. break; /* intlv_sel field matches */
  265. if (++node_id >= DRAM_REG_COUNT)
  266. goto err_no_match;
  267. }
  268. /* sanity test for sys_addr */
  269. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  270. amd64_printk(KERN_WARNING,
  271. "%s(): sys_addr 0x%lx falls outside base/limit "
  272. "address range for node %d with node interleaving "
  273. "enabled.\n", __func__, (unsigned long)sys_addr,
  274. node_id);
  275. return NULL;
  276. }
  277. found:
  278. return edac_mc_find(node_id);
  279. err_no_match:
  280. debugf2("sys_addr 0x%lx doesn't match any node\n",
  281. (unsigned long)sys_addr);
  282. return NULL;
  283. }
  284. /*
  285. * Extract the DRAM CS base address from selected csrow register.
  286. */
  287. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  288. {
  289. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  290. pvt->dcs_shift;
  291. }
  292. /*
  293. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  294. */
  295. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  296. {
  297. u64 dcsm_bits, other_bits;
  298. u64 mask;
  299. /* Extract bits from DRAM CS Mask. */
  300. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  301. other_bits = pvt->dcsm_mask;
  302. other_bits = ~(other_bits << pvt->dcs_shift);
  303. /*
  304. * The extracted bits from DCSM belong in the spaces represented by
  305. * the cleared bits in other_bits.
  306. */
  307. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  308. return mask;
  309. }
  310. /*
  311. * @input_addr is an InputAddr associated with the node given by mci. Return the
  312. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  313. */
  314. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  315. {
  316. struct amd64_pvt *pvt;
  317. int csrow;
  318. u64 base, mask;
  319. pvt = mci->pvt_info;
  320. /*
  321. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  322. * base/mask register pair, test the condition shown near the start of
  323. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  324. */
  325. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  326. /* This DRAM chip select is disabled on this node */
  327. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  328. continue;
  329. base = base_from_dct_base(pvt, csrow);
  330. mask = ~mask_from_dct_mask(pvt, csrow);
  331. if ((input_addr & mask) == (base & mask)) {
  332. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  333. (unsigned long)input_addr, csrow,
  334. pvt->mc_node_id);
  335. return csrow;
  336. }
  337. }
  338. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  339. (unsigned long)input_addr, pvt->mc_node_id);
  340. return -1;
  341. }
  342. /*
  343. * Return the base value defined by the DRAM Base register for the node
  344. * represented by mci. This function returns the full 40-bit value despite the
  345. * fact that the register only stores bits 39-24 of the value. See section
  346. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  347. */
  348. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  349. {
  350. struct amd64_pvt *pvt = mci->pvt_info;
  351. return pvt->dram_base[pvt->mc_node_id];
  352. }
  353. /*
  354. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  355. * for the node represented by mci. Info is passed back in *hole_base,
  356. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  357. * info is invalid. Info may be invalid for either of the following reasons:
  358. *
  359. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  360. * Address Register does not exist.
  361. *
  362. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  363. * indicating that its contents are not valid.
  364. *
  365. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  366. * complete 32-bit values despite the fact that the bitfields in the DHAR
  367. * only represent bits 31-24 of the base and offset values.
  368. */
  369. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  370. u64 *hole_offset, u64 *hole_size)
  371. {
  372. struct amd64_pvt *pvt = mci->pvt_info;
  373. u64 base;
  374. /* only revE and later have the DRAM Hole Address Register */
  375. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  376. debugf1(" revision %d for node %d does not support DHAR\n",
  377. pvt->ext_model, pvt->mc_node_id);
  378. return 1;
  379. }
  380. /* only valid for Fam10h */
  381. if (boot_cpu_data.x86 == 0x10 &&
  382. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  383. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  384. return 1;
  385. }
  386. if ((pvt->dhar & DHAR_VALID) == 0) {
  387. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  388. pvt->mc_node_id);
  389. return 1;
  390. }
  391. /* This node has Memory Hoisting */
  392. /* +------------------+--------------------+--------------------+-----
  393. * | memory | DRAM hole | relocated |
  394. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  395. * | | | DRAM hole |
  396. * | | | [0x100000000, |
  397. * | | | (0x100000000+ |
  398. * | | | (0xffffffff-x))] |
  399. * +------------------+--------------------+--------------------+-----
  400. *
  401. * Above is a diagram of physical memory showing the DRAM hole and the
  402. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  403. * starts at address x (the base address) and extends through address
  404. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  405. * addresses in the hole so that they start at 0x100000000.
  406. */
  407. base = dhar_base(pvt->dhar);
  408. *hole_base = base;
  409. *hole_size = (0x1ull << 32) - base;
  410. if (boot_cpu_data.x86 > 0xf)
  411. *hole_offset = f10_dhar_offset(pvt->dhar);
  412. else
  413. *hole_offset = k8_dhar_offset(pvt->dhar);
  414. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  415. pvt->mc_node_id, (unsigned long)*hole_base,
  416. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  417. return 0;
  418. }
  419. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  420. /*
  421. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  422. * assumed that sys_addr maps to the node given by mci.
  423. *
  424. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  425. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  426. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  427. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  428. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  429. * These parts of the documentation are unclear. I interpret them as follows:
  430. *
  431. * When node n receives a SysAddr, it processes the SysAddr as follows:
  432. *
  433. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  434. * Limit registers for node n. If the SysAddr is not within the range
  435. * specified by the base and limit values, then node n ignores the Sysaddr
  436. * (since it does not map to node n). Otherwise continue to step 2 below.
  437. *
  438. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  439. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  440. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  441. * hole. If not, skip to step 3 below. Else get the value of the
  442. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  443. * offset defined by this value from the SysAddr.
  444. *
  445. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  446. * Base register for node n. To obtain the DramAddr, subtract the base
  447. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  448. */
  449. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  450. {
  451. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  452. int ret = 0;
  453. dram_base = get_dram_base(mci);
  454. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  455. &hole_size);
  456. if (!ret) {
  457. if ((sys_addr >= (1ull << 32)) &&
  458. (sys_addr < ((1ull << 32) + hole_size))) {
  459. /* use DHAR to translate SysAddr to DramAddr */
  460. dram_addr = sys_addr - hole_offset;
  461. debugf2("using DHAR to translate SysAddr 0x%lx to "
  462. "DramAddr 0x%lx\n",
  463. (unsigned long)sys_addr,
  464. (unsigned long)dram_addr);
  465. return dram_addr;
  466. }
  467. }
  468. /*
  469. * Translate the SysAddr to a DramAddr as shown near the start of
  470. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  471. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  472. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  473. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  474. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  475. * Programmer's Manual Volume 1 Application Programming.
  476. */
  477. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  478. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  479. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  480. (unsigned long)dram_addr);
  481. return dram_addr;
  482. }
  483. /*
  484. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  485. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  486. * for node interleaving.
  487. */
  488. static int num_node_interleave_bits(unsigned intlv_en)
  489. {
  490. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  491. int n;
  492. BUG_ON(intlv_en > 7);
  493. n = intlv_shift_table[intlv_en];
  494. return n;
  495. }
  496. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  497. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  498. {
  499. struct amd64_pvt *pvt;
  500. int intlv_shift;
  501. u64 input_addr;
  502. pvt = mci->pvt_info;
  503. /*
  504. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  505. * concerning translating a DramAddr to an InputAddr.
  506. */
  507. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  508. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  509. (dram_addr & 0xfff);
  510. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  511. intlv_shift, (unsigned long)dram_addr,
  512. (unsigned long)input_addr);
  513. return input_addr;
  514. }
  515. /*
  516. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  517. * assumed that @sys_addr maps to the node given by mci.
  518. */
  519. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  520. {
  521. u64 input_addr;
  522. input_addr =
  523. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  524. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  525. (unsigned long)sys_addr, (unsigned long)input_addr);
  526. return input_addr;
  527. }
  528. /*
  529. * @input_addr is an InputAddr associated with the node represented by mci.
  530. * Translate @input_addr to a DramAddr and return the result.
  531. */
  532. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  533. {
  534. struct amd64_pvt *pvt;
  535. int node_id, intlv_shift;
  536. u64 bits, dram_addr;
  537. u32 intlv_sel;
  538. /*
  539. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  540. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  541. * this procedure. When translating from a DramAddr to an InputAddr, the
  542. * bits used for node interleaving are discarded. Here we recover these
  543. * bits from the IntlvSel field of the DRAM Limit register (section
  544. * 3.4.4.2) for the node that input_addr is associated with.
  545. */
  546. pvt = mci->pvt_info;
  547. node_id = pvt->mc_node_id;
  548. BUG_ON((node_id < 0) || (node_id > 7));
  549. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  550. if (intlv_shift == 0) {
  551. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  552. "same value\n", (unsigned long)input_addr);
  553. return input_addr;
  554. }
  555. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  556. (input_addr & 0xfff);
  557. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  558. dram_addr = bits + (intlv_sel << 12);
  559. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  560. "(%d node interleave bits)\n", (unsigned long)input_addr,
  561. (unsigned long)dram_addr, intlv_shift);
  562. return dram_addr;
  563. }
  564. /*
  565. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  566. * @dram_addr to a SysAddr.
  567. */
  568. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  569. {
  570. struct amd64_pvt *pvt = mci->pvt_info;
  571. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  572. int ret = 0;
  573. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  574. &hole_size);
  575. if (!ret) {
  576. if ((dram_addr >= hole_base) &&
  577. (dram_addr < (hole_base + hole_size))) {
  578. sys_addr = dram_addr + hole_offset;
  579. debugf1("using DHAR to translate DramAddr 0x%lx to "
  580. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  581. (unsigned long)sys_addr);
  582. return sys_addr;
  583. }
  584. }
  585. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  586. sys_addr = dram_addr + base;
  587. /*
  588. * The sys_addr we have computed up to this point is a 40-bit value
  589. * because the k8 deals with 40-bit values. However, the value we are
  590. * supposed to return is a full 64-bit physical address. The AMD
  591. * x86-64 architecture specifies that the most significant implemented
  592. * address bit through bit 63 of a physical address must be either all
  593. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  594. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  595. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  596. * Programming.
  597. */
  598. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  599. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  600. pvt->mc_node_id, (unsigned long)dram_addr,
  601. (unsigned long)sys_addr);
  602. return sys_addr;
  603. }
  604. /*
  605. * @input_addr is an InputAddr associated with the node given by mci. Translate
  606. * @input_addr to a SysAddr.
  607. */
  608. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  609. u64 input_addr)
  610. {
  611. return dram_addr_to_sys_addr(mci,
  612. input_addr_to_dram_addr(mci, input_addr));
  613. }
  614. /*
  615. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  616. * Pass back these values in *input_addr_min and *input_addr_max.
  617. */
  618. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  619. u64 *input_addr_min, u64 *input_addr_max)
  620. {
  621. struct amd64_pvt *pvt;
  622. u64 base, mask;
  623. pvt = mci->pvt_info;
  624. BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
  625. base = base_from_dct_base(pvt, csrow);
  626. mask = mask_from_dct_mask(pvt, csrow);
  627. *input_addr_min = base & ~mask;
  628. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  629. }
  630. /*
  631. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  632. * Address High (section 3.6.4.6) register values and return the result. Address
  633. * is located in the info structure (nbeah and nbeal), the encoding is device
  634. * specific.
  635. */
  636. static u64 extract_error_address(struct mem_ctl_info *mci,
  637. struct err_regs *info)
  638. {
  639. struct amd64_pvt *pvt = mci->pvt_info;
  640. return pvt->ops->get_error_address(mci, info);
  641. }
  642. /* Map the Error address to a PAGE and PAGE OFFSET. */
  643. static inline void error_address_to_page_and_offset(u64 error_address,
  644. u32 *page, u32 *offset)
  645. {
  646. *page = (u32) (error_address >> PAGE_SHIFT);
  647. *offset = ((u32) error_address) & ~PAGE_MASK;
  648. }
  649. /*
  650. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  651. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  652. * of a node that detected an ECC memory error. mci represents the node that
  653. * the error address maps to (possibly different from the node that detected
  654. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  655. * error.
  656. */
  657. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  658. {
  659. int csrow;
  660. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  661. if (csrow == -1)
  662. amd64_mc_printk(mci, KERN_ERR,
  663. "Failed to translate InputAddr to csrow for "
  664. "address 0x%lx\n", (unsigned long)sys_addr);
  665. return csrow;
  666. }
  667. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  668. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  669. {
  670. if (boot_cpu_data.x86 == 0x11)
  671. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  672. else if (boot_cpu_data.x86 == 0x10)
  673. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  674. else if (boot_cpu_data.x86 == 0xf)
  675. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  676. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  677. "Rev F or later" : "Rev E or earlier");
  678. else
  679. /* we'll hardly ever ever get here */
  680. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  681. }
  682. /*
  683. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  684. * are ECC capable.
  685. */
  686. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  687. {
  688. int bit;
  689. enum dev_type edac_cap = EDAC_FLAG_NONE;
  690. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  691. ? 19
  692. : 17;
  693. if (pvt->dclr0 & BIT(bit))
  694. edac_cap = EDAC_FLAG_SECDED;
  695. return edac_cap;
  696. }
  697. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  698. int ganged);
  699. /* Display and decode various NB registers for debug purposes. */
  700. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  701. {
  702. int ganged;
  703. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  704. pvt->nbcap,
  705. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  706. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  707. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  708. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  709. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  710. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  711. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  712. pvt->dclr0,
  713. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  714. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  715. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  716. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  717. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  718. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  719. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  720. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  721. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  722. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  723. if (boot_cpu_data.x86 == 0xf) {
  724. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  725. pvt->dhar, dhar_base(pvt->dhar),
  726. k8_dhar_offset(pvt->dhar));
  727. debugf1(" DramHoleValid=%s\n",
  728. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  729. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  730. /* everything below this point is Fam10h and above */
  731. return;
  732. } else {
  733. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  734. pvt->dhar, dhar_base(pvt->dhar),
  735. f10_dhar_offset(pvt->dhar));
  736. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  737. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  738. "True" : "False",
  739. (pvt->dhar & DHAR_VALID) ?
  740. "True" : "False");
  741. }
  742. /* Only if NOT ganged does dcl1 have valid info */
  743. if (!dct_ganging_enabled(pvt)) {
  744. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  745. "Width=%s\n", pvt->dclr1,
  746. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  747. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  748. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  749. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  750. "DIMM Type=%s\n",
  751. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  752. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  753. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  754. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  755. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  756. }
  757. /*
  758. * Determine if ganged and then dump memory sizes for first controller,
  759. * and if NOT ganged dump info for 2nd controller.
  760. */
  761. ganged = dct_ganging_enabled(pvt);
  762. f10_debug_display_dimm_sizes(0, pvt, ganged);
  763. if (!ganged)
  764. f10_debug_display_dimm_sizes(1, pvt, ganged);
  765. }
  766. /* Read in both of DBAM registers */
  767. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  768. {
  769. int err = 0;
  770. unsigned int reg;
  771. reg = DBAM0;
  772. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
  773. if (err)
  774. goto err_reg;
  775. if (boot_cpu_data.x86 >= 0x10) {
  776. reg = DBAM1;
  777. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
  778. if (err)
  779. goto err_reg;
  780. }
  781. return;
  782. err_reg:
  783. debugf0("Error reading F2x%03x.\n", reg);
  784. }
  785. /*
  786. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  787. *
  788. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  789. * set the shift factor for the DCSB and DCSM values.
  790. *
  791. * ->dcs_mask_notused, RevE:
  792. *
  793. * To find the max InputAddr for the csrow, start with the base address and set
  794. * all bits that are "don't care" bits in the test at the start of section
  795. * 3.5.4 (p. 84).
  796. *
  797. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  798. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  799. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  800. * gaps.
  801. *
  802. * ->dcs_mask_notused, RevF and later:
  803. *
  804. * To find the max InputAddr for the csrow, start with the base address and set
  805. * all bits that are "don't care" bits in the test at the start of NPT section
  806. * 4.5.4 (p. 87).
  807. *
  808. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  809. * between bit ranges [36:27] and [21:13].
  810. *
  811. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  812. * which are all bits in the above-mentioned gaps.
  813. */
  814. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  815. {
  816. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  817. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  818. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  819. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  820. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  821. switch (boot_cpu_data.x86) {
  822. case 0xf:
  823. pvt->num_dcsm = REV_F_DCSM_COUNT;
  824. break;
  825. case 0x10:
  826. pvt->num_dcsm = F10_DCSM_COUNT;
  827. break;
  828. case 0x11:
  829. pvt->num_dcsm = F11_DCSM_COUNT;
  830. break;
  831. default:
  832. amd64_printk(KERN_ERR, "Unsupported family!\n");
  833. break;
  834. }
  835. } else {
  836. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  837. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  838. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  839. pvt->dcs_shift = REV_E_DCS_SHIFT;
  840. pvt->num_dcsm = REV_E_DCSM_COUNT;
  841. }
  842. }
  843. /*
  844. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  845. */
  846. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  847. {
  848. int cs, reg, err = 0;
  849. amd64_set_dct_base_and_mask(pvt);
  850. for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
  851. reg = K8_DCSB0 + (cs * 4);
  852. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  853. &pvt->dcsb0[cs]);
  854. if (unlikely(err))
  855. debugf0("Reading K8_DCSB0[%d] failed\n", cs);
  856. else
  857. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  858. cs, pvt->dcsb0[cs], reg);
  859. /* If DCT are NOT ganged, then read in DCT1's base */
  860. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  861. reg = F10_DCSB1 + (cs * 4);
  862. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  863. &pvt->dcsb1[cs]);
  864. if (unlikely(err))
  865. debugf0("Reading F10_DCSB1[%d] failed\n", cs);
  866. else
  867. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  868. cs, pvt->dcsb1[cs], reg);
  869. } else {
  870. pvt->dcsb1[cs] = 0;
  871. }
  872. }
  873. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  874. reg = K8_DCSM0 + (cs * 4);
  875. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  876. &pvt->dcsm0[cs]);
  877. if (unlikely(err))
  878. debugf0("Reading K8_DCSM0 failed\n");
  879. else
  880. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  881. cs, pvt->dcsm0[cs], reg);
  882. /* If DCT are NOT ganged, then read in DCT1's mask */
  883. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  884. reg = F10_DCSM1 + (cs * 4);
  885. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  886. &pvt->dcsm1[cs]);
  887. if (unlikely(err))
  888. debugf0("Reading F10_DCSM1[%d] failed\n", cs);
  889. else
  890. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  891. cs, pvt->dcsm1[cs], reg);
  892. } else
  893. pvt->dcsm1[cs] = 0;
  894. }
  895. }
  896. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  897. {
  898. enum mem_type type;
  899. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
  900. /* Rev F and later */
  901. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  902. } else {
  903. /* Rev E and earlier */
  904. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  905. }
  906. debugf1(" Memory type is: %s\n",
  907. (type == MEM_DDR2) ? "MEM_DDR2" :
  908. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  909. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  910. return type;
  911. }
  912. /*
  913. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  914. * and the later RevF memory controllers (DDR vs DDR2)
  915. *
  916. * Return:
  917. * number of memory channels in operation
  918. * Pass back:
  919. * contents of the DCL0_LOW register
  920. */
  921. static int k8_early_channel_count(struct amd64_pvt *pvt)
  922. {
  923. int flag, err = 0;
  924. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  925. if (err)
  926. return err;
  927. if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
  928. /* RevF (NPT) and later */
  929. flag = pvt->dclr0 & F10_WIDTH_128;
  930. } else {
  931. /* RevE and earlier */
  932. flag = pvt->dclr0 & REVE_WIDTH_128;
  933. }
  934. /* not used */
  935. pvt->dclr1 = 0;
  936. return (flag) ? 2 : 1;
  937. }
  938. /* extract the ERROR ADDRESS for the K8 CPUs */
  939. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  940. struct err_regs *info)
  941. {
  942. return (((u64) (info->nbeah & 0xff)) << 32) +
  943. (info->nbeal & ~0x03);
  944. }
  945. /*
  946. * Read the Base and Limit registers for K8 based Memory controllers; extract
  947. * fields from the 'raw' reg into separate data fields
  948. *
  949. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  950. */
  951. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  952. {
  953. u32 low;
  954. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  955. int err;
  956. err = pci_read_config_dword(pvt->addr_f1_ctl,
  957. K8_DRAM_BASE_LOW + off, &low);
  958. if (err)
  959. debugf0("Reading K8_DRAM_BASE_LOW failed\n");
  960. /* Extract parts into separate data entries */
  961. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  962. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  963. pvt->dram_rw_en[dram] = (low & 0x3);
  964. err = pci_read_config_dword(pvt->addr_f1_ctl,
  965. K8_DRAM_LIMIT_LOW + off, &low);
  966. if (err)
  967. debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
  968. /*
  969. * Extract parts into separate data entries. Limit is the HIGHEST memory
  970. * location of the region, so lower 24 bits need to be all ones
  971. */
  972. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  973. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  974. pvt->dram_DstNode[dram] = (low & 0x7);
  975. }
  976. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  977. struct err_regs *info,
  978. u64 SystemAddress)
  979. {
  980. struct mem_ctl_info *src_mci;
  981. unsigned short syndrome;
  982. int channel, csrow;
  983. u32 page, offset;
  984. /* Extract the syndrome parts and form a 16-bit syndrome */
  985. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  986. syndrome |= LOW_SYNDROME(info->nbsh);
  987. /* CHIPKILL enabled */
  988. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  989. channel = get_channel_from_ecc_syndrome(syndrome);
  990. if (channel < 0) {
  991. /*
  992. * Syndrome didn't map, so we don't know which of the
  993. * 2 DIMMs is in error. So we need to ID 'both' of them
  994. * as suspect.
  995. */
  996. amd64_mc_printk(mci, KERN_WARNING,
  997. "unknown syndrome 0x%x - possible error "
  998. "reporting race\n", syndrome);
  999. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1000. return;
  1001. }
  1002. } else {
  1003. /*
  1004. * non-chipkill ecc mode
  1005. *
  1006. * The k8 documentation is unclear about how to determine the
  1007. * channel number when using non-chipkill memory. This method
  1008. * was obtained from email communication with someone at AMD.
  1009. * (Wish the email was placed in this comment - norsk)
  1010. */
  1011. channel = ((SystemAddress & BIT(3)) != 0);
  1012. }
  1013. /*
  1014. * Find out which node the error address belongs to. This may be
  1015. * different from the node that detected the error.
  1016. */
  1017. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1018. if (src_mci) {
  1019. amd64_mc_printk(mci, KERN_ERR,
  1020. "failed to map error address 0x%lx to a node\n",
  1021. (unsigned long)SystemAddress);
  1022. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1023. return;
  1024. }
  1025. /* Now map the SystemAddress to a CSROW */
  1026. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  1027. if (csrow < 0) {
  1028. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  1029. } else {
  1030. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1031. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  1032. channel, EDAC_MOD_STR);
  1033. }
  1034. }
  1035. /*
  1036. * determrine the number of PAGES in for this DIMM's size based on its DRAM
  1037. * Address Mapping.
  1038. *
  1039. * First step is to calc the number of bits to shift a value of 1 left to
  1040. * indicate show many pages. Start with the DBAM value as the starting bits,
  1041. * then proceed to adjust those shift bits, based on CPU rev and the table.
  1042. * See BKDG on the DBAM
  1043. */
  1044. static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1045. {
  1046. int nr_pages;
  1047. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  1048. nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1049. } else {
  1050. /*
  1051. * RevE and less section; this line is tricky. It collapses the
  1052. * table used by RevD and later to one that matches revisions CG
  1053. * and earlier.
  1054. */
  1055. dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
  1056. (dram_map > 8 ? 4 : (dram_map > 5 ?
  1057. 3 : (dram_map > 2 ? 1 : 0))) : 0;
  1058. /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
  1059. nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
  1060. }
  1061. return nr_pages;
  1062. }
  1063. /*
  1064. * Get the number of DCT channels in use.
  1065. *
  1066. * Return:
  1067. * number of Memory Channels in operation
  1068. * Pass back:
  1069. * contents of the DCL0_LOW register
  1070. */
  1071. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1072. {
  1073. int err = 0, channels = 0;
  1074. u32 dbam;
  1075. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1076. if (err)
  1077. goto err_reg;
  1078. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1079. if (err)
  1080. goto err_reg;
  1081. /* If we are in 128 bit mode, then we are using 2 channels */
  1082. if (pvt->dclr0 & F10_WIDTH_128) {
  1083. debugf0("Data WIDTH is 128 bits - 2 channels\n");
  1084. channels = 2;
  1085. return channels;
  1086. }
  1087. /*
  1088. * Need to check if in UN-ganged mode: In such, there are 2 channels,
  1089. * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
  1090. * will be OFF.
  1091. *
  1092. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1093. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1094. */
  1095. debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
  1096. /*
  1097. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1098. * is more than just one DIMM present in unganged mode. Need to check
  1099. * both controllers since DIMMs can be placed in either one.
  1100. */
  1101. channels = 0;
  1102. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
  1103. if (err)
  1104. goto err_reg;
  1105. if (DBAM_DIMM(0, dbam) > 0)
  1106. channels++;
  1107. if (DBAM_DIMM(1, dbam) > 0)
  1108. channels++;
  1109. if (DBAM_DIMM(2, dbam) > 0)
  1110. channels++;
  1111. if (DBAM_DIMM(3, dbam) > 0)
  1112. channels++;
  1113. /* If more than 2 DIMMs are present, then we have 2 channels */
  1114. if (channels > 2)
  1115. channels = 2;
  1116. else if (channels == 0) {
  1117. /* No DIMMs on DCT0, so look at DCT1 */
  1118. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
  1119. if (err)
  1120. goto err_reg;
  1121. if (DBAM_DIMM(0, dbam) > 0)
  1122. channels++;
  1123. if (DBAM_DIMM(1, dbam) > 0)
  1124. channels++;
  1125. if (DBAM_DIMM(2, dbam) > 0)
  1126. channels++;
  1127. if (DBAM_DIMM(3, dbam) > 0)
  1128. channels++;
  1129. if (channels > 2)
  1130. channels = 2;
  1131. }
  1132. /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
  1133. if (channels == 0)
  1134. channels = 1;
  1135. debugf0("MCT channel count: %d\n", channels);
  1136. return channels;
  1137. err_reg:
  1138. return -1;
  1139. }
  1140. static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1141. {
  1142. return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1143. }
  1144. /* Enable extended configuration access via 0xCF8 feature */
  1145. static void amd64_setup(struct amd64_pvt *pvt)
  1146. {
  1147. u32 reg;
  1148. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1149. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1150. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1151. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1152. }
  1153. /* Restore the extended configuration access via 0xCF8 feature */
  1154. static void amd64_teardown(struct amd64_pvt *pvt)
  1155. {
  1156. u32 reg;
  1157. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1158. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1159. if (pvt->flags.cf8_extcfg)
  1160. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1161. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1162. }
  1163. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1164. struct err_regs *info)
  1165. {
  1166. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1167. (info->nbeal & ~0x01);
  1168. }
  1169. /*
  1170. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1171. * fields from the 'raw' reg into separate data fields.
  1172. *
  1173. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1174. */
  1175. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1176. {
  1177. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1178. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1179. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1180. /* read the 'raw' DRAM BASE Address register */
  1181. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
  1182. /* Read from the ECS data register */
  1183. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
  1184. /* Extract parts into separate data entries */
  1185. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1186. if (pvt->dram_rw_en[dram] == 0)
  1187. return;
  1188. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1189. pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
  1190. ((u64) low_base & 0xFFFF0000))) << 8;
  1191. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1192. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1193. /* read the 'raw' LIMIT registers */
  1194. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
  1195. /* Read from the ECS data register for the HIGH portion */
  1196. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
  1197. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1198. high_base, low_base, high_limit, low_limit);
  1199. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1200. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1201. /*
  1202. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1203. * memory location of the region, so low 24 bits need to be all ones.
  1204. */
  1205. low_limit |= 0x0000FFFF;
  1206. pvt->dram_limit[dram] =
  1207. ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
  1208. }
  1209. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1210. {
  1211. int err = 0;
  1212. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1213. &pvt->dram_ctl_select_low);
  1214. if (err) {
  1215. debugf0("Reading F10_DCTL_SEL_LOW failed\n");
  1216. } else {
  1217. debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
  1218. pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
  1219. debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
  1220. "sel-hi-range=%s\n",
  1221. (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
  1222. (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
  1223. (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
  1224. debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
  1225. (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
  1226. (dct_memory_cleared(pvt) ? "True " : "False "),
  1227. dct_sel_interleave_addr(pvt));
  1228. }
  1229. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1230. &pvt->dram_ctl_select_high);
  1231. if (err)
  1232. debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
  1233. }
  1234. /*
  1235. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1236. * Interleaving Modes.
  1237. */
  1238. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1239. int hi_range_sel, u32 intlv_en)
  1240. {
  1241. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1242. if (dct_ganging_enabled(pvt))
  1243. cs = 0;
  1244. else if (hi_range_sel)
  1245. cs = dct_sel_high;
  1246. else if (dct_interleave_enabled(pvt)) {
  1247. /*
  1248. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1249. */
  1250. if (dct_sel_interleave_addr(pvt) == 0)
  1251. cs = sys_addr >> 6 & 1;
  1252. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1253. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1254. if (dct_sel_interleave_addr(pvt) & 1)
  1255. cs = (sys_addr >> 9 & 1) ^ temp;
  1256. else
  1257. cs = (sys_addr >> 6 & 1) ^ temp;
  1258. } else if (intlv_en & 4)
  1259. cs = sys_addr >> 15 & 1;
  1260. else if (intlv_en & 2)
  1261. cs = sys_addr >> 14 & 1;
  1262. else if (intlv_en & 1)
  1263. cs = sys_addr >> 13 & 1;
  1264. else
  1265. cs = sys_addr >> 12 & 1;
  1266. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1267. cs = ~dct_sel_high & 1;
  1268. else
  1269. cs = 0;
  1270. return cs;
  1271. }
  1272. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1273. {
  1274. if (intlv_en == 1)
  1275. return 1;
  1276. else if (intlv_en == 3)
  1277. return 2;
  1278. else if (intlv_en == 7)
  1279. return 3;
  1280. return 0;
  1281. }
  1282. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1283. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1284. u32 dct_sel_base_addr,
  1285. u64 dct_sel_base_off,
  1286. u32 hole_valid, u32 hole_off,
  1287. u64 dram_base)
  1288. {
  1289. u64 chan_off;
  1290. if (hi_range_sel) {
  1291. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1292. hole_valid && (sys_addr >= 0x100000000ULL))
  1293. chan_off = hole_off << 16;
  1294. else
  1295. chan_off = dct_sel_base_off;
  1296. } else {
  1297. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1298. chan_off = hole_off << 16;
  1299. else
  1300. chan_off = dram_base & 0xFFFFF8000000ULL;
  1301. }
  1302. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1303. (chan_off & 0x0000FFFFFF800000ULL);
  1304. }
  1305. /* Hack for the time being - Can we get this from BIOS?? */
  1306. #define CH0SPARE_RANK 0
  1307. #define CH1SPARE_RANK 1
  1308. /*
  1309. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1310. * spare row
  1311. */
  1312. static inline int f10_process_possible_spare(int csrow,
  1313. u32 cs, struct amd64_pvt *pvt)
  1314. {
  1315. u32 swap_done;
  1316. u32 bad_dram_cs;
  1317. /* Depending on channel, isolate respective SPARING info */
  1318. if (cs) {
  1319. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1320. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1321. if (swap_done && (csrow == bad_dram_cs))
  1322. csrow = CH1SPARE_RANK;
  1323. } else {
  1324. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1325. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1326. if (swap_done && (csrow == bad_dram_cs))
  1327. csrow = CH0SPARE_RANK;
  1328. }
  1329. return csrow;
  1330. }
  1331. /*
  1332. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1333. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1334. *
  1335. * Return:
  1336. * -EINVAL: NOT FOUND
  1337. * 0..csrow = Chip-Select Row
  1338. */
  1339. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1340. {
  1341. struct mem_ctl_info *mci;
  1342. struct amd64_pvt *pvt;
  1343. u32 cs_base, cs_mask;
  1344. int cs_found = -EINVAL;
  1345. int csrow;
  1346. mci = mci_lookup[nid];
  1347. if (!mci)
  1348. return cs_found;
  1349. pvt = mci->pvt_info;
  1350. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1351. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  1352. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1353. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1354. continue;
  1355. /*
  1356. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1357. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1358. * of the actual address.
  1359. */
  1360. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1361. /*
  1362. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1363. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1364. */
  1365. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1366. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1367. csrow, cs_base, cs_mask);
  1368. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1369. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1370. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1371. "(CSBase & ~CSMask)=0x%x\n",
  1372. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1373. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1374. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1375. debugf1(" MATCH csrow=%d\n", cs_found);
  1376. break;
  1377. }
  1378. }
  1379. return cs_found;
  1380. }
  1381. /* For a given @dram_range, check if @sys_addr falls within it. */
  1382. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1383. u64 sys_addr, int *nid, int *chan_sel)
  1384. {
  1385. int node_id, cs_found = -EINVAL, high_range = 0;
  1386. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1387. u32 hole_valid, tmp, dct_sel_base, channel;
  1388. u64 dram_base, chan_addr, dct_sel_base_off;
  1389. dram_base = pvt->dram_base[dram_range];
  1390. intlv_en = pvt->dram_IntlvEn[dram_range];
  1391. node_id = pvt->dram_DstNode[dram_range];
  1392. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1393. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1394. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1395. /*
  1396. * This assumes that one node's DHAR is the same as all the other
  1397. * nodes' DHAR.
  1398. */
  1399. hole_off = (pvt->dhar & 0x0000FF80);
  1400. hole_valid = (pvt->dhar & 0x1);
  1401. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1402. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1403. hole_off, hole_valid, intlv_sel);
  1404. if (intlv_en ||
  1405. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1406. return -EINVAL;
  1407. dct_sel_base = dct_sel_baseaddr(pvt);
  1408. /*
  1409. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1410. * select between DCT0 and DCT1.
  1411. */
  1412. if (dct_high_range_enabled(pvt) &&
  1413. !dct_ganging_enabled(pvt) &&
  1414. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1415. high_range = 1;
  1416. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1417. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1418. dct_sel_base_off, hole_valid,
  1419. hole_off, dram_base);
  1420. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1421. /* remove Node ID (in case of memory interleaving) */
  1422. tmp = chan_addr & 0xFC0;
  1423. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1424. /* remove channel interleave and hash */
  1425. if (dct_interleave_enabled(pvt) &&
  1426. !dct_high_range_enabled(pvt) &&
  1427. !dct_ganging_enabled(pvt)) {
  1428. if (dct_sel_interleave_addr(pvt) != 1)
  1429. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1430. else {
  1431. tmp = chan_addr & 0xFC0;
  1432. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1433. | tmp;
  1434. }
  1435. }
  1436. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1437. chan_addr, (u32)(chan_addr >> 8));
  1438. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1439. if (cs_found >= 0) {
  1440. *nid = node_id;
  1441. *chan_sel = channel;
  1442. }
  1443. return cs_found;
  1444. }
  1445. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1446. int *node, int *chan_sel)
  1447. {
  1448. int dram_range, cs_found = -EINVAL;
  1449. u64 dram_base, dram_limit;
  1450. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1451. if (!pvt->dram_rw_en[dram_range])
  1452. continue;
  1453. dram_base = pvt->dram_base[dram_range];
  1454. dram_limit = pvt->dram_limit[dram_range];
  1455. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1456. cs_found = f10_match_to_this_node(pvt, dram_range,
  1457. sys_addr, node,
  1458. chan_sel);
  1459. if (cs_found >= 0)
  1460. break;
  1461. }
  1462. }
  1463. return cs_found;
  1464. }
  1465. /*
  1466. * This the F10h reference code from AMD to map a @sys_addr to NodeID,
  1467. * CSROW, Channel.
  1468. *
  1469. * The @sys_addr is usually an error address received from the hardware.
  1470. */
  1471. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1472. struct err_regs *info,
  1473. u64 sys_addr)
  1474. {
  1475. struct amd64_pvt *pvt = mci->pvt_info;
  1476. u32 page, offset;
  1477. unsigned short syndrome;
  1478. int nid, csrow, chan = 0;
  1479. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1480. if (csrow >= 0) {
  1481. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1482. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  1483. syndrome |= LOW_SYNDROME(info->nbsh);
  1484. /*
  1485. * Is CHIPKILL on? If so, then we can attempt to use the
  1486. * syndrome to isolate which channel the error was on.
  1487. */
  1488. if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1489. chan = get_channel_from_ecc_syndrome(syndrome);
  1490. if (chan >= 0) {
  1491. edac_mc_handle_ce(mci, page, offset, syndrome,
  1492. csrow, chan, EDAC_MOD_STR);
  1493. } else {
  1494. /*
  1495. * Channel unknown, report all channels on this
  1496. * CSROW as failed.
  1497. */
  1498. for (chan = 0; chan < mci->csrows[csrow].nr_channels;
  1499. chan++) {
  1500. edac_mc_handle_ce(mci, page, offset,
  1501. syndrome,
  1502. csrow, chan,
  1503. EDAC_MOD_STR);
  1504. }
  1505. }
  1506. } else {
  1507. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1508. }
  1509. }
  1510. /*
  1511. * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
  1512. * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
  1513. * indicates an empty DIMM slot, as reported by Hardware on empty slots.
  1514. *
  1515. * Normalize to 128MB by subracting 27 bit shift.
  1516. */
  1517. static int map_dbam_to_csrow_size(int index)
  1518. {
  1519. int mega_bytes = 0;
  1520. if (index > 0 && index <= DBAM_MAX_VALUE)
  1521. mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
  1522. return mega_bytes;
  1523. }
  1524. /*
  1525. * debug routine to display the memory sizes of a DIMM (ganged or not) and it
  1526. * CSROWs as well
  1527. */
  1528. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  1529. int ganged)
  1530. {
  1531. int dimm, size0, size1;
  1532. u32 dbam;
  1533. u32 *dcsb;
  1534. debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
  1535. ctrl ? pvt->dbam1 : pvt->dbam0,
  1536. ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
  1537. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1538. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1539. /* Dump memory sizes for DIMM and its CSROWs */
  1540. for (dimm = 0; dimm < 4; dimm++) {
  1541. size0 = 0;
  1542. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1543. size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1544. size1 = 0;
  1545. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1546. size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1547. debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
  1548. "CSROW-%d=%5dMB\n",
  1549. ctrl,
  1550. dimm,
  1551. size0 + size1,
  1552. dimm * 2,
  1553. size0,
  1554. dimm * 2 + 1,
  1555. size1);
  1556. }
  1557. }
  1558. /*
  1559. * Very early hardware probe on pci_probe thread to determine if this module
  1560. * supports the hardware.
  1561. *
  1562. * Return:
  1563. * 0 for OK
  1564. * 1 for error
  1565. */
  1566. static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
  1567. {
  1568. int ret = 0;
  1569. /*
  1570. * If we are on a DDR3 machine, we don't know yet if
  1571. * we support that properly at this time
  1572. */
  1573. if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
  1574. (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
  1575. amd64_printk(KERN_WARNING,
  1576. "%s() This machine is running with DDR3 memory. "
  1577. "This is not currently supported. "
  1578. "DCHR0=0x%x DCHR1=0x%x\n",
  1579. __func__, pvt->dchr0, pvt->dchr1);
  1580. amd64_printk(KERN_WARNING,
  1581. " Contact '%s' module MAINTAINER to help add"
  1582. " support.\n",
  1583. EDAC_MOD_STR);
  1584. ret = 1;
  1585. }
  1586. return ret;
  1587. }
  1588. /*
  1589. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1590. * (as per PCI DEVICE_IDs):
  1591. *
  1592. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1593. * DEVICE ID, even though there is differences between the different Revisions
  1594. * (CG,D,E,F).
  1595. *
  1596. * Family F10h and F11h.
  1597. *
  1598. */
  1599. static struct amd64_family_type amd64_family_types[] = {
  1600. [K8_CPUS] = {
  1601. .ctl_name = "RevF",
  1602. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1603. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1604. .ops = {
  1605. .early_channel_count = k8_early_channel_count,
  1606. .get_error_address = k8_get_error_address,
  1607. .read_dram_base_limit = k8_read_dram_base_limit,
  1608. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1609. .dbam_map_to_pages = k8_dbam_map_to_pages,
  1610. }
  1611. },
  1612. [F10_CPUS] = {
  1613. .ctl_name = "Family 10h",
  1614. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1615. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1616. .ops = {
  1617. .probe_valid_hardware = f10_probe_valid_hardware,
  1618. .early_channel_count = f10_early_channel_count,
  1619. .get_error_address = f10_get_error_address,
  1620. .read_dram_base_limit = f10_read_dram_base_limit,
  1621. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1622. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1623. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1624. }
  1625. },
  1626. [F11_CPUS] = {
  1627. .ctl_name = "Family 11h",
  1628. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1629. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1630. .ops = {
  1631. .probe_valid_hardware = f10_probe_valid_hardware,
  1632. .early_channel_count = f10_early_channel_count,
  1633. .get_error_address = f10_get_error_address,
  1634. .read_dram_base_limit = f10_read_dram_base_limit,
  1635. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1636. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1637. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1638. }
  1639. },
  1640. };
  1641. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1642. unsigned int device,
  1643. struct pci_dev *related)
  1644. {
  1645. struct pci_dev *dev = NULL;
  1646. dev = pci_get_device(vendor, device, dev);
  1647. while (dev) {
  1648. if ((dev->bus->number == related->bus->number) &&
  1649. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1650. break;
  1651. dev = pci_get_device(vendor, device, dev);
  1652. }
  1653. return dev;
  1654. }
  1655. /*
  1656. * syndrome mapping table for ECC ChipKill devices
  1657. *
  1658. * The comment in each row is the token (nibble) number that is in error.
  1659. * The least significant nibble of the syndrome is the mask for the bits
  1660. * that are in error (need to be toggled) for the particular nibble.
  1661. *
  1662. * Each row contains 16 entries.
  1663. * The first entry (0th) is the channel number for that row of syndromes.
  1664. * The remaining 15 entries are the syndromes for the respective Error
  1665. * bit mask index.
  1666. *
  1667. * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
  1668. * bit in error.
  1669. * The 2nd index entry is 0x0010 that the second bit is damaged.
  1670. * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
  1671. * are damaged.
  1672. * Thus so on until index 15, 0x1111, whose entry has the syndrome
  1673. * indicating that all 4 bits are damaged.
  1674. *
  1675. * A search is performed on this table looking for a given syndrome.
  1676. *
  1677. * See the AMD documentation for ECC syndromes. This ECC table is valid
  1678. * across all the versions of the AMD64 processors.
  1679. *
  1680. * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
  1681. * COLUMN index, then search all ROWS of that column, looking for a match
  1682. * with the input syndrome. The ROW value will be the token number.
  1683. *
  1684. * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
  1685. * error.
  1686. */
  1687. #define NUMBER_ECC_ROWS 36
  1688. static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
  1689. /* Channel 0 syndromes */
  1690. {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
  1691. 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
  1692. {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
  1693. 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
  1694. {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
  1695. 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
  1696. {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
  1697. 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
  1698. {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
  1699. 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
  1700. {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
  1701. 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
  1702. {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
  1703. 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
  1704. {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
  1705. 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
  1706. {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
  1707. 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
  1708. {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
  1709. 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
  1710. {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
  1711. 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
  1712. {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
  1713. 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
  1714. {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
  1715. 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
  1716. {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
  1717. 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
  1718. {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
  1719. 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
  1720. {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
  1721. 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
  1722. /* Channel 1 syndromes */
  1723. {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
  1724. 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
  1725. {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
  1726. 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
  1727. {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
  1728. 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
  1729. {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
  1730. 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
  1731. {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
  1732. 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
  1733. {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
  1734. 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
  1735. {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
  1736. 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
  1737. {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
  1738. 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
  1739. {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
  1740. 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
  1741. {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
  1742. 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
  1743. {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
  1744. 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
  1745. {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
  1746. 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
  1747. {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
  1748. 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
  1749. {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
  1750. 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
  1751. {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
  1752. 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
  1753. {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
  1754. 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
  1755. /* ECC bits are also in the set of tokens and they too can go bad
  1756. * first 2 cover channel 0, while the second 2 cover channel 1
  1757. */
  1758. {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
  1759. 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
  1760. {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
  1761. 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
  1762. {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
  1763. 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
  1764. {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
  1765. 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
  1766. };
  1767. /*
  1768. * Given the syndrome argument, scan each of the channel tables for a syndrome
  1769. * match. Depending on which table it is found, return the channel number.
  1770. */
  1771. static int get_channel_from_ecc_syndrome(unsigned short syndrome)
  1772. {
  1773. int row;
  1774. int column;
  1775. /* Determine column to scan */
  1776. column = syndrome & 0xF;
  1777. /* Scan all rows, looking for syndrome, or end of table */
  1778. for (row = 0; row < NUMBER_ECC_ROWS; row++) {
  1779. if (ecc_chipkill_syndromes[row][column] == syndrome)
  1780. return ecc_chipkill_syndromes[row][0];
  1781. }
  1782. debugf0("syndrome(%x) not found\n", syndrome);
  1783. return -1;
  1784. }
  1785. /*
  1786. * Check for valid error in the NB Status High register. If so, proceed to read
  1787. * NB Status Low, NB Address Low and NB Address High registers and store data
  1788. * into error structure.
  1789. *
  1790. * Returns:
  1791. * - 1: if hardware regs contains valid error info
  1792. * - 0: if no valid error is indicated
  1793. */
  1794. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1795. struct err_regs *regs)
  1796. {
  1797. struct amd64_pvt *pvt;
  1798. struct pci_dev *misc_f3_ctl;
  1799. int err = 0;
  1800. pvt = mci->pvt_info;
  1801. misc_f3_ctl = pvt->misc_f3_ctl;
  1802. err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
  1803. if (err)
  1804. goto err_reg;
  1805. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1806. return 0;
  1807. /* valid error, read remaining error information registers */
  1808. err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
  1809. if (err)
  1810. goto err_reg;
  1811. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
  1812. if (err)
  1813. goto err_reg;
  1814. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
  1815. if (err)
  1816. goto err_reg;
  1817. err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
  1818. if (err)
  1819. goto err_reg;
  1820. return 1;
  1821. err_reg:
  1822. debugf0("Reading error info register failed\n");
  1823. return 0;
  1824. }
  1825. /*
  1826. * This function is called to retrieve the error data from hardware and store it
  1827. * in the info structure.
  1828. *
  1829. * Returns:
  1830. * - 1: if a valid error is found
  1831. * - 0: if no error is found
  1832. */
  1833. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1834. struct err_regs *info)
  1835. {
  1836. struct amd64_pvt *pvt;
  1837. struct err_regs regs;
  1838. pvt = mci->pvt_info;
  1839. if (!amd64_get_error_info_regs(mci, info))
  1840. return 0;
  1841. /*
  1842. * Here's the problem with the K8's EDAC reporting: There are four
  1843. * registers which report pieces of error information. They are shared
  1844. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1845. * BKDG, the overflow bit is never used! Every error always updates the
  1846. * reporting registers.
  1847. *
  1848. * Can you see the race condition? All four error reporting registers
  1849. * must be read before a new error updates them! There is no way to read
  1850. * all four registers atomically. The best than can be done is to detect
  1851. * that a race has occured and then report the error without any kind of
  1852. * precision.
  1853. *
  1854. * What is still positive is that errors are still reported and thus
  1855. * problems can still be detected - just not localized because the
  1856. * syndrome and address are spread out across registers.
  1857. *
  1858. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1859. * UEs and CEs should have separate register sets with proper overflow
  1860. * bits that are used! At very least the problem can be fixed by
  1861. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1862. * set the overflow bit - unless the current error is CE and the new
  1863. * error is UE which would be the only situation for overwriting the
  1864. * current values.
  1865. */
  1866. regs = *info;
  1867. /* Use info from the second read - most current */
  1868. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1869. return 0;
  1870. /* clear the error bits in hardware */
  1871. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1872. /* Check for the possible race condition */
  1873. if ((regs.nbsh != info->nbsh) ||
  1874. (regs.nbsl != info->nbsl) ||
  1875. (regs.nbeah != info->nbeah) ||
  1876. (regs.nbeal != info->nbeal)) {
  1877. amd64_mc_printk(mci, KERN_WARNING,
  1878. "hardware STATUS read access race condition "
  1879. "detected!\n");
  1880. return 0;
  1881. }
  1882. return 1;
  1883. }
  1884. /*
  1885. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1886. * ADDRESS and process.
  1887. */
  1888. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1889. struct err_regs *info)
  1890. {
  1891. struct amd64_pvt *pvt = mci->pvt_info;
  1892. u64 SystemAddress;
  1893. /* Ensure that the Error Address is VALID */
  1894. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1895. amd64_mc_printk(mci, KERN_ERR,
  1896. "HW has no ERROR_ADDRESS available\n");
  1897. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1898. return;
  1899. }
  1900. SystemAddress = extract_error_address(mci, info);
  1901. amd64_mc_printk(mci, KERN_ERR,
  1902. "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
  1903. pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
  1904. }
  1905. /* Handle any Un-correctable Errors (UEs) */
  1906. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1907. struct err_regs *info)
  1908. {
  1909. int csrow;
  1910. u64 SystemAddress;
  1911. u32 page, offset;
  1912. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1913. log_mci = mci;
  1914. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1915. amd64_mc_printk(mci, KERN_CRIT,
  1916. "HW has no ERROR_ADDRESS available\n");
  1917. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1918. return;
  1919. }
  1920. SystemAddress = extract_error_address(mci, info);
  1921. /*
  1922. * Find out which node the error address belongs to. This may be
  1923. * different from the node that detected the error.
  1924. */
  1925. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1926. if (!src_mci) {
  1927. amd64_mc_printk(mci, KERN_CRIT,
  1928. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1929. (unsigned long)SystemAddress);
  1930. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1931. return;
  1932. }
  1933. log_mci = src_mci;
  1934. csrow = sys_addr_to_csrow(log_mci, SystemAddress);
  1935. if (csrow < 0) {
  1936. amd64_mc_printk(mci, KERN_CRIT,
  1937. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1938. (unsigned long)SystemAddress);
  1939. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1940. } else {
  1941. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1942. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1943. }
  1944. }
  1945. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1946. struct err_regs *info, int ecc_type)
  1947. {
  1948. u32 ec = ERROR_CODE(info->nbsl);
  1949. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1950. pr_emerg(" Transaction type: %s(%s), %s, Cache Level: %s, %s\n",
  1951. RRRR_MSG(ec), II_MSG(ec), TO_MSG(ec), LL_MSG(ec), PP_MSG(ec));
  1952. /* Bail early out if this was an 'observed' error */
  1953. if (PP(ec) == K8_NBSL_PP_OBS)
  1954. return;
  1955. /* Do only ECC errors */
  1956. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1957. return;
  1958. if (ecc_type == 2)
  1959. amd64_handle_ce(mci, info);
  1960. else if (ecc_type == 1)
  1961. amd64_handle_ue(mci, info);
  1962. /*
  1963. * If main error is CE then overflow must be CE. If main error is UE
  1964. * then overflow is unknown. We'll call the overflow a CE - if
  1965. * panic_on_ue is set then we're already panic'ed and won't arrive
  1966. * here. Else, then apparently someone doesn't think that UE's are
  1967. * catastrophic.
  1968. */
  1969. if (info->nbsh & K8_NBSH_OVERFLOW)
  1970. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
  1971. }
  1972. void amd64_decode_bus_error(int node_id, struct err_regs *regs,
  1973. int ecc_type)
  1974. {
  1975. struct mem_ctl_info *mci = mci_lookup[node_id];
  1976. __amd64_decode_bus_error(mci, regs, ecc_type);
  1977. /*
  1978. * Check the UE bit of the NB status high register, if set generate some
  1979. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1980. * If it was a GART error, skip that process.
  1981. *
  1982. * FIXME: this should go somewhere else, if at all.
  1983. */
  1984. if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1985. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1986. }
  1987. /*
  1988. * The main polling 'check' function, called FROM the edac core to perform the
  1989. * error checking and if an error is encountered, error processing.
  1990. */
  1991. static void amd64_check(struct mem_ctl_info *mci)
  1992. {
  1993. struct err_regs regs;
  1994. if (amd64_get_error_info(mci, &regs)) {
  1995. struct amd64_pvt *pvt = mci->pvt_info;
  1996. amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
  1997. }
  1998. }
  1999. /*
  2000. * Input:
  2001. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  2002. * 2) AMD Family index value
  2003. *
  2004. * Ouput:
  2005. * Upon return of 0, the following filled in:
  2006. *
  2007. * struct pvt->addr_f1_ctl
  2008. * struct pvt->misc_f3_ctl
  2009. *
  2010. * Filled in with related device funcitions of 'dram_f2_ctl'
  2011. * These devices are "reserved" via the pci_get_device()
  2012. *
  2013. * Upon return of 1 (error status):
  2014. *
  2015. * Nothing reserved
  2016. */
  2017. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  2018. {
  2019. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  2020. /* Reserve the ADDRESS MAP Device */
  2021. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2022. amd64_dev->addr_f1_ctl,
  2023. pvt->dram_f2_ctl);
  2024. if (!pvt->addr_f1_ctl) {
  2025. amd64_printk(KERN_ERR, "error address map device not found: "
  2026. "vendor %x device 0x%x (broken BIOS?)\n",
  2027. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  2028. return 1;
  2029. }
  2030. /* Reserve the MISC Device */
  2031. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2032. amd64_dev->misc_f3_ctl,
  2033. pvt->dram_f2_ctl);
  2034. if (!pvt->misc_f3_ctl) {
  2035. pci_dev_put(pvt->addr_f1_ctl);
  2036. pvt->addr_f1_ctl = NULL;
  2037. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  2038. "vendor %x device 0x%x (broken BIOS?)\n",
  2039. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  2040. return 1;
  2041. }
  2042. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  2043. pci_name(pvt->addr_f1_ctl));
  2044. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  2045. pci_name(pvt->dram_f2_ctl));
  2046. debugf1(" Misc device PCI Bus ID:\t%s\n",
  2047. pci_name(pvt->misc_f3_ctl));
  2048. return 0;
  2049. }
  2050. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  2051. {
  2052. pci_dev_put(pvt->addr_f1_ctl);
  2053. pci_dev_put(pvt->misc_f3_ctl);
  2054. }
  2055. /*
  2056. * Retrieve the hardware registers of the memory controller (this includes the
  2057. * 'Address Map' and 'Misc' device regs)
  2058. */
  2059. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  2060. {
  2061. u64 msr_val;
  2062. int dram, err = 0;
  2063. /*
  2064. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  2065. * those are Read-As-Zero
  2066. */
  2067. rdmsrl(MSR_K8_TOP_MEM1, msr_val);
  2068. pvt->top_mem = msr_val >> 23;
  2069. debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
  2070. /* check first whether TOP_MEM2 is enabled */
  2071. rdmsrl(MSR_K8_SYSCFG, msr_val);
  2072. if (msr_val & (1U << 21)) {
  2073. rdmsrl(MSR_K8_TOP_MEM2, msr_val);
  2074. pvt->top_mem2 = msr_val >> 23;
  2075. debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
  2076. } else
  2077. debugf0(" TOP_MEM2 disabled.\n");
  2078. amd64_cpu_display_info(pvt);
  2079. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  2080. if (err)
  2081. goto err_reg;
  2082. if (pvt->ops->read_dram_ctl_register)
  2083. pvt->ops->read_dram_ctl_register(pvt);
  2084. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  2085. /*
  2086. * Call CPU specific READ function to get the DRAM Base and
  2087. * Limit values from the DCT.
  2088. */
  2089. pvt->ops->read_dram_base_limit(pvt, dram);
  2090. /*
  2091. * Only print out debug info on rows with both R and W Enabled.
  2092. * Normal processing, compiler should optimize this whole 'if'
  2093. * debug output block away.
  2094. */
  2095. if (pvt->dram_rw_en[dram] != 0) {
  2096. debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
  2097. "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
  2098. dram,
  2099. (u32)(pvt->dram_base[dram] >> 32),
  2100. (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
  2101. (u32)(pvt->dram_limit[dram] >> 32),
  2102. (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
  2103. debugf1(" IntlvEn=%s %s %s "
  2104. "IntlvSel=%d DstNode=%d\n",
  2105. pvt->dram_IntlvEn[dram] ?
  2106. "Enabled" : "Disabled",
  2107. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  2108. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  2109. pvt->dram_IntlvSel[dram],
  2110. pvt->dram_DstNode[dram]);
  2111. }
  2112. }
  2113. amd64_read_dct_base_mask(pvt);
  2114. err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  2115. if (err)
  2116. goto err_reg;
  2117. amd64_read_dbam_reg(pvt);
  2118. err = pci_read_config_dword(pvt->misc_f3_ctl,
  2119. F10_ONLINE_SPARE, &pvt->online_spare);
  2120. if (err)
  2121. goto err_reg;
  2122. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  2123. if (err)
  2124. goto err_reg;
  2125. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  2126. if (err)
  2127. goto err_reg;
  2128. if (!dct_ganging_enabled(pvt)) {
  2129. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
  2130. &pvt->dclr1);
  2131. if (err)
  2132. goto err_reg;
  2133. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
  2134. &pvt->dchr1);
  2135. if (err)
  2136. goto err_reg;
  2137. }
  2138. amd64_dump_misc_regs(pvt);
  2139. return;
  2140. err_reg:
  2141. debugf0("Reading an MC register failed\n");
  2142. }
  2143. /*
  2144. * NOTE: CPU Revision Dependent code
  2145. *
  2146. * Input:
  2147. * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
  2148. * k8 private pointer to -->
  2149. * DRAM Bank Address mapping register
  2150. * node_id
  2151. * DCL register where dual_channel_active is
  2152. *
  2153. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2154. *
  2155. * Bits: CSROWs
  2156. * 0-3 CSROWs 0 and 1
  2157. * 4-7 CSROWs 2 and 3
  2158. * 8-11 CSROWs 4 and 5
  2159. * 12-15 CSROWs 6 and 7
  2160. *
  2161. * Values range from: 0 to 15
  2162. * The meaning of the values depends on CPU revision and dual-channel state,
  2163. * see relevant BKDG more info.
  2164. *
  2165. * The memory controller provides for total of only 8 CSROWs in its current
  2166. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2167. * single channel or two (2) DIMMs in dual channel mode.
  2168. *
  2169. * The following code logic collapses the various tables for CSROW based on CPU
  2170. * revision.
  2171. *
  2172. * Returns:
  2173. * The number of PAGE_SIZE pages on the specified CSROW number it
  2174. * encompasses
  2175. *
  2176. */
  2177. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2178. {
  2179. u32 dram_map, nr_pages;
  2180. /*
  2181. * The math on this doesn't look right on the surface because x/2*4 can
  2182. * be simplified to x*2 but this expression makes use of the fact that
  2183. * it is integral math where 1/2=0. This intermediate value becomes the
  2184. * number of bits to shift the DBAM register to extract the proper CSROW
  2185. * field.
  2186. */
  2187. dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2188. nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
  2189. /*
  2190. * If dual channel then double the memory size of single channel.
  2191. * Channel count is 1 or 2
  2192. */
  2193. nr_pages <<= (pvt->channel_count - 1);
  2194. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
  2195. debugf0(" nr_pages= %u channel-count = %d\n",
  2196. nr_pages, pvt->channel_count);
  2197. return nr_pages;
  2198. }
  2199. /*
  2200. * Initialize the array of csrow attribute instances, based on the values
  2201. * from pci config hardware registers.
  2202. */
  2203. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2204. {
  2205. struct csrow_info *csrow;
  2206. struct amd64_pvt *pvt;
  2207. u64 input_addr_min, input_addr_max, sys_addr;
  2208. int i, err = 0, empty = 1;
  2209. pvt = mci->pvt_info;
  2210. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2211. if (err)
  2212. debugf0("Reading K8_NBCFG failed\n");
  2213. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2214. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2215. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2216. );
  2217. for (i = 0; i < CHIPSELECT_COUNT; i++) {
  2218. csrow = &mci->csrows[i];
  2219. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2220. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2221. pvt->mc_node_id);
  2222. continue;
  2223. }
  2224. debugf1("----CSROW %d VALID for MC node %d\n",
  2225. i, pvt->mc_node_id);
  2226. empty = 0;
  2227. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2228. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2229. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2230. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2231. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2232. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2233. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2234. /* 8 bytes of resolution */
  2235. csrow->mtype = amd64_determine_memory_type(pvt);
  2236. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2237. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2238. (unsigned long)input_addr_min,
  2239. (unsigned long)input_addr_max);
  2240. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2241. (unsigned long)sys_addr, csrow->page_mask);
  2242. debugf1(" nr_pages: %u first_page: 0x%lx "
  2243. "last_page: 0x%lx\n",
  2244. (unsigned)csrow->nr_pages,
  2245. csrow->first_page, csrow->last_page);
  2246. /*
  2247. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2248. */
  2249. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2250. csrow->edac_mode =
  2251. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2252. EDAC_S4ECD4ED : EDAC_SECDED;
  2253. else
  2254. csrow->edac_mode = EDAC_NONE;
  2255. }
  2256. return empty;
  2257. }
  2258. /*
  2259. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2260. * enable it.
  2261. */
  2262. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2263. {
  2264. struct amd64_pvt *pvt = mci->pvt_info;
  2265. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2266. int cpu, idx = 0, err = 0;
  2267. struct msr msrs[cpumask_weight(cpumask)];
  2268. u32 value;
  2269. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2270. if (!ecc_enable_override)
  2271. return;
  2272. memset(msrs, 0, sizeof(msrs));
  2273. amd64_printk(KERN_WARNING,
  2274. "'ecc_enable_override' parameter is active, "
  2275. "Enabling AMD ECC hardware now: CAUTION\n");
  2276. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2277. if (err)
  2278. debugf0("Reading K8_NBCTL failed\n");
  2279. /* turn on UECCn and CECCEn bits */
  2280. pvt->old_nbctl = value & mask;
  2281. pvt->nbctl_mcgctl_saved = 1;
  2282. value |= mask;
  2283. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2284. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2285. for_each_cpu(cpu, cpumask) {
  2286. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2287. set_bit(idx, &pvt->old_mcgctl);
  2288. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2289. idx++;
  2290. }
  2291. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2292. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2293. if (err)
  2294. debugf0("Reading K8_NBCFG failed\n");
  2295. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2296. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2297. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2298. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2299. amd64_printk(KERN_WARNING,
  2300. "This node reports that DRAM ECC is "
  2301. "currently Disabled; ENABLING now\n");
  2302. /* Attempt to turn on DRAM ECC Enable */
  2303. value |= K8_NBCFG_ECC_ENABLE;
  2304. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2305. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2306. if (err)
  2307. debugf0("Reading K8_NBCFG failed\n");
  2308. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2309. amd64_printk(KERN_WARNING,
  2310. "Hardware rejects Enabling DRAM ECC checking\n"
  2311. "Check memory DIMM configuration\n");
  2312. } else {
  2313. amd64_printk(KERN_DEBUG,
  2314. "Hardware accepted DRAM ECC Enable\n");
  2315. }
  2316. }
  2317. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2318. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2319. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2320. pvt->ctl_error_info.nbcfg = value;
  2321. }
  2322. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2323. {
  2324. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2325. int cpu, idx = 0, err = 0;
  2326. struct msr msrs[cpumask_weight(cpumask)];
  2327. u32 value;
  2328. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2329. if (!pvt->nbctl_mcgctl_saved)
  2330. return;
  2331. memset(msrs, 0, sizeof(msrs));
  2332. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2333. if (err)
  2334. debugf0("Reading K8_NBCTL failed\n");
  2335. value &= ~mask;
  2336. value |= pvt->old_nbctl;
  2337. /* restore the NB Enable MCGCTL bit */
  2338. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2339. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2340. for_each_cpu(cpu, cpumask) {
  2341. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2342. msrs[idx].l |=
  2343. test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
  2344. idx++;
  2345. }
  2346. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2347. }
  2348. static void check_mcg_ctl(void *ret)
  2349. {
  2350. u64 msr_val = 0;
  2351. u8 nbe;
  2352. rdmsrl(MSR_IA32_MCG_CTL, msr_val);
  2353. nbe = msr_val & K8_MSR_MCGCTL_NBE;
  2354. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2355. raw_smp_processor_id(), msr_val,
  2356. (nbe ? "enabled" : "disabled"));
  2357. if (!nbe)
  2358. *(int *)ret = 0;
  2359. }
  2360. /* check MCG_CTL on all the cpus on this node */
  2361. static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
  2362. {
  2363. int ret = 1;
  2364. preempt_disable();
  2365. smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
  2366. preempt_enable();
  2367. return ret;
  2368. }
  2369. /*
  2370. * EDAC requires that the BIOS have ECC enabled before taking over the
  2371. * processing of ECC errors. This is because the BIOS can properly initialize
  2372. * the memory system completely. A command line option allows to force-enable
  2373. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2374. */
  2375. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2376. {
  2377. u32 value;
  2378. int err = 0, ret = 0;
  2379. u8 ecc_enabled = 0;
  2380. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2381. if (err)
  2382. debugf0("Reading K8_NBCTL failed\n");
  2383. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2384. ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
  2385. debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value,
  2386. (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
  2387. if (!ecc_enabled || !ret) {
  2388. if (!ecc_enabled) {
  2389. amd64_printk(KERN_WARNING, "This node reports that "
  2390. "Memory ECC is currently "
  2391. "disabled.\n");
  2392. amd64_printk(KERN_WARNING, "bit 0x%lx in register "
  2393. "F3x%x of the MISC_CONTROL device (%s) "
  2394. "should be enabled\n", K8_NBCFG_ECC_ENABLE,
  2395. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2396. }
  2397. if (!ret) {
  2398. amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
  2399. "of node %d should be enabled\n",
  2400. K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
  2401. pvt->mc_node_id);
  2402. }
  2403. if (!ecc_enable_override) {
  2404. amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
  2405. "currently enabled by the BIOS. Module "
  2406. "will NOT be loaded.\n"
  2407. " Either Enable ECC in the BIOS, "
  2408. "or use the 'ecc_enable_override' "
  2409. "parameter.\n"
  2410. " Might be a BIOS bug, if BIOS says "
  2411. "ECC is enabled\n"
  2412. " Use of the override can cause "
  2413. "unknown side effects.\n");
  2414. ret = -ENODEV;
  2415. } else
  2416. /*
  2417. * enable further driver loading if ECC enable is
  2418. * overridden.
  2419. */
  2420. ret = 0;
  2421. } else {
  2422. amd64_printk(KERN_INFO,
  2423. "ECC is enabled by BIOS, Proceeding "
  2424. "with EDAC module initialization\n");
  2425. /* Signal good ECC status */
  2426. ret = 0;
  2427. /* CLEAR the override, since BIOS controlled it */
  2428. ecc_enable_override = 0;
  2429. }
  2430. return ret;
  2431. }
  2432. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2433. ARRAY_SIZE(amd64_inj_attrs) +
  2434. 1];
  2435. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2436. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2437. {
  2438. unsigned int i = 0, j = 0;
  2439. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2440. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2441. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2442. sysfs_attrs[i] = amd64_inj_attrs[j];
  2443. sysfs_attrs[i] = terminator;
  2444. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2445. }
  2446. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2447. {
  2448. struct amd64_pvt *pvt = mci->pvt_info;
  2449. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2450. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2451. if (pvt->nbcap & K8_NBCAP_SECDED)
  2452. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2453. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2454. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2455. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2456. mci->mod_name = EDAC_MOD_STR;
  2457. mci->mod_ver = EDAC_AMD64_VERSION;
  2458. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2459. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2460. mci->ctl_page_to_phys = NULL;
  2461. /* IMPORTANT: Set the polling 'check' function in this module */
  2462. mci->edac_check = amd64_check;
  2463. /* memory scrubber interface */
  2464. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2465. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2466. }
  2467. /*
  2468. * Init stuff for this DRAM Controller device.
  2469. *
  2470. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2471. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2472. * from the ECS registers. Since the loading of the module can occur on any
  2473. * 'core', and cores don't 'see' all the other processors ECS data when the
  2474. * others are NOT enabled. Our solution is to first enable ECS access in this
  2475. * routine on all processors, gather some data in a amd64_pvt structure and
  2476. * later come back in a finish-setup function to perform that final
  2477. * initialization. See also amd64_init_2nd_stage() for that.
  2478. */
  2479. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2480. int mc_type_index)
  2481. {
  2482. struct amd64_pvt *pvt = NULL;
  2483. int err = 0, ret;
  2484. ret = -ENOMEM;
  2485. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2486. if (!pvt)
  2487. goto err_exit;
  2488. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2489. pvt->dram_f2_ctl = dram_f2_ctl;
  2490. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2491. pvt->mc_type_index = mc_type_index;
  2492. pvt->ops = family_ops(mc_type_index);
  2493. pvt->old_mcgctl = 0;
  2494. /*
  2495. * We have the dram_f2_ctl device as an argument, now go reserve its
  2496. * sibling devices from the PCI system.
  2497. */
  2498. ret = -ENODEV;
  2499. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2500. if (err)
  2501. goto err_free;
  2502. ret = -EINVAL;
  2503. err = amd64_check_ecc_enabled(pvt);
  2504. if (err)
  2505. goto err_put;
  2506. /*
  2507. * Key operation here: setup of HW prior to performing ops on it. Some
  2508. * setup is required to access ECS data. After this is performed, the
  2509. * 'teardown' function must be called upon error and normal exit paths.
  2510. */
  2511. if (boot_cpu_data.x86 >= 0x10)
  2512. amd64_setup(pvt);
  2513. /*
  2514. * Save the pointer to the private data for use in 2nd initialization
  2515. * stage
  2516. */
  2517. pvt_lookup[pvt->mc_node_id] = pvt;
  2518. return 0;
  2519. err_put:
  2520. amd64_free_mc_sibling_devices(pvt);
  2521. err_free:
  2522. kfree(pvt);
  2523. err_exit:
  2524. return ret;
  2525. }
  2526. /*
  2527. * This is the finishing stage of the init code. Needs to be performed after all
  2528. * MCs' hardware have been prepped for accessing extended config space.
  2529. */
  2530. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2531. {
  2532. int node_id = pvt->mc_node_id;
  2533. struct mem_ctl_info *mci;
  2534. int ret, err = 0;
  2535. amd64_read_mc_registers(pvt);
  2536. ret = -ENODEV;
  2537. if (pvt->ops->probe_valid_hardware) {
  2538. err = pvt->ops->probe_valid_hardware(pvt);
  2539. if (err)
  2540. goto err_exit;
  2541. }
  2542. /*
  2543. * We need to determine how many memory channels there are. Then use
  2544. * that information for calculating the size of the dynamic instance
  2545. * tables in the 'mci' structure
  2546. */
  2547. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2548. if (pvt->channel_count < 0)
  2549. goto err_exit;
  2550. ret = -ENOMEM;
  2551. mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
  2552. if (!mci)
  2553. goto err_exit;
  2554. mci->pvt_info = pvt;
  2555. mci->dev = &pvt->dram_f2_ctl->dev;
  2556. amd64_setup_mci_misc_attributes(mci);
  2557. if (amd64_init_csrows(mci))
  2558. mci->edac_cap = EDAC_FLAG_NONE;
  2559. amd64_enable_ecc_error_reporting(mci);
  2560. amd64_set_mc_sysfs_attributes(mci);
  2561. ret = -ENODEV;
  2562. if (edac_mc_add_mc(mci)) {
  2563. debugf1("failed edac_mc_add_mc()\n");
  2564. goto err_add_mc;
  2565. }
  2566. mci_lookup[node_id] = mci;
  2567. pvt_lookup[node_id] = NULL;
  2568. /* register stuff with EDAC MCE */
  2569. if (report_gart_errors)
  2570. amd_report_gart_errors(true);
  2571. amd_register_ecc_decoder(amd64_decode_bus_error);
  2572. return 0;
  2573. err_add_mc:
  2574. edac_mc_free(mci);
  2575. err_exit:
  2576. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2577. amd64_restore_ecc_error_reporting(pvt);
  2578. if (boot_cpu_data.x86 > 0xf)
  2579. amd64_teardown(pvt);
  2580. amd64_free_mc_sibling_devices(pvt);
  2581. kfree(pvt_lookup[pvt->mc_node_id]);
  2582. pvt_lookup[node_id] = NULL;
  2583. return ret;
  2584. }
  2585. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2586. const struct pci_device_id *mc_type)
  2587. {
  2588. int ret = 0;
  2589. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2590. get_amd_family_name(mc_type->driver_data));
  2591. ret = pci_enable_device(pdev);
  2592. if (ret < 0)
  2593. ret = -EIO;
  2594. else
  2595. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2596. if (ret < 0)
  2597. debugf0("ret=%d\n", ret);
  2598. return ret;
  2599. }
  2600. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2601. {
  2602. struct mem_ctl_info *mci;
  2603. struct amd64_pvt *pvt;
  2604. /* Remove from EDAC CORE tracking list */
  2605. mci = edac_mc_del_mc(&pdev->dev);
  2606. if (!mci)
  2607. return;
  2608. pvt = mci->pvt_info;
  2609. amd64_restore_ecc_error_reporting(pvt);
  2610. if (boot_cpu_data.x86 > 0xf)
  2611. amd64_teardown(pvt);
  2612. amd64_free_mc_sibling_devices(pvt);
  2613. kfree(pvt);
  2614. mci->pvt_info = NULL;
  2615. mci_lookup[pvt->mc_node_id] = NULL;
  2616. /* unregister from EDAC MCE */
  2617. amd_report_gart_errors(false);
  2618. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2619. /* Free the EDAC CORE resources */
  2620. edac_mc_free(mci);
  2621. }
  2622. /*
  2623. * This table is part of the interface for loading drivers for PCI devices. The
  2624. * PCI core identifies what devices are on a system during boot, and then
  2625. * inquiry this table to see if this driver is for a given device found.
  2626. */
  2627. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2628. {
  2629. .vendor = PCI_VENDOR_ID_AMD,
  2630. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2631. .subvendor = PCI_ANY_ID,
  2632. .subdevice = PCI_ANY_ID,
  2633. .class = 0,
  2634. .class_mask = 0,
  2635. .driver_data = K8_CPUS
  2636. },
  2637. {
  2638. .vendor = PCI_VENDOR_ID_AMD,
  2639. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2640. .subvendor = PCI_ANY_ID,
  2641. .subdevice = PCI_ANY_ID,
  2642. .class = 0,
  2643. .class_mask = 0,
  2644. .driver_data = F10_CPUS
  2645. },
  2646. {
  2647. .vendor = PCI_VENDOR_ID_AMD,
  2648. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2649. .subvendor = PCI_ANY_ID,
  2650. .subdevice = PCI_ANY_ID,
  2651. .class = 0,
  2652. .class_mask = 0,
  2653. .driver_data = F11_CPUS
  2654. },
  2655. {0, }
  2656. };
  2657. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2658. static struct pci_driver amd64_pci_driver = {
  2659. .name = EDAC_MOD_STR,
  2660. .probe = amd64_init_one_instance,
  2661. .remove = __devexit_p(amd64_remove_one_instance),
  2662. .id_table = amd64_pci_table,
  2663. };
  2664. static void amd64_setup_pci_device(void)
  2665. {
  2666. struct mem_ctl_info *mci;
  2667. struct amd64_pvt *pvt;
  2668. if (amd64_ctl_pci)
  2669. return;
  2670. mci = mci_lookup[0];
  2671. if (mci) {
  2672. pvt = mci->pvt_info;
  2673. amd64_ctl_pci =
  2674. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2675. EDAC_MOD_STR);
  2676. if (!amd64_ctl_pci) {
  2677. pr_warning("%s(): Unable to create PCI control\n",
  2678. __func__);
  2679. pr_warning("%s(): PCI error report via EDAC not set\n",
  2680. __func__);
  2681. }
  2682. }
  2683. }
  2684. static int __init amd64_edac_init(void)
  2685. {
  2686. int nb, err = -ENODEV;
  2687. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2688. opstate_init();
  2689. if (cache_k8_northbridges() < 0)
  2690. goto err_exit;
  2691. err = pci_register_driver(&amd64_pci_driver);
  2692. if (err)
  2693. return err;
  2694. /*
  2695. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2696. * amd64_pvt structs. These will be used in the 2nd stage init function
  2697. * to finish initialization of the MC instances.
  2698. */
  2699. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2700. if (!pvt_lookup[nb])
  2701. continue;
  2702. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2703. if (err)
  2704. goto err_2nd_stage;
  2705. }
  2706. amd64_setup_pci_device();
  2707. return 0;
  2708. err_2nd_stage:
  2709. debugf0("2nd stage failed\n");
  2710. err_exit:
  2711. pci_unregister_driver(&amd64_pci_driver);
  2712. return err;
  2713. }
  2714. static void __exit amd64_edac_exit(void)
  2715. {
  2716. if (amd64_ctl_pci)
  2717. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2718. pci_unregister_driver(&amd64_pci_driver);
  2719. }
  2720. module_init(amd64_edac_init);
  2721. module_exit(amd64_edac_exit);
  2722. MODULE_LICENSE("GPL");
  2723. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2724. "Dave Peterson, Thayne Harbaugh");
  2725. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2726. EDAC_AMD64_VERSION);
  2727. module_param(edac_op_state, int, 0444);
  2728. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");