transaction.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/blkdev.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "locking.h"
  28. #include "tree-log.h"
  29. #include "inode-map.h"
  30. #include "volumes.h"
  31. #define BTRFS_ROOT_TRANS_TAG 0
  32. void put_transaction(struct btrfs_transaction *transaction)
  33. {
  34. WARN_ON(atomic_read(&transaction->use_count) == 0);
  35. if (atomic_dec_and_test(&transaction->use_count)) {
  36. BUG_ON(!list_empty(&transaction->list));
  37. WARN_ON(transaction->delayed_refs.root.rb_node);
  38. memset(transaction, 0, sizeof(*transaction));
  39. kmem_cache_free(btrfs_transaction_cachep, transaction);
  40. }
  41. }
  42. static noinline void switch_commit_root(struct btrfs_root *root)
  43. {
  44. free_extent_buffer(root->commit_root);
  45. root->commit_root = btrfs_root_node(root);
  46. }
  47. /*
  48. * either allocate a new transaction or hop into the existing one
  49. */
  50. static noinline int join_transaction(struct btrfs_root *root, int nofail)
  51. {
  52. struct btrfs_transaction *cur_trans;
  53. struct btrfs_fs_info *fs_info = root->fs_info;
  54. spin_lock(&fs_info->trans_lock);
  55. loop:
  56. /* The file system has been taken offline. No new transactions. */
  57. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  58. spin_unlock(&fs_info->trans_lock);
  59. return -EROFS;
  60. }
  61. if (fs_info->trans_no_join) {
  62. if (!nofail) {
  63. spin_unlock(&fs_info->trans_lock);
  64. return -EBUSY;
  65. }
  66. }
  67. cur_trans = fs_info->running_transaction;
  68. if (cur_trans) {
  69. if (cur_trans->aborted) {
  70. spin_unlock(&fs_info->trans_lock);
  71. return cur_trans->aborted;
  72. }
  73. atomic_inc(&cur_trans->use_count);
  74. atomic_inc(&cur_trans->num_writers);
  75. cur_trans->num_joined++;
  76. spin_unlock(&fs_info->trans_lock);
  77. return 0;
  78. }
  79. spin_unlock(&fs_info->trans_lock);
  80. cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  81. if (!cur_trans)
  82. return -ENOMEM;
  83. spin_lock(&fs_info->trans_lock);
  84. if (fs_info->running_transaction) {
  85. /*
  86. * someone started a transaction after we unlocked. Make sure
  87. * to redo the trans_no_join checks above
  88. */
  89. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  90. cur_trans = fs_info->running_transaction;
  91. goto loop;
  92. } else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  93. spin_unlock(&root->fs_info->trans_lock);
  94. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  95. return -EROFS;
  96. }
  97. atomic_set(&cur_trans->num_writers, 1);
  98. cur_trans->num_joined = 0;
  99. init_waitqueue_head(&cur_trans->writer_wait);
  100. init_waitqueue_head(&cur_trans->commit_wait);
  101. cur_trans->in_commit = 0;
  102. cur_trans->blocked = 0;
  103. /*
  104. * One for this trans handle, one so it will live on until we
  105. * commit the transaction.
  106. */
  107. atomic_set(&cur_trans->use_count, 2);
  108. cur_trans->commit_done = 0;
  109. cur_trans->start_time = get_seconds();
  110. cur_trans->delayed_refs.root = RB_ROOT;
  111. cur_trans->delayed_refs.num_entries = 0;
  112. cur_trans->delayed_refs.num_heads_ready = 0;
  113. cur_trans->delayed_refs.num_heads = 0;
  114. cur_trans->delayed_refs.flushing = 0;
  115. cur_trans->delayed_refs.run_delayed_start = 0;
  116. /*
  117. * although the tree mod log is per file system and not per transaction,
  118. * the log must never go across transaction boundaries.
  119. */
  120. smp_mb();
  121. if (!list_empty(&fs_info->tree_mod_seq_list)) {
  122. printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
  123. "creating a fresh transaction\n");
  124. WARN_ON(1);
  125. }
  126. if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
  127. printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
  128. "creating a fresh transaction\n");
  129. WARN_ON(1);
  130. }
  131. atomic_set(&fs_info->tree_mod_seq, 0);
  132. spin_lock_init(&cur_trans->commit_lock);
  133. spin_lock_init(&cur_trans->delayed_refs.lock);
  134. INIT_LIST_HEAD(&cur_trans->pending_snapshots);
  135. list_add_tail(&cur_trans->list, &fs_info->trans_list);
  136. extent_io_tree_init(&cur_trans->dirty_pages,
  137. fs_info->btree_inode->i_mapping);
  138. fs_info->generation++;
  139. cur_trans->transid = fs_info->generation;
  140. fs_info->running_transaction = cur_trans;
  141. cur_trans->aborted = 0;
  142. spin_unlock(&fs_info->trans_lock);
  143. return 0;
  144. }
  145. /*
  146. * this does all the record keeping required to make sure that a reference
  147. * counted root is properly recorded in a given transaction. This is required
  148. * to make sure the old root from before we joined the transaction is deleted
  149. * when the transaction commits
  150. */
  151. static int record_root_in_trans(struct btrfs_trans_handle *trans,
  152. struct btrfs_root *root)
  153. {
  154. if (root->ref_cows && root->last_trans < trans->transid) {
  155. WARN_ON(root == root->fs_info->extent_root);
  156. WARN_ON(root->commit_root != root->node);
  157. /*
  158. * see below for in_trans_setup usage rules
  159. * we have the reloc mutex held now, so there
  160. * is only one writer in this function
  161. */
  162. root->in_trans_setup = 1;
  163. /* make sure readers find in_trans_setup before
  164. * they find our root->last_trans update
  165. */
  166. smp_wmb();
  167. spin_lock(&root->fs_info->fs_roots_radix_lock);
  168. if (root->last_trans == trans->transid) {
  169. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  170. return 0;
  171. }
  172. radix_tree_tag_set(&root->fs_info->fs_roots_radix,
  173. (unsigned long)root->root_key.objectid,
  174. BTRFS_ROOT_TRANS_TAG);
  175. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  176. root->last_trans = trans->transid;
  177. /* this is pretty tricky. We don't want to
  178. * take the relocation lock in btrfs_record_root_in_trans
  179. * unless we're really doing the first setup for this root in
  180. * this transaction.
  181. *
  182. * Normally we'd use root->last_trans as a flag to decide
  183. * if we want to take the expensive mutex.
  184. *
  185. * But, we have to set root->last_trans before we
  186. * init the relocation root, otherwise, we trip over warnings
  187. * in ctree.c. The solution used here is to flag ourselves
  188. * with root->in_trans_setup. When this is 1, we're still
  189. * fixing up the reloc trees and everyone must wait.
  190. *
  191. * When this is zero, they can trust root->last_trans and fly
  192. * through btrfs_record_root_in_trans without having to take the
  193. * lock. smp_wmb() makes sure that all the writes above are
  194. * done before we pop in the zero below
  195. */
  196. btrfs_init_reloc_root(trans, root);
  197. smp_wmb();
  198. root->in_trans_setup = 0;
  199. }
  200. return 0;
  201. }
  202. int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
  203. struct btrfs_root *root)
  204. {
  205. if (!root->ref_cows)
  206. return 0;
  207. /*
  208. * see record_root_in_trans for comments about in_trans_setup usage
  209. * and barriers
  210. */
  211. smp_rmb();
  212. if (root->last_trans == trans->transid &&
  213. !root->in_trans_setup)
  214. return 0;
  215. mutex_lock(&root->fs_info->reloc_mutex);
  216. record_root_in_trans(trans, root);
  217. mutex_unlock(&root->fs_info->reloc_mutex);
  218. return 0;
  219. }
  220. /* wait for commit against the current transaction to become unblocked
  221. * when this is done, it is safe to start a new transaction, but the current
  222. * transaction might not be fully on disk.
  223. */
  224. static void wait_current_trans(struct btrfs_root *root)
  225. {
  226. struct btrfs_transaction *cur_trans;
  227. spin_lock(&root->fs_info->trans_lock);
  228. cur_trans = root->fs_info->running_transaction;
  229. if (cur_trans && cur_trans->blocked) {
  230. atomic_inc(&cur_trans->use_count);
  231. spin_unlock(&root->fs_info->trans_lock);
  232. wait_event(root->fs_info->transaction_wait,
  233. !cur_trans->blocked);
  234. put_transaction(cur_trans);
  235. } else {
  236. spin_unlock(&root->fs_info->trans_lock);
  237. }
  238. }
  239. enum btrfs_trans_type {
  240. TRANS_START,
  241. TRANS_JOIN,
  242. TRANS_USERSPACE,
  243. TRANS_JOIN_NOLOCK,
  244. };
  245. static int may_wait_transaction(struct btrfs_root *root, int type)
  246. {
  247. if (root->fs_info->log_root_recovering)
  248. return 0;
  249. if (type == TRANS_USERSPACE)
  250. return 1;
  251. if (type == TRANS_START &&
  252. !atomic_read(&root->fs_info->open_ioctl_trans))
  253. return 1;
  254. return 0;
  255. }
  256. static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
  257. u64 num_items, int type)
  258. {
  259. struct btrfs_trans_handle *h;
  260. struct btrfs_transaction *cur_trans;
  261. u64 num_bytes = 0;
  262. int ret;
  263. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  264. return ERR_PTR(-EROFS);
  265. if (current->journal_info) {
  266. WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
  267. h = current->journal_info;
  268. h->use_count++;
  269. h->orig_rsv = h->block_rsv;
  270. h->block_rsv = NULL;
  271. goto got_it;
  272. }
  273. /*
  274. * Do the reservation before we join the transaction so we can do all
  275. * the appropriate flushing if need be.
  276. */
  277. if (num_items > 0 && root != root->fs_info->chunk_root) {
  278. num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
  279. ret = btrfs_block_rsv_add(root,
  280. &root->fs_info->trans_block_rsv,
  281. num_bytes);
  282. if (ret)
  283. return ERR_PTR(ret);
  284. }
  285. again:
  286. h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
  287. if (!h)
  288. return ERR_PTR(-ENOMEM);
  289. if (may_wait_transaction(root, type))
  290. wait_current_trans(root);
  291. do {
  292. ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
  293. if (ret == -EBUSY)
  294. wait_current_trans(root);
  295. } while (ret == -EBUSY);
  296. if (ret < 0) {
  297. kmem_cache_free(btrfs_trans_handle_cachep, h);
  298. return ERR_PTR(ret);
  299. }
  300. cur_trans = root->fs_info->running_transaction;
  301. h->transid = cur_trans->transid;
  302. h->transaction = cur_trans;
  303. h->blocks_used = 0;
  304. h->bytes_reserved = 0;
  305. h->root = root;
  306. h->delayed_ref_updates = 0;
  307. h->use_count = 1;
  308. h->block_rsv = NULL;
  309. h->orig_rsv = NULL;
  310. h->aborted = 0;
  311. h->delayed_ref_elem.seq = 0;
  312. INIT_LIST_HEAD(&h->qgroup_ref_list);
  313. smp_mb();
  314. if (cur_trans->blocked && may_wait_transaction(root, type)) {
  315. btrfs_commit_transaction(h, root);
  316. goto again;
  317. }
  318. if (num_bytes) {
  319. trace_btrfs_space_reservation(root->fs_info, "transaction",
  320. h->transid, num_bytes, 1);
  321. h->block_rsv = &root->fs_info->trans_block_rsv;
  322. h->bytes_reserved = num_bytes;
  323. }
  324. got_it:
  325. btrfs_record_root_in_trans(h, root);
  326. if (!current->journal_info && type != TRANS_USERSPACE)
  327. current->journal_info = h;
  328. return h;
  329. }
  330. struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
  331. int num_items)
  332. {
  333. return start_transaction(root, num_items, TRANS_START);
  334. }
  335. struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
  336. {
  337. return start_transaction(root, 0, TRANS_JOIN);
  338. }
  339. struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
  340. {
  341. return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
  342. }
  343. struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
  344. {
  345. return start_transaction(root, 0, TRANS_USERSPACE);
  346. }
  347. /* wait for a transaction commit to be fully complete */
  348. static noinline void wait_for_commit(struct btrfs_root *root,
  349. struct btrfs_transaction *commit)
  350. {
  351. wait_event(commit->commit_wait, commit->commit_done);
  352. }
  353. int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
  354. {
  355. struct btrfs_transaction *cur_trans = NULL, *t;
  356. int ret;
  357. ret = 0;
  358. if (transid) {
  359. if (transid <= root->fs_info->last_trans_committed)
  360. goto out;
  361. /* find specified transaction */
  362. spin_lock(&root->fs_info->trans_lock);
  363. list_for_each_entry(t, &root->fs_info->trans_list, list) {
  364. if (t->transid == transid) {
  365. cur_trans = t;
  366. atomic_inc(&cur_trans->use_count);
  367. break;
  368. }
  369. if (t->transid > transid)
  370. break;
  371. }
  372. spin_unlock(&root->fs_info->trans_lock);
  373. ret = -EINVAL;
  374. if (!cur_trans)
  375. goto out; /* bad transid */
  376. } else {
  377. /* find newest transaction that is committing | committed */
  378. spin_lock(&root->fs_info->trans_lock);
  379. list_for_each_entry_reverse(t, &root->fs_info->trans_list,
  380. list) {
  381. if (t->in_commit) {
  382. if (t->commit_done)
  383. break;
  384. cur_trans = t;
  385. atomic_inc(&cur_trans->use_count);
  386. break;
  387. }
  388. }
  389. spin_unlock(&root->fs_info->trans_lock);
  390. if (!cur_trans)
  391. goto out; /* nothing committing|committed */
  392. }
  393. wait_for_commit(root, cur_trans);
  394. put_transaction(cur_trans);
  395. ret = 0;
  396. out:
  397. return ret;
  398. }
  399. void btrfs_throttle(struct btrfs_root *root)
  400. {
  401. if (!atomic_read(&root->fs_info->open_ioctl_trans))
  402. wait_current_trans(root);
  403. }
  404. static int should_end_transaction(struct btrfs_trans_handle *trans,
  405. struct btrfs_root *root)
  406. {
  407. int ret;
  408. ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
  409. return ret ? 1 : 0;
  410. }
  411. int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
  412. struct btrfs_root *root)
  413. {
  414. struct btrfs_transaction *cur_trans = trans->transaction;
  415. struct btrfs_block_rsv *rsv = trans->block_rsv;
  416. int updates;
  417. int err;
  418. smp_mb();
  419. if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
  420. return 1;
  421. /*
  422. * We need to do this in case we're deleting csums so the global block
  423. * rsv get's used instead of the csum block rsv.
  424. */
  425. trans->block_rsv = NULL;
  426. updates = trans->delayed_ref_updates;
  427. trans->delayed_ref_updates = 0;
  428. if (updates) {
  429. err = btrfs_run_delayed_refs(trans, root, updates);
  430. if (err) /* Error code will also eval true */
  431. return err;
  432. }
  433. trans->block_rsv = rsv;
  434. return should_end_transaction(trans, root);
  435. }
  436. static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
  437. struct btrfs_root *root, int throttle, int lock)
  438. {
  439. struct btrfs_transaction *cur_trans = trans->transaction;
  440. struct btrfs_fs_info *info = root->fs_info;
  441. int count = 0;
  442. int err = 0;
  443. if (--trans->use_count) {
  444. trans->block_rsv = trans->orig_rsv;
  445. return 0;
  446. }
  447. /*
  448. * do the qgroup accounting as early as possible
  449. */
  450. err = btrfs_delayed_refs_qgroup_accounting(trans, info);
  451. btrfs_trans_release_metadata(trans, root);
  452. trans->block_rsv = NULL;
  453. /*
  454. * the same root has to be passed to start_transaction and
  455. * end_transaction. Subvolume quota depends on this.
  456. */
  457. WARN_ON(trans->root != root);
  458. while (count < 2) {
  459. unsigned long cur = trans->delayed_ref_updates;
  460. trans->delayed_ref_updates = 0;
  461. if (cur &&
  462. trans->transaction->delayed_refs.num_heads_ready > 64) {
  463. trans->delayed_ref_updates = 0;
  464. btrfs_run_delayed_refs(trans, root, cur);
  465. } else {
  466. break;
  467. }
  468. count++;
  469. }
  470. if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
  471. should_end_transaction(trans, root)) {
  472. trans->transaction->blocked = 1;
  473. smp_wmb();
  474. }
  475. if (lock && cur_trans->blocked && !cur_trans->in_commit) {
  476. if (throttle) {
  477. /*
  478. * We may race with somebody else here so end up having
  479. * to call end_transaction on ourselves again, so inc
  480. * our use_count.
  481. */
  482. trans->use_count++;
  483. return btrfs_commit_transaction(trans, root);
  484. } else {
  485. wake_up_process(info->transaction_kthread);
  486. }
  487. }
  488. WARN_ON(cur_trans != info->running_transaction);
  489. WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
  490. atomic_dec(&cur_trans->num_writers);
  491. smp_mb();
  492. if (waitqueue_active(&cur_trans->writer_wait))
  493. wake_up(&cur_trans->writer_wait);
  494. put_transaction(cur_trans);
  495. if (current->journal_info == trans)
  496. current->journal_info = NULL;
  497. if (throttle)
  498. btrfs_run_delayed_iputs(root);
  499. if (trans->aborted ||
  500. root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  501. err = -EIO;
  502. }
  503. assert_qgroups_uptodate(trans);
  504. memset(trans, 0, sizeof(*trans));
  505. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  506. return err;
  507. }
  508. int btrfs_end_transaction(struct btrfs_trans_handle *trans,
  509. struct btrfs_root *root)
  510. {
  511. int ret;
  512. ret = __btrfs_end_transaction(trans, root, 0, 1);
  513. if (ret)
  514. return ret;
  515. return 0;
  516. }
  517. int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
  518. struct btrfs_root *root)
  519. {
  520. int ret;
  521. ret = __btrfs_end_transaction(trans, root, 1, 1);
  522. if (ret)
  523. return ret;
  524. return 0;
  525. }
  526. int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
  527. struct btrfs_root *root)
  528. {
  529. int ret;
  530. ret = __btrfs_end_transaction(trans, root, 0, 0);
  531. if (ret)
  532. return ret;
  533. return 0;
  534. }
  535. int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
  536. struct btrfs_root *root)
  537. {
  538. return __btrfs_end_transaction(trans, root, 1, 1);
  539. }
  540. /*
  541. * when btree blocks are allocated, they have some corresponding bits set for
  542. * them in one of two extent_io trees. This is used to make sure all of
  543. * those extents are sent to disk but does not wait on them
  544. */
  545. int btrfs_write_marked_extents(struct btrfs_root *root,
  546. struct extent_io_tree *dirty_pages, int mark)
  547. {
  548. int err = 0;
  549. int werr = 0;
  550. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  551. u64 start = 0;
  552. u64 end;
  553. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  554. mark)) {
  555. convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
  556. GFP_NOFS);
  557. err = filemap_fdatawrite_range(mapping, start, end);
  558. if (err)
  559. werr = err;
  560. cond_resched();
  561. start = end + 1;
  562. }
  563. if (err)
  564. werr = err;
  565. return werr;
  566. }
  567. /*
  568. * when btree blocks are allocated, they have some corresponding bits set for
  569. * them in one of two extent_io trees. This is used to make sure all of
  570. * those extents are on disk for transaction or log commit. We wait
  571. * on all the pages and clear them from the dirty pages state tree
  572. */
  573. int btrfs_wait_marked_extents(struct btrfs_root *root,
  574. struct extent_io_tree *dirty_pages, int mark)
  575. {
  576. int err = 0;
  577. int werr = 0;
  578. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  579. u64 start = 0;
  580. u64 end;
  581. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  582. EXTENT_NEED_WAIT)) {
  583. clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
  584. err = filemap_fdatawait_range(mapping, start, end);
  585. if (err)
  586. werr = err;
  587. cond_resched();
  588. start = end + 1;
  589. }
  590. if (err)
  591. werr = err;
  592. return werr;
  593. }
  594. /*
  595. * when btree blocks are allocated, they have some corresponding bits set for
  596. * them in one of two extent_io trees. This is used to make sure all of
  597. * those extents are on disk for transaction or log commit
  598. */
  599. int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
  600. struct extent_io_tree *dirty_pages, int mark)
  601. {
  602. int ret;
  603. int ret2;
  604. ret = btrfs_write_marked_extents(root, dirty_pages, mark);
  605. ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
  606. if (ret)
  607. return ret;
  608. if (ret2)
  609. return ret2;
  610. return 0;
  611. }
  612. int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
  613. struct btrfs_root *root)
  614. {
  615. if (!trans || !trans->transaction) {
  616. struct inode *btree_inode;
  617. btree_inode = root->fs_info->btree_inode;
  618. return filemap_write_and_wait(btree_inode->i_mapping);
  619. }
  620. return btrfs_write_and_wait_marked_extents(root,
  621. &trans->transaction->dirty_pages,
  622. EXTENT_DIRTY);
  623. }
  624. /*
  625. * this is used to update the root pointer in the tree of tree roots.
  626. *
  627. * But, in the case of the extent allocation tree, updating the root
  628. * pointer may allocate blocks which may change the root of the extent
  629. * allocation tree.
  630. *
  631. * So, this loops and repeats and makes sure the cowonly root didn't
  632. * change while the root pointer was being updated in the metadata.
  633. */
  634. static int update_cowonly_root(struct btrfs_trans_handle *trans,
  635. struct btrfs_root *root)
  636. {
  637. int ret;
  638. u64 old_root_bytenr;
  639. u64 old_root_used;
  640. struct btrfs_root *tree_root = root->fs_info->tree_root;
  641. old_root_used = btrfs_root_used(&root->root_item);
  642. btrfs_write_dirty_block_groups(trans, root);
  643. while (1) {
  644. old_root_bytenr = btrfs_root_bytenr(&root->root_item);
  645. if (old_root_bytenr == root->node->start &&
  646. old_root_used == btrfs_root_used(&root->root_item))
  647. break;
  648. btrfs_set_root_node(&root->root_item, root->node);
  649. ret = btrfs_update_root(trans, tree_root,
  650. &root->root_key,
  651. &root->root_item);
  652. if (ret)
  653. return ret;
  654. old_root_used = btrfs_root_used(&root->root_item);
  655. ret = btrfs_write_dirty_block_groups(trans, root);
  656. if (ret)
  657. return ret;
  658. }
  659. if (root != root->fs_info->extent_root)
  660. switch_commit_root(root);
  661. return 0;
  662. }
  663. /*
  664. * update all the cowonly tree roots on disk
  665. *
  666. * The error handling in this function may not be obvious. Any of the
  667. * failures will cause the file system to go offline. We still need
  668. * to clean up the delayed refs.
  669. */
  670. static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
  671. struct btrfs_root *root)
  672. {
  673. struct btrfs_fs_info *fs_info = root->fs_info;
  674. struct list_head *next;
  675. struct extent_buffer *eb;
  676. int ret;
  677. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  678. if (ret)
  679. return ret;
  680. eb = btrfs_lock_root_node(fs_info->tree_root);
  681. ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
  682. 0, &eb);
  683. btrfs_tree_unlock(eb);
  684. free_extent_buffer(eb);
  685. if (ret)
  686. return ret;
  687. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  688. if (ret)
  689. return ret;
  690. ret = btrfs_run_dev_stats(trans, root->fs_info);
  691. BUG_ON(ret);
  692. ret = btrfs_run_qgroups(trans, root->fs_info);
  693. BUG_ON(ret);
  694. /* run_qgroups might have added some more refs */
  695. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  696. BUG_ON(ret);
  697. while (!list_empty(&fs_info->dirty_cowonly_roots)) {
  698. next = fs_info->dirty_cowonly_roots.next;
  699. list_del_init(next);
  700. root = list_entry(next, struct btrfs_root, dirty_list);
  701. ret = update_cowonly_root(trans, root);
  702. if (ret)
  703. return ret;
  704. }
  705. down_write(&fs_info->extent_commit_sem);
  706. switch_commit_root(fs_info->extent_root);
  707. up_write(&fs_info->extent_commit_sem);
  708. return 0;
  709. }
  710. /*
  711. * dead roots are old snapshots that need to be deleted. This allocates
  712. * a dirty root struct and adds it into the list of dead roots that need to
  713. * be deleted
  714. */
  715. int btrfs_add_dead_root(struct btrfs_root *root)
  716. {
  717. spin_lock(&root->fs_info->trans_lock);
  718. list_add(&root->root_list, &root->fs_info->dead_roots);
  719. spin_unlock(&root->fs_info->trans_lock);
  720. return 0;
  721. }
  722. /*
  723. * update all the cowonly tree roots on disk
  724. */
  725. static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
  726. struct btrfs_root *root)
  727. {
  728. struct btrfs_root *gang[8];
  729. struct btrfs_fs_info *fs_info = root->fs_info;
  730. int i;
  731. int ret;
  732. int err = 0;
  733. spin_lock(&fs_info->fs_roots_radix_lock);
  734. while (1) {
  735. ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
  736. (void **)gang, 0,
  737. ARRAY_SIZE(gang),
  738. BTRFS_ROOT_TRANS_TAG);
  739. if (ret == 0)
  740. break;
  741. for (i = 0; i < ret; i++) {
  742. root = gang[i];
  743. radix_tree_tag_clear(&fs_info->fs_roots_radix,
  744. (unsigned long)root->root_key.objectid,
  745. BTRFS_ROOT_TRANS_TAG);
  746. spin_unlock(&fs_info->fs_roots_radix_lock);
  747. btrfs_free_log(trans, root);
  748. btrfs_update_reloc_root(trans, root);
  749. btrfs_orphan_commit_root(trans, root);
  750. btrfs_save_ino_cache(root, trans);
  751. /* see comments in should_cow_block() */
  752. root->force_cow = 0;
  753. smp_wmb();
  754. if (root->commit_root != root->node) {
  755. mutex_lock(&root->fs_commit_mutex);
  756. switch_commit_root(root);
  757. btrfs_unpin_free_ino(root);
  758. mutex_unlock(&root->fs_commit_mutex);
  759. btrfs_set_root_node(&root->root_item,
  760. root->node);
  761. }
  762. err = btrfs_update_root(trans, fs_info->tree_root,
  763. &root->root_key,
  764. &root->root_item);
  765. spin_lock(&fs_info->fs_roots_radix_lock);
  766. if (err)
  767. break;
  768. }
  769. }
  770. spin_unlock(&fs_info->fs_roots_radix_lock);
  771. return err;
  772. }
  773. /*
  774. * defrag a given btree. If cacheonly == 1, this won't read from the disk,
  775. * otherwise every leaf in the btree is read and defragged.
  776. */
  777. int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
  778. {
  779. struct btrfs_fs_info *info = root->fs_info;
  780. struct btrfs_trans_handle *trans;
  781. int ret;
  782. unsigned long nr;
  783. if (xchg(&root->defrag_running, 1))
  784. return 0;
  785. while (1) {
  786. trans = btrfs_start_transaction(root, 0);
  787. if (IS_ERR(trans))
  788. return PTR_ERR(trans);
  789. ret = btrfs_defrag_leaves(trans, root, cacheonly);
  790. nr = trans->blocks_used;
  791. btrfs_end_transaction(trans, root);
  792. btrfs_btree_balance_dirty(info->tree_root, nr);
  793. cond_resched();
  794. if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
  795. break;
  796. }
  797. root->defrag_running = 0;
  798. return ret;
  799. }
  800. /*
  801. * new snapshots need to be created at a very specific time in the
  802. * transaction commit. This does the actual creation
  803. */
  804. static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
  805. struct btrfs_fs_info *fs_info,
  806. struct btrfs_pending_snapshot *pending)
  807. {
  808. struct btrfs_key key;
  809. struct btrfs_root_item *new_root_item;
  810. struct btrfs_root *tree_root = fs_info->tree_root;
  811. struct btrfs_root *root = pending->root;
  812. struct btrfs_root *parent_root;
  813. struct btrfs_block_rsv *rsv;
  814. struct inode *parent_inode;
  815. struct dentry *parent;
  816. struct dentry *dentry;
  817. struct extent_buffer *tmp;
  818. struct extent_buffer *old;
  819. int ret;
  820. u64 to_reserve = 0;
  821. u64 index = 0;
  822. u64 objectid;
  823. u64 root_flags;
  824. rsv = trans->block_rsv;
  825. new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
  826. if (!new_root_item) {
  827. ret = pending->error = -ENOMEM;
  828. goto fail;
  829. }
  830. ret = btrfs_find_free_objectid(tree_root, &objectid);
  831. if (ret) {
  832. pending->error = ret;
  833. goto fail;
  834. }
  835. btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
  836. if (to_reserve > 0) {
  837. ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
  838. to_reserve);
  839. if (ret) {
  840. pending->error = ret;
  841. goto fail;
  842. }
  843. }
  844. key.objectid = objectid;
  845. key.offset = (u64)-1;
  846. key.type = BTRFS_ROOT_ITEM_KEY;
  847. trans->block_rsv = &pending->block_rsv;
  848. dentry = pending->dentry;
  849. parent = dget_parent(dentry);
  850. parent_inode = parent->d_inode;
  851. parent_root = BTRFS_I(parent_inode)->root;
  852. record_root_in_trans(trans, parent_root);
  853. /*
  854. * insert the directory item
  855. */
  856. ret = btrfs_set_inode_index(parent_inode, &index);
  857. BUG_ON(ret); /* -ENOMEM */
  858. ret = btrfs_insert_dir_item(trans, parent_root,
  859. dentry->d_name.name, dentry->d_name.len,
  860. parent_inode, &key,
  861. BTRFS_FT_DIR, index);
  862. if (ret == -EEXIST) {
  863. pending->error = -EEXIST;
  864. dput(parent);
  865. goto fail;
  866. } else if (ret) {
  867. goto abort_trans_dput;
  868. }
  869. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  870. dentry->d_name.len * 2);
  871. ret = btrfs_update_inode(trans, parent_root, parent_inode);
  872. if (ret)
  873. goto abort_trans_dput;
  874. /*
  875. * pull in the delayed directory update
  876. * and the delayed inode item
  877. * otherwise we corrupt the FS during
  878. * snapshot
  879. */
  880. ret = btrfs_run_delayed_items(trans, root);
  881. if (ret) { /* Transaction aborted */
  882. dput(parent);
  883. goto fail;
  884. }
  885. record_root_in_trans(trans, root);
  886. btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
  887. memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
  888. btrfs_check_and_init_root_item(new_root_item);
  889. root_flags = btrfs_root_flags(new_root_item);
  890. if (pending->readonly)
  891. root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
  892. else
  893. root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
  894. btrfs_set_root_flags(new_root_item, root_flags);
  895. old = btrfs_lock_root_node(root);
  896. ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
  897. if (ret) {
  898. btrfs_tree_unlock(old);
  899. free_extent_buffer(old);
  900. goto abort_trans_dput;
  901. }
  902. btrfs_set_lock_blocking(old);
  903. ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
  904. /* clean up in any case */
  905. btrfs_tree_unlock(old);
  906. free_extent_buffer(old);
  907. if (ret)
  908. goto abort_trans_dput;
  909. /* see comments in should_cow_block() */
  910. root->force_cow = 1;
  911. smp_wmb();
  912. btrfs_set_root_node(new_root_item, tmp);
  913. /* record when the snapshot was created in key.offset */
  914. key.offset = trans->transid;
  915. ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
  916. btrfs_tree_unlock(tmp);
  917. free_extent_buffer(tmp);
  918. if (ret)
  919. goto abort_trans_dput;
  920. /*
  921. * insert root back/forward references
  922. */
  923. ret = btrfs_add_root_ref(trans, tree_root, objectid,
  924. parent_root->root_key.objectid,
  925. btrfs_ino(parent_inode), index,
  926. dentry->d_name.name, dentry->d_name.len);
  927. dput(parent);
  928. if (ret)
  929. goto fail;
  930. key.offset = (u64)-1;
  931. pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
  932. if (IS_ERR(pending->snap)) {
  933. ret = PTR_ERR(pending->snap);
  934. goto abort_trans;
  935. }
  936. ret = btrfs_reloc_post_snapshot(trans, pending);
  937. if (ret)
  938. goto abort_trans;
  939. ret = 0;
  940. fail:
  941. kfree(new_root_item);
  942. trans->block_rsv = rsv;
  943. btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
  944. return ret;
  945. abort_trans_dput:
  946. dput(parent);
  947. abort_trans:
  948. btrfs_abort_transaction(trans, root, ret);
  949. goto fail;
  950. }
  951. /*
  952. * create all the snapshots we've scheduled for creation
  953. */
  954. static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
  955. struct btrfs_fs_info *fs_info)
  956. {
  957. struct btrfs_pending_snapshot *pending;
  958. struct list_head *head = &trans->transaction->pending_snapshots;
  959. list_for_each_entry(pending, head, list)
  960. create_pending_snapshot(trans, fs_info, pending);
  961. return 0;
  962. }
  963. static void update_super_roots(struct btrfs_root *root)
  964. {
  965. struct btrfs_root_item *root_item;
  966. struct btrfs_super_block *super;
  967. super = root->fs_info->super_copy;
  968. root_item = &root->fs_info->chunk_root->root_item;
  969. super->chunk_root = root_item->bytenr;
  970. super->chunk_root_generation = root_item->generation;
  971. super->chunk_root_level = root_item->level;
  972. root_item = &root->fs_info->tree_root->root_item;
  973. super->root = root_item->bytenr;
  974. super->generation = root_item->generation;
  975. super->root_level = root_item->level;
  976. if (btrfs_test_opt(root, SPACE_CACHE))
  977. super->cache_generation = root_item->generation;
  978. }
  979. int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
  980. {
  981. int ret = 0;
  982. spin_lock(&info->trans_lock);
  983. if (info->running_transaction)
  984. ret = info->running_transaction->in_commit;
  985. spin_unlock(&info->trans_lock);
  986. return ret;
  987. }
  988. int btrfs_transaction_blocked(struct btrfs_fs_info *info)
  989. {
  990. int ret = 0;
  991. spin_lock(&info->trans_lock);
  992. if (info->running_transaction)
  993. ret = info->running_transaction->blocked;
  994. spin_unlock(&info->trans_lock);
  995. return ret;
  996. }
  997. /*
  998. * wait for the current transaction commit to start and block subsequent
  999. * transaction joins
  1000. */
  1001. static void wait_current_trans_commit_start(struct btrfs_root *root,
  1002. struct btrfs_transaction *trans)
  1003. {
  1004. wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
  1005. }
  1006. /*
  1007. * wait for the current transaction to start and then become unblocked.
  1008. * caller holds ref.
  1009. */
  1010. static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
  1011. struct btrfs_transaction *trans)
  1012. {
  1013. wait_event(root->fs_info->transaction_wait,
  1014. trans->commit_done || (trans->in_commit && !trans->blocked));
  1015. }
  1016. /*
  1017. * commit transactions asynchronously. once btrfs_commit_transaction_async
  1018. * returns, any subsequent transaction will not be allowed to join.
  1019. */
  1020. struct btrfs_async_commit {
  1021. struct btrfs_trans_handle *newtrans;
  1022. struct btrfs_root *root;
  1023. struct delayed_work work;
  1024. };
  1025. static void do_async_commit(struct work_struct *work)
  1026. {
  1027. struct btrfs_async_commit *ac =
  1028. container_of(work, struct btrfs_async_commit, work.work);
  1029. btrfs_commit_transaction(ac->newtrans, ac->root);
  1030. kfree(ac);
  1031. }
  1032. int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
  1033. struct btrfs_root *root,
  1034. int wait_for_unblock)
  1035. {
  1036. struct btrfs_async_commit *ac;
  1037. struct btrfs_transaction *cur_trans;
  1038. ac = kmalloc(sizeof(*ac), GFP_NOFS);
  1039. if (!ac)
  1040. return -ENOMEM;
  1041. INIT_DELAYED_WORK(&ac->work, do_async_commit);
  1042. ac->root = root;
  1043. ac->newtrans = btrfs_join_transaction(root);
  1044. if (IS_ERR(ac->newtrans)) {
  1045. int err = PTR_ERR(ac->newtrans);
  1046. kfree(ac);
  1047. return err;
  1048. }
  1049. /* take transaction reference */
  1050. cur_trans = trans->transaction;
  1051. atomic_inc(&cur_trans->use_count);
  1052. btrfs_end_transaction(trans, root);
  1053. schedule_delayed_work(&ac->work, 0);
  1054. /* wait for transaction to start and unblock */
  1055. if (wait_for_unblock)
  1056. wait_current_trans_commit_start_and_unblock(root, cur_trans);
  1057. else
  1058. wait_current_trans_commit_start(root, cur_trans);
  1059. if (current->journal_info == trans)
  1060. current->journal_info = NULL;
  1061. put_transaction(cur_trans);
  1062. return 0;
  1063. }
  1064. static void cleanup_transaction(struct btrfs_trans_handle *trans,
  1065. struct btrfs_root *root, int err)
  1066. {
  1067. struct btrfs_transaction *cur_trans = trans->transaction;
  1068. WARN_ON(trans->use_count > 1);
  1069. btrfs_abort_transaction(trans, root, err);
  1070. spin_lock(&root->fs_info->trans_lock);
  1071. list_del_init(&cur_trans->list);
  1072. if (cur_trans == root->fs_info->running_transaction) {
  1073. root->fs_info->running_transaction = NULL;
  1074. root->fs_info->trans_no_join = 0;
  1075. }
  1076. spin_unlock(&root->fs_info->trans_lock);
  1077. btrfs_cleanup_one_transaction(trans->transaction, root);
  1078. put_transaction(cur_trans);
  1079. put_transaction(cur_trans);
  1080. trace_btrfs_transaction_commit(root);
  1081. btrfs_scrub_continue(root);
  1082. if (current->journal_info == trans)
  1083. current->journal_info = NULL;
  1084. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1085. }
  1086. /*
  1087. * btrfs_transaction state sequence:
  1088. * in_commit = 0, blocked = 0 (initial)
  1089. * in_commit = 1, blocked = 1
  1090. * blocked = 0
  1091. * commit_done = 1
  1092. */
  1093. int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
  1094. struct btrfs_root *root)
  1095. {
  1096. unsigned long joined = 0;
  1097. struct btrfs_transaction *cur_trans = trans->transaction;
  1098. struct btrfs_transaction *prev_trans = NULL;
  1099. DEFINE_WAIT(wait);
  1100. int ret = -EIO;
  1101. int should_grow = 0;
  1102. unsigned long now = get_seconds();
  1103. int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
  1104. btrfs_run_ordered_operations(root, 0);
  1105. btrfs_trans_release_metadata(trans, root);
  1106. trans->block_rsv = NULL;
  1107. if (cur_trans->aborted)
  1108. goto cleanup_transaction;
  1109. /* make a pass through all the delayed refs we have so far
  1110. * any runnings procs may add more while we are here
  1111. */
  1112. ret = btrfs_run_delayed_refs(trans, root, 0);
  1113. if (ret)
  1114. goto cleanup_transaction;
  1115. cur_trans = trans->transaction;
  1116. /*
  1117. * set the flushing flag so procs in this transaction have to
  1118. * start sending their work down.
  1119. */
  1120. cur_trans->delayed_refs.flushing = 1;
  1121. ret = btrfs_run_delayed_refs(trans, root, 0);
  1122. if (ret)
  1123. goto cleanup_transaction;
  1124. spin_lock(&cur_trans->commit_lock);
  1125. if (cur_trans->in_commit) {
  1126. spin_unlock(&cur_trans->commit_lock);
  1127. atomic_inc(&cur_trans->use_count);
  1128. ret = btrfs_end_transaction(trans, root);
  1129. wait_for_commit(root, cur_trans);
  1130. put_transaction(cur_trans);
  1131. return ret;
  1132. }
  1133. trans->transaction->in_commit = 1;
  1134. trans->transaction->blocked = 1;
  1135. spin_unlock(&cur_trans->commit_lock);
  1136. wake_up(&root->fs_info->transaction_blocked_wait);
  1137. spin_lock(&root->fs_info->trans_lock);
  1138. if (cur_trans->list.prev != &root->fs_info->trans_list) {
  1139. prev_trans = list_entry(cur_trans->list.prev,
  1140. struct btrfs_transaction, list);
  1141. if (!prev_trans->commit_done) {
  1142. atomic_inc(&prev_trans->use_count);
  1143. spin_unlock(&root->fs_info->trans_lock);
  1144. wait_for_commit(root, prev_trans);
  1145. put_transaction(prev_trans);
  1146. } else {
  1147. spin_unlock(&root->fs_info->trans_lock);
  1148. }
  1149. } else {
  1150. spin_unlock(&root->fs_info->trans_lock);
  1151. }
  1152. if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
  1153. should_grow = 1;
  1154. do {
  1155. int snap_pending = 0;
  1156. joined = cur_trans->num_joined;
  1157. if (!list_empty(&trans->transaction->pending_snapshots))
  1158. snap_pending = 1;
  1159. WARN_ON(cur_trans != trans->transaction);
  1160. if (flush_on_commit || snap_pending) {
  1161. btrfs_start_delalloc_inodes(root, 1);
  1162. btrfs_wait_ordered_extents(root, 0, 1);
  1163. }
  1164. ret = btrfs_run_delayed_items(trans, root);
  1165. if (ret)
  1166. goto cleanup_transaction;
  1167. /*
  1168. * running the delayed items may have added new refs. account
  1169. * them now so that they hinder processing of more delayed refs
  1170. * as little as possible.
  1171. */
  1172. btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
  1173. /*
  1174. * rename don't use btrfs_join_transaction, so, once we
  1175. * set the transaction to blocked above, we aren't going
  1176. * to get any new ordered operations. We can safely run
  1177. * it here and no for sure that nothing new will be added
  1178. * to the list
  1179. */
  1180. btrfs_run_ordered_operations(root, 1);
  1181. prepare_to_wait(&cur_trans->writer_wait, &wait,
  1182. TASK_UNINTERRUPTIBLE);
  1183. if (atomic_read(&cur_trans->num_writers) > 1)
  1184. schedule_timeout(MAX_SCHEDULE_TIMEOUT);
  1185. else if (should_grow)
  1186. schedule_timeout(1);
  1187. finish_wait(&cur_trans->writer_wait, &wait);
  1188. } while (atomic_read(&cur_trans->num_writers) > 1 ||
  1189. (should_grow && cur_trans->num_joined != joined));
  1190. /*
  1191. * Ok now we need to make sure to block out any other joins while we
  1192. * commit the transaction. We could have started a join before setting
  1193. * no_join so make sure to wait for num_writers to == 1 again.
  1194. */
  1195. spin_lock(&root->fs_info->trans_lock);
  1196. root->fs_info->trans_no_join = 1;
  1197. spin_unlock(&root->fs_info->trans_lock);
  1198. wait_event(cur_trans->writer_wait,
  1199. atomic_read(&cur_trans->num_writers) == 1);
  1200. /*
  1201. * the reloc mutex makes sure that we stop
  1202. * the balancing code from coming in and moving
  1203. * extents around in the middle of the commit
  1204. */
  1205. mutex_lock(&root->fs_info->reloc_mutex);
  1206. ret = btrfs_run_delayed_items(trans, root);
  1207. if (ret) {
  1208. mutex_unlock(&root->fs_info->reloc_mutex);
  1209. goto cleanup_transaction;
  1210. }
  1211. ret = create_pending_snapshots(trans, root->fs_info);
  1212. if (ret) {
  1213. mutex_unlock(&root->fs_info->reloc_mutex);
  1214. goto cleanup_transaction;
  1215. }
  1216. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1217. if (ret) {
  1218. mutex_unlock(&root->fs_info->reloc_mutex);
  1219. goto cleanup_transaction;
  1220. }
  1221. /*
  1222. * make sure none of the code above managed to slip in a
  1223. * delayed item
  1224. */
  1225. btrfs_assert_delayed_root_empty(root);
  1226. WARN_ON(cur_trans != trans->transaction);
  1227. btrfs_scrub_pause(root);
  1228. /* btrfs_commit_tree_roots is responsible for getting the
  1229. * various roots consistent with each other. Every pointer
  1230. * in the tree of tree roots has to point to the most up to date
  1231. * root for every subvolume and other tree. So, we have to keep
  1232. * the tree logging code from jumping in and changing any
  1233. * of the trees.
  1234. *
  1235. * At this point in the commit, there can't be any tree-log
  1236. * writers, but a little lower down we drop the trans mutex
  1237. * and let new people in. By holding the tree_log_mutex
  1238. * from now until after the super is written, we avoid races
  1239. * with the tree-log code.
  1240. */
  1241. mutex_lock(&root->fs_info->tree_log_mutex);
  1242. ret = commit_fs_roots(trans, root);
  1243. if (ret) {
  1244. mutex_unlock(&root->fs_info->tree_log_mutex);
  1245. mutex_unlock(&root->fs_info->reloc_mutex);
  1246. goto cleanup_transaction;
  1247. }
  1248. /* commit_fs_roots gets rid of all the tree log roots, it is now
  1249. * safe to free the root of tree log roots
  1250. */
  1251. btrfs_free_log_root_tree(trans, root->fs_info);
  1252. ret = commit_cowonly_roots(trans, root);
  1253. if (ret) {
  1254. mutex_unlock(&root->fs_info->tree_log_mutex);
  1255. mutex_unlock(&root->fs_info->reloc_mutex);
  1256. goto cleanup_transaction;
  1257. }
  1258. btrfs_prepare_extent_commit(trans, root);
  1259. cur_trans = root->fs_info->running_transaction;
  1260. btrfs_set_root_node(&root->fs_info->tree_root->root_item,
  1261. root->fs_info->tree_root->node);
  1262. switch_commit_root(root->fs_info->tree_root);
  1263. btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
  1264. root->fs_info->chunk_root->node);
  1265. switch_commit_root(root->fs_info->chunk_root);
  1266. assert_qgroups_uptodate(trans);
  1267. update_super_roots(root);
  1268. if (!root->fs_info->log_root_recovering) {
  1269. btrfs_set_super_log_root(root->fs_info->super_copy, 0);
  1270. btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
  1271. }
  1272. memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
  1273. sizeof(*root->fs_info->super_copy));
  1274. trans->transaction->blocked = 0;
  1275. spin_lock(&root->fs_info->trans_lock);
  1276. root->fs_info->running_transaction = NULL;
  1277. root->fs_info->trans_no_join = 0;
  1278. spin_unlock(&root->fs_info->trans_lock);
  1279. mutex_unlock(&root->fs_info->reloc_mutex);
  1280. wake_up(&root->fs_info->transaction_wait);
  1281. ret = btrfs_write_and_wait_transaction(trans, root);
  1282. if (ret) {
  1283. btrfs_error(root->fs_info, ret,
  1284. "Error while writing out transaction.");
  1285. mutex_unlock(&root->fs_info->tree_log_mutex);
  1286. goto cleanup_transaction;
  1287. }
  1288. ret = write_ctree_super(trans, root, 0);
  1289. if (ret) {
  1290. mutex_unlock(&root->fs_info->tree_log_mutex);
  1291. goto cleanup_transaction;
  1292. }
  1293. /*
  1294. * the super is written, we can safely allow the tree-loggers
  1295. * to go about their business
  1296. */
  1297. mutex_unlock(&root->fs_info->tree_log_mutex);
  1298. btrfs_finish_extent_commit(trans, root);
  1299. cur_trans->commit_done = 1;
  1300. root->fs_info->last_trans_committed = cur_trans->transid;
  1301. wake_up(&cur_trans->commit_wait);
  1302. spin_lock(&root->fs_info->trans_lock);
  1303. list_del_init(&cur_trans->list);
  1304. spin_unlock(&root->fs_info->trans_lock);
  1305. put_transaction(cur_trans);
  1306. put_transaction(cur_trans);
  1307. trace_btrfs_transaction_commit(root);
  1308. btrfs_scrub_continue(root);
  1309. if (current->journal_info == trans)
  1310. current->journal_info = NULL;
  1311. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1312. if (current != root->fs_info->transaction_kthread)
  1313. btrfs_run_delayed_iputs(root);
  1314. return ret;
  1315. cleanup_transaction:
  1316. btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
  1317. // WARN_ON(1);
  1318. if (current->journal_info == trans)
  1319. current->journal_info = NULL;
  1320. cleanup_transaction(trans, root, ret);
  1321. return ret;
  1322. }
  1323. /*
  1324. * interface function to delete all the snapshots we have scheduled for deletion
  1325. */
  1326. int btrfs_clean_old_snapshots(struct btrfs_root *root)
  1327. {
  1328. LIST_HEAD(list);
  1329. struct btrfs_fs_info *fs_info = root->fs_info;
  1330. spin_lock(&fs_info->trans_lock);
  1331. list_splice_init(&fs_info->dead_roots, &list);
  1332. spin_unlock(&fs_info->trans_lock);
  1333. while (!list_empty(&list)) {
  1334. int ret;
  1335. root = list_entry(list.next, struct btrfs_root, root_list);
  1336. list_del(&root->root_list);
  1337. btrfs_kill_all_delayed_nodes(root);
  1338. if (btrfs_header_backref_rev(root->node) <
  1339. BTRFS_MIXED_BACKREF_REV)
  1340. ret = btrfs_drop_snapshot(root, NULL, 0, 0);
  1341. else
  1342. ret =btrfs_drop_snapshot(root, NULL, 1, 0);
  1343. BUG_ON(ret < 0);
  1344. }
  1345. return 0;
  1346. }