md.c 221 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static void md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int cpu;
  293. unsigned int sectors;
  294. if (mddev == NULL || mddev->pers == NULL
  295. || !mddev->ready) {
  296. bio_io_error(bio);
  297. return;
  298. }
  299. smp_rmb(); /* Ensure implications of 'active' are visible */
  300. rcu_read_lock();
  301. if (mddev->suspended) {
  302. DEFINE_WAIT(__wait);
  303. for (;;) {
  304. prepare_to_wait(&mddev->sb_wait, &__wait,
  305. TASK_UNINTERRUPTIBLE);
  306. if (!mddev->suspended)
  307. break;
  308. rcu_read_unlock();
  309. schedule();
  310. rcu_read_lock();
  311. }
  312. finish_wait(&mddev->sb_wait, &__wait);
  313. }
  314. atomic_inc(&mddev->active_io);
  315. rcu_read_unlock();
  316. /*
  317. * save the sectors now since our bio can
  318. * go away inside make_request
  319. */
  320. sectors = bio_sectors(bio);
  321. mddev->pers->make_request(mddev, bio);
  322. cpu = part_stat_lock();
  323. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  324. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  325. part_stat_unlock();
  326. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  327. wake_up(&mddev->sb_wait);
  328. }
  329. /* mddev_suspend makes sure no new requests are submitted
  330. * to the device, and that any requests that have been submitted
  331. * are completely handled.
  332. * Once ->stop is called and completes, the module will be completely
  333. * unused.
  334. */
  335. void mddev_suspend(struct mddev *mddev)
  336. {
  337. BUG_ON(mddev->suspended);
  338. mddev->suspended = 1;
  339. synchronize_rcu();
  340. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  341. mddev->pers->quiesce(mddev, 1);
  342. del_timer_sync(&mddev->safemode_timer);
  343. }
  344. EXPORT_SYMBOL_GPL(mddev_suspend);
  345. void mddev_resume(struct mddev *mddev)
  346. {
  347. mddev->suspended = 0;
  348. wake_up(&mddev->sb_wait);
  349. mddev->pers->quiesce(mddev, 0);
  350. md_wakeup_thread(mddev->thread);
  351. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  352. }
  353. EXPORT_SYMBOL_GPL(mddev_resume);
  354. int mddev_congested(struct mddev *mddev, int bits)
  355. {
  356. return mddev->suspended;
  357. }
  358. EXPORT_SYMBOL(mddev_congested);
  359. /*
  360. * Generic flush handling for md
  361. */
  362. static void md_end_flush(struct bio *bio, int err)
  363. {
  364. struct md_rdev *rdev = bio->bi_private;
  365. struct mddev *mddev = rdev->mddev;
  366. rdev_dec_pending(rdev, mddev);
  367. if (atomic_dec_and_test(&mddev->flush_pending)) {
  368. /* The pre-request flush has finished */
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. bio_put(bio);
  372. }
  373. static void md_submit_flush_data(struct work_struct *ws);
  374. static void submit_flushes(struct work_struct *ws)
  375. {
  376. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  377. struct md_rdev *rdev;
  378. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  379. atomic_set(&mddev->flush_pending, 1);
  380. rcu_read_lock();
  381. rdev_for_each_rcu(rdev, mddev)
  382. if (rdev->raid_disk >= 0 &&
  383. !test_bit(Faulty, &rdev->flags)) {
  384. /* Take two references, one is dropped
  385. * when request finishes, one after
  386. * we reclaim rcu_read_lock
  387. */
  388. struct bio *bi;
  389. atomic_inc(&rdev->nr_pending);
  390. atomic_inc(&rdev->nr_pending);
  391. rcu_read_unlock();
  392. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  393. bi->bi_end_io = md_end_flush;
  394. bi->bi_private = rdev;
  395. bi->bi_bdev = rdev->bdev;
  396. atomic_inc(&mddev->flush_pending);
  397. submit_bio(WRITE_FLUSH, bi);
  398. rcu_read_lock();
  399. rdev_dec_pending(rdev, mddev);
  400. }
  401. rcu_read_unlock();
  402. if (atomic_dec_and_test(&mddev->flush_pending))
  403. queue_work(md_wq, &mddev->flush_work);
  404. }
  405. static void md_submit_flush_data(struct work_struct *ws)
  406. {
  407. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  408. struct bio *bio = mddev->flush_bio;
  409. if (bio->bi_size == 0)
  410. /* an empty barrier - all done */
  411. bio_endio(bio, 0);
  412. else {
  413. bio->bi_rw &= ~REQ_FLUSH;
  414. mddev->pers->make_request(mddev, bio);
  415. }
  416. mddev->flush_bio = NULL;
  417. wake_up(&mddev->sb_wait);
  418. }
  419. void md_flush_request(struct mddev *mddev, struct bio *bio)
  420. {
  421. spin_lock_irq(&mddev->write_lock);
  422. wait_event_lock_irq(mddev->sb_wait,
  423. !mddev->flush_bio,
  424. mddev->write_lock, /*nothing*/);
  425. mddev->flush_bio = bio;
  426. spin_unlock_irq(&mddev->write_lock);
  427. INIT_WORK(&mddev->flush_work, submit_flushes);
  428. queue_work(md_wq, &mddev->flush_work);
  429. }
  430. EXPORT_SYMBOL(md_flush_request);
  431. /* Support for plugging.
  432. * This mirrors the plugging support in request_queue, but does not
  433. * require having a whole queue or request structures.
  434. * We allocate an md_plug_cb for each md device and each thread it gets
  435. * plugged on. This links tot the private plug_handle structure in the
  436. * personality data where we keep a count of the number of outstanding
  437. * plugs so other code can see if a plug is active.
  438. */
  439. struct md_plug_cb {
  440. struct blk_plug_cb cb;
  441. struct mddev *mddev;
  442. };
  443. static void plugger_unplug(struct blk_plug_cb *cb)
  444. {
  445. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  446. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  447. md_wakeup_thread(mdcb->mddev->thread);
  448. kfree(mdcb);
  449. }
  450. /* Check that an unplug wakeup will come shortly.
  451. * If not, wakeup the md thread immediately
  452. */
  453. int mddev_check_plugged(struct mddev *mddev)
  454. {
  455. struct blk_plug *plug = current->plug;
  456. struct md_plug_cb *mdcb;
  457. if (!plug)
  458. return 0;
  459. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  460. if (mdcb->cb.callback == plugger_unplug &&
  461. mdcb->mddev == mddev) {
  462. /* Already on the list, move to top */
  463. if (mdcb != list_first_entry(&plug->cb_list,
  464. struct md_plug_cb,
  465. cb.list))
  466. list_move(&mdcb->cb.list, &plug->cb_list);
  467. return 1;
  468. }
  469. }
  470. /* Not currently on the callback list */
  471. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  472. if (!mdcb)
  473. return 0;
  474. mdcb->mddev = mddev;
  475. mdcb->cb.callback = plugger_unplug;
  476. atomic_inc(&mddev->plug_cnt);
  477. list_add(&mdcb->cb.list, &plug->cb_list);
  478. return 1;
  479. }
  480. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  481. static inline struct mddev *mddev_get(struct mddev *mddev)
  482. {
  483. atomic_inc(&mddev->active);
  484. return mddev;
  485. }
  486. static void mddev_delayed_delete(struct work_struct *ws);
  487. static void mddev_put(struct mddev *mddev)
  488. {
  489. struct bio_set *bs = NULL;
  490. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  491. return;
  492. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  493. mddev->ctime == 0 && !mddev->hold_active) {
  494. /* Array is not configured at all, and not held active,
  495. * so destroy it */
  496. list_del_init(&mddev->all_mddevs);
  497. bs = mddev->bio_set;
  498. mddev->bio_set = NULL;
  499. if (mddev->gendisk) {
  500. /* We did a probe so need to clean up. Call
  501. * queue_work inside the spinlock so that
  502. * flush_workqueue() after mddev_find will
  503. * succeed in waiting for the work to be done.
  504. */
  505. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  506. queue_work(md_misc_wq, &mddev->del_work);
  507. } else
  508. kfree(mddev);
  509. }
  510. spin_unlock(&all_mddevs_lock);
  511. if (bs)
  512. bioset_free(bs);
  513. }
  514. void mddev_init(struct mddev *mddev)
  515. {
  516. mutex_init(&mddev->open_mutex);
  517. mutex_init(&mddev->reconfig_mutex);
  518. mutex_init(&mddev->bitmap_info.mutex);
  519. INIT_LIST_HEAD(&mddev->disks);
  520. INIT_LIST_HEAD(&mddev->all_mddevs);
  521. init_timer(&mddev->safemode_timer);
  522. atomic_set(&mddev->active, 1);
  523. atomic_set(&mddev->openers, 0);
  524. atomic_set(&mddev->active_io, 0);
  525. atomic_set(&mddev->plug_cnt, 0);
  526. spin_lock_init(&mddev->write_lock);
  527. atomic_set(&mddev->flush_pending, 0);
  528. init_waitqueue_head(&mddev->sb_wait);
  529. init_waitqueue_head(&mddev->recovery_wait);
  530. mddev->reshape_position = MaxSector;
  531. mddev->reshape_backwards = 0;
  532. mddev->resync_min = 0;
  533. mddev->resync_max = MaxSector;
  534. mddev->level = LEVEL_NONE;
  535. }
  536. EXPORT_SYMBOL_GPL(mddev_init);
  537. static struct mddev * mddev_find(dev_t unit)
  538. {
  539. struct mddev *mddev, *new = NULL;
  540. if (unit && MAJOR(unit) != MD_MAJOR)
  541. unit &= ~((1<<MdpMinorShift)-1);
  542. retry:
  543. spin_lock(&all_mddevs_lock);
  544. if (unit) {
  545. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  546. if (mddev->unit == unit) {
  547. mddev_get(mddev);
  548. spin_unlock(&all_mddevs_lock);
  549. kfree(new);
  550. return mddev;
  551. }
  552. if (new) {
  553. list_add(&new->all_mddevs, &all_mddevs);
  554. spin_unlock(&all_mddevs_lock);
  555. new->hold_active = UNTIL_IOCTL;
  556. return new;
  557. }
  558. } else if (new) {
  559. /* find an unused unit number */
  560. static int next_minor = 512;
  561. int start = next_minor;
  562. int is_free = 0;
  563. int dev = 0;
  564. while (!is_free) {
  565. dev = MKDEV(MD_MAJOR, next_minor);
  566. next_minor++;
  567. if (next_minor > MINORMASK)
  568. next_minor = 0;
  569. if (next_minor == start) {
  570. /* Oh dear, all in use. */
  571. spin_unlock(&all_mddevs_lock);
  572. kfree(new);
  573. return NULL;
  574. }
  575. is_free = 1;
  576. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  577. if (mddev->unit == dev) {
  578. is_free = 0;
  579. break;
  580. }
  581. }
  582. new->unit = dev;
  583. new->md_minor = MINOR(dev);
  584. new->hold_active = UNTIL_STOP;
  585. list_add(&new->all_mddevs, &all_mddevs);
  586. spin_unlock(&all_mddevs_lock);
  587. return new;
  588. }
  589. spin_unlock(&all_mddevs_lock);
  590. new = kzalloc(sizeof(*new), GFP_KERNEL);
  591. if (!new)
  592. return NULL;
  593. new->unit = unit;
  594. if (MAJOR(unit) == MD_MAJOR)
  595. new->md_minor = MINOR(unit);
  596. else
  597. new->md_minor = MINOR(unit) >> MdpMinorShift;
  598. mddev_init(new);
  599. goto retry;
  600. }
  601. static inline int mddev_lock(struct mddev * mddev)
  602. {
  603. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  604. }
  605. static inline int mddev_is_locked(struct mddev *mddev)
  606. {
  607. return mutex_is_locked(&mddev->reconfig_mutex);
  608. }
  609. static inline int mddev_trylock(struct mddev * mddev)
  610. {
  611. return mutex_trylock(&mddev->reconfig_mutex);
  612. }
  613. static struct attribute_group md_redundancy_group;
  614. static void mddev_unlock(struct mddev * mddev)
  615. {
  616. if (mddev->to_remove) {
  617. /* These cannot be removed under reconfig_mutex as
  618. * an access to the files will try to take reconfig_mutex
  619. * while holding the file unremovable, which leads to
  620. * a deadlock.
  621. * So hold set sysfs_active while the remove in happeing,
  622. * and anything else which might set ->to_remove or my
  623. * otherwise change the sysfs namespace will fail with
  624. * -EBUSY if sysfs_active is still set.
  625. * We set sysfs_active under reconfig_mutex and elsewhere
  626. * test it under the same mutex to ensure its correct value
  627. * is seen.
  628. */
  629. struct attribute_group *to_remove = mddev->to_remove;
  630. mddev->to_remove = NULL;
  631. mddev->sysfs_active = 1;
  632. mutex_unlock(&mddev->reconfig_mutex);
  633. if (mddev->kobj.sd) {
  634. if (to_remove != &md_redundancy_group)
  635. sysfs_remove_group(&mddev->kobj, to_remove);
  636. if (mddev->pers == NULL ||
  637. mddev->pers->sync_request == NULL) {
  638. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  639. if (mddev->sysfs_action)
  640. sysfs_put(mddev->sysfs_action);
  641. mddev->sysfs_action = NULL;
  642. }
  643. }
  644. mddev->sysfs_active = 0;
  645. } else
  646. mutex_unlock(&mddev->reconfig_mutex);
  647. /* As we've dropped the mutex we need a spinlock to
  648. * make sure the thread doesn't disappear
  649. */
  650. spin_lock(&pers_lock);
  651. md_wakeup_thread(mddev->thread);
  652. spin_unlock(&pers_lock);
  653. }
  654. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  655. {
  656. struct md_rdev *rdev;
  657. rdev_for_each(rdev, mddev)
  658. if (rdev->desc_nr == nr)
  659. return rdev;
  660. return NULL;
  661. }
  662. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  663. {
  664. struct md_rdev *rdev;
  665. rdev_for_each(rdev, mddev)
  666. if (rdev->bdev->bd_dev == dev)
  667. return rdev;
  668. return NULL;
  669. }
  670. static struct md_personality *find_pers(int level, char *clevel)
  671. {
  672. struct md_personality *pers;
  673. list_for_each_entry(pers, &pers_list, list) {
  674. if (level != LEVEL_NONE && pers->level == level)
  675. return pers;
  676. if (strcmp(pers->name, clevel)==0)
  677. return pers;
  678. }
  679. return NULL;
  680. }
  681. /* return the offset of the super block in 512byte sectors */
  682. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  683. {
  684. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  685. return MD_NEW_SIZE_SECTORS(num_sectors);
  686. }
  687. static int alloc_disk_sb(struct md_rdev * rdev)
  688. {
  689. if (rdev->sb_page)
  690. MD_BUG();
  691. rdev->sb_page = alloc_page(GFP_KERNEL);
  692. if (!rdev->sb_page) {
  693. printk(KERN_ALERT "md: out of memory.\n");
  694. return -ENOMEM;
  695. }
  696. return 0;
  697. }
  698. void md_rdev_clear(struct md_rdev *rdev)
  699. {
  700. if (rdev->sb_page) {
  701. put_page(rdev->sb_page);
  702. rdev->sb_loaded = 0;
  703. rdev->sb_page = NULL;
  704. rdev->sb_start = 0;
  705. rdev->sectors = 0;
  706. }
  707. if (rdev->bb_page) {
  708. put_page(rdev->bb_page);
  709. rdev->bb_page = NULL;
  710. }
  711. }
  712. EXPORT_SYMBOL_GPL(md_rdev_clear);
  713. static void super_written(struct bio *bio, int error)
  714. {
  715. struct md_rdev *rdev = bio->bi_private;
  716. struct mddev *mddev = rdev->mddev;
  717. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  718. printk("md: super_written gets error=%d, uptodate=%d\n",
  719. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  720. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  721. md_error(mddev, rdev);
  722. }
  723. if (atomic_dec_and_test(&mddev->pending_writes))
  724. wake_up(&mddev->sb_wait);
  725. bio_put(bio);
  726. }
  727. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  728. sector_t sector, int size, struct page *page)
  729. {
  730. /* write first size bytes of page to sector of rdev
  731. * Increment mddev->pending_writes before returning
  732. * and decrement it on completion, waking up sb_wait
  733. * if zero is reached.
  734. * If an error occurred, call md_error
  735. */
  736. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  737. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  738. bio->bi_sector = sector;
  739. bio_add_page(bio, page, size, 0);
  740. bio->bi_private = rdev;
  741. bio->bi_end_io = super_written;
  742. atomic_inc(&mddev->pending_writes);
  743. submit_bio(WRITE_FLUSH_FUA, bio);
  744. }
  745. void md_super_wait(struct mddev *mddev)
  746. {
  747. /* wait for all superblock writes that were scheduled to complete */
  748. DEFINE_WAIT(wq);
  749. for(;;) {
  750. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  751. if (atomic_read(&mddev->pending_writes)==0)
  752. break;
  753. schedule();
  754. }
  755. finish_wait(&mddev->sb_wait, &wq);
  756. }
  757. static void bi_complete(struct bio *bio, int error)
  758. {
  759. complete((struct completion*)bio->bi_private);
  760. }
  761. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  762. struct page *page, int rw, bool metadata_op)
  763. {
  764. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  765. struct completion event;
  766. int ret;
  767. rw |= REQ_SYNC;
  768. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  769. rdev->meta_bdev : rdev->bdev;
  770. if (metadata_op)
  771. bio->bi_sector = sector + rdev->sb_start;
  772. else if (rdev->mddev->reshape_position != MaxSector &&
  773. (rdev->mddev->reshape_backwards ==
  774. (sector >= rdev->mddev->reshape_position)))
  775. bio->bi_sector = sector + rdev->new_data_offset;
  776. else
  777. bio->bi_sector = sector + rdev->data_offset;
  778. bio_add_page(bio, page, size, 0);
  779. init_completion(&event);
  780. bio->bi_private = &event;
  781. bio->bi_end_io = bi_complete;
  782. submit_bio(rw, bio);
  783. wait_for_completion(&event);
  784. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  785. bio_put(bio);
  786. return ret;
  787. }
  788. EXPORT_SYMBOL_GPL(sync_page_io);
  789. static int read_disk_sb(struct md_rdev * rdev, int size)
  790. {
  791. char b[BDEVNAME_SIZE];
  792. if (!rdev->sb_page) {
  793. MD_BUG();
  794. return -EINVAL;
  795. }
  796. if (rdev->sb_loaded)
  797. return 0;
  798. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  799. goto fail;
  800. rdev->sb_loaded = 1;
  801. return 0;
  802. fail:
  803. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  804. bdevname(rdev->bdev,b));
  805. return -EINVAL;
  806. }
  807. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  808. {
  809. return sb1->set_uuid0 == sb2->set_uuid0 &&
  810. sb1->set_uuid1 == sb2->set_uuid1 &&
  811. sb1->set_uuid2 == sb2->set_uuid2 &&
  812. sb1->set_uuid3 == sb2->set_uuid3;
  813. }
  814. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  815. {
  816. int ret;
  817. mdp_super_t *tmp1, *tmp2;
  818. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  819. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  820. if (!tmp1 || !tmp2) {
  821. ret = 0;
  822. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  823. goto abort;
  824. }
  825. *tmp1 = *sb1;
  826. *tmp2 = *sb2;
  827. /*
  828. * nr_disks is not constant
  829. */
  830. tmp1->nr_disks = 0;
  831. tmp2->nr_disks = 0;
  832. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  833. abort:
  834. kfree(tmp1);
  835. kfree(tmp2);
  836. return ret;
  837. }
  838. static u32 md_csum_fold(u32 csum)
  839. {
  840. csum = (csum & 0xffff) + (csum >> 16);
  841. return (csum & 0xffff) + (csum >> 16);
  842. }
  843. static unsigned int calc_sb_csum(mdp_super_t * sb)
  844. {
  845. u64 newcsum = 0;
  846. u32 *sb32 = (u32*)sb;
  847. int i;
  848. unsigned int disk_csum, csum;
  849. disk_csum = sb->sb_csum;
  850. sb->sb_csum = 0;
  851. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  852. newcsum += sb32[i];
  853. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  854. #ifdef CONFIG_ALPHA
  855. /* This used to use csum_partial, which was wrong for several
  856. * reasons including that different results are returned on
  857. * different architectures. It isn't critical that we get exactly
  858. * the same return value as before (we always csum_fold before
  859. * testing, and that removes any differences). However as we
  860. * know that csum_partial always returned a 16bit value on
  861. * alphas, do a fold to maximise conformity to previous behaviour.
  862. */
  863. sb->sb_csum = md_csum_fold(disk_csum);
  864. #else
  865. sb->sb_csum = disk_csum;
  866. #endif
  867. return csum;
  868. }
  869. /*
  870. * Handle superblock details.
  871. * We want to be able to handle multiple superblock formats
  872. * so we have a common interface to them all, and an array of
  873. * different handlers.
  874. * We rely on user-space to write the initial superblock, and support
  875. * reading and updating of superblocks.
  876. * Interface methods are:
  877. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  878. * loads and validates a superblock on dev.
  879. * if refdev != NULL, compare superblocks on both devices
  880. * Return:
  881. * 0 - dev has a superblock that is compatible with refdev
  882. * 1 - dev has a superblock that is compatible and newer than refdev
  883. * so dev should be used as the refdev in future
  884. * -EINVAL superblock incompatible or invalid
  885. * -othererror e.g. -EIO
  886. *
  887. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  888. * Verify that dev is acceptable into mddev.
  889. * The first time, mddev->raid_disks will be 0, and data from
  890. * dev should be merged in. Subsequent calls check that dev
  891. * is new enough. Return 0 or -EINVAL
  892. *
  893. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  894. * Update the superblock for rdev with data in mddev
  895. * This does not write to disc.
  896. *
  897. */
  898. struct super_type {
  899. char *name;
  900. struct module *owner;
  901. int (*load_super)(struct md_rdev *rdev,
  902. struct md_rdev *refdev,
  903. int minor_version);
  904. int (*validate_super)(struct mddev *mddev,
  905. struct md_rdev *rdev);
  906. void (*sync_super)(struct mddev *mddev,
  907. struct md_rdev *rdev);
  908. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  909. sector_t num_sectors);
  910. int (*allow_new_offset)(struct md_rdev *rdev,
  911. unsigned long long new_offset);
  912. };
  913. /*
  914. * Check that the given mddev has no bitmap.
  915. *
  916. * This function is called from the run method of all personalities that do not
  917. * support bitmaps. It prints an error message and returns non-zero if mddev
  918. * has a bitmap. Otherwise, it returns 0.
  919. *
  920. */
  921. int md_check_no_bitmap(struct mddev *mddev)
  922. {
  923. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  924. return 0;
  925. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  926. mdname(mddev), mddev->pers->name);
  927. return 1;
  928. }
  929. EXPORT_SYMBOL(md_check_no_bitmap);
  930. /*
  931. * load_super for 0.90.0
  932. */
  933. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  934. {
  935. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  936. mdp_super_t *sb;
  937. int ret;
  938. /*
  939. * Calculate the position of the superblock (512byte sectors),
  940. * it's at the end of the disk.
  941. *
  942. * It also happens to be a multiple of 4Kb.
  943. */
  944. rdev->sb_start = calc_dev_sboffset(rdev);
  945. ret = read_disk_sb(rdev, MD_SB_BYTES);
  946. if (ret) return ret;
  947. ret = -EINVAL;
  948. bdevname(rdev->bdev, b);
  949. sb = page_address(rdev->sb_page);
  950. if (sb->md_magic != MD_SB_MAGIC) {
  951. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  952. b);
  953. goto abort;
  954. }
  955. if (sb->major_version != 0 ||
  956. sb->minor_version < 90 ||
  957. sb->minor_version > 91) {
  958. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  959. sb->major_version, sb->minor_version,
  960. b);
  961. goto abort;
  962. }
  963. if (sb->raid_disks <= 0)
  964. goto abort;
  965. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  966. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  967. b);
  968. goto abort;
  969. }
  970. rdev->preferred_minor = sb->md_minor;
  971. rdev->data_offset = 0;
  972. rdev->new_data_offset = 0;
  973. rdev->sb_size = MD_SB_BYTES;
  974. rdev->badblocks.shift = -1;
  975. if (sb->level == LEVEL_MULTIPATH)
  976. rdev->desc_nr = -1;
  977. else
  978. rdev->desc_nr = sb->this_disk.number;
  979. if (!refdev) {
  980. ret = 1;
  981. } else {
  982. __u64 ev1, ev2;
  983. mdp_super_t *refsb = page_address(refdev->sb_page);
  984. if (!uuid_equal(refsb, sb)) {
  985. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  986. b, bdevname(refdev->bdev,b2));
  987. goto abort;
  988. }
  989. if (!sb_equal(refsb, sb)) {
  990. printk(KERN_WARNING "md: %s has same UUID"
  991. " but different superblock to %s\n",
  992. b, bdevname(refdev->bdev, b2));
  993. goto abort;
  994. }
  995. ev1 = md_event(sb);
  996. ev2 = md_event(refsb);
  997. if (ev1 > ev2)
  998. ret = 1;
  999. else
  1000. ret = 0;
  1001. }
  1002. rdev->sectors = rdev->sb_start;
  1003. /* Limit to 4TB as metadata cannot record more than that */
  1004. if (rdev->sectors >= (2ULL << 32))
  1005. rdev->sectors = (2ULL << 32) - 2;
  1006. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  1007. /* "this cannot possibly happen" ... */
  1008. ret = -EINVAL;
  1009. abort:
  1010. return ret;
  1011. }
  1012. /*
  1013. * validate_super for 0.90.0
  1014. */
  1015. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1016. {
  1017. mdp_disk_t *desc;
  1018. mdp_super_t *sb = page_address(rdev->sb_page);
  1019. __u64 ev1 = md_event(sb);
  1020. rdev->raid_disk = -1;
  1021. clear_bit(Faulty, &rdev->flags);
  1022. clear_bit(In_sync, &rdev->flags);
  1023. clear_bit(WriteMostly, &rdev->flags);
  1024. if (mddev->raid_disks == 0) {
  1025. mddev->major_version = 0;
  1026. mddev->minor_version = sb->minor_version;
  1027. mddev->patch_version = sb->patch_version;
  1028. mddev->external = 0;
  1029. mddev->chunk_sectors = sb->chunk_size >> 9;
  1030. mddev->ctime = sb->ctime;
  1031. mddev->utime = sb->utime;
  1032. mddev->level = sb->level;
  1033. mddev->clevel[0] = 0;
  1034. mddev->layout = sb->layout;
  1035. mddev->raid_disks = sb->raid_disks;
  1036. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1037. mddev->events = ev1;
  1038. mddev->bitmap_info.offset = 0;
  1039. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1040. mddev->reshape_backwards = 0;
  1041. if (mddev->minor_version >= 91) {
  1042. mddev->reshape_position = sb->reshape_position;
  1043. mddev->delta_disks = sb->delta_disks;
  1044. mddev->new_level = sb->new_level;
  1045. mddev->new_layout = sb->new_layout;
  1046. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1047. if (mddev->delta_disks < 0)
  1048. mddev->reshape_backwards = 1;
  1049. } else {
  1050. mddev->reshape_position = MaxSector;
  1051. mddev->delta_disks = 0;
  1052. mddev->new_level = mddev->level;
  1053. mddev->new_layout = mddev->layout;
  1054. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1055. }
  1056. if (sb->state & (1<<MD_SB_CLEAN))
  1057. mddev->recovery_cp = MaxSector;
  1058. else {
  1059. if (sb->events_hi == sb->cp_events_hi &&
  1060. sb->events_lo == sb->cp_events_lo) {
  1061. mddev->recovery_cp = sb->recovery_cp;
  1062. } else
  1063. mddev->recovery_cp = 0;
  1064. }
  1065. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1066. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1067. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1068. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1069. mddev->max_disks = MD_SB_DISKS;
  1070. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1071. mddev->bitmap_info.file == NULL)
  1072. mddev->bitmap_info.offset =
  1073. mddev->bitmap_info.default_offset;
  1074. } else if (mddev->pers == NULL) {
  1075. /* Insist on good event counter while assembling, except
  1076. * for spares (which don't need an event count) */
  1077. ++ev1;
  1078. if (sb->disks[rdev->desc_nr].state & (
  1079. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1080. if (ev1 < mddev->events)
  1081. return -EINVAL;
  1082. } else if (mddev->bitmap) {
  1083. /* if adding to array with a bitmap, then we can accept an
  1084. * older device ... but not too old.
  1085. */
  1086. if (ev1 < mddev->bitmap->events_cleared)
  1087. return 0;
  1088. } else {
  1089. if (ev1 < mddev->events)
  1090. /* just a hot-add of a new device, leave raid_disk at -1 */
  1091. return 0;
  1092. }
  1093. if (mddev->level != LEVEL_MULTIPATH) {
  1094. desc = sb->disks + rdev->desc_nr;
  1095. if (desc->state & (1<<MD_DISK_FAULTY))
  1096. set_bit(Faulty, &rdev->flags);
  1097. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1098. desc->raid_disk < mddev->raid_disks */) {
  1099. set_bit(In_sync, &rdev->flags);
  1100. rdev->raid_disk = desc->raid_disk;
  1101. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1102. /* active but not in sync implies recovery up to
  1103. * reshape position. We don't know exactly where
  1104. * that is, so set to zero for now */
  1105. if (mddev->minor_version >= 91) {
  1106. rdev->recovery_offset = 0;
  1107. rdev->raid_disk = desc->raid_disk;
  1108. }
  1109. }
  1110. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1111. set_bit(WriteMostly, &rdev->flags);
  1112. } else /* MULTIPATH are always insync */
  1113. set_bit(In_sync, &rdev->flags);
  1114. return 0;
  1115. }
  1116. /*
  1117. * sync_super for 0.90.0
  1118. */
  1119. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1120. {
  1121. mdp_super_t *sb;
  1122. struct md_rdev *rdev2;
  1123. int next_spare = mddev->raid_disks;
  1124. /* make rdev->sb match mddev data..
  1125. *
  1126. * 1/ zero out disks
  1127. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1128. * 3/ any empty disks < next_spare become removed
  1129. *
  1130. * disks[0] gets initialised to REMOVED because
  1131. * we cannot be sure from other fields if it has
  1132. * been initialised or not.
  1133. */
  1134. int i;
  1135. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1136. rdev->sb_size = MD_SB_BYTES;
  1137. sb = page_address(rdev->sb_page);
  1138. memset(sb, 0, sizeof(*sb));
  1139. sb->md_magic = MD_SB_MAGIC;
  1140. sb->major_version = mddev->major_version;
  1141. sb->patch_version = mddev->patch_version;
  1142. sb->gvalid_words = 0; /* ignored */
  1143. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1144. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1145. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1146. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1147. sb->ctime = mddev->ctime;
  1148. sb->level = mddev->level;
  1149. sb->size = mddev->dev_sectors / 2;
  1150. sb->raid_disks = mddev->raid_disks;
  1151. sb->md_minor = mddev->md_minor;
  1152. sb->not_persistent = 0;
  1153. sb->utime = mddev->utime;
  1154. sb->state = 0;
  1155. sb->events_hi = (mddev->events>>32);
  1156. sb->events_lo = (u32)mddev->events;
  1157. if (mddev->reshape_position == MaxSector)
  1158. sb->minor_version = 90;
  1159. else {
  1160. sb->minor_version = 91;
  1161. sb->reshape_position = mddev->reshape_position;
  1162. sb->new_level = mddev->new_level;
  1163. sb->delta_disks = mddev->delta_disks;
  1164. sb->new_layout = mddev->new_layout;
  1165. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1166. }
  1167. mddev->minor_version = sb->minor_version;
  1168. if (mddev->in_sync)
  1169. {
  1170. sb->recovery_cp = mddev->recovery_cp;
  1171. sb->cp_events_hi = (mddev->events>>32);
  1172. sb->cp_events_lo = (u32)mddev->events;
  1173. if (mddev->recovery_cp == MaxSector)
  1174. sb->state = (1<< MD_SB_CLEAN);
  1175. } else
  1176. sb->recovery_cp = 0;
  1177. sb->layout = mddev->layout;
  1178. sb->chunk_size = mddev->chunk_sectors << 9;
  1179. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1180. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1181. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1182. rdev_for_each(rdev2, mddev) {
  1183. mdp_disk_t *d;
  1184. int desc_nr;
  1185. int is_active = test_bit(In_sync, &rdev2->flags);
  1186. if (rdev2->raid_disk >= 0 &&
  1187. sb->minor_version >= 91)
  1188. /* we have nowhere to store the recovery_offset,
  1189. * but if it is not below the reshape_position,
  1190. * we can piggy-back on that.
  1191. */
  1192. is_active = 1;
  1193. if (rdev2->raid_disk < 0 ||
  1194. test_bit(Faulty, &rdev2->flags))
  1195. is_active = 0;
  1196. if (is_active)
  1197. desc_nr = rdev2->raid_disk;
  1198. else
  1199. desc_nr = next_spare++;
  1200. rdev2->desc_nr = desc_nr;
  1201. d = &sb->disks[rdev2->desc_nr];
  1202. nr_disks++;
  1203. d->number = rdev2->desc_nr;
  1204. d->major = MAJOR(rdev2->bdev->bd_dev);
  1205. d->minor = MINOR(rdev2->bdev->bd_dev);
  1206. if (is_active)
  1207. d->raid_disk = rdev2->raid_disk;
  1208. else
  1209. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1210. if (test_bit(Faulty, &rdev2->flags))
  1211. d->state = (1<<MD_DISK_FAULTY);
  1212. else if (is_active) {
  1213. d->state = (1<<MD_DISK_ACTIVE);
  1214. if (test_bit(In_sync, &rdev2->flags))
  1215. d->state |= (1<<MD_DISK_SYNC);
  1216. active++;
  1217. working++;
  1218. } else {
  1219. d->state = 0;
  1220. spare++;
  1221. working++;
  1222. }
  1223. if (test_bit(WriteMostly, &rdev2->flags))
  1224. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1225. }
  1226. /* now set the "removed" and "faulty" bits on any missing devices */
  1227. for (i=0 ; i < mddev->raid_disks ; i++) {
  1228. mdp_disk_t *d = &sb->disks[i];
  1229. if (d->state == 0 && d->number == 0) {
  1230. d->number = i;
  1231. d->raid_disk = i;
  1232. d->state = (1<<MD_DISK_REMOVED);
  1233. d->state |= (1<<MD_DISK_FAULTY);
  1234. failed++;
  1235. }
  1236. }
  1237. sb->nr_disks = nr_disks;
  1238. sb->active_disks = active;
  1239. sb->working_disks = working;
  1240. sb->failed_disks = failed;
  1241. sb->spare_disks = spare;
  1242. sb->this_disk = sb->disks[rdev->desc_nr];
  1243. sb->sb_csum = calc_sb_csum(sb);
  1244. }
  1245. /*
  1246. * rdev_size_change for 0.90.0
  1247. */
  1248. static unsigned long long
  1249. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1250. {
  1251. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1252. return 0; /* component must fit device */
  1253. if (rdev->mddev->bitmap_info.offset)
  1254. return 0; /* can't move bitmap */
  1255. rdev->sb_start = calc_dev_sboffset(rdev);
  1256. if (!num_sectors || num_sectors > rdev->sb_start)
  1257. num_sectors = rdev->sb_start;
  1258. /* Limit to 4TB as metadata cannot record more than that.
  1259. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1260. */
  1261. if (num_sectors >= (2ULL << 32))
  1262. num_sectors = (2ULL << 32) - 2;
  1263. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1264. rdev->sb_page);
  1265. md_super_wait(rdev->mddev);
  1266. return num_sectors;
  1267. }
  1268. static int
  1269. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1270. {
  1271. /* non-zero offset changes not possible with v0.90 */
  1272. return new_offset == 0;
  1273. }
  1274. /*
  1275. * version 1 superblock
  1276. */
  1277. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1278. {
  1279. __le32 disk_csum;
  1280. u32 csum;
  1281. unsigned long long newcsum;
  1282. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1283. __le32 *isuper = (__le32*)sb;
  1284. int i;
  1285. disk_csum = sb->sb_csum;
  1286. sb->sb_csum = 0;
  1287. newcsum = 0;
  1288. for (i=0; size>=4; size -= 4 )
  1289. newcsum += le32_to_cpu(*isuper++);
  1290. if (size == 2)
  1291. newcsum += le16_to_cpu(*(__le16*) isuper);
  1292. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1293. sb->sb_csum = disk_csum;
  1294. return cpu_to_le32(csum);
  1295. }
  1296. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1297. int acknowledged);
  1298. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1299. {
  1300. struct mdp_superblock_1 *sb;
  1301. int ret;
  1302. sector_t sb_start;
  1303. sector_t sectors;
  1304. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1305. int bmask;
  1306. /*
  1307. * Calculate the position of the superblock in 512byte sectors.
  1308. * It is always aligned to a 4K boundary and
  1309. * depeding on minor_version, it can be:
  1310. * 0: At least 8K, but less than 12K, from end of device
  1311. * 1: At start of device
  1312. * 2: 4K from start of device.
  1313. */
  1314. switch(minor_version) {
  1315. case 0:
  1316. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1317. sb_start -= 8*2;
  1318. sb_start &= ~(sector_t)(4*2-1);
  1319. break;
  1320. case 1:
  1321. sb_start = 0;
  1322. break;
  1323. case 2:
  1324. sb_start = 8;
  1325. break;
  1326. default:
  1327. return -EINVAL;
  1328. }
  1329. rdev->sb_start = sb_start;
  1330. /* superblock is rarely larger than 1K, but it can be larger,
  1331. * and it is safe to read 4k, so we do that
  1332. */
  1333. ret = read_disk_sb(rdev, 4096);
  1334. if (ret) return ret;
  1335. sb = page_address(rdev->sb_page);
  1336. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1337. sb->major_version != cpu_to_le32(1) ||
  1338. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1339. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1340. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1341. return -EINVAL;
  1342. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1343. printk("md: invalid superblock checksum on %s\n",
  1344. bdevname(rdev->bdev,b));
  1345. return -EINVAL;
  1346. }
  1347. if (le64_to_cpu(sb->data_size) < 10) {
  1348. printk("md: data_size too small on %s\n",
  1349. bdevname(rdev->bdev,b));
  1350. return -EINVAL;
  1351. }
  1352. if (sb->pad0 ||
  1353. sb->pad3[0] ||
  1354. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1355. /* Some padding is non-zero, might be a new feature */
  1356. return -EINVAL;
  1357. rdev->preferred_minor = 0xffff;
  1358. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1359. rdev->new_data_offset = rdev->data_offset;
  1360. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1361. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1362. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1363. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1364. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1365. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1366. if (rdev->sb_size & bmask)
  1367. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1368. if (minor_version
  1369. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1370. return -EINVAL;
  1371. if (minor_version
  1372. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1373. return -EINVAL;
  1374. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1375. rdev->desc_nr = -1;
  1376. else
  1377. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1378. if (!rdev->bb_page) {
  1379. rdev->bb_page = alloc_page(GFP_KERNEL);
  1380. if (!rdev->bb_page)
  1381. return -ENOMEM;
  1382. }
  1383. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1384. rdev->badblocks.count == 0) {
  1385. /* need to load the bad block list.
  1386. * Currently we limit it to one page.
  1387. */
  1388. s32 offset;
  1389. sector_t bb_sector;
  1390. u64 *bbp;
  1391. int i;
  1392. int sectors = le16_to_cpu(sb->bblog_size);
  1393. if (sectors > (PAGE_SIZE / 512))
  1394. return -EINVAL;
  1395. offset = le32_to_cpu(sb->bblog_offset);
  1396. if (offset == 0)
  1397. return -EINVAL;
  1398. bb_sector = (long long)offset;
  1399. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1400. rdev->bb_page, READ, true))
  1401. return -EIO;
  1402. bbp = (u64 *)page_address(rdev->bb_page);
  1403. rdev->badblocks.shift = sb->bblog_shift;
  1404. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1405. u64 bb = le64_to_cpu(*bbp);
  1406. int count = bb & (0x3ff);
  1407. u64 sector = bb >> 10;
  1408. sector <<= sb->bblog_shift;
  1409. count <<= sb->bblog_shift;
  1410. if (bb + 1 == 0)
  1411. break;
  1412. if (md_set_badblocks(&rdev->badblocks,
  1413. sector, count, 1) == 0)
  1414. return -EINVAL;
  1415. }
  1416. } else if (sb->bblog_offset == 0)
  1417. rdev->badblocks.shift = -1;
  1418. if (!refdev) {
  1419. ret = 1;
  1420. } else {
  1421. __u64 ev1, ev2;
  1422. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1423. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1424. sb->level != refsb->level ||
  1425. sb->layout != refsb->layout ||
  1426. sb->chunksize != refsb->chunksize) {
  1427. printk(KERN_WARNING "md: %s has strangely different"
  1428. " superblock to %s\n",
  1429. bdevname(rdev->bdev,b),
  1430. bdevname(refdev->bdev,b2));
  1431. return -EINVAL;
  1432. }
  1433. ev1 = le64_to_cpu(sb->events);
  1434. ev2 = le64_to_cpu(refsb->events);
  1435. if (ev1 > ev2)
  1436. ret = 1;
  1437. else
  1438. ret = 0;
  1439. }
  1440. if (minor_version) {
  1441. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1442. sectors -= rdev->data_offset;
  1443. } else
  1444. sectors = rdev->sb_start;
  1445. if (sectors < le64_to_cpu(sb->data_size))
  1446. return -EINVAL;
  1447. rdev->sectors = le64_to_cpu(sb->data_size);
  1448. return ret;
  1449. }
  1450. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1451. {
  1452. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1453. __u64 ev1 = le64_to_cpu(sb->events);
  1454. rdev->raid_disk = -1;
  1455. clear_bit(Faulty, &rdev->flags);
  1456. clear_bit(In_sync, &rdev->flags);
  1457. clear_bit(WriteMostly, &rdev->flags);
  1458. if (mddev->raid_disks == 0) {
  1459. mddev->major_version = 1;
  1460. mddev->patch_version = 0;
  1461. mddev->external = 0;
  1462. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1463. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1464. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1465. mddev->level = le32_to_cpu(sb->level);
  1466. mddev->clevel[0] = 0;
  1467. mddev->layout = le32_to_cpu(sb->layout);
  1468. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1469. mddev->dev_sectors = le64_to_cpu(sb->size);
  1470. mddev->events = ev1;
  1471. mddev->bitmap_info.offset = 0;
  1472. mddev->bitmap_info.default_offset = 1024 >> 9;
  1473. mddev->reshape_backwards = 0;
  1474. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1475. memcpy(mddev->uuid, sb->set_uuid, 16);
  1476. mddev->max_disks = (4096-256)/2;
  1477. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1478. mddev->bitmap_info.file == NULL )
  1479. mddev->bitmap_info.offset =
  1480. (__s32)le32_to_cpu(sb->bitmap_offset);
  1481. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1482. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1483. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1484. mddev->new_level = le32_to_cpu(sb->new_level);
  1485. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1486. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1487. if (mddev->delta_disks < 0 ||
  1488. (mddev->delta_disks == 0 &&
  1489. (le32_to_cpu(sb->feature_map)
  1490. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1491. mddev->reshape_backwards = 1;
  1492. } else {
  1493. mddev->reshape_position = MaxSector;
  1494. mddev->delta_disks = 0;
  1495. mddev->new_level = mddev->level;
  1496. mddev->new_layout = mddev->layout;
  1497. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1498. }
  1499. } else if (mddev->pers == NULL) {
  1500. /* Insist of good event counter while assembling, except for
  1501. * spares (which don't need an event count) */
  1502. ++ev1;
  1503. if (rdev->desc_nr >= 0 &&
  1504. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1505. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1506. if (ev1 < mddev->events)
  1507. return -EINVAL;
  1508. } else if (mddev->bitmap) {
  1509. /* If adding to array with a bitmap, then we can accept an
  1510. * older device, but not too old.
  1511. */
  1512. if (ev1 < mddev->bitmap->events_cleared)
  1513. return 0;
  1514. } else {
  1515. if (ev1 < mddev->events)
  1516. /* just a hot-add of a new device, leave raid_disk at -1 */
  1517. return 0;
  1518. }
  1519. if (mddev->level != LEVEL_MULTIPATH) {
  1520. int role;
  1521. if (rdev->desc_nr < 0 ||
  1522. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1523. role = 0xffff;
  1524. rdev->desc_nr = -1;
  1525. } else
  1526. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1527. switch(role) {
  1528. case 0xffff: /* spare */
  1529. break;
  1530. case 0xfffe: /* faulty */
  1531. set_bit(Faulty, &rdev->flags);
  1532. break;
  1533. default:
  1534. if ((le32_to_cpu(sb->feature_map) &
  1535. MD_FEATURE_RECOVERY_OFFSET))
  1536. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1537. else
  1538. set_bit(In_sync, &rdev->flags);
  1539. rdev->raid_disk = role;
  1540. break;
  1541. }
  1542. if (sb->devflags & WriteMostly1)
  1543. set_bit(WriteMostly, &rdev->flags);
  1544. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1545. set_bit(Replacement, &rdev->flags);
  1546. } else /* MULTIPATH are always insync */
  1547. set_bit(In_sync, &rdev->flags);
  1548. return 0;
  1549. }
  1550. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1551. {
  1552. struct mdp_superblock_1 *sb;
  1553. struct md_rdev *rdev2;
  1554. int max_dev, i;
  1555. /* make rdev->sb match mddev and rdev data. */
  1556. sb = page_address(rdev->sb_page);
  1557. sb->feature_map = 0;
  1558. sb->pad0 = 0;
  1559. sb->recovery_offset = cpu_to_le64(0);
  1560. memset(sb->pad3, 0, sizeof(sb->pad3));
  1561. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1562. sb->events = cpu_to_le64(mddev->events);
  1563. if (mddev->in_sync)
  1564. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1565. else
  1566. sb->resync_offset = cpu_to_le64(0);
  1567. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1568. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1569. sb->size = cpu_to_le64(mddev->dev_sectors);
  1570. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1571. sb->level = cpu_to_le32(mddev->level);
  1572. sb->layout = cpu_to_le32(mddev->layout);
  1573. if (test_bit(WriteMostly, &rdev->flags))
  1574. sb->devflags |= WriteMostly1;
  1575. else
  1576. sb->devflags &= ~WriteMostly1;
  1577. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1578. sb->data_size = cpu_to_le64(rdev->sectors);
  1579. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1580. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1581. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1582. }
  1583. if (rdev->raid_disk >= 0 &&
  1584. !test_bit(In_sync, &rdev->flags)) {
  1585. sb->feature_map |=
  1586. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1587. sb->recovery_offset =
  1588. cpu_to_le64(rdev->recovery_offset);
  1589. }
  1590. if (test_bit(Replacement, &rdev->flags))
  1591. sb->feature_map |=
  1592. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1593. if (mddev->reshape_position != MaxSector) {
  1594. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1595. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1596. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1597. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1598. sb->new_level = cpu_to_le32(mddev->new_level);
  1599. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1600. if (mddev->delta_disks == 0 &&
  1601. mddev->reshape_backwards)
  1602. sb->feature_map
  1603. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1604. if (rdev->new_data_offset != rdev->data_offset) {
  1605. sb->feature_map
  1606. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1607. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1608. - rdev->data_offset));
  1609. }
  1610. }
  1611. if (rdev->badblocks.count == 0)
  1612. /* Nothing to do for bad blocks*/ ;
  1613. else if (sb->bblog_offset == 0)
  1614. /* Cannot record bad blocks on this device */
  1615. md_error(mddev, rdev);
  1616. else {
  1617. struct badblocks *bb = &rdev->badblocks;
  1618. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1619. u64 *p = bb->page;
  1620. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1621. if (bb->changed) {
  1622. unsigned seq;
  1623. retry:
  1624. seq = read_seqbegin(&bb->lock);
  1625. memset(bbp, 0xff, PAGE_SIZE);
  1626. for (i = 0 ; i < bb->count ; i++) {
  1627. u64 internal_bb = *p++;
  1628. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1629. | BB_LEN(internal_bb));
  1630. *bbp++ = cpu_to_le64(store_bb);
  1631. }
  1632. bb->changed = 0;
  1633. if (read_seqretry(&bb->lock, seq))
  1634. goto retry;
  1635. bb->sector = (rdev->sb_start +
  1636. (int)le32_to_cpu(sb->bblog_offset));
  1637. bb->size = le16_to_cpu(sb->bblog_size);
  1638. }
  1639. }
  1640. max_dev = 0;
  1641. rdev_for_each(rdev2, mddev)
  1642. if (rdev2->desc_nr+1 > max_dev)
  1643. max_dev = rdev2->desc_nr+1;
  1644. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1645. int bmask;
  1646. sb->max_dev = cpu_to_le32(max_dev);
  1647. rdev->sb_size = max_dev * 2 + 256;
  1648. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1649. if (rdev->sb_size & bmask)
  1650. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1651. } else
  1652. max_dev = le32_to_cpu(sb->max_dev);
  1653. for (i=0; i<max_dev;i++)
  1654. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1655. rdev_for_each(rdev2, mddev) {
  1656. i = rdev2->desc_nr;
  1657. if (test_bit(Faulty, &rdev2->flags))
  1658. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1659. else if (test_bit(In_sync, &rdev2->flags))
  1660. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1661. else if (rdev2->raid_disk >= 0)
  1662. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1663. else
  1664. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1665. }
  1666. sb->sb_csum = calc_sb_1_csum(sb);
  1667. }
  1668. static unsigned long long
  1669. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1670. {
  1671. struct mdp_superblock_1 *sb;
  1672. sector_t max_sectors;
  1673. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1674. return 0; /* component must fit device */
  1675. if (rdev->data_offset != rdev->new_data_offset)
  1676. return 0; /* too confusing */
  1677. if (rdev->sb_start < rdev->data_offset) {
  1678. /* minor versions 1 and 2; superblock before data */
  1679. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1680. max_sectors -= rdev->data_offset;
  1681. if (!num_sectors || num_sectors > max_sectors)
  1682. num_sectors = max_sectors;
  1683. } else if (rdev->mddev->bitmap_info.offset) {
  1684. /* minor version 0 with bitmap we can't move */
  1685. return 0;
  1686. } else {
  1687. /* minor version 0; superblock after data */
  1688. sector_t sb_start;
  1689. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1690. sb_start &= ~(sector_t)(4*2 - 1);
  1691. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1692. if (!num_sectors || num_sectors > max_sectors)
  1693. num_sectors = max_sectors;
  1694. rdev->sb_start = sb_start;
  1695. }
  1696. sb = page_address(rdev->sb_page);
  1697. sb->data_size = cpu_to_le64(num_sectors);
  1698. sb->super_offset = rdev->sb_start;
  1699. sb->sb_csum = calc_sb_1_csum(sb);
  1700. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1701. rdev->sb_page);
  1702. md_super_wait(rdev->mddev);
  1703. return num_sectors;
  1704. }
  1705. static int
  1706. super_1_allow_new_offset(struct md_rdev *rdev,
  1707. unsigned long long new_offset)
  1708. {
  1709. /* All necessary checks on new >= old have been done */
  1710. struct bitmap *bitmap;
  1711. if (new_offset >= rdev->data_offset)
  1712. return 1;
  1713. /* with 1.0 metadata, there is no metadata to tread on
  1714. * so we can always move back */
  1715. if (rdev->mddev->minor_version == 0)
  1716. return 1;
  1717. /* otherwise we must be sure not to step on
  1718. * any metadata, so stay:
  1719. * 36K beyond start of superblock
  1720. * beyond end of badblocks
  1721. * beyond write-intent bitmap
  1722. */
  1723. if (rdev->sb_start + (32+4)*2 > new_offset)
  1724. return 0;
  1725. bitmap = rdev->mddev->bitmap;
  1726. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1727. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1728. bitmap->file_pages * (PAGE_SIZE>>9) > new_offset)
  1729. return 0;
  1730. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1731. return 0;
  1732. return 1;
  1733. }
  1734. static struct super_type super_types[] = {
  1735. [0] = {
  1736. .name = "0.90.0",
  1737. .owner = THIS_MODULE,
  1738. .load_super = super_90_load,
  1739. .validate_super = super_90_validate,
  1740. .sync_super = super_90_sync,
  1741. .rdev_size_change = super_90_rdev_size_change,
  1742. .allow_new_offset = super_90_allow_new_offset,
  1743. },
  1744. [1] = {
  1745. .name = "md-1",
  1746. .owner = THIS_MODULE,
  1747. .load_super = super_1_load,
  1748. .validate_super = super_1_validate,
  1749. .sync_super = super_1_sync,
  1750. .rdev_size_change = super_1_rdev_size_change,
  1751. .allow_new_offset = super_1_allow_new_offset,
  1752. },
  1753. };
  1754. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1755. {
  1756. if (mddev->sync_super) {
  1757. mddev->sync_super(mddev, rdev);
  1758. return;
  1759. }
  1760. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1761. super_types[mddev->major_version].sync_super(mddev, rdev);
  1762. }
  1763. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1764. {
  1765. struct md_rdev *rdev, *rdev2;
  1766. rcu_read_lock();
  1767. rdev_for_each_rcu(rdev, mddev1)
  1768. rdev_for_each_rcu(rdev2, mddev2)
  1769. if (rdev->bdev->bd_contains ==
  1770. rdev2->bdev->bd_contains) {
  1771. rcu_read_unlock();
  1772. return 1;
  1773. }
  1774. rcu_read_unlock();
  1775. return 0;
  1776. }
  1777. static LIST_HEAD(pending_raid_disks);
  1778. /*
  1779. * Try to register data integrity profile for an mddev
  1780. *
  1781. * This is called when an array is started and after a disk has been kicked
  1782. * from the array. It only succeeds if all working and active component devices
  1783. * are integrity capable with matching profiles.
  1784. */
  1785. int md_integrity_register(struct mddev *mddev)
  1786. {
  1787. struct md_rdev *rdev, *reference = NULL;
  1788. if (list_empty(&mddev->disks))
  1789. return 0; /* nothing to do */
  1790. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1791. return 0; /* shouldn't register, or already is */
  1792. rdev_for_each(rdev, mddev) {
  1793. /* skip spares and non-functional disks */
  1794. if (test_bit(Faulty, &rdev->flags))
  1795. continue;
  1796. if (rdev->raid_disk < 0)
  1797. continue;
  1798. if (!reference) {
  1799. /* Use the first rdev as the reference */
  1800. reference = rdev;
  1801. continue;
  1802. }
  1803. /* does this rdev's profile match the reference profile? */
  1804. if (blk_integrity_compare(reference->bdev->bd_disk,
  1805. rdev->bdev->bd_disk) < 0)
  1806. return -EINVAL;
  1807. }
  1808. if (!reference || !bdev_get_integrity(reference->bdev))
  1809. return 0;
  1810. /*
  1811. * All component devices are integrity capable and have matching
  1812. * profiles, register the common profile for the md device.
  1813. */
  1814. if (blk_integrity_register(mddev->gendisk,
  1815. bdev_get_integrity(reference->bdev)) != 0) {
  1816. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1817. mdname(mddev));
  1818. return -EINVAL;
  1819. }
  1820. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1821. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1822. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1823. mdname(mddev));
  1824. return -EINVAL;
  1825. }
  1826. return 0;
  1827. }
  1828. EXPORT_SYMBOL(md_integrity_register);
  1829. /* Disable data integrity if non-capable/non-matching disk is being added */
  1830. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1831. {
  1832. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1833. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1834. if (!bi_mddev) /* nothing to do */
  1835. return;
  1836. if (rdev->raid_disk < 0) /* skip spares */
  1837. return;
  1838. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1839. rdev->bdev->bd_disk) >= 0)
  1840. return;
  1841. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1842. blk_integrity_unregister(mddev->gendisk);
  1843. }
  1844. EXPORT_SYMBOL(md_integrity_add_rdev);
  1845. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1846. {
  1847. char b[BDEVNAME_SIZE];
  1848. struct kobject *ko;
  1849. char *s;
  1850. int err;
  1851. if (rdev->mddev) {
  1852. MD_BUG();
  1853. return -EINVAL;
  1854. }
  1855. /* prevent duplicates */
  1856. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1857. return -EEXIST;
  1858. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1859. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1860. rdev->sectors < mddev->dev_sectors)) {
  1861. if (mddev->pers) {
  1862. /* Cannot change size, so fail
  1863. * If mddev->level <= 0, then we don't care
  1864. * about aligning sizes (e.g. linear)
  1865. */
  1866. if (mddev->level > 0)
  1867. return -ENOSPC;
  1868. } else
  1869. mddev->dev_sectors = rdev->sectors;
  1870. }
  1871. /* Verify rdev->desc_nr is unique.
  1872. * If it is -1, assign a free number, else
  1873. * check number is not in use
  1874. */
  1875. if (rdev->desc_nr < 0) {
  1876. int choice = 0;
  1877. if (mddev->pers) choice = mddev->raid_disks;
  1878. while (find_rdev_nr(mddev, choice))
  1879. choice++;
  1880. rdev->desc_nr = choice;
  1881. } else {
  1882. if (find_rdev_nr(mddev, rdev->desc_nr))
  1883. return -EBUSY;
  1884. }
  1885. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1886. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1887. mdname(mddev), mddev->max_disks);
  1888. return -EBUSY;
  1889. }
  1890. bdevname(rdev->bdev,b);
  1891. while ( (s=strchr(b, '/')) != NULL)
  1892. *s = '!';
  1893. rdev->mddev = mddev;
  1894. printk(KERN_INFO "md: bind<%s>\n", b);
  1895. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1896. goto fail;
  1897. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1898. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1899. /* failure here is OK */;
  1900. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1901. list_add_rcu(&rdev->same_set, &mddev->disks);
  1902. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1903. /* May as well allow recovery to be retried once */
  1904. mddev->recovery_disabled++;
  1905. return 0;
  1906. fail:
  1907. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1908. b, mdname(mddev));
  1909. return err;
  1910. }
  1911. static void md_delayed_delete(struct work_struct *ws)
  1912. {
  1913. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1914. kobject_del(&rdev->kobj);
  1915. kobject_put(&rdev->kobj);
  1916. }
  1917. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1918. {
  1919. char b[BDEVNAME_SIZE];
  1920. if (!rdev->mddev) {
  1921. MD_BUG();
  1922. return;
  1923. }
  1924. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1925. list_del_rcu(&rdev->same_set);
  1926. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1927. rdev->mddev = NULL;
  1928. sysfs_remove_link(&rdev->kobj, "block");
  1929. sysfs_put(rdev->sysfs_state);
  1930. rdev->sysfs_state = NULL;
  1931. kfree(rdev->badblocks.page);
  1932. rdev->badblocks.count = 0;
  1933. rdev->badblocks.page = NULL;
  1934. /* We need to delay this, otherwise we can deadlock when
  1935. * writing to 'remove' to "dev/state". We also need
  1936. * to delay it due to rcu usage.
  1937. */
  1938. synchronize_rcu();
  1939. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1940. kobject_get(&rdev->kobj);
  1941. queue_work(md_misc_wq, &rdev->del_work);
  1942. }
  1943. /*
  1944. * prevent the device from being mounted, repartitioned or
  1945. * otherwise reused by a RAID array (or any other kernel
  1946. * subsystem), by bd_claiming the device.
  1947. */
  1948. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1949. {
  1950. int err = 0;
  1951. struct block_device *bdev;
  1952. char b[BDEVNAME_SIZE];
  1953. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1954. shared ? (struct md_rdev *)lock_rdev : rdev);
  1955. if (IS_ERR(bdev)) {
  1956. printk(KERN_ERR "md: could not open %s.\n",
  1957. __bdevname(dev, b));
  1958. return PTR_ERR(bdev);
  1959. }
  1960. rdev->bdev = bdev;
  1961. return err;
  1962. }
  1963. static void unlock_rdev(struct md_rdev *rdev)
  1964. {
  1965. struct block_device *bdev = rdev->bdev;
  1966. rdev->bdev = NULL;
  1967. if (!bdev)
  1968. MD_BUG();
  1969. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1970. }
  1971. void md_autodetect_dev(dev_t dev);
  1972. static void export_rdev(struct md_rdev * rdev)
  1973. {
  1974. char b[BDEVNAME_SIZE];
  1975. printk(KERN_INFO "md: export_rdev(%s)\n",
  1976. bdevname(rdev->bdev,b));
  1977. if (rdev->mddev)
  1978. MD_BUG();
  1979. md_rdev_clear(rdev);
  1980. #ifndef MODULE
  1981. if (test_bit(AutoDetected, &rdev->flags))
  1982. md_autodetect_dev(rdev->bdev->bd_dev);
  1983. #endif
  1984. unlock_rdev(rdev);
  1985. kobject_put(&rdev->kobj);
  1986. }
  1987. static void kick_rdev_from_array(struct md_rdev * rdev)
  1988. {
  1989. unbind_rdev_from_array(rdev);
  1990. export_rdev(rdev);
  1991. }
  1992. static void export_array(struct mddev *mddev)
  1993. {
  1994. struct md_rdev *rdev, *tmp;
  1995. rdev_for_each_safe(rdev, tmp, mddev) {
  1996. if (!rdev->mddev) {
  1997. MD_BUG();
  1998. continue;
  1999. }
  2000. kick_rdev_from_array(rdev);
  2001. }
  2002. if (!list_empty(&mddev->disks))
  2003. MD_BUG();
  2004. mddev->raid_disks = 0;
  2005. mddev->major_version = 0;
  2006. }
  2007. static void print_desc(mdp_disk_t *desc)
  2008. {
  2009. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  2010. desc->major,desc->minor,desc->raid_disk,desc->state);
  2011. }
  2012. static void print_sb_90(mdp_super_t *sb)
  2013. {
  2014. int i;
  2015. printk(KERN_INFO
  2016. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  2017. sb->major_version, sb->minor_version, sb->patch_version,
  2018. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  2019. sb->ctime);
  2020. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  2021. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2022. sb->md_minor, sb->layout, sb->chunk_size);
  2023. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2024. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2025. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2026. sb->failed_disks, sb->spare_disks,
  2027. sb->sb_csum, (unsigned long)sb->events_lo);
  2028. printk(KERN_INFO);
  2029. for (i = 0; i < MD_SB_DISKS; i++) {
  2030. mdp_disk_t *desc;
  2031. desc = sb->disks + i;
  2032. if (desc->number || desc->major || desc->minor ||
  2033. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2034. printk(" D %2d: ", i);
  2035. print_desc(desc);
  2036. }
  2037. }
  2038. printk(KERN_INFO "md: THIS: ");
  2039. print_desc(&sb->this_disk);
  2040. }
  2041. static void print_sb_1(struct mdp_superblock_1 *sb)
  2042. {
  2043. __u8 *uuid;
  2044. uuid = sb->set_uuid;
  2045. printk(KERN_INFO
  2046. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2047. "md: Name: \"%s\" CT:%llu\n",
  2048. le32_to_cpu(sb->major_version),
  2049. le32_to_cpu(sb->feature_map),
  2050. uuid,
  2051. sb->set_name,
  2052. (unsigned long long)le64_to_cpu(sb->ctime)
  2053. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2054. uuid = sb->device_uuid;
  2055. printk(KERN_INFO
  2056. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2057. " RO:%llu\n"
  2058. "md: Dev:%08x UUID: %pU\n"
  2059. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2060. "md: (MaxDev:%u) \n",
  2061. le32_to_cpu(sb->level),
  2062. (unsigned long long)le64_to_cpu(sb->size),
  2063. le32_to_cpu(sb->raid_disks),
  2064. le32_to_cpu(sb->layout),
  2065. le32_to_cpu(sb->chunksize),
  2066. (unsigned long long)le64_to_cpu(sb->data_offset),
  2067. (unsigned long long)le64_to_cpu(sb->data_size),
  2068. (unsigned long long)le64_to_cpu(sb->super_offset),
  2069. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2070. le32_to_cpu(sb->dev_number),
  2071. uuid,
  2072. sb->devflags,
  2073. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2074. (unsigned long long)le64_to_cpu(sb->events),
  2075. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2076. le32_to_cpu(sb->sb_csum),
  2077. le32_to_cpu(sb->max_dev)
  2078. );
  2079. }
  2080. static void print_rdev(struct md_rdev *rdev, int major_version)
  2081. {
  2082. char b[BDEVNAME_SIZE];
  2083. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2084. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2085. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2086. rdev->desc_nr);
  2087. if (rdev->sb_loaded) {
  2088. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2089. switch (major_version) {
  2090. case 0:
  2091. print_sb_90(page_address(rdev->sb_page));
  2092. break;
  2093. case 1:
  2094. print_sb_1(page_address(rdev->sb_page));
  2095. break;
  2096. }
  2097. } else
  2098. printk(KERN_INFO "md: no rdev superblock!\n");
  2099. }
  2100. static void md_print_devices(void)
  2101. {
  2102. struct list_head *tmp;
  2103. struct md_rdev *rdev;
  2104. struct mddev *mddev;
  2105. char b[BDEVNAME_SIZE];
  2106. printk("\n");
  2107. printk("md: **********************************\n");
  2108. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2109. printk("md: **********************************\n");
  2110. for_each_mddev(mddev, tmp) {
  2111. if (mddev->bitmap)
  2112. bitmap_print_sb(mddev->bitmap);
  2113. else
  2114. printk("%s: ", mdname(mddev));
  2115. rdev_for_each(rdev, mddev)
  2116. printk("<%s>", bdevname(rdev->bdev,b));
  2117. printk("\n");
  2118. rdev_for_each(rdev, mddev)
  2119. print_rdev(rdev, mddev->major_version);
  2120. }
  2121. printk("md: **********************************\n");
  2122. printk("\n");
  2123. }
  2124. static void sync_sbs(struct mddev * mddev, int nospares)
  2125. {
  2126. /* Update each superblock (in-memory image), but
  2127. * if we are allowed to, skip spares which already
  2128. * have the right event counter, or have one earlier
  2129. * (which would mean they aren't being marked as dirty
  2130. * with the rest of the array)
  2131. */
  2132. struct md_rdev *rdev;
  2133. rdev_for_each(rdev, mddev) {
  2134. if (rdev->sb_events == mddev->events ||
  2135. (nospares &&
  2136. rdev->raid_disk < 0 &&
  2137. rdev->sb_events+1 == mddev->events)) {
  2138. /* Don't update this superblock */
  2139. rdev->sb_loaded = 2;
  2140. } else {
  2141. sync_super(mddev, rdev);
  2142. rdev->sb_loaded = 1;
  2143. }
  2144. }
  2145. }
  2146. static void md_update_sb(struct mddev * mddev, int force_change)
  2147. {
  2148. struct md_rdev *rdev;
  2149. int sync_req;
  2150. int nospares = 0;
  2151. int any_badblocks_changed = 0;
  2152. repeat:
  2153. /* First make sure individual recovery_offsets are correct */
  2154. rdev_for_each(rdev, mddev) {
  2155. if (rdev->raid_disk >= 0 &&
  2156. mddev->delta_disks >= 0 &&
  2157. !test_bit(In_sync, &rdev->flags) &&
  2158. mddev->curr_resync_completed > rdev->recovery_offset)
  2159. rdev->recovery_offset = mddev->curr_resync_completed;
  2160. }
  2161. if (!mddev->persistent) {
  2162. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2163. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2164. if (!mddev->external) {
  2165. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2166. rdev_for_each(rdev, mddev) {
  2167. if (rdev->badblocks.changed) {
  2168. rdev->badblocks.changed = 0;
  2169. md_ack_all_badblocks(&rdev->badblocks);
  2170. md_error(mddev, rdev);
  2171. }
  2172. clear_bit(Blocked, &rdev->flags);
  2173. clear_bit(BlockedBadBlocks, &rdev->flags);
  2174. wake_up(&rdev->blocked_wait);
  2175. }
  2176. }
  2177. wake_up(&mddev->sb_wait);
  2178. return;
  2179. }
  2180. spin_lock_irq(&mddev->write_lock);
  2181. mddev->utime = get_seconds();
  2182. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2183. force_change = 1;
  2184. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2185. /* just a clean<-> dirty transition, possibly leave spares alone,
  2186. * though if events isn't the right even/odd, we will have to do
  2187. * spares after all
  2188. */
  2189. nospares = 1;
  2190. if (force_change)
  2191. nospares = 0;
  2192. if (mddev->degraded)
  2193. /* If the array is degraded, then skipping spares is both
  2194. * dangerous and fairly pointless.
  2195. * Dangerous because a device that was removed from the array
  2196. * might have a event_count that still looks up-to-date,
  2197. * so it can be re-added without a resync.
  2198. * Pointless because if there are any spares to skip,
  2199. * then a recovery will happen and soon that array won't
  2200. * be degraded any more and the spare can go back to sleep then.
  2201. */
  2202. nospares = 0;
  2203. sync_req = mddev->in_sync;
  2204. /* If this is just a dirty<->clean transition, and the array is clean
  2205. * and 'events' is odd, we can roll back to the previous clean state */
  2206. if (nospares
  2207. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2208. && mddev->can_decrease_events
  2209. && mddev->events != 1) {
  2210. mddev->events--;
  2211. mddev->can_decrease_events = 0;
  2212. } else {
  2213. /* otherwise we have to go forward and ... */
  2214. mddev->events ++;
  2215. mddev->can_decrease_events = nospares;
  2216. }
  2217. if (!mddev->events) {
  2218. /*
  2219. * oops, this 64-bit counter should never wrap.
  2220. * Either we are in around ~1 trillion A.C., assuming
  2221. * 1 reboot per second, or we have a bug:
  2222. */
  2223. MD_BUG();
  2224. mddev->events --;
  2225. }
  2226. rdev_for_each(rdev, mddev) {
  2227. if (rdev->badblocks.changed)
  2228. any_badblocks_changed++;
  2229. if (test_bit(Faulty, &rdev->flags))
  2230. set_bit(FaultRecorded, &rdev->flags);
  2231. }
  2232. sync_sbs(mddev, nospares);
  2233. spin_unlock_irq(&mddev->write_lock);
  2234. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2235. mdname(mddev), mddev->in_sync);
  2236. bitmap_update_sb(mddev->bitmap);
  2237. rdev_for_each(rdev, mddev) {
  2238. char b[BDEVNAME_SIZE];
  2239. if (rdev->sb_loaded != 1)
  2240. continue; /* no noise on spare devices */
  2241. if (!test_bit(Faulty, &rdev->flags) &&
  2242. rdev->saved_raid_disk == -1) {
  2243. md_super_write(mddev,rdev,
  2244. rdev->sb_start, rdev->sb_size,
  2245. rdev->sb_page);
  2246. pr_debug("md: (write) %s's sb offset: %llu\n",
  2247. bdevname(rdev->bdev, b),
  2248. (unsigned long long)rdev->sb_start);
  2249. rdev->sb_events = mddev->events;
  2250. if (rdev->badblocks.size) {
  2251. md_super_write(mddev, rdev,
  2252. rdev->badblocks.sector,
  2253. rdev->badblocks.size << 9,
  2254. rdev->bb_page);
  2255. rdev->badblocks.size = 0;
  2256. }
  2257. } else if (test_bit(Faulty, &rdev->flags))
  2258. pr_debug("md: %s (skipping faulty)\n",
  2259. bdevname(rdev->bdev, b));
  2260. else
  2261. pr_debug("(skipping incremental s/r ");
  2262. if (mddev->level == LEVEL_MULTIPATH)
  2263. /* only need to write one superblock... */
  2264. break;
  2265. }
  2266. md_super_wait(mddev);
  2267. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2268. spin_lock_irq(&mddev->write_lock);
  2269. if (mddev->in_sync != sync_req ||
  2270. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2271. /* have to write it out again */
  2272. spin_unlock_irq(&mddev->write_lock);
  2273. goto repeat;
  2274. }
  2275. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2276. spin_unlock_irq(&mddev->write_lock);
  2277. wake_up(&mddev->sb_wait);
  2278. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2279. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2280. rdev_for_each(rdev, mddev) {
  2281. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2282. clear_bit(Blocked, &rdev->flags);
  2283. if (any_badblocks_changed)
  2284. md_ack_all_badblocks(&rdev->badblocks);
  2285. clear_bit(BlockedBadBlocks, &rdev->flags);
  2286. wake_up(&rdev->blocked_wait);
  2287. }
  2288. }
  2289. /* words written to sysfs files may, or may not, be \n terminated.
  2290. * We want to accept with case. For this we use cmd_match.
  2291. */
  2292. static int cmd_match(const char *cmd, const char *str)
  2293. {
  2294. /* See if cmd, written into a sysfs file, matches
  2295. * str. They must either be the same, or cmd can
  2296. * have a trailing newline
  2297. */
  2298. while (*cmd && *str && *cmd == *str) {
  2299. cmd++;
  2300. str++;
  2301. }
  2302. if (*cmd == '\n')
  2303. cmd++;
  2304. if (*str || *cmd)
  2305. return 0;
  2306. return 1;
  2307. }
  2308. struct rdev_sysfs_entry {
  2309. struct attribute attr;
  2310. ssize_t (*show)(struct md_rdev *, char *);
  2311. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2312. };
  2313. static ssize_t
  2314. state_show(struct md_rdev *rdev, char *page)
  2315. {
  2316. char *sep = "";
  2317. size_t len = 0;
  2318. if (test_bit(Faulty, &rdev->flags) ||
  2319. rdev->badblocks.unacked_exist) {
  2320. len+= sprintf(page+len, "%sfaulty",sep);
  2321. sep = ",";
  2322. }
  2323. if (test_bit(In_sync, &rdev->flags)) {
  2324. len += sprintf(page+len, "%sin_sync",sep);
  2325. sep = ",";
  2326. }
  2327. if (test_bit(WriteMostly, &rdev->flags)) {
  2328. len += sprintf(page+len, "%swrite_mostly",sep);
  2329. sep = ",";
  2330. }
  2331. if (test_bit(Blocked, &rdev->flags) ||
  2332. (rdev->badblocks.unacked_exist
  2333. && !test_bit(Faulty, &rdev->flags))) {
  2334. len += sprintf(page+len, "%sblocked", sep);
  2335. sep = ",";
  2336. }
  2337. if (!test_bit(Faulty, &rdev->flags) &&
  2338. !test_bit(In_sync, &rdev->flags)) {
  2339. len += sprintf(page+len, "%sspare", sep);
  2340. sep = ",";
  2341. }
  2342. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2343. len += sprintf(page+len, "%swrite_error", sep);
  2344. sep = ",";
  2345. }
  2346. if (test_bit(WantReplacement, &rdev->flags)) {
  2347. len += sprintf(page+len, "%swant_replacement", sep);
  2348. sep = ",";
  2349. }
  2350. if (test_bit(Replacement, &rdev->flags)) {
  2351. len += sprintf(page+len, "%sreplacement", sep);
  2352. sep = ",";
  2353. }
  2354. return len+sprintf(page+len, "\n");
  2355. }
  2356. static ssize_t
  2357. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2358. {
  2359. /* can write
  2360. * faulty - simulates an error
  2361. * remove - disconnects the device
  2362. * writemostly - sets write_mostly
  2363. * -writemostly - clears write_mostly
  2364. * blocked - sets the Blocked flags
  2365. * -blocked - clears the Blocked and possibly simulates an error
  2366. * insync - sets Insync providing device isn't active
  2367. * write_error - sets WriteErrorSeen
  2368. * -write_error - clears WriteErrorSeen
  2369. */
  2370. int err = -EINVAL;
  2371. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2372. md_error(rdev->mddev, rdev);
  2373. if (test_bit(Faulty, &rdev->flags))
  2374. err = 0;
  2375. else
  2376. err = -EBUSY;
  2377. } else if (cmd_match(buf, "remove")) {
  2378. if (rdev->raid_disk >= 0)
  2379. err = -EBUSY;
  2380. else {
  2381. struct mddev *mddev = rdev->mddev;
  2382. kick_rdev_from_array(rdev);
  2383. if (mddev->pers)
  2384. md_update_sb(mddev, 1);
  2385. md_new_event(mddev);
  2386. err = 0;
  2387. }
  2388. } else if (cmd_match(buf, "writemostly")) {
  2389. set_bit(WriteMostly, &rdev->flags);
  2390. err = 0;
  2391. } else if (cmd_match(buf, "-writemostly")) {
  2392. clear_bit(WriteMostly, &rdev->flags);
  2393. err = 0;
  2394. } else if (cmd_match(buf, "blocked")) {
  2395. set_bit(Blocked, &rdev->flags);
  2396. err = 0;
  2397. } else if (cmd_match(buf, "-blocked")) {
  2398. if (!test_bit(Faulty, &rdev->flags) &&
  2399. rdev->badblocks.unacked_exist) {
  2400. /* metadata handler doesn't understand badblocks,
  2401. * so we need to fail the device
  2402. */
  2403. md_error(rdev->mddev, rdev);
  2404. }
  2405. clear_bit(Blocked, &rdev->flags);
  2406. clear_bit(BlockedBadBlocks, &rdev->flags);
  2407. wake_up(&rdev->blocked_wait);
  2408. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2409. md_wakeup_thread(rdev->mddev->thread);
  2410. err = 0;
  2411. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2412. set_bit(In_sync, &rdev->flags);
  2413. err = 0;
  2414. } else if (cmd_match(buf, "write_error")) {
  2415. set_bit(WriteErrorSeen, &rdev->flags);
  2416. err = 0;
  2417. } else if (cmd_match(buf, "-write_error")) {
  2418. clear_bit(WriteErrorSeen, &rdev->flags);
  2419. err = 0;
  2420. } else if (cmd_match(buf, "want_replacement")) {
  2421. /* Any non-spare device that is not a replacement can
  2422. * become want_replacement at any time, but we then need to
  2423. * check if recovery is needed.
  2424. */
  2425. if (rdev->raid_disk >= 0 &&
  2426. !test_bit(Replacement, &rdev->flags))
  2427. set_bit(WantReplacement, &rdev->flags);
  2428. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2429. md_wakeup_thread(rdev->mddev->thread);
  2430. err = 0;
  2431. } else if (cmd_match(buf, "-want_replacement")) {
  2432. /* Clearing 'want_replacement' is always allowed.
  2433. * Once replacements starts it is too late though.
  2434. */
  2435. err = 0;
  2436. clear_bit(WantReplacement, &rdev->flags);
  2437. } else if (cmd_match(buf, "replacement")) {
  2438. /* Can only set a device as a replacement when array has not
  2439. * yet been started. Once running, replacement is automatic
  2440. * from spares, or by assigning 'slot'.
  2441. */
  2442. if (rdev->mddev->pers)
  2443. err = -EBUSY;
  2444. else {
  2445. set_bit(Replacement, &rdev->flags);
  2446. err = 0;
  2447. }
  2448. } else if (cmd_match(buf, "-replacement")) {
  2449. /* Similarly, can only clear Replacement before start */
  2450. if (rdev->mddev->pers)
  2451. err = -EBUSY;
  2452. else {
  2453. clear_bit(Replacement, &rdev->flags);
  2454. err = 0;
  2455. }
  2456. }
  2457. if (!err)
  2458. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2459. return err ? err : len;
  2460. }
  2461. static struct rdev_sysfs_entry rdev_state =
  2462. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2463. static ssize_t
  2464. errors_show(struct md_rdev *rdev, char *page)
  2465. {
  2466. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2467. }
  2468. static ssize_t
  2469. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2470. {
  2471. char *e;
  2472. unsigned long n = simple_strtoul(buf, &e, 10);
  2473. if (*buf && (*e == 0 || *e == '\n')) {
  2474. atomic_set(&rdev->corrected_errors, n);
  2475. return len;
  2476. }
  2477. return -EINVAL;
  2478. }
  2479. static struct rdev_sysfs_entry rdev_errors =
  2480. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2481. static ssize_t
  2482. slot_show(struct md_rdev *rdev, char *page)
  2483. {
  2484. if (rdev->raid_disk < 0)
  2485. return sprintf(page, "none\n");
  2486. else
  2487. return sprintf(page, "%d\n", rdev->raid_disk);
  2488. }
  2489. static ssize_t
  2490. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2491. {
  2492. char *e;
  2493. int err;
  2494. int slot = simple_strtoul(buf, &e, 10);
  2495. if (strncmp(buf, "none", 4)==0)
  2496. slot = -1;
  2497. else if (e==buf || (*e && *e!= '\n'))
  2498. return -EINVAL;
  2499. if (rdev->mddev->pers && slot == -1) {
  2500. /* Setting 'slot' on an active array requires also
  2501. * updating the 'rd%d' link, and communicating
  2502. * with the personality with ->hot_*_disk.
  2503. * For now we only support removing
  2504. * failed/spare devices. This normally happens automatically,
  2505. * but not when the metadata is externally managed.
  2506. */
  2507. if (rdev->raid_disk == -1)
  2508. return -EEXIST;
  2509. /* personality does all needed checks */
  2510. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2511. return -EINVAL;
  2512. err = rdev->mddev->pers->
  2513. hot_remove_disk(rdev->mddev, rdev);
  2514. if (err)
  2515. return err;
  2516. sysfs_unlink_rdev(rdev->mddev, rdev);
  2517. rdev->raid_disk = -1;
  2518. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2519. md_wakeup_thread(rdev->mddev->thread);
  2520. } else if (rdev->mddev->pers) {
  2521. /* Activating a spare .. or possibly reactivating
  2522. * if we ever get bitmaps working here.
  2523. */
  2524. if (rdev->raid_disk != -1)
  2525. return -EBUSY;
  2526. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2527. return -EBUSY;
  2528. if (rdev->mddev->pers->hot_add_disk == NULL)
  2529. return -EINVAL;
  2530. if (slot >= rdev->mddev->raid_disks &&
  2531. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2532. return -ENOSPC;
  2533. rdev->raid_disk = slot;
  2534. if (test_bit(In_sync, &rdev->flags))
  2535. rdev->saved_raid_disk = slot;
  2536. else
  2537. rdev->saved_raid_disk = -1;
  2538. clear_bit(In_sync, &rdev->flags);
  2539. err = rdev->mddev->pers->
  2540. hot_add_disk(rdev->mddev, rdev);
  2541. if (err) {
  2542. rdev->raid_disk = -1;
  2543. return err;
  2544. } else
  2545. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2546. if (sysfs_link_rdev(rdev->mddev, rdev))
  2547. /* failure here is OK */;
  2548. /* don't wakeup anyone, leave that to userspace. */
  2549. } else {
  2550. if (slot >= rdev->mddev->raid_disks &&
  2551. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2552. return -ENOSPC;
  2553. rdev->raid_disk = slot;
  2554. /* assume it is working */
  2555. clear_bit(Faulty, &rdev->flags);
  2556. clear_bit(WriteMostly, &rdev->flags);
  2557. set_bit(In_sync, &rdev->flags);
  2558. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2559. }
  2560. return len;
  2561. }
  2562. static struct rdev_sysfs_entry rdev_slot =
  2563. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2564. static ssize_t
  2565. offset_show(struct md_rdev *rdev, char *page)
  2566. {
  2567. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2568. }
  2569. static ssize_t
  2570. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2571. {
  2572. unsigned long long offset;
  2573. if (strict_strtoull(buf, 10, &offset) < 0)
  2574. return -EINVAL;
  2575. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2576. return -EBUSY;
  2577. if (rdev->sectors && rdev->mddev->external)
  2578. /* Must set offset before size, so overlap checks
  2579. * can be sane */
  2580. return -EBUSY;
  2581. rdev->data_offset = offset;
  2582. return len;
  2583. }
  2584. static struct rdev_sysfs_entry rdev_offset =
  2585. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2586. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2587. {
  2588. return sprintf(page, "%llu\n",
  2589. (unsigned long long)rdev->new_data_offset);
  2590. }
  2591. static ssize_t new_offset_store(struct md_rdev *rdev,
  2592. const char *buf, size_t len)
  2593. {
  2594. unsigned long long new_offset;
  2595. struct mddev *mddev = rdev->mddev;
  2596. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2597. return -EINVAL;
  2598. if (mddev->sync_thread)
  2599. return -EBUSY;
  2600. if (new_offset == rdev->data_offset)
  2601. /* reset is always permitted */
  2602. ;
  2603. else if (new_offset > rdev->data_offset) {
  2604. /* must not push array size beyond rdev_sectors */
  2605. if (new_offset - rdev->data_offset
  2606. + mddev->dev_sectors > rdev->sectors)
  2607. return -E2BIG;
  2608. }
  2609. /* Metadata worries about other space details. */
  2610. /* decreasing the offset is inconsistent with a backwards
  2611. * reshape.
  2612. */
  2613. if (new_offset < rdev->data_offset &&
  2614. mddev->reshape_backwards)
  2615. return -EINVAL;
  2616. /* Increasing offset is inconsistent with forwards
  2617. * reshape. reshape_direction should be set to
  2618. * 'backwards' first.
  2619. */
  2620. if (new_offset > rdev->data_offset &&
  2621. !mddev->reshape_backwards)
  2622. return -EINVAL;
  2623. if (mddev->pers && mddev->persistent &&
  2624. !super_types[mddev->major_version]
  2625. .allow_new_offset(rdev, new_offset))
  2626. return -E2BIG;
  2627. rdev->new_data_offset = new_offset;
  2628. if (new_offset > rdev->data_offset)
  2629. mddev->reshape_backwards = 1;
  2630. else if (new_offset < rdev->data_offset)
  2631. mddev->reshape_backwards = 0;
  2632. return len;
  2633. }
  2634. static struct rdev_sysfs_entry rdev_new_offset =
  2635. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2636. static ssize_t
  2637. rdev_size_show(struct md_rdev *rdev, char *page)
  2638. {
  2639. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2640. }
  2641. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2642. {
  2643. /* check if two start/length pairs overlap */
  2644. if (s1+l1 <= s2)
  2645. return 0;
  2646. if (s2+l2 <= s1)
  2647. return 0;
  2648. return 1;
  2649. }
  2650. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2651. {
  2652. unsigned long long blocks;
  2653. sector_t new;
  2654. if (strict_strtoull(buf, 10, &blocks) < 0)
  2655. return -EINVAL;
  2656. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2657. return -EINVAL; /* sector conversion overflow */
  2658. new = blocks * 2;
  2659. if (new != blocks * 2)
  2660. return -EINVAL; /* unsigned long long to sector_t overflow */
  2661. *sectors = new;
  2662. return 0;
  2663. }
  2664. static ssize_t
  2665. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2666. {
  2667. struct mddev *my_mddev = rdev->mddev;
  2668. sector_t oldsectors = rdev->sectors;
  2669. sector_t sectors;
  2670. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2671. return -EINVAL;
  2672. if (rdev->data_offset != rdev->new_data_offset)
  2673. return -EINVAL; /* too confusing */
  2674. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2675. if (my_mddev->persistent) {
  2676. sectors = super_types[my_mddev->major_version].
  2677. rdev_size_change(rdev, sectors);
  2678. if (!sectors)
  2679. return -EBUSY;
  2680. } else if (!sectors)
  2681. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2682. rdev->data_offset;
  2683. }
  2684. if (sectors < my_mddev->dev_sectors)
  2685. return -EINVAL; /* component must fit device */
  2686. rdev->sectors = sectors;
  2687. if (sectors > oldsectors && my_mddev->external) {
  2688. /* need to check that all other rdevs with the same ->bdev
  2689. * do not overlap. We need to unlock the mddev to avoid
  2690. * a deadlock. We have already changed rdev->sectors, and if
  2691. * we have to change it back, we will have the lock again.
  2692. */
  2693. struct mddev *mddev;
  2694. int overlap = 0;
  2695. struct list_head *tmp;
  2696. mddev_unlock(my_mddev);
  2697. for_each_mddev(mddev, tmp) {
  2698. struct md_rdev *rdev2;
  2699. mddev_lock(mddev);
  2700. rdev_for_each(rdev2, mddev)
  2701. if (rdev->bdev == rdev2->bdev &&
  2702. rdev != rdev2 &&
  2703. overlaps(rdev->data_offset, rdev->sectors,
  2704. rdev2->data_offset,
  2705. rdev2->sectors)) {
  2706. overlap = 1;
  2707. break;
  2708. }
  2709. mddev_unlock(mddev);
  2710. if (overlap) {
  2711. mddev_put(mddev);
  2712. break;
  2713. }
  2714. }
  2715. mddev_lock(my_mddev);
  2716. if (overlap) {
  2717. /* Someone else could have slipped in a size
  2718. * change here, but doing so is just silly.
  2719. * We put oldsectors back because we *know* it is
  2720. * safe, and trust userspace not to race with
  2721. * itself
  2722. */
  2723. rdev->sectors = oldsectors;
  2724. return -EBUSY;
  2725. }
  2726. }
  2727. return len;
  2728. }
  2729. static struct rdev_sysfs_entry rdev_size =
  2730. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2731. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2732. {
  2733. unsigned long long recovery_start = rdev->recovery_offset;
  2734. if (test_bit(In_sync, &rdev->flags) ||
  2735. recovery_start == MaxSector)
  2736. return sprintf(page, "none\n");
  2737. return sprintf(page, "%llu\n", recovery_start);
  2738. }
  2739. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2740. {
  2741. unsigned long long recovery_start;
  2742. if (cmd_match(buf, "none"))
  2743. recovery_start = MaxSector;
  2744. else if (strict_strtoull(buf, 10, &recovery_start))
  2745. return -EINVAL;
  2746. if (rdev->mddev->pers &&
  2747. rdev->raid_disk >= 0)
  2748. return -EBUSY;
  2749. rdev->recovery_offset = recovery_start;
  2750. if (recovery_start == MaxSector)
  2751. set_bit(In_sync, &rdev->flags);
  2752. else
  2753. clear_bit(In_sync, &rdev->flags);
  2754. return len;
  2755. }
  2756. static struct rdev_sysfs_entry rdev_recovery_start =
  2757. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2758. static ssize_t
  2759. badblocks_show(struct badblocks *bb, char *page, int unack);
  2760. static ssize_t
  2761. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2762. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2763. {
  2764. return badblocks_show(&rdev->badblocks, page, 0);
  2765. }
  2766. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2767. {
  2768. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2769. /* Maybe that ack was all we needed */
  2770. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2771. wake_up(&rdev->blocked_wait);
  2772. return rv;
  2773. }
  2774. static struct rdev_sysfs_entry rdev_bad_blocks =
  2775. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2776. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2777. {
  2778. return badblocks_show(&rdev->badblocks, page, 1);
  2779. }
  2780. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2781. {
  2782. return badblocks_store(&rdev->badblocks, page, len, 1);
  2783. }
  2784. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2785. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2786. static struct attribute *rdev_default_attrs[] = {
  2787. &rdev_state.attr,
  2788. &rdev_errors.attr,
  2789. &rdev_slot.attr,
  2790. &rdev_offset.attr,
  2791. &rdev_new_offset.attr,
  2792. &rdev_size.attr,
  2793. &rdev_recovery_start.attr,
  2794. &rdev_bad_blocks.attr,
  2795. &rdev_unack_bad_blocks.attr,
  2796. NULL,
  2797. };
  2798. static ssize_t
  2799. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2800. {
  2801. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2802. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2803. struct mddev *mddev = rdev->mddev;
  2804. ssize_t rv;
  2805. if (!entry->show)
  2806. return -EIO;
  2807. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2808. if (!rv) {
  2809. if (rdev->mddev == NULL)
  2810. rv = -EBUSY;
  2811. else
  2812. rv = entry->show(rdev, page);
  2813. mddev_unlock(mddev);
  2814. }
  2815. return rv;
  2816. }
  2817. static ssize_t
  2818. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2819. const char *page, size_t length)
  2820. {
  2821. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2822. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2823. ssize_t rv;
  2824. struct mddev *mddev = rdev->mddev;
  2825. if (!entry->store)
  2826. return -EIO;
  2827. if (!capable(CAP_SYS_ADMIN))
  2828. return -EACCES;
  2829. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2830. if (!rv) {
  2831. if (rdev->mddev == NULL)
  2832. rv = -EBUSY;
  2833. else
  2834. rv = entry->store(rdev, page, length);
  2835. mddev_unlock(mddev);
  2836. }
  2837. return rv;
  2838. }
  2839. static void rdev_free(struct kobject *ko)
  2840. {
  2841. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2842. kfree(rdev);
  2843. }
  2844. static const struct sysfs_ops rdev_sysfs_ops = {
  2845. .show = rdev_attr_show,
  2846. .store = rdev_attr_store,
  2847. };
  2848. static struct kobj_type rdev_ktype = {
  2849. .release = rdev_free,
  2850. .sysfs_ops = &rdev_sysfs_ops,
  2851. .default_attrs = rdev_default_attrs,
  2852. };
  2853. int md_rdev_init(struct md_rdev *rdev)
  2854. {
  2855. rdev->desc_nr = -1;
  2856. rdev->saved_raid_disk = -1;
  2857. rdev->raid_disk = -1;
  2858. rdev->flags = 0;
  2859. rdev->data_offset = 0;
  2860. rdev->new_data_offset = 0;
  2861. rdev->sb_events = 0;
  2862. rdev->last_read_error.tv_sec = 0;
  2863. rdev->last_read_error.tv_nsec = 0;
  2864. rdev->sb_loaded = 0;
  2865. rdev->bb_page = NULL;
  2866. atomic_set(&rdev->nr_pending, 0);
  2867. atomic_set(&rdev->read_errors, 0);
  2868. atomic_set(&rdev->corrected_errors, 0);
  2869. INIT_LIST_HEAD(&rdev->same_set);
  2870. init_waitqueue_head(&rdev->blocked_wait);
  2871. /* Add space to store bad block list.
  2872. * This reserves the space even on arrays where it cannot
  2873. * be used - I wonder if that matters
  2874. */
  2875. rdev->badblocks.count = 0;
  2876. rdev->badblocks.shift = 0;
  2877. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2878. seqlock_init(&rdev->badblocks.lock);
  2879. if (rdev->badblocks.page == NULL)
  2880. return -ENOMEM;
  2881. return 0;
  2882. }
  2883. EXPORT_SYMBOL_GPL(md_rdev_init);
  2884. /*
  2885. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2886. *
  2887. * mark the device faulty if:
  2888. *
  2889. * - the device is nonexistent (zero size)
  2890. * - the device has no valid superblock
  2891. *
  2892. * a faulty rdev _never_ has rdev->sb set.
  2893. */
  2894. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2895. {
  2896. char b[BDEVNAME_SIZE];
  2897. int err;
  2898. struct md_rdev *rdev;
  2899. sector_t size;
  2900. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2901. if (!rdev) {
  2902. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2903. return ERR_PTR(-ENOMEM);
  2904. }
  2905. err = md_rdev_init(rdev);
  2906. if (err)
  2907. goto abort_free;
  2908. err = alloc_disk_sb(rdev);
  2909. if (err)
  2910. goto abort_free;
  2911. err = lock_rdev(rdev, newdev, super_format == -2);
  2912. if (err)
  2913. goto abort_free;
  2914. kobject_init(&rdev->kobj, &rdev_ktype);
  2915. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2916. if (!size) {
  2917. printk(KERN_WARNING
  2918. "md: %s has zero or unknown size, marking faulty!\n",
  2919. bdevname(rdev->bdev,b));
  2920. err = -EINVAL;
  2921. goto abort_free;
  2922. }
  2923. if (super_format >= 0) {
  2924. err = super_types[super_format].
  2925. load_super(rdev, NULL, super_minor);
  2926. if (err == -EINVAL) {
  2927. printk(KERN_WARNING
  2928. "md: %s does not have a valid v%d.%d "
  2929. "superblock, not importing!\n",
  2930. bdevname(rdev->bdev,b),
  2931. super_format, super_minor);
  2932. goto abort_free;
  2933. }
  2934. if (err < 0) {
  2935. printk(KERN_WARNING
  2936. "md: could not read %s's sb, not importing!\n",
  2937. bdevname(rdev->bdev,b));
  2938. goto abort_free;
  2939. }
  2940. }
  2941. if (super_format == -1)
  2942. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2943. rdev->badblocks.shift = -1;
  2944. return rdev;
  2945. abort_free:
  2946. if (rdev->bdev)
  2947. unlock_rdev(rdev);
  2948. md_rdev_clear(rdev);
  2949. kfree(rdev->badblocks.page);
  2950. kfree(rdev);
  2951. return ERR_PTR(err);
  2952. }
  2953. /*
  2954. * Check a full RAID array for plausibility
  2955. */
  2956. static void analyze_sbs(struct mddev * mddev)
  2957. {
  2958. int i;
  2959. struct md_rdev *rdev, *freshest, *tmp;
  2960. char b[BDEVNAME_SIZE];
  2961. freshest = NULL;
  2962. rdev_for_each_safe(rdev, tmp, mddev)
  2963. switch (super_types[mddev->major_version].
  2964. load_super(rdev, freshest, mddev->minor_version)) {
  2965. case 1:
  2966. freshest = rdev;
  2967. break;
  2968. case 0:
  2969. break;
  2970. default:
  2971. printk( KERN_ERR \
  2972. "md: fatal superblock inconsistency in %s"
  2973. " -- removing from array\n",
  2974. bdevname(rdev->bdev,b));
  2975. kick_rdev_from_array(rdev);
  2976. }
  2977. super_types[mddev->major_version].
  2978. validate_super(mddev, freshest);
  2979. i = 0;
  2980. rdev_for_each_safe(rdev, tmp, mddev) {
  2981. if (mddev->max_disks &&
  2982. (rdev->desc_nr >= mddev->max_disks ||
  2983. i > mddev->max_disks)) {
  2984. printk(KERN_WARNING
  2985. "md: %s: %s: only %d devices permitted\n",
  2986. mdname(mddev), bdevname(rdev->bdev, b),
  2987. mddev->max_disks);
  2988. kick_rdev_from_array(rdev);
  2989. continue;
  2990. }
  2991. if (rdev != freshest)
  2992. if (super_types[mddev->major_version].
  2993. validate_super(mddev, rdev)) {
  2994. printk(KERN_WARNING "md: kicking non-fresh %s"
  2995. " from array!\n",
  2996. bdevname(rdev->bdev,b));
  2997. kick_rdev_from_array(rdev);
  2998. continue;
  2999. }
  3000. if (mddev->level == LEVEL_MULTIPATH) {
  3001. rdev->desc_nr = i++;
  3002. rdev->raid_disk = rdev->desc_nr;
  3003. set_bit(In_sync, &rdev->flags);
  3004. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  3005. rdev->raid_disk = -1;
  3006. clear_bit(In_sync, &rdev->flags);
  3007. }
  3008. }
  3009. }
  3010. /* Read a fixed-point number.
  3011. * Numbers in sysfs attributes should be in "standard" units where
  3012. * possible, so time should be in seconds.
  3013. * However we internally use a a much smaller unit such as
  3014. * milliseconds or jiffies.
  3015. * This function takes a decimal number with a possible fractional
  3016. * component, and produces an integer which is the result of
  3017. * multiplying that number by 10^'scale'.
  3018. * all without any floating-point arithmetic.
  3019. */
  3020. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3021. {
  3022. unsigned long result = 0;
  3023. long decimals = -1;
  3024. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3025. if (*cp == '.')
  3026. decimals = 0;
  3027. else if (decimals < scale) {
  3028. unsigned int value;
  3029. value = *cp - '0';
  3030. result = result * 10 + value;
  3031. if (decimals >= 0)
  3032. decimals++;
  3033. }
  3034. cp++;
  3035. }
  3036. if (*cp == '\n')
  3037. cp++;
  3038. if (*cp)
  3039. return -EINVAL;
  3040. if (decimals < 0)
  3041. decimals = 0;
  3042. while (decimals < scale) {
  3043. result *= 10;
  3044. decimals ++;
  3045. }
  3046. *res = result;
  3047. return 0;
  3048. }
  3049. static void md_safemode_timeout(unsigned long data);
  3050. static ssize_t
  3051. safe_delay_show(struct mddev *mddev, char *page)
  3052. {
  3053. int msec = (mddev->safemode_delay*1000)/HZ;
  3054. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3055. }
  3056. static ssize_t
  3057. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3058. {
  3059. unsigned long msec;
  3060. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3061. return -EINVAL;
  3062. if (msec == 0)
  3063. mddev->safemode_delay = 0;
  3064. else {
  3065. unsigned long old_delay = mddev->safemode_delay;
  3066. mddev->safemode_delay = (msec*HZ)/1000;
  3067. if (mddev->safemode_delay == 0)
  3068. mddev->safemode_delay = 1;
  3069. if (mddev->safemode_delay < old_delay)
  3070. md_safemode_timeout((unsigned long)mddev);
  3071. }
  3072. return len;
  3073. }
  3074. static struct md_sysfs_entry md_safe_delay =
  3075. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3076. static ssize_t
  3077. level_show(struct mddev *mddev, char *page)
  3078. {
  3079. struct md_personality *p = mddev->pers;
  3080. if (p)
  3081. return sprintf(page, "%s\n", p->name);
  3082. else if (mddev->clevel[0])
  3083. return sprintf(page, "%s\n", mddev->clevel);
  3084. else if (mddev->level != LEVEL_NONE)
  3085. return sprintf(page, "%d\n", mddev->level);
  3086. else
  3087. return 0;
  3088. }
  3089. static ssize_t
  3090. level_store(struct mddev *mddev, const char *buf, size_t len)
  3091. {
  3092. char clevel[16];
  3093. ssize_t rv = len;
  3094. struct md_personality *pers;
  3095. long level;
  3096. void *priv;
  3097. struct md_rdev *rdev;
  3098. if (mddev->pers == NULL) {
  3099. if (len == 0)
  3100. return 0;
  3101. if (len >= sizeof(mddev->clevel))
  3102. return -ENOSPC;
  3103. strncpy(mddev->clevel, buf, len);
  3104. if (mddev->clevel[len-1] == '\n')
  3105. len--;
  3106. mddev->clevel[len] = 0;
  3107. mddev->level = LEVEL_NONE;
  3108. return rv;
  3109. }
  3110. /* request to change the personality. Need to ensure:
  3111. * - array is not engaged in resync/recovery/reshape
  3112. * - old personality can be suspended
  3113. * - new personality will access other array.
  3114. */
  3115. if (mddev->sync_thread ||
  3116. mddev->reshape_position != MaxSector ||
  3117. mddev->sysfs_active)
  3118. return -EBUSY;
  3119. if (!mddev->pers->quiesce) {
  3120. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3121. mdname(mddev), mddev->pers->name);
  3122. return -EINVAL;
  3123. }
  3124. /* Now find the new personality */
  3125. if (len == 0 || len >= sizeof(clevel))
  3126. return -EINVAL;
  3127. strncpy(clevel, buf, len);
  3128. if (clevel[len-1] == '\n')
  3129. len--;
  3130. clevel[len] = 0;
  3131. if (strict_strtol(clevel, 10, &level))
  3132. level = LEVEL_NONE;
  3133. if (request_module("md-%s", clevel) != 0)
  3134. request_module("md-level-%s", clevel);
  3135. spin_lock(&pers_lock);
  3136. pers = find_pers(level, clevel);
  3137. if (!pers || !try_module_get(pers->owner)) {
  3138. spin_unlock(&pers_lock);
  3139. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3140. return -EINVAL;
  3141. }
  3142. spin_unlock(&pers_lock);
  3143. if (pers == mddev->pers) {
  3144. /* Nothing to do! */
  3145. module_put(pers->owner);
  3146. return rv;
  3147. }
  3148. if (!pers->takeover) {
  3149. module_put(pers->owner);
  3150. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3151. mdname(mddev), clevel);
  3152. return -EINVAL;
  3153. }
  3154. rdev_for_each(rdev, mddev)
  3155. rdev->new_raid_disk = rdev->raid_disk;
  3156. /* ->takeover must set new_* and/or delta_disks
  3157. * if it succeeds, and may set them when it fails.
  3158. */
  3159. priv = pers->takeover(mddev);
  3160. if (IS_ERR(priv)) {
  3161. mddev->new_level = mddev->level;
  3162. mddev->new_layout = mddev->layout;
  3163. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3164. mddev->raid_disks -= mddev->delta_disks;
  3165. mddev->delta_disks = 0;
  3166. mddev->reshape_backwards = 0;
  3167. module_put(pers->owner);
  3168. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3169. mdname(mddev), clevel);
  3170. return PTR_ERR(priv);
  3171. }
  3172. /* Looks like we have a winner */
  3173. mddev_suspend(mddev);
  3174. mddev->pers->stop(mddev);
  3175. if (mddev->pers->sync_request == NULL &&
  3176. pers->sync_request != NULL) {
  3177. /* need to add the md_redundancy_group */
  3178. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3179. printk(KERN_WARNING
  3180. "md: cannot register extra attributes for %s\n",
  3181. mdname(mddev));
  3182. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3183. }
  3184. if (mddev->pers->sync_request != NULL &&
  3185. pers->sync_request == NULL) {
  3186. /* need to remove the md_redundancy_group */
  3187. if (mddev->to_remove == NULL)
  3188. mddev->to_remove = &md_redundancy_group;
  3189. }
  3190. if (mddev->pers->sync_request == NULL &&
  3191. mddev->external) {
  3192. /* We are converting from a no-redundancy array
  3193. * to a redundancy array and metadata is managed
  3194. * externally so we need to be sure that writes
  3195. * won't block due to a need to transition
  3196. * clean->dirty
  3197. * until external management is started.
  3198. */
  3199. mddev->in_sync = 0;
  3200. mddev->safemode_delay = 0;
  3201. mddev->safemode = 0;
  3202. }
  3203. rdev_for_each(rdev, mddev) {
  3204. if (rdev->raid_disk < 0)
  3205. continue;
  3206. if (rdev->new_raid_disk >= mddev->raid_disks)
  3207. rdev->new_raid_disk = -1;
  3208. if (rdev->new_raid_disk == rdev->raid_disk)
  3209. continue;
  3210. sysfs_unlink_rdev(mddev, rdev);
  3211. }
  3212. rdev_for_each(rdev, mddev) {
  3213. if (rdev->raid_disk < 0)
  3214. continue;
  3215. if (rdev->new_raid_disk == rdev->raid_disk)
  3216. continue;
  3217. rdev->raid_disk = rdev->new_raid_disk;
  3218. if (rdev->raid_disk < 0)
  3219. clear_bit(In_sync, &rdev->flags);
  3220. else {
  3221. if (sysfs_link_rdev(mddev, rdev))
  3222. printk(KERN_WARNING "md: cannot register rd%d"
  3223. " for %s after level change\n",
  3224. rdev->raid_disk, mdname(mddev));
  3225. }
  3226. }
  3227. module_put(mddev->pers->owner);
  3228. mddev->pers = pers;
  3229. mddev->private = priv;
  3230. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3231. mddev->level = mddev->new_level;
  3232. mddev->layout = mddev->new_layout;
  3233. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3234. mddev->delta_disks = 0;
  3235. mddev->reshape_backwards = 0;
  3236. mddev->degraded = 0;
  3237. if (mddev->pers->sync_request == NULL) {
  3238. /* this is now an array without redundancy, so
  3239. * it must always be in_sync
  3240. */
  3241. mddev->in_sync = 1;
  3242. del_timer_sync(&mddev->safemode_timer);
  3243. }
  3244. pers->run(mddev);
  3245. mddev_resume(mddev);
  3246. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3247. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3248. md_wakeup_thread(mddev->thread);
  3249. sysfs_notify(&mddev->kobj, NULL, "level");
  3250. md_new_event(mddev);
  3251. return rv;
  3252. }
  3253. static struct md_sysfs_entry md_level =
  3254. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3255. static ssize_t
  3256. layout_show(struct mddev *mddev, char *page)
  3257. {
  3258. /* just a number, not meaningful for all levels */
  3259. if (mddev->reshape_position != MaxSector &&
  3260. mddev->layout != mddev->new_layout)
  3261. return sprintf(page, "%d (%d)\n",
  3262. mddev->new_layout, mddev->layout);
  3263. return sprintf(page, "%d\n", mddev->layout);
  3264. }
  3265. static ssize_t
  3266. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3267. {
  3268. char *e;
  3269. unsigned long n = simple_strtoul(buf, &e, 10);
  3270. if (!*buf || (*e && *e != '\n'))
  3271. return -EINVAL;
  3272. if (mddev->pers) {
  3273. int err;
  3274. if (mddev->pers->check_reshape == NULL)
  3275. return -EBUSY;
  3276. mddev->new_layout = n;
  3277. err = mddev->pers->check_reshape(mddev);
  3278. if (err) {
  3279. mddev->new_layout = mddev->layout;
  3280. return err;
  3281. }
  3282. } else {
  3283. mddev->new_layout = n;
  3284. if (mddev->reshape_position == MaxSector)
  3285. mddev->layout = n;
  3286. }
  3287. return len;
  3288. }
  3289. static struct md_sysfs_entry md_layout =
  3290. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3291. static ssize_t
  3292. raid_disks_show(struct mddev *mddev, char *page)
  3293. {
  3294. if (mddev->raid_disks == 0)
  3295. return 0;
  3296. if (mddev->reshape_position != MaxSector &&
  3297. mddev->delta_disks != 0)
  3298. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3299. mddev->raid_disks - mddev->delta_disks);
  3300. return sprintf(page, "%d\n", mddev->raid_disks);
  3301. }
  3302. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3303. static ssize_t
  3304. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3305. {
  3306. char *e;
  3307. int rv = 0;
  3308. unsigned long n = simple_strtoul(buf, &e, 10);
  3309. if (!*buf || (*e && *e != '\n'))
  3310. return -EINVAL;
  3311. if (mddev->pers)
  3312. rv = update_raid_disks(mddev, n);
  3313. else if (mddev->reshape_position != MaxSector) {
  3314. struct md_rdev *rdev;
  3315. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3316. rdev_for_each(rdev, mddev) {
  3317. if (olddisks < n &&
  3318. rdev->data_offset < rdev->new_data_offset)
  3319. return -EINVAL;
  3320. if (olddisks > n &&
  3321. rdev->data_offset > rdev->new_data_offset)
  3322. return -EINVAL;
  3323. }
  3324. mddev->delta_disks = n - olddisks;
  3325. mddev->raid_disks = n;
  3326. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3327. } else
  3328. mddev->raid_disks = n;
  3329. return rv ? rv : len;
  3330. }
  3331. static struct md_sysfs_entry md_raid_disks =
  3332. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3333. static ssize_t
  3334. chunk_size_show(struct mddev *mddev, char *page)
  3335. {
  3336. if (mddev->reshape_position != MaxSector &&
  3337. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3338. return sprintf(page, "%d (%d)\n",
  3339. mddev->new_chunk_sectors << 9,
  3340. mddev->chunk_sectors << 9);
  3341. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3342. }
  3343. static ssize_t
  3344. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3345. {
  3346. char *e;
  3347. unsigned long n = simple_strtoul(buf, &e, 10);
  3348. if (!*buf || (*e && *e != '\n'))
  3349. return -EINVAL;
  3350. if (mddev->pers) {
  3351. int err;
  3352. if (mddev->pers->check_reshape == NULL)
  3353. return -EBUSY;
  3354. mddev->new_chunk_sectors = n >> 9;
  3355. err = mddev->pers->check_reshape(mddev);
  3356. if (err) {
  3357. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3358. return err;
  3359. }
  3360. } else {
  3361. mddev->new_chunk_sectors = n >> 9;
  3362. if (mddev->reshape_position == MaxSector)
  3363. mddev->chunk_sectors = n >> 9;
  3364. }
  3365. return len;
  3366. }
  3367. static struct md_sysfs_entry md_chunk_size =
  3368. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3369. static ssize_t
  3370. resync_start_show(struct mddev *mddev, char *page)
  3371. {
  3372. if (mddev->recovery_cp == MaxSector)
  3373. return sprintf(page, "none\n");
  3374. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3375. }
  3376. static ssize_t
  3377. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3378. {
  3379. char *e;
  3380. unsigned long long n = simple_strtoull(buf, &e, 10);
  3381. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3382. return -EBUSY;
  3383. if (cmd_match(buf, "none"))
  3384. n = MaxSector;
  3385. else if (!*buf || (*e && *e != '\n'))
  3386. return -EINVAL;
  3387. mddev->recovery_cp = n;
  3388. return len;
  3389. }
  3390. static struct md_sysfs_entry md_resync_start =
  3391. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3392. /*
  3393. * The array state can be:
  3394. *
  3395. * clear
  3396. * No devices, no size, no level
  3397. * Equivalent to STOP_ARRAY ioctl
  3398. * inactive
  3399. * May have some settings, but array is not active
  3400. * all IO results in error
  3401. * When written, doesn't tear down array, but just stops it
  3402. * suspended (not supported yet)
  3403. * All IO requests will block. The array can be reconfigured.
  3404. * Writing this, if accepted, will block until array is quiescent
  3405. * readonly
  3406. * no resync can happen. no superblocks get written.
  3407. * write requests fail
  3408. * read-auto
  3409. * like readonly, but behaves like 'clean' on a write request.
  3410. *
  3411. * clean - no pending writes, but otherwise active.
  3412. * When written to inactive array, starts without resync
  3413. * If a write request arrives then
  3414. * if metadata is known, mark 'dirty' and switch to 'active'.
  3415. * if not known, block and switch to write-pending
  3416. * If written to an active array that has pending writes, then fails.
  3417. * active
  3418. * fully active: IO and resync can be happening.
  3419. * When written to inactive array, starts with resync
  3420. *
  3421. * write-pending
  3422. * clean, but writes are blocked waiting for 'active' to be written.
  3423. *
  3424. * active-idle
  3425. * like active, but no writes have been seen for a while (100msec).
  3426. *
  3427. */
  3428. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3429. write_pending, active_idle, bad_word};
  3430. static char *array_states[] = {
  3431. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3432. "write-pending", "active-idle", NULL };
  3433. static int match_word(const char *word, char **list)
  3434. {
  3435. int n;
  3436. for (n=0; list[n]; n++)
  3437. if (cmd_match(word, list[n]))
  3438. break;
  3439. return n;
  3440. }
  3441. static ssize_t
  3442. array_state_show(struct mddev *mddev, char *page)
  3443. {
  3444. enum array_state st = inactive;
  3445. if (mddev->pers)
  3446. switch(mddev->ro) {
  3447. case 1:
  3448. st = readonly;
  3449. break;
  3450. case 2:
  3451. st = read_auto;
  3452. break;
  3453. case 0:
  3454. if (mddev->in_sync)
  3455. st = clean;
  3456. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3457. st = write_pending;
  3458. else if (mddev->safemode)
  3459. st = active_idle;
  3460. else
  3461. st = active;
  3462. }
  3463. else {
  3464. if (list_empty(&mddev->disks) &&
  3465. mddev->raid_disks == 0 &&
  3466. mddev->dev_sectors == 0)
  3467. st = clear;
  3468. else
  3469. st = inactive;
  3470. }
  3471. return sprintf(page, "%s\n", array_states[st]);
  3472. }
  3473. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3474. static int md_set_readonly(struct mddev * mddev, int is_open);
  3475. static int do_md_run(struct mddev * mddev);
  3476. static int restart_array(struct mddev *mddev);
  3477. static ssize_t
  3478. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3479. {
  3480. int err = -EINVAL;
  3481. enum array_state st = match_word(buf, array_states);
  3482. switch(st) {
  3483. case bad_word:
  3484. break;
  3485. case clear:
  3486. /* stopping an active array */
  3487. if (atomic_read(&mddev->openers) > 0)
  3488. return -EBUSY;
  3489. err = do_md_stop(mddev, 0, 0);
  3490. break;
  3491. case inactive:
  3492. /* stopping an active array */
  3493. if (mddev->pers) {
  3494. if (atomic_read(&mddev->openers) > 0)
  3495. return -EBUSY;
  3496. err = do_md_stop(mddev, 2, 0);
  3497. } else
  3498. err = 0; /* already inactive */
  3499. break;
  3500. case suspended:
  3501. break; /* not supported yet */
  3502. case readonly:
  3503. if (mddev->pers)
  3504. err = md_set_readonly(mddev, 0);
  3505. else {
  3506. mddev->ro = 1;
  3507. set_disk_ro(mddev->gendisk, 1);
  3508. err = do_md_run(mddev);
  3509. }
  3510. break;
  3511. case read_auto:
  3512. if (mddev->pers) {
  3513. if (mddev->ro == 0)
  3514. err = md_set_readonly(mddev, 0);
  3515. else if (mddev->ro == 1)
  3516. err = restart_array(mddev);
  3517. if (err == 0) {
  3518. mddev->ro = 2;
  3519. set_disk_ro(mddev->gendisk, 0);
  3520. }
  3521. } else {
  3522. mddev->ro = 2;
  3523. err = do_md_run(mddev);
  3524. }
  3525. break;
  3526. case clean:
  3527. if (mddev->pers) {
  3528. restart_array(mddev);
  3529. spin_lock_irq(&mddev->write_lock);
  3530. if (atomic_read(&mddev->writes_pending) == 0) {
  3531. if (mddev->in_sync == 0) {
  3532. mddev->in_sync = 1;
  3533. if (mddev->safemode == 1)
  3534. mddev->safemode = 0;
  3535. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3536. }
  3537. err = 0;
  3538. } else
  3539. err = -EBUSY;
  3540. spin_unlock_irq(&mddev->write_lock);
  3541. } else
  3542. err = -EINVAL;
  3543. break;
  3544. case active:
  3545. if (mddev->pers) {
  3546. restart_array(mddev);
  3547. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3548. wake_up(&mddev->sb_wait);
  3549. err = 0;
  3550. } else {
  3551. mddev->ro = 0;
  3552. set_disk_ro(mddev->gendisk, 0);
  3553. err = do_md_run(mddev);
  3554. }
  3555. break;
  3556. case write_pending:
  3557. case active_idle:
  3558. /* these cannot be set */
  3559. break;
  3560. }
  3561. if (err)
  3562. return err;
  3563. else {
  3564. if (mddev->hold_active == UNTIL_IOCTL)
  3565. mddev->hold_active = 0;
  3566. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3567. return len;
  3568. }
  3569. }
  3570. static struct md_sysfs_entry md_array_state =
  3571. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3572. static ssize_t
  3573. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3574. return sprintf(page, "%d\n",
  3575. atomic_read(&mddev->max_corr_read_errors));
  3576. }
  3577. static ssize_t
  3578. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3579. {
  3580. char *e;
  3581. unsigned long n = simple_strtoul(buf, &e, 10);
  3582. if (*buf && (*e == 0 || *e == '\n')) {
  3583. atomic_set(&mddev->max_corr_read_errors, n);
  3584. return len;
  3585. }
  3586. return -EINVAL;
  3587. }
  3588. static struct md_sysfs_entry max_corr_read_errors =
  3589. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3590. max_corrected_read_errors_store);
  3591. static ssize_t
  3592. null_show(struct mddev *mddev, char *page)
  3593. {
  3594. return -EINVAL;
  3595. }
  3596. static ssize_t
  3597. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3598. {
  3599. /* buf must be %d:%d\n? giving major and minor numbers */
  3600. /* The new device is added to the array.
  3601. * If the array has a persistent superblock, we read the
  3602. * superblock to initialise info and check validity.
  3603. * Otherwise, only checking done is that in bind_rdev_to_array,
  3604. * which mainly checks size.
  3605. */
  3606. char *e;
  3607. int major = simple_strtoul(buf, &e, 10);
  3608. int minor;
  3609. dev_t dev;
  3610. struct md_rdev *rdev;
  3611. int err;
  3612. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3613. return -EINVAL;
  3614. minor = simple_strtoul(e+1, &e, 10);
  3615. if (*e && *e != '\n')
  3616. return -EINVAL;
  3617. dev = MKDEV(major, minor);
  3618. if (major != MAJOR(dev) ||
  3619. minor != MINOR(dev))
  3620. return -EOVERFLOW;
  3621. if (mddev->persistent) {
  3622. rdev = md_import_device(dev, mddev->major_version,
  3623. mddev->minor_version);
  3624. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3625. struct md_rdev *rdev0
  3626. = list_entry(mddev->disks.next,
  3627. struct md_rdev, same_set);
  3628. err = super_types[mddev->major_version]
  3629. .load_super(rdev, rdev0, mddev->minor_version);
  3630. if (err < 0)
  3631. goto out;
  3632. }
  3633. } else if (mddev->external)
  3634. rdev = md_import_device(dev, -2, -1);
  3635. else
  3636. rdev = md_import_device(dev, -1, -1);
  3637. if (IS_ERR(rdev))
  3638. return PTR_ERR(rdev);
  3639. err = bind_rdev_to_array(rdev, mddev);
  3640. out:
  3641. if (err)
  3642. export_rdev(rdev);
  3643. return err ? err : len;
  3644. }
  3645. static struct md_sysfs_entry md_new_device =
  3646. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3647. static ssize_t
  3648. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3649. {
  3650. char *end;
  3651. unsigned long chunk, end_chunk;
  3652. if (!mddev->bitmap)
  3653. goto out;
  3654. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3655. while (*buf) {
  3656. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3657. if (buf == end) break;
  3658. if (*end == '-') { /* range */
  3659. buf = end + 1;
  3660. end_chunk = simple_strtoul(buf, &end, 0);
  3661. if (buf == end) break;
  3662. }
  3663. if (*end && !isspace(*end)) break;
  3664. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3665. buf = skip_spaces(end);
  3666. }
  3667. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3668. out:
  3669. return len;
  3670. }
  3671. static struct md_sysfs_entry md_bitmap =
  3672. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3673. static ssize_t
  3674. size_show(struct mddev *mddev, char *page)
  3675. {
  3676. return sprintf(page, "%llu\n",
  3677. (unsigned long long)mddev->dev_sectors / 2);
  3678. }
  3679. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3680. static ssize_t
  3681. size_store(struct mddev *mddev, const char *buf, size_t len)
  3682. {
  3683. /* If array is inactive, we can reduce the component size, but
  3684. * not increase it (except from 0).
  3685. * If array is active, we can try an on-line resize
  3686. */
  3687. sector_t sectors;
  3688. int err = strict_blocks_to_sectors(buf, &sectors);
  3689. if (err < 0)
  3690. return err;
  3691. if (mddev->pers) {
  3692. err = update_size(mddev, sectors);
  3693. md_update_sb(mddev, 1);
  3694. } else {
  3695. if (mddev->dev_sectors == 0 ||
  3696. mddev->dev_sectors > sectors)
  3697. mddev->dev_sectors = sectors;
  3698. else
  3699. err = -ENOSPC;
  3700. }
  3701. return err ? err : len;
  3702. }
  3703. static struct md_sysfs_entry md_size =
  3704. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3705. /* Metdata version.
  3706. * This is one of
  3707. * 'none' for arrays with no metadata (good luck...)
  3708. * 'external' for arrays with externally managed metadata,
  3709. * or N.M for internally known formats
  3710. */
  3711. static ssize_t
  3712. metadata_show(struct mddev *mddev, char *page)
  3713. {
  3714. if (mddev->persistent)
  3715. return sprintf(page, "%d.%d\n",
  3716. mddev->major_version, mddev->minor_version);
  3717. else if (mddev->external)
  3718. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3719. else
  3720. return sprintf(page, "none\n");
  3721. }
  3722. static ssize_t
  3723. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3724. {
  3725. int major, minor;
  3726. char *e;
  3727. /* Changing the details of 'external' metadata is
  3728. * always permitted. Otherwise there must be
  3729. * no devices attached to the array.
  3730. */
  3731. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3732. ;
  3733. else if (!list_empty(&mddev->disks))
  3734. return -EBUSY;
  3735. if (cmd_match(buf, "none")) {
  3736. mddev->persistent = 0;
  3737. mddev->external = 0;
  3738. mddev->major_version = 0;
  3739. mddev->minor_version = 90;
  3740. return len;
  3741. }
  3742. if (strncmp(buf, "external:", 9) == 0) {
  3743. size_t namelen = len-9;
  3744. if (namelen >= sizeof(mddev->metadata_type))
  3745. namelen = sizeof(mddev->metadata_type)-1;
  3746. strncpy(mddev->metadata_type, buf+9, namelen);
  3747. mddev->metadata_type[namelen] = 0;
  3748. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3749. mddev->metadata_type[--namelen] = 0;
  3750. mddev->persistent = 0;
  3751. mddev->external = 1;
  3752. mddev->major_version = 0;
  3753. mddev->minor_version = 90;
  3754. return len;
  3755. }
  3756. major = simple_strtoul(buf, &e, 10);
  3757. if (e==buf || *e != '.')
  3758. return -EINVAL;
  3759. buf = e+1;
  3760. minor = simple_strtoul(buf, &e, 10);
  3761. if (e==buf || (*e && *e != '\n') )
  3762. return -EINVAL;
  3763. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3764. return -ENOENT;
  3765. mddev->major_version = major;
  3766. mddev->minor_version = minor;
  3767. mddev->persistent = 1;
  3768. mddev->external = 0;
  3769. return len;
  3770. }
  3771. static struct md_sysfs_entry md_metadata =
  3772. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3773. static ssize_t
  3774. action_show(struct mddev *mddev, char *page)
  3775. {
  3776. char *type = "idle";
  3777. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3778. type = "frozen";
  3779. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3780. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3781. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3782. type = "reshape";
  3783. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3784. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3785. type = "resync";
  3786. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3787. type = "check";
  3788. else
  3789. type = "repair";
  3790. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3791. type = "recover";
  3792. }
  3793. return sprintf(page, "%s\n", type);
  3794. }
  3795. static void reap_sync_thread(struct mddev *mddev);
  3796. static ssize_t
  3797. action_store(struct mddev *mddev, const char *page, size_t len)
  3798. {
  3799. if (!mddev->pers || !mddev->pers->sync_request)
  3800. return -EINVAL;
  3801. if (cmd_match(page, "frozen"))
  3802. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3803. else
  3804. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3805. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3806. if (mddev->sync_thread) {
  3807. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3808. reap_sync_thread(mddev);
  3809. }
  3810. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3811. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3812. return -EBUSY;
  3813. else if (cmd_match(page, "resync"))
  3814. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3815. else if (cmd_match(page, "recover")) {
  3816. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3817. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3818. } else if (cmd_match(page, "reshape")) {
  3819. int err;
  3820. if (mddev->pers->start_reshape == NULL)
  3821. return -EINVAL;
  3822. err = mddev->pers->start_reshape(mddev);
  3823. if (err)
  3824. return err;
  3825. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3826. } else {
  3827. if (cmd_match(page, "check"))
  3828. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3829. else if (!cmd_match(page, "repair"))
  3830. return -EINVAL;
  3831. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3832. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3833. }
  3834. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3835. md_wakeup_thread(mddev->thread);
  3836. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3837. return len;
  3838. }
  3839. static ssize_t
  3840. mismatch_cnt_show(struct mddev *mddev, char *page)
  3841. {
  3842. return sprintf(page, "%llu\n",
  3843. (unsigned long long) mddev->resync_mismatches);
  3844. }
  3845. static struct md_sysfs_entry md_scan_mode =
  3846. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3847. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3848. static ssize_t
  3849. sync_min_show(struct mddev *mddev, char *page)
  3850. {
  3851. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3852. mddev->sync_speed_min ? "local": "system");
  3853. }
  3854. static ssize_t
  3855. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3856. {
  3857. int min;
  3858. char *e;
  3859. if (strncmp(buf, "system", 6)==0) {
  3860. mddev->sync_speed_min = 0;
  3861. return len;
  3862. }
  3863. min = simple_strtoul(buf, &e, 10);
  3864. if (buf == e || (*e && *e != '\n') || min <= 0)
  3865. return -EINVAL;
  3866. mddev->sync_speed_min = min;
  3867. return len;
  3868. }
  3869. static struct md_sysfs_entry md_sync_min =
  3870. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3871. static ssize_t
  3872. sync_max_show(struct mddev *mddev, char *page)
  3873. {
  3874. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3875. mddev->sync_speed_max ? "local": "system");
  3876. }
  3877. static ssize_t
  3878. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3879. {
  3880. int max;
  3881. char *e;
  3882. if (strncmp(buf, "system", 6)==0) {
  3883. mddev->sync_speed_max = 0;
  3884. return len;
  3885. }
  3886. max = simple_strtoul(buf, &e, 10);
  3887. if (buf == e || (*e && *e != '\n') || max <= 0)
  3888. return -EINVAL;
  3889. mddev->sync_speed_max = max;
  3890. return len;
  3891. }
  3892. static struct md_sysfs_entry md_sync_max =
  3893. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3894. static ssize_t
  3895. degraded_show(struct mddev *mddev, char *page)
  3896. {
  3897. return sprintf(page, "%d\n", mddev->degraded);
  3898. }
  3899. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3900. static ssize_t
  3901. sync_force_parallel_show(struct mddev *mddev, char *page)
  3902. {
  3903. return sprintf(page, "%d\n", mddev->parallel_resync);
  3904. }
  3905. static ssize_t
  3906. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3907. {
  3908. long n;
  3909. if (strict_strtol(buf, 10, &n))
  3910. return -EINVAL;
  3911. if (n != 0 && n != 1)
  3912. return -EINVAL;
  3913. mddev->parallel_resync = n;
  3914. if (mddev->sync_thread)
  3915. wake_up(&resync_wait);
  3916. return len;
  3917. }
  3918. /* force parallel resync, even with shared block devices */
  3919. static struct md_sysfs_entry md_sync_force_parallel =
  3920. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3921. sync_force_parallel_show, sync_force_parallel_store);
  3922. static ssize_t
  3923. sync_speed_show(struct mddev *mddev, char *page)
  3924. {
  3925. unsigned long resync, dt, db;
  3926. if (mddev->curr_resync == 0)
  3927. return sprintf(page, "none\n");
  3928. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3929. dt = (jiffies - mddev->resync_mark) / HZ;
  3930. if (!dt) dt++;
  3931. db = resync - mddev->resync_mark_cnt;
  3932. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3933. }
  3934. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3935. static ssize_t
  3936. sync_completed_show(struct mddev *mddev, char *page)
  3937. {
  3938. unsigned long long max_sectors, resync;
  3939. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3940. return sprintf(page, "none\n");
  3941. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3942. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3943. max_sectors = mddev->resync_max_sectors;
  3944. else
  3945. max_sectors = mddev->dev_sectors;
  3946. resync = mddev->curr_resync_completed;
  3947. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3948. }
  3949. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3950. static ssize_t
  3951. min_sync_show(struct mddev *mddev, char *page)
  3952. {
  3953. return sprintf(page, "%llu\n",
  3954. (unsigned long long)mddev->resync_min);
  3955. }
  3956. static ssize_t
  3957. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3958. {
  3959. unsigned long long min;
  3960. if (strict_strtoull(buf, 10, &min))
  3961. return -EINVAL;
  3962. if (min > mddev->resync_max)
  3963. return -EINVAL;
  3964. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3965. return -EBUSY;
  3966. /* Must be a multiple of chunk_size */
  3967. if (mddev->chunk_sectors) {
  3968. sector_t temp = min;
  3969. if (sector_div(temp, mddev->chunk_sectors))
  3970. return -EINVAL;
  3971. }
  3972. mddev->resync_min = min;
  3973. return len;
  3974. }
  3975. static struct md_sysfs_entry md_min_sync =
  3976. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3977. static ssize_t
  3978. max_sync_show(struct mddev *mddev, char *page)
  3979. {
  3980. if (mddev->resync_max == MaxSector)
  3981. return sprintf(page, "max\n");
  3982. else
  3983. return sprintf(page, "%llu\n",
  3984. (unsigned long long)mddev->resync_max);
  3985. }
  3986. static ssize_t
  3987. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3988. {
  3989. if (strncmp(buf, "max", 3) == 0)
  3990. mddev->resync_max = MaxSector;
  3991. else {
  3992. unsigned long long max;
  3993. if (strict_strtoull(buf, 10, &max))
  3994. return -EINVAL;
  3995. if (max < mddev->resync_min)
  3996. return -EINVAL;
  3997. if (max < mddev->resync_max &&
  3998. mddev->ro == 0 &&
  3999. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4000. return -EBUSY;
  4001. /* Must be a multiple of chunk_size */
  4002. if (mddev->chunk_sectors) {
  4003. sector_t temp = max;
  4004. if (sector_div(temp, mddev->chunk_sectors))
  4005. return -EINVAL;
  4006. }
  4007. mddev->resync_max = max;
  4008. }
  4009. wake_up(&mddev->recovery_wait);
  4010. return len;
  4011. }
  4012. static struct md_sysfs_entry md_max_sync =
  4013. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4014. static ssize_t
  4015. suspend_lo_show(struct mddev *mddev, char *page)
  4016. {
  4017. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4018. }
  4019. static ssize_t
  4020. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4021. {
  4022. char *e;
  4023. unsigned long long new = simple_strtoull(buf, &e, 10);
  4024. unsigned long long old = mddev->suspend_lo;
  4025. if (mddev->pers == NULL ||
  4026. mddev->pers->quiesce == NULL)
  4027. return -EINVAL;
  4028. if (buf == e || (*e && *e != '\n'))
  4029. return -EINVAL;
  4030. mddev->suspend_lo = new;
  4031. if (new >= old)
  4032. /* Shrinking suspended region */
  4033. mddev->pers->quiesce(mddev, 2);
  4034. else {
  4035. /* Expanding suspended region - need to wait */
  4036. mddev->pers->quiesce(mddev, 1);
  4037. mddev->pers->quiesce(mddev, 0);
  4038. }
  4039. return len;
  4040. }
  4041. static struct md_sysfs_entry md_suspend_lo =
  4042. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4043. static ssize_t
  4044. suspend_hi_show(struct mddev *mddev, char *page)
  4045. {
  4046. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4047. }
  4048. static ssize_t
  4049. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4050. {
  4051. char *e;
  4052. unsigned long long new = simple_strtoull(buf, &e, 10);
  4053. unsigned long long old = mddev->suspend_hi;
  4054. if (mddev->pers == NULL ||
  4055. mddev->pers->quiesce == NULL)
  4056. return -EINVAL;
  4057. if (buf == e || (*e && *e != '\n'))
  4058. return -EINVAL;
  4059. mddev->suspend_hi = new;
  4060. if (new <= old)
  4061. /* Shrinking suspended region */
  4062. mddev->pers->quiesce(mddev, 2);
  4063. else {
  4064. /* Expanding suspended region - need to wait */
  4065. mddev->pers->quiesce(mddev, 1);
  4066. mddev->pers->quiesce(mddev, 0);
  4067. }
  4068. return len;
  4069. }
  4070. static struct md_sysfs_entry md_suspend_hi =
  4071. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4072. static ssize_t
  4073. reshape_position_show(struct mddev *mddev, char *page)
  4074. {
  4075. if (mddev->reshape_position != MaxSector)
  4076. return sprintf(page, "%llu\n",
  4077. (unsigned long long)mddev->reshape_position);
  4078. strcpy(page, "none\n");
  4079. return 5;
  4080. }
  4081. static ssize_t
  4082. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4083. {
  4084. struct md_rdev *rdev;
  4085. char *e;
  4086. unsigned long long new = simple_strtoull(buf, &e, 10);
  4087. if (mddev->pers)
  4088. return -EBUSY;
  4089. if (buf == e || (*e && *e != '\n'))
  4090. return -EINVAL;
  4091. mddev->reshape_position = new;
  4092. mddev->delta_disks = 0;
  4093. mddev->reshape_backwards = 0;
  4094. mddev->new_level = mddev->level;
  4095. mddev->new_layout = mddev->layout;
  4096. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4097. rdev_for_each(rdev, mddev)
  4098. rdev->new_data_offset = rdev->data_offset;
  4099. return len;
  4100. }
  4101. static struct md_sysfs_entry md_reshape_position =
  4102. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4103. reshape_position_store);
  4104. static ssize_t
  4105. reshape_direction_show(struct mddev *mddev, char *page)
  4106. {
  4107. return sprintf(page, "%s\n",
  4108. mddev->reshape_backwards ? "backwards" : "forwards");
  4109. }
  4110. static ssize_t
  4111. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4112. {
  4113. int backwards = 0;
  4114. if (cmd_match(buf, "forwards"))
  4115. backwards = 0;
  4116. else if (cmd_match(buf, "backwards"))
  4117. backwards = 1;
  4118. else
  4119. return -EINVAL;
  4120. if (mddev->reshape_backwards == backwards)
  4121. return len;
  4122. /* check if we are allowed to change */
  4123. if (mddev->delta_disks)
  4124. return -EBUSY;
  4125. if (mddev->persistent &&
  4126. mddev->major_version == 0)
  4127. return -EINVAL;
  4128. mddev->reshape_backwards = backwards;
  4129. return len;
  4130. }
  4131. static struct md_sysfs_entry md_reshape_direction =
  4132. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4133. reshape_direction_store);
  4134. static ssize_t
  4135. array_size_show(struct mddev *mddev, char *page)
  4136. {
  4137. if (mddev->external_size)
  4138. return sprintf(page, "%llu\n",
  4139. (unsigned long long)mddev->array_sectors/2);
  4140. else
  4141. return sprintf(page, "default\n");
  4142. }
  4143. static ssize_t
  4144. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4145. {
  4146. sector_t sectors;
  4147. if (strncmp(buf, "default", 7) == 0) {
  4148. if (mddev->pers)
  4149. sectors = mddev->pers->size(mddev, 0, 0);
  4150. else
  4151. sectors = mddev->array_sectors;
  4152. mddev->external_size = 0;
  4153. } else {
  4154. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4155. return -EINVAL;
  4156. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4157. return -E2BIG;
  4158. mddev->external_size = 1;
  4159. }
  4160. mddev->array_sectors = sectors;
  4161. if (mddev->pers) {
  4162. set_capacity(mddev->gendisk, mddev->array_sectors);
  4163. revalidate_disk(mddev->gendisk);
  4164. }
  4165. return len;
  4166. }
  4167. static struct md_sysfs_entry md_array_size =
  4168. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4169. array_size_store);
  4170. static struct attribute *md_default_attrs[] = {
  4171. &md_level.attr,
  4172. &md_layout.attr,
  4173. &md_raid_disks.attr,
  4174. &md_chunk_size.attr,
  4175. &md_size.attr,
  4176. &md_resync_start.attr,
  4177. &md_metadata.attr,
  4178. &md_new_device.attr,
  4179. &md_safe_delay.attr,
  4180. &md_array_state.attr,
  4181. &md_reshape_position.attr,
  4182. &md_reshape_direction.attr,
  4183. &md_array_size.attr,
  4184. &max_corr_read_errors.attr,
  4185. NULL,
  4186. };
  4187. static struct attribute *md_redundancy_attrs[] = {
  4188. &md_scan_mode.attr,
  4189. &md_mismatches.attr,
  4190. &md_sync_min.attr,
  4191. &md_sync_max.attr,
  4192. &md_sync_speed.attr,
  4193. &md_sync_force_parallel.attr,
  4194. &md_sync_completed.attr,
  4195. &md_min_sync.attr,
  4196. &md_max_sync.attr,
  4197. &md_suspend_lo.attr,
  4198. &md_suspend_hi.attr,
  4199. &md_bitmap.attr,
  4200. &md_degraded.attr,
  4201. NULL,
  4202. };
  4203. static struct attribute_group md_redundancy_group = {
  4204. .name = NULL,
  4205. .attrs = md_redundancy_attrs,
  4206. };
  4207. static ssize_t
  4208. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4209. {
  4210. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4211. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4212. ssize_t rv;
  4213. if (!entry->show)
  4214. return -EIO;
  4215. spin_lock(&all_mddevs_lock);
  4216. if (list_empty(&mddev->all_mddevs)) {
  4217. spin_unlock(&all_mddevs_lock);
  4218. return -EBUSY;
  4219. }
  4220. mddev_get(mddev);
  4221. spin_unlock(&all_mddevs_lock);
  4222. rv = mddev_lock(mddev);
  4223. if (!rv) {
  4224. rv = entry->show(mddev, page);
  4225. mddev_unlock(mddev);
  4226. }
  4227. mddev_put(mddev);
  4228. return rv;
  4229. }
  4230. static ssize_t
  4231. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4232. const char *page, size_t length)
  4233. {
  4234. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4235. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4236. ssize_t rv;
  4237. if (!entry->store)
  4238. return -EIO;
  4239. if (!capable(CAP_SYS_ADMIN))
  4240. return -EACCES;
  4241. spin_lock(&all_mddevs_lock);
  4242. if (list_empty(&mddev->all_mddevs)) {
  4243. spin_unlock(&all_mddevs_lock);
  4244. return -EBUSY;
  4245. }
  4246. mddev_get(mddev);
  4247. spin_unlock(&all_mddevs_lock);
  4248. rv = mddev_lock(mddev);
  4249. if (!rv) {
  4250. rv = entry->store(mddev, page, length);
  4251. mddev_unlock(mddev);
  4252. }
  4253. mddev_put(mddev);
  4254. return rv;
  4255. }
  4256. static void md_free(struct kobject *ko)
  4257. {
  4258. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4259. if (mddev->sysfs_state)
  4260. sysfs_put(mddev->sysfs_state);
  4261. if (mddev->gendisk) {
  4262. del_gendisk(mddev->gendisk);
  4263. put_disk(mddev->gendisk);
  4264. }
  4265. if (mddev->queue)
  4266. blk_cleanup_queue(mddev->queue);
  4267. kfree(mddev);
  4268. }
  4269. static const struct sysfs_ops md_sysfs_ops = {
  4270. .show = md_attr_show,
  4271. .store = md_attr_store,
  4272. };
  4273. static struct kobj_type md_ktype = {
  4274. .release = md_free,
  4275. .sysfs_ops = &md_sysfs_ops,
  4276. .default_attrs = md_default_attrs,
  4277. };
  4278. int mdp_major = 0;
  4279. static void mddev_delayed_delete(struct work_struct *ws)
  4280. {
  4281. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4282. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4283. kobject_del(&mddev->kobj);
  4284. kobject_put(&mddev->kobj);
  4285. }
  4286. static int md_alloc(dev_t dev, char *name)
  4287. {
  4288. static DEFINE_MUTEX(disks_mutex);
  4289. struct mddev *mddev = mddev_find(dev);
  4290. struct gendisk *disk;
  4291. int partitioned;
  4292. int shift;
  4293. int unit;
  4294. int error;
  4295. if (!mddev)
  4296. return -ENODEV;
  4297. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4298. shift = partitioned ? MdpMinorShift : 0;
  4299. unit = MINOR(mddev->unit) >> shift;
  4300. /* wait for any previous instance of this device to be
  4301. * completely removed (mddev_delayed_delete).
  4302. */
  4303. flush_workqueue(md_misc_wq);
  4304. mutex_lock(&disks_mutex);
  4305. error = -EEXIST;
  4306. if (mddev->gendisk)
  4307. goto abort;
  4308. if (name) {
  4309. /* Need to ensure that 'name' is not a duplicate.
  4310. */
  4311. struct mddev *mddev2;
  4312. spin_lock(&all_mddevs_lock);
  4313. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4314. if (mddev2->gendisk &&
  4315. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4316. spin_unlock(&all_mddevs_lock);
  4317. goto abort;
  4318. }
  4319. spin_unlock(&all_mddevs_lock);
  4320. }
  4321. error = -ENOMEM;
  4322. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4323. if (!mddev->queue)
  4324. goto abort;
  4325. mddev->queue->queuedata = mddev;
  4326. blk_queue_make_request(mddev->queue, md_make_request);
  4327. blk_set_stacking_limits(&mddev->queue->limits);
  4328. disk = alloc_disk(1 << shift);
  4329. if (!disk) {
  4330. blk_cleanup_queue(mddev->queue);
  4331. mddev->queue = NULL;
  4332. goto abort;
  4333. }
  4334. disk->major = MAJOR(mddev->unit);
  4335. disk->first_minor = unit << shift;
  4336. if (name)
  4337. strcpy(disk->disk_name, name);
  4338. else if (partitioned)
  4339. sprintf(disk->disk_name, "md_d%d", unit);
  4340. else
  4341. sprintf(disk->disk_name, "md%d", unit);
  4342. disk->fops = &md_fops;
  4343. disk->private_data = mddev;
  4344. disk->queue = mddev->queue;
  4345. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4346. /* Allow extended partitions. This makes the
  4347. * 'mdp' device redundant, but we can't really
  4348. * remove it now.
  4349. */
  4350. disk->flags |= GENHD_FL_EXT_DEVT;
  4351. mddev->gendisk = disk;
  4352. /* As soon as we call add_disk(), another thread could get
  4353. * through to md_open, so make sure it doesn't get too far
  4354. */
  4355. mutex_lock(&mddev->open_mutex);
  4356. add_disk(disk);
  4357. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4358. &disk_to_dev(disk)->kobj, "%s", "md");
  4359. if (error) {
  4360. /* This isn't possible, but as kobject_init_and_add is marked
  4361. * __must_check, we must do something with the result
  4362. */
  4363. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4364. disk->disk_name);
  4365. error = 0;
  4366. }
  4367. if (mddev->kobj.sd &&
  4368. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4369. printk(KERN_DEBUG "pointless warning\n");
  4370. mutex_unlock(&mddev->open_mutex);
  4371. abort:
  4372. mutex_unlock(&disks_mutex);
  4373. if (!error && mddev->kobj.sd) {
  4374. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4375. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4376. }
  4377. mddev_put(mddev);
  4378. return error;
  4379. }
  4380. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4381. {
  4382. md_alloc(dev, NULL);
  4383. return NULL;
  4384. }
  4385. static int add_named_array(const char *val, struct kernel_param *kp)
  4386. {
  4387. /* val must be "md_*" where * is not all digits.
  4388. * We allocate an array with a large free minor number, and
  4389. * set the name to val. val must not already be an active name.
  4390. */
  4391. int len = strlen(val);
  4392. char buf[DISK_NAME_LEN];
  4393. while (len && val[len-1] == '\n')
  4394. len--;
  4395. if (len >= DISK_NAME_LEN)
  4396. return -E2BIG;
  4397. strlcpy(buf, val, len+1);
  4398. if (strncmp(buf, "md_", 3) != 0)
  4399. return -EINVAL;
  4400. return md_alloc(0, buf);
  4401. }
  4402. static void md_safemode_timeout(unsigned long data)
  4403. {
  4404. struct mddev *mddev = (struct mddev *) data;
  4405. if (!atomic_read(&mddev->writes_pending)) {
  4406. mddev->safemode = 1;
  4407. if (mddev->external)
  4408. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4409. }
  4410. md_wakeup_thread(mddev->thread);
  4411. }
  4412. static int start_dirty_degraded;
  4413. int md_run(struct mddev *mddev)
  4414. {
  4415. int err;
  4416. struct md_rdev *rdev;
  4417. struct md_personality *pers;
  4418. if (list_empty(&mddev->disks))
  4419. /* cannot run an array with no devices.. */
  4420. return -EINVAL;
  4421. if (mddev->pers)
  4422. return -EBUSY;
  4423. /* Cannot run until previous stop completes properly */
  4424. if (mddev->sysfs_active)
  4425. return -EBUSY;
  4426. /*
  4427. * Analyze all RAID superblock(s)
  4428. */
  4429. if (!mddev->raid_disks) {
  4430. if (!mddev->persistent)
  4431. return -EINVAL;
  4432. analyze_sbs(mddev);
  4433. }
  4434. if (mddev->level != LEVEL_NONE)
  4435. request_module("md-level-%d", mddev->level);
  4436. else if (mddev->clevel[0])
  4437. request_module("md-%s", mddev->clevel);
  4438. /*
  4439. * Drop all container device buffers, from now on
  4440. * the only valid external interface is through the md
  4441. * device.
  4442. */
  4443. rdev_for_each(rdev, mddev) {
  4444. if (test_bit(Faulty, &rdev->flags))
  4445. continue;
  4446. sync_blockdev(rdev->bdev);
  4447. invalidate_bdev(rdev->bdev);
  4448. /* perform some consistency tests on the device.
  4449. * We don't want the data to overlap the metadata,
  4450. * Internal Bitmap issues have been handled elsewhere.
  4451. */
  4452. if (rdev->meta_bdev) {
  4453. /* Nothing to check */;
  4454. } else if (rdev->data_offset < rdev->sb_start) {
  4455. if (mddev->dev_sectors &&
  4456. rdev->data_offset + mddev->dev_sectors
  4457. > rdev->sb_start) {
  4458. printk("md: %s: data overlaps metadata\n",
  4459. mdname(mddev));
  4460. return -EINVAL;
  4461. }
  4462. } else {
  4463. if (rdev->sb_start + rdev->sb_size/512
  4464. > rdev->data_offset) {
  4465. printk("md: %s: metadata overlaps data\n",
  4466. mdname(mddev));
  4467. return -EINVAL;
  4468. }
  4469. }
  4470. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4471. }
  4472. if (mddev->bio_set == NULL)
  4473. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4474. sizeof(struct mddev *));
  4475. spin_lock(&pers_lock);
  4476. pers = find_pers(mddev->level, mddev->clevel);
  4477. if (!pers || !try_module_get(pers->owner)) {
  4478. spin_unlock(&pers_lock);
  4479. if (mddev->level != LEVEL_NONE)
  4480. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4481. mddev->level);
  4482. else
  4483. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4484. mddev->clevel);
  4485. return -EINVAL;
  4486. }
  4487. mddev->pers = pers;
  4488. spin_unlock(&pers_lock);
  4489. if (mddev->level != pers->level) {
  4490. mddev->level = pers->level;
  4491. mddev->new_level = pers->level;
  4492. }
  4493. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4494. if (mddev->reshape_position != MaxSector &&
  4495. pers->start_reshape == NULL) {
  4496. /* This personality cannot handle reshaping... */
  4497. mddev->pers = NULL;
  4498. module_put(pers->owner);
  4499. return -EINVAL;
  4500. }
  4501. if (pers->sync_request) {
  4502. /* Warn if this is a potentially silly
  4503. * configuration.
  4504. */
  4505. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4506. struct md_rdev *rdev2;
  4507. int warned = 0;
  4508. rdev_for_each(rdev, mddev)
  4509. rdev_for_each(rdev2, mddev) {
  4510. if (rdev < rdev2 &&
  4511. rdev->bdev->bd_contains ==
  4512. rdev2->bdev->bd_contains) {
  4513. printk(KERN_WARNING
  4514. "%s: WARNING: %s appears to be"
  4515. " on the same physical disk as"
  4516. " %s.\n",
  4517. mdname(mddev),
  4518. bdevname(rdev->bdev,b),
  4519. bdevname(rdev2->bdev,b2));
  4520. warned = 1;
  4521. }
  4522. }
  4523. if (warned)
  4524. printk(KERN_WARNING
  4525. "True protection against single-disk"
  4526. " failure might be compromised.\n");
  4527. }
  4528. mddev->recovery = 0;
  4529. /* may be over-ridden by personality */
  4530. mddev->resync_max_sectors = mddev->dev_sectors;
  4531. mddev->ok_start_degraded = start_dirty_degraded;
  4532. if (start_readonly && mddev->ro == 0)
  4533. mddev->ro = 2; /* read-only, but switch on first write */
  4534. err = mddev->pers->run(mddev);
  4535. if (err)
  4536. printk(KERN_ERR "md: pers->run() failed ...\n");
  4537. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4538. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4539. " but 'external_size' not in effect?\n", __func__);
  4540. printk(KERN_ERR
  4541. "md: invalid array_size %llu > default size %llu\n",
  4542. (unsigned long long)mddev->array_sectors / 2,
  4543. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4544. err = -EINVAL;
  4545. mddev->pers->stop(mddev);
  4546. }
  4547. if (err == 0 && mddev->pers->sync_request) {
  4548. err = bitmap_create(mddev);
  4549. if (err) {
  4550. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4551. mdname(mddev), err);
  4552. mddev->pers->stop(mddev);
  4553. }
  4554. }
  4555. if (err) {
  4556. module_put(mddev->pers->owner);
  4557. mddev->pers = NULL;
  4558. bitmap_destroy(mddev);
  4559. return err;
  4560. }
  4561. if (mddev->pers->sync_request) {
  4562. if (mddev->kobj.sd &&
  4563. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4564. printk(KERN_WARNING
  4565. "md: cannot register extra attributes for %s\n",
  4566. mdname(mddev));
  4567. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4568. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4569. mddev->ro = 0;
  4570. atomic_set(&mddev->writes_pending,0);
  4571. atomic_set(&mddev->max_corr_read_errors,
  4572. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4573. mddev->safemode = 0;
  4574. mddev->safemode_timer.function = md_safemode_timeout;
  4575. mddev->safemode_timer.data = (unsigned long) mddev;
  4576. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4577. mddev->in_sync = 1;
  4578. smp_wmb();
  4579. mddev->ready = 1;
  4580. rdev_for_each(rdev, mddev)
  4581. if (rdev->raid_disk >= 0)
  4582. if (sysfs_link_rdev(mddev, rdev))
  4583. /* failure here is OK */;
  4584. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4585. if (mddev->flags)
  4586. md_update_sb(mddev, 0);
  4587. md_new_event(mddev);
  4588. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4589. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4590. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4591. return 0;
  4592. }
  4593. EXPORT_SYMBOL_GPL(md_run);
  4594. static int do_md_run(struct mddev *mddev)
  4595. {
  4596. int err;
  4597. err = md_run(mddev);
  4598. if (err)
  4599. goto out;
  4600. err = bitmap_load(mddev);
  4601. if (err) {
  4602. bitmap_destroy(mddev);
  4603. goto out;
  4604. }
  4605. md_wakeup_thread(mddev->thread);
  4606. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4607. set_capacity(mddev->gendisk, mddev->array_sectors);
  4608. revalidate_disk(mddev->gendisk);
  4609. mddev->changed = 1;
  4610. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4611. out:
  4612. return err;
  4613. }
  4614. static int restart_array(struct mddev *mddev)
  4615. {
  4616. struct gendisk *disk = mddev->gendisk;
  4617. /* Complain if it has no devices */
  4618. if (list_empty(&mddev->disks))
  4619. return -ENXIO;
  4620. if (!mddev->pers)
  4621. return -EINVAL;
  4622. if (!mddev->ro)
  4623. return -EBUSY;
  4624. mddev->safemode = 0;
  4625. mddev->ro = 0;
  4626. set_disk_ro(disk, 0);
  4627. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4628. mdname(mddev));
  4629. /* Kick recovery or resync if necessary */
  4630. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4631. md_wakeup_thread(mddev->thread);
  4632. md_wakeup_thread(mddev->sync_thread);
  4633. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4634. return 0;
  4635. }
  4636. /* similar to deny_write_access, but accounts for our holding a reference
  4637. * to the file ourselves */
  4638. static int deny_bitmap_write_access(struct file * file)
  4639. {
  4640. struct inode *inode = file->f_mapping->host;
  4641. spin_lock(&inode->i_lock);
  4642. if (atomic_read(&inode->i_writecount) > 1) {
  4643. spin_unlock(&inode->i_lock);
  4644. return -ETXTBSY;
  4645. }
  4646. atomic_set(&inode->i_writecount, -1);
  4647. spin_unlock(&inode->i_lock);
  4648. return 0;
  4649. }
  4650. void restore_bitmap_write_access(struct file *file)
  4651. {
  4652. struct inode *inode = file->f_mapping->host;
  4653. spin_lock(&inode->i_lock);
  4654. atomic_set(&inode->i_writecount, 1);
  4655. spin_unlock(&inode->i_lock);
  4656. }
  4657. static void md_clean(struct mddev *mddev)
  4658. {
  4659. mddev->array_sectors = 0;
  4660. mddev->external_size = 0;
  4661. mddev->dev_sectors = 0;
  4662. mddev->raid_disks = 0;
  4663. mddev->recovery_cp = 0;
  4664. mddev->resync_min = 0;
  4665. mddev->resync_max = MaxSector;
  4666. mddev->reshape_position = MaxSector;
  4667. mddev->external = 0;
  4668. mddev->persistent = 0;
  4669. mddev->level = LEVEL_NONE;
  4670. mddev->clevel[0] = 0;
  4671. mddev->flags = 0;
  4672. mddev->ro = 0;
  4673. mddev->metadata_type[0] = 0;
  4674. mddev->chunk_sectors = 0;
  4675. mddev->ctime = mddev->utime = 0;
  4676. mddev->layout = 0;
  4677. mddev->max_disks = 0;
  4678. mddev->events = 0;
  4679. mddev->can_decrease_events = 0;
  4680. mddev->delta_disks = 0;
  4681. mddev->reshape_backwards = 0;
  4682. mddev->new_level = LEVEL_NONE;
  4683. mddev->new_layout = 0;
  4684. mddev->new_chunk_sectors = 0;
  4685. mddev->curr_resync = 0;
  4686. mddev->resync_mismatches = 0;
  4687. mddev->suspend_lo = mddev->suspend_hi = 0;
  4688. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4689. mddev->recovery = 0;
  4690. mddev->in_sync = 0;
  4691. mddev->changed = 0;
  4692. mddev->degraded = 0;
  4693. mddev->safemode = 0;
  4694. mddev->merge_check_needed = 0;
  4695. mddev->bitmap_info.offset = 0;
  4696. mddev->bitmap_info.default_offset = 0;
  4697. mddev->bitmap_info.chunksize = 0;
  4698. mddev->bitmap_info.daemon_sleep = 0;
  4699. mddev->bitmap_info.max_write_behind = 0;
  4700. }
  4701. static void __md_stop_writes(struct mddev *mddev)
  4702. {
  4703. if (mddev->sync_thread) {
  4704. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4705. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4706. reap_sync_thread(mddev);
  4707. }
  4708. del_timer_sync(&mddev->safemode_timer);
  4709. bitmap_flush(mddev);
  4710. md_super_wait(mddev);
  4711. if (!mddev->in_sync || mddev->flags) {
  4712. /* mark array as shutdown cleanly */
  4713. mddev->in_sync = 1;
  4714. md_update_sb(mddev, 1);
  4715. }
  4716. }
  4717. void md_stop_writes(struct mddev *mddev)
  4718. {
  4719. mddev_lock(mddev);
  4720. __md_stop_writes(mddev);
  4721. mddev_unlock(mddev);
  4722. }
  4723. EXPORT_SYMBOL_GPL(md_stop_writes);
  4724. void md_stop(struct mddev *mddev)
  4725. {
  4726. mddev->ready = 0;
  4727. mddev->pers->stop(mddev);
  4728. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4729. mddev->to_remove = &md_redundancy_group;
  4730. module_put(mddev->pers->owner);
  4731. mddev->pers = NULL;
  4732. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4733. }
  4734. EXPORT_SYMBOL_GPL(md_stop);
  4735. static int md_set_readonly(struct mddev *mddev, int is_open)
  4736. {
  4737. int err = 0;
  4738. mutex_lock(&mddev->open_mutex);
  4739. if (atomic_read(&mddev->openers) > is_open) {
  4740. printk("md: %s still in use.\n",mdname(mddev));
  4741. err = -EBUSY;
  4742. goto out;
  4743. }
  4744. if (mddev->pers) {
  4745. __md_stop_writes(mddev);
  4746. err = -ENXIO;
  4747. if (mddev->ro==1)
  4748. goto out;
  4749. mddev->ro = 1;
  4750. set_disk_ro(mddev->gendisk, 1);
  4751. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4752. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4753. err = 0;
  4754. }
  4755. out:
  4756. mutex_unlock(&mddev->open_mutex);
  4757. return err;
  4758. }
  4759. /* mode:
  4760. * 0 - completely stop and dis-assemble array
  4761. * 2 - stop but do not disassemble array
  4762. */
  4763. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4764. {
  4765. struct gendisk *disk = mddev->gendisk;
  4766. struct md_rdev *rdev;
  4767. mutex_lock(&mddev->open_mutex);
  4768. if (atomic_read(&mddev->openers) > is_open ||
  4769. mddev->sysfs_active) {
  4770. printk("md: %s still in use.\n",mdname(mddev));
  4771. mutex_unlock(&mddev->open_mutex);
  4772. return -EBUSY;
  4773. }
  4774. if (mddev->pers) {
  4775. if (mddev->ro)
  4776. set_disk_ro(disk, 0);
  4777. __md_stop_writes(mddev);
  4778. md_stop(mddev);
  4779. mddev->queue->merge_bvec_fn = NULL;
  4780. mddev->queue->backing_dev_info.congested_fn = NULL;
  4781. /* tell userspace to handle 'inactive' */
  4782. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4783. rdev_for_each(rdev, mddev)
  4784. if (rdev->raid_disk >= 0)
  4785. sysfs_unlink_rdev(mddev, rdev);
  4786. set_capacity(disk, 0);
  4787. mutex_unlock(&mddev->open_mutex);
  4788. mddev->changed = 1;
  4789. revalidate_disk(disk);
  4790. if (mddev->ro)
  4791. mddev->ro = 0;
  4792. } else
  4793. mutex_unlock(&mddev->open_mutex);
  4794. /*
  4795. * Free resources if final stop
  4796. */
  4797. if (mode == 0) {
  4798. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4799. bitmap_destroy(mddev);
  4800. if (mddev->bitmap_info.file) {
  4801. restore_bitmap_write_access(mddev->bitmap_info.file);
  4802. fput(mddev->bitmap_info.file);
  4803. mddev->bitmap_info.file = NULL;
  4804. }
  4805. mddev->bitmap_info.offset = 0;
  4806. export_array(mddev);
  4807. md_clean(mddev);
  4808. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4809. if (mddev->hold_active == UNTIL_STOP)
  4810. mddev->hold_active = 0;
  4811. }
  4812. blk_integrity_unregister(disk);
  4813. md_new_event(mddev);
  4814. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4815. return 0;
  4816. }
  4817. #ifndef MODULE
  4818. static void autorun_array(struct mddev *mddev)
  4819. {
  4820. struct md_rdev *rdev;
  4821. int err;
  4822. if (list_empty(&mddev->disks))
  4823. return;
  4824. printk(KERN_INFO "md: running: ");
  4825. rdev_for_each(rdev, mddev) {
  4826. char b[BDEVNAME_SIZE];
  4827. printk("<%s>", bdevname(rdev->bdev,b));
  4828. }
  4829. printk("\n");
  4830. err = do_md_run(mddev);
  4831. if (err) {
  4832. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4833. do_md_stop(mddev, 0, 0);
  4834. }
  4835. }
  4836. /*
  4837. * lets try to run arrays based on all disks that have arrived
  4838. * until now. (those are in pending_raid_disks)
  4839. *
  4840. * the method: pick the first pending disk, collect all disks with
  4841. * the same UUID, remove all from the pending list and put them into
  4842. * the 'same_array' list. Then order this list based on superblock
  4843. * update time (freshest comes first), kick out 'old' disks and
  4844. * compare superblocks. If everything's fine then run it.
  4845. *
  4846. * If "unit" is allocated, then bump its reference count
  4847. */
  4848. static void autorun_devices(int part)
  4849. {
  4850. struct md_rdev *rdev0, *rdev, *tmp;
  4851. struct mddev *mddev;
  4852. char b[BDEVNAME_SIZE];
  4853. printk(KERN_INFO "md: autorun ...\n");
  4854. while (!list_empty(&pending_raid_disks)) {
  4855. int unit;
  4856. dev_t dev;
  4857. LIST_HEAD(candidates);
  4858. rdev0 = list_entry(pending_raid_disks.next,
  4859. struct md_rdev, same_set);
  4860. printk(KERN_INFO "md: considering %s ...\n",
  4861. bdevname(rdev0->bdev,b));
  4862. INIT_LIST_HEAD(&candidates);
  4863. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4864. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4865. printk(KERN_INFO "md: adding %s ...\n",
  4866. bdevname(rdev->bdev,b));
  4867. list_move(&rdev->same_set, &candidates);
  4868. }
  4869. /*
  4870. * now we have a set of devices, with all of them having
  4871. * mostly sane superblocks. It's time to allocate the
  4872. * mddev.
  4873. */
  4874. if (part) {
  4875. dev = MKDEV(mdp_major,
  4876. rdev0->preferred_minor << MdpMinorShift);
  4877. unit = MINOR(dev) >> MdpMinorShift;
  4878. } else {
  4879. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4880. unit = MINOR(dev);
  4881. }
  4882. if (rdev0->preferred_minor != unit) {
  4883. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4884. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4885. break;
  4886. }
  4887. md_probe(dev, NULL, NULL);
  4888. mddev = mddev_find(dev);
  4889. if (!mddev || !mddev->gendisk) {
  4890. if (mddev)
  4891. mddev_put(mddev);
  4892. printk(KERN_ERR
  4893. "md: cannot allocate memory for md drive.\n");
  4894. break;
  4895. }
  4896. if (mddev_lock(mddev))
  4897. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4898. mdname(mddev));
  4899. else if (mddev->raid_disks || mddev->major_version
  4900. || !list_empty(&mddev->disks)) {
  4901. printk(KERN_WARNING
  4902. "md: %s already running, cannot run %s\n",
  4903. mdname(mddev), bdevname(rdev0->bdev,b));
  4904. mddev_unlock(mddev);
  4905. } else {
  4906. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4907. mddev->persistent = 1;
  4908. rdev_for_each_list(rdev, tmp, &candidates) {
  4909. list_del_init(&rdev->same_set);
  4910. if (bind_rdev_to_array(rdev, mddev))
  4911. export_rdev(rdev);
  4912. }
  4913. autorun_array(mddev);
  4914. mddev_unlock(mddev);
  4915. }
  4916. /* on success, candidates will be empty, on error
  4917. * it won't...
  4918. */
  4919. rdev_for_each_list(rdev, tmp, &candidates) {
  4920. list_del_init(&rdev->same_set);
  4921. export_rdev(rdev);
  4922. }
  4923. mddev_put(mddev);
  4924. }
  4925. printk(KERN_INFO "md: ... autorun DONE.\n");
  4926. }
  4927. #endif /* !MODULE */
  4928. static int get_version(void __user * arg)
  4929. {
  4930. mdu_version_t ver;
  4931. ver.major = MD_MAJOR_VERSION;
  4932. ver.minor = MD_MINOR_VERSION;
  4933. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4934. if (copy_to_user(arg, &ver, sizeof(ver)))
  4935. return -EFAULT;
  4936. return 0;
  4937. }
  4938. static int get_array_info(struct mddev * mddev, void __user * arg)
  4939. {
  4940. mdu_array_info_t info;
  4941. int nr,working,insync,failed,spare;
  4942. struct md_rdev *rdev;
  4943. nr=working=insync=failed=spare=0;
  4944. rdev_for_each(rdev, mddev) {
  4945. nr++;
  4946. if (test_bit(Faulty, &rdev->flags))
  4947. failed++;
  4948. else {
  4949. working++;
  4950. if (test_bit(In_sync, &rdev->flags))
  4951. insync++;
  4952. else
  4953. spare++;
  4954. }
  4955. }
  4956. info.major_version = mddev->major_version;
  4957. info.minor_version = mddev->minor_version;
  4958. info.patch_version = MD_PATCHLEVEL_VERSION;
  4959. info.ctime = mddev->ctime;
  4960. info.level = mddev->level;
  4961. info.size = mddev->dev_sectors / 2;
  4962. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4963. info.size = -1;
  4964. info.nr_disks = nr;
  4965. info.raid_disks = mddev->raid_disks;
  4966. info.md_minor = mddev->md_minor;
  4967. info.not_persistent= !mddev->persistent;
  4968. info.utime = mddev->utime;
  4969. info.state = 0;
  4970. if (mddev->in_sync)
  4971. info.state = (1<<MD_SB_CLEAN);
  4972. if (mddev->bitmap && mddev->bitmap_info.offset)
  4973. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4974. info.active_disks = insync;
  4975. info.working_disks = working;
  4976. info.failed_disks = failed;
  4977. info.spare_disks = spare;
  4978. info.layout = mddev->layout;
  4979. info.chunk_size = mddev->chunk_sectors << 9;
  4980. if (copy_to_user(arg, &info, sizeof(info)))
  4981. return -EFAULT;
  4982. return 0;
  4983. }
  4984. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4985. {
  4986. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4987. char *ptr, *buf = NULL;
  4988. int err = -ENOMEM;
  4989. if (md_allow_write(mddev))
  4990. file = kmalloc(sizeof(*file), GFP_NOIO);
  4991. else
  4992. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4993. if (!file)
  4994. goto out;
  4995. /* bitmap disabled, zero the first byte and copy out */
  4996. if (!mddev->bitmap || !mddev->bitmap->file) {
  4997. file->pathname[0] = '\0';
  4998. goto copy_out;
  4999. }
  5000. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5001. if (!buf)
  5002. goto out;
  5003. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  5004. if (IS_ERR(ptr))
  5005. goto out;
  5006. strcpy(file->pathname, ptr);
  5007. copy_out:
  5008. err = 0;
  5009. if (copy_to_user(arg, file, sizeof(*file)))
  5010. err = -EFAULT;
  5011. out:
  5012. kfree(buf);
  5013. kfree(file);
  5014. return err;
  5015. }
  5016. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5017. {
  5018. mdu_disk_info_t info;
  5019. struct md_rdev *rdev;
  5020. if (copy_from_user(&info, arg, sizeof(info)))
  5021. return -EFAULT;
  5022. rdev = find_rdev_nr(mddev, info.number);
  5023. if (rdev) {
  5024. info.major = MAJOR(rdev->bdev->bd_dev);
  5025. info.minor = MINOR(rdev->bdev->bd_dev);
  5026. info.raid_disk = rdev->raid_disk;
  5027. info.state = 0;
  5028. if (test_bit(Faulty, &rdev->flags))
  5029. info.state |= (1<<MD_DISK_FAULTY);
  5030. else if (test_bit(In_sync, &rdev->flags)) {
  5031. info.state |= (1<<MD_DISK_ACTIVE);
  5032. info.state |= (1<<MD_DISK_SYNC);
  5033. }
  5034. if (test_bit(WriteMostly, &rdev->flags))
  5035. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5036. } else {
  5037. info.major = info.minor = 0;
  5038. info.raid_disk = -1;
  5039. info.state = (1<<MD_DISK_REMOVED);
  5040. }
  5041. if (copy_to_user(arg, &info, sizeof(info)))
  5042. return -EFAULT;
  5043. return 0;
  5044. }
  5045. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5046. {
  5047. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5048. struct md_rdev *rdev;
  5049. dev_t dev = MKDEV(info->major,info->minor);
  5050. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5051. return -EOVERFLOW;
  5052. if (!mddev->raid_disks) {
  5053. int err;
  5054. /* expecting a device which has a superblock */
  5055. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5056. if (IS_ERR(rdev)) {
  5057. printk(KERN_WARNING
  5058. "md: md_import_device returned %ld\n",
  5059. PTR_ERR(rdev));
  5060. return PTR_ERR(rdev);
  5061. }
  5062. if (!list_empty(&mddev->disks)) {
  5063. struct md_rdev *rdev0
  5064. = list_entry(mddev->disks.next,
  5065. struct md_rdev, same_set);
  5066. err = super_types[mddev->major_version]
  5067. .load_super(rdev, rdev0, mddev->minor_version);
  5068. if (err < 0) {
  5069. printk(KERN_WARNING
  5070. "md: %s has different UUID to %s\n",
  5071. bdevname(rdev->bdev,b),
  5072. bdevname(rdev0->bdev,b2));
  5073. export_rdev(rdev);
  5074. return -EINVAL;
  5075. }
  5076. }
  5077. err = bind_rdev_to_array(rdev, mddev);
  5078. if (err)
  5079. export_rdev(rdev);
  5080. return err;
  5081. }
  5082. /*
  5083. * add_new_disk can be used once the array is assembled
  5084. * to add "hot spares". They must already have a superblock
  5085. * written
  5086. */
  5087. if (mddev->pers) {
  5088. int err;
  5089. if (!mddev->pers->hot_add_disk) {
  5090. printk(KERN_WARNING
  5091. "%s: personality does not support diskops!\n",
  5092. mdname(mddev));
  5093. return -EINVAL;
  5094. }
  5095. if (mddev->persistent)
  5096. rdev = md_import_device(dev, mddev->major_version,
  5097. mddev->minor_version);
  5098. else
  5099. rdev = md_import_device(dev, -1, -1);
  5100. if (IS_ERR(rdev)) {
  5101. printk(KERN_WARNING
  5102. "md: md_import_device returned %ld\n",
  5103. PTR_ERR(rdev));
  5104. return PTR_ERR(rdev);
  5105. }
  5106. /* set saved_raid_disk if appropriate */
  5107. if (!mddev->persistent) {
  5108. if (info->state & (1<<MD_DISK_SYNC) &&
  5109. info->raid_disk < mddev->raid_disks) {
  5110. rdev->raid_disk = info->raid_disk;
  5111. set_bit(In_sync, &rdev->flags);
  5112. } else
  5113. rdev->raid_disk = -1;
  5114. } else
  5115. super_types[mddev->major_version].
  5116. validate_super(mddev, rdev);
  5117. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5118. (!test_bit(In_sync, &rdev->flags) ||
  5119. rdev->raid_disk != info->raid_disk)) {
  5120. /* This was a hot-add request, but events doesn't
  5121. * match, so reject it.
  5122. */
  5123. export_rdev(rdev);
  5124. return -EINVAL;
  5125. }
  5126. if (test_bit(In_sync, &rdev->flags))
  5127. rdev->saved_raid_disk = rdev->raid_disk;
  5128. else
  5129. rdev->saved_raid_disk = -1;
  5130. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5131. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5132. set_bit(WriteMostly, &rdev->flags);
  5133. else
  5134. clear_bit(WriteMostly, &rdev->flags);
  5135. rdev->raid_disk = -1;
  5136. err = bind_rdev_to_array(rdev, mddev);
  5137. if (!err && !mddev->pers->hot_remove_disk) {
  5138. /* If there is hot_add_disk but no hot_remove_disk
  5139. * then added disks for geometry changes,
  5140. * and should be added immediately.
  5141. */
  5142. super_types[mddev->major_version].
  5143. validate_super(mddev, rdev);
  5144. err = mddev->pers->hot_add_disk(mddev, rdev);
  5145. if (err)
  5146. unbind_rdev_from_array(rdev);
  5147. }
  5148. if (err)
  5149. export_rdev(rdev);
  5150. else
  5151. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5152. md_update_sb(mddev, 1);
  5153. if (mddev->degraded)
  5154. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5155. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5156. if (!err)
  5157. md_new_event(mddev);
  5158. md_wakeup_thread(mddev->thread);
  5159. return err;
  5160. }
  5161. /* otherwise, add_new_disk is only allowed
  5162. * for major_version==0 superblocks
  5163. */
  5164. if (mddev->major_version != 0) {
  5165. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5166. mdname(mddev));
  5167. return -EINVAL;
  5168. }
  5169. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5170. int err;
  5171. rdev = md_import_device(dev, -1, 0);
  5172. if (IS_ERR(rdev)) {
  5173. printk(KERN_WARNING
  5174. "md: error, md_import_device() returned %ld\n",
  5175. PTR_ERR(rdev));
  5176. return PTR_ERR(rdev);
  5177. }
  5178. rdev->desc_nr = info->number;
  5179. if (info->raid_disk < mddev->raid_disks)
  5180. rdev->raid_disk = info->raid_disk;
  5181. else
  5182. rdev->raid_disk = -1;
  5183. if (rdev->raid_disk < mddev->raid_disks)
  5184. if (info->state & (1<<MD_DISK_SYNC))
  5185. set_bit(In_sync, &rdev->flags);
  5186. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5187. set_bit(WriteMostly, &rdev->flags);
  5188. if (!mddev->persistent) {
  5189. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5190. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5191. } else
  5192. rdev->sb_start = calc_dev_sboffset(rdev);
  5193. rdev->sectors = rdev->sb_start;
  5194. err = bind_rdev_to_array(rdev, mddev);
  5195. if (err) {
  5196. export_rdev(rdev);
  5197. return err;
  5198. }
  5199. }
  5200. return 0;
  5201. }
  5202. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5203. {
  5204. char b[BDEVNAME_SIZE];
  5205. struct md_rdev *rdev;
  5206. rdev = find_rdev(mddev, dev);
  5207. if (!rdev)
  5208. return -ENXIO;
  5209. if (rdev->raid_disk >= 0)
  5210. goto busy;
  5211. kick_rdev_from_array(rdev);
  5212. md_update_sb(mddev, 1);
  5213. md_new_event(mddev);
  5214. return 0;
  5215. busy:
  5216. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5217. bdevname(rdev->bdev,b), mdname(mddev));
  5218. return -EBUSY;
  5219. }
  5220. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5221. {
  5222. char b[BDEVNAME_SIZE];
  5223. int err;
  5224. struct md_rdev *rdev;
  5225. if (!mddev->pers)
  5226. return -ENODEV;
  5227. if (mddev->major_version != 0) {
  5228. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5229. " version-0 superblocks.\n",
  5230. mdname(mddev));
  5231. return -EINVAL;
  5232. }
  5233. if (!mddev->pers->hot_add_disk) {
  5234. printk(KERN_WARNING
  5235. "%s: personality does not support diskops!\n",
  5236. mdname(mddev));
  5237. return -EINVAL;
  5238. }
  5239. rdev = md_import_device(dev, -1, 0);
  5240. if (IS_ERR(rdev)) {
  5241. printk(KERN_WARNING
  5242. "md: error, md_import_device() returned %ld\n",
  5243. PTR_ERR(rdev));
  5244. return -EINVAL;
  5245. }
  5246. if (mddev->persistent)
  5247. rdev->sb_start = calc_dev_sboffset(rdev);
  5248. else
  5249. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5250. rdev->sectors = rdev->sb_start;
  5251. if (test_bit(Faulty, &rdev->flags)) {
  5252. printk(KERN_WARNING
  5253. "md: can not hot-add faulty %s disk to %s!\n",
  5254. bdevname(rdev->bdev,b), mdname(mddev));
  5255. err = -EINVAL;
  5256. goto abort_export;
  5257. }
  5258. clear_bit(In_sync, &rdev->flags);
  5259. rdev->desc_nr = -1;
  5260. rdev->saved_raid_disk = -1;
  5261. err = bind_rdev_to_array(rdev, mddev);
  5262. if (err)
  5263. goto abort_export;
  5264. /*
  5265. * The rest should better be atomic, we can have disk failures
  5266. * noticed in interrupt contexts ...
  5267. */
  5268. rdev->raid_disk = -1;
  5269. md_update_sb(mddev, 1);
  5270. /*
  5271. * Kick recovery, maybe this spare has to be added to the
  5272. * array immediately.
  5273. */
  5274. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5275. md_wakeup_thread(mddev->thread);
  5276. md_new_event(mddev);
  5277. return 0;
  5278. abort_export:
  5279. export_rdev(rdev);
  5280. return err;
  5281. }
  5282. static int set_bitmap_file(struct mddev *mddev, int fd)
  5283. {
  5284. int err;
  5285. if (mddev->pers) {
  5286. if (!mddev->pers->quiesce)
  5287. return -EBUSY;
  5288. if (mddev->recovery || mddev->sync_thread)
  5289. return -EBUSY;
  5290. /* we should be able to change the bitmap.. */
  5291. }
  5292. if (fd >= 0) {
  5293. if (mddev->bitmap)
  5294. return -EEXIST; /* cannot add when bitmap is present */
  5295. mddev->bitmap_info.file = fget(fd);
  5296. if (mddev->bitmap_info.file == NULL) {
  5297. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5298. mdname(mddev));
  5299. return -EBADF;
  5300. }
  5301. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5302. if (err) {
  5303. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5304. mdname(mddev));
  5305. fput(mddev->bitmap_info.file);
  5306. mddev->bitmap_info.file = NULL;
  5307. return err;
  5308. }
  5309. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5310. } else if (mddev->bitmap == NULL)
  5311. return -ENOENT; /* cannot remove what isn't there */
  5312. err = 0;
  5313. if (mddev->pers) {
  5314. mddev->pers->quiesce(mddev, 1);
  5315. if (fd >= 0) {
  5316. err = bitmap_create(mddev);
  5317. if (!err)
  5318. err = bitmap_load(mddev);
  5319. }
  5320. if (fd < 0 || err) {
  5321. bitmap_destroy(mddev);
  5322. fd = -1; /* make sure to put the file */
  5323. }
  5324. mddev->pers->quiesce(mddev, 0);
  5325. }
  5326. if (fd < 0) {
  5327. if (mddev->bitmap_info.file) {
  5328. restore_bitmap_write_access(mddev->bitmap_info.file);
  5329. fput(mddev->bitmap_info.file);
  5330. }
  5331. mddev->bitmap_info.file = NULL;
  5332. }
  5333. return err;
  5334. }
  5335. /*
  5336. * set_array_info is used two different ways
  5337. * The original usage is when creating a new array.
  5338. * In this usage, raid_disks is > 0 and it together with
  5339. * level, size, not_persistent,layout,chunksize determine the
  5340. * shape of the array.
  5341. * This will always create an array with a type-0.90.0 superblock.
  5342. * The newer usage is when assembling an array.
  5343. * In this case raid_disks will be 0, and the major_version field is
  5344. * use to determine which style super-blocks are to be found on the devices.
  5345. * The minor and patch _version numbers are also kept incase the
  5346. * super_block handler wishes to interpret them.
  5347. */
  5348. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5349. {
  5350. if (info->raid_disks == 0) {
  5351. /* just setting version number for superblock loading */
  5352. if (info->major_version < 0 ||
  5353. info->major_version >= ARRAY_SIZE(super_types) ||
  5354. super_types[info->major_version].name == NULL) {
  5355. /* maybe try to auto-load a module? */
  5356. printk(KERN_INFO
  5357. "md: superblock version %d not known\n",
  5358. info->major_version);
  5359. return -EINVAL;
  5360. }
  5361. mddev->major_version = info->major_version;
  5362. mddev->minor_version = info->minor_version;
  5363. mddev->patch_version = info->patch_version;
  5364. mddev->persistent = !info->not_persistent;
  5365. /* ensure mddev_put doesn't delete this now that there
  5366. * is some minimal configuration.
  5367. */
  5368. mddev->ctime = get_seconds();
  5369. return 0;
  5370. }
  5371. mddev->major_version = MD_MAJOR_VERSION;
  5372. mddev->minor_version = MD_MINOR_VERSION;
  5373. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5374. mddev->ctime = get_seconds();
  5375. mddev->level = info->level;
  5376. mddev->clevel[0] = 0;
  5377. mddev->dev_sectors = 2 * (sector_t)info->size;
  5378. mddev->raid_disks = info->raid_disks;
  5379. /* don't set md_minor, it is determined by which /dev/md* was
  5380. * openned
  5381. */
  5382. if (info->state & (1<<MD_SB_CLEAN))
  5383. mddev->recovery_cp = MaxSector;
  5384. else
  5385. mddev->recovery_cp = 0;
  5386. mddev->persistent = ! info->not_persistent;
  5387. mddev->external = 0;
  5388. mddev->layout = info->layout;
  5389. mddev->chunk_sectors = info->chunk_size >> 9;
  5390. mddev->max_disks = MD_SB_DISKS;
  5391. if (mddev->persistent)
  5392. mddev->flags = 0;
  5393. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5394. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5395. mddev->bitmap_info.offset = 0;
  5396. mddev->reshape_position = MaxSector;
  5397. /*
  5398. * Generate a 128 bit UUID
  5399. */
  5400. get_random_bytes(mddev->uuid, 16);
  5401. mddev->new_level = mddev->level;
  5402. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5403. mddev->new_layout = mddev->layout;
  5404. mddev->delta_disks = 0;
  5405. mddev->reshape_backwards = 0;
  5406. return 0;
  5407. }
  5408. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5409. {
  5410. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5411. if (mddev->external_size)
  5412. return;
  5413. mddev->array_sectors = array_sectors;
  5414. }
  5415. EXPORT_SYMBOL(md_set_array_sectors);
  5416. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5417. {
  5418. struct md_rdev *rdev;
  5419. int rv;
  5420. int fit = (num_sectors == 0);
  5421. if (mddev->pers->resize == NULL)
  5422. return -EINVAL;
  5423. /* The "num_sectors" is the number of sectors of each device that
  5424. * is used. This can only make sense for arrays with redundancy.
  5425. * linear and raid0 always use whatever space is available. We can only
  5426. * consider changing this number if no resync or reconstruction is
  5427. * happening, and if the new size is acceptable. It must fit before the
  5428. * sb_start or, if that is <data_offset, it must fit before the size
  5429. * of each device. If num_sectors is zero, we find the largest size
  5430. * that fits.
  5431. */
  5432. if (mddev->sync_thread)
  5433. return -EBUSY;
  5434. if (mddev->bitmap)
  5435. /* Sorry, cannot grow a bitmap yet, just remove it,
  5436. * grow, and re-add.
  5437. */
  5438. return -EBUSY;
  5439. rdev_for_each(rdev, mddev) {
  5440. sector_t avail = rdev->sectors;
  5441. if (fit && (num_sectors == 0 || num_sectors > avail))
  5442. num_sectors = avail;
  5443. if (avail < num_sectors)
  5444. return -ENOSPC;
  5445. }
  5446. rv = mddev->pers->resize(mddev, num_sectors);
  5447. if (!rv)
  5448. revalidate_disk(mddev->gendisk);
  5449. return rv;
  5450. }
  5451. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5452. {
  5453. int rv;
  5454. struct md_rdev *rdev;
  5455. /* change the number of raid disks */
  5456. if (mddev->pers->check_reshape == NULL)
  5457. return -EINVAL;
  5458. if (raid_disks <= 0 ||
  5459. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5460. return -EINVAL;
  5461. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5462. return -EBUSY;
  5463. rdev_for_each(rdev, mddev) {
  5464. if (mddev->raid_disks < raid_disks &&
  5465. rdev->data_offset < rdev->new_data_offset)
  5466. return -EINVAL;
  5467. if (mddev->raid_disks > raid_disks &&
  5468. rdev->data_offset > rdev->new_data_offset)
  5469. return -EINVAL;
  5470. }
  5471. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5472. if (mddev->delta_disks < 0)
  5473. mddev->reshape_backwards = 1;
  5474. else if (mddev->delta_disks > 0)
  5475. mddev->reshape_backwards = 0;
  5476. rv = mddev->pers->check_reshape(mddev);
  5477. if (rv < 0) {
  5478. mddev->delta_disks = 0;
  5479. mddev->reshape_backwards = 0;
  5480. }
  5481. return rv;
  5482. }
  5483. /*
  5484. * update_array_info is used to change the configuration of an
  5485. * on-line array.
  5486. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5487. * fields in the info are checked against the array.
  5488. * Any differences that cannot be handled will cause an error.
  5489. * Normally, only one change can be managed at a time.
  5490. */
  5491. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5492. {
  5493. int rv = 0;
  5494. int cnt = 0;
  5495. int state = 0;
  5496. /* calculate expected state,ignoring low bits */
  5497. if (mddev->bitmap && mddev->bitmap_info.offset)
  5498. state |= (1 << MD_SB_BITMAP_PRESENT);
  5499. if (mddev->major_version != info->major_version ||
  5500. mddev->minor_version != info->minor_version ||
  5501. /* mddev->patch_version != info->patch_version || */
  5502. mddev->ctime != info->ctime ||
  5503. mddev->level != info->level ||
  5504. /* mddev->layout != info->layout || */
  5505. !mddev->persistent != info->not_persistent||
  5506. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5507. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5508. ((state^info->state) & 0xfffffe00)
  5509. )
  5510. return -EINVAL;
  5511. /* Check there is only one change */
  5512. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5513. cnt++;
  5514. if (mddev->raid_disks != info->raid_disks)
  5515. cnt++;
  5516. if (mddev->layout != info->layout)
  5517. cnt++;
  5518. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5519. cnt++;
  5520. if (cnt == 0)
  5521. return 0;
  5522. if (cnt > 1)
  5523. return -EINVAL;
  5524. if (mddev->layout != info->layout) {
  5525. /* Change layout
  5526. * we don't need to do anything at the md level, the
  5527. * personality will take care of it all.
  5528. */
  5529. if (mddev->pers->check_reshape == NULL)
  5530. return -EINVAL;
  5531. else {
  5532. mddev->new_layout = info->layout;
  5533. rv = mddev->pers->check_reshape(mddev);
  5534. if (rv)
  5535. mddev->new_layout = mddev->layout;
  5536. return rv;
  5537. }
  5538. }
  5539. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5540. rv = update_size(mddev, (sector_t)info->size * 2);
  5541. if (mddev->raid_disks != info->raid_disks)
  5542. rv = update_raid_disks(mddev, info->raid_disks);
  5543. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5544. if (mddev->pers->quiesce == NULL)
  5545. return -EINVAL;
  5546. if (mddev->recovery || mddev->sync_thread)
  5547. return -EBUSY;
  5548. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5549. /* add the bitmap */
  5550. if (mddev->bitmap)
  5551. return -EEXIST;
  5552. if (mddev->bitmap_info.default_offset == 0)
  5553. return -EINVAL;
  5554. mddev->bitmap_info.offset =
  5555. mddev->bitmap_info.default_offset;
  5556. mddev->pers->quiesce(mddev, 1);
  5557. rv = bitmap_create(mddev);
  5558. if (!rv)
  5559. rv = bitmap_load(mddev);
  5560. if (rv)
  5561. bitmap_destroy(mddev);
  5562. mddev->pers->quiesce(mddev, 0);
  5563. } else {
  5564. /* remove the bitmap */
  5565. if (!mddev->bitmap)
  5566. return -ENOENT;
  5567. if (mddev->bitmap->file)
  5568. return -EINVAL;
  5569. mddev->pers->quiesce(mddev, 1);
  5570. bitmap_destroy(mddev);
  5571. mddev->pers->quiesce(mddev, 0);
  5572. mddev->bitmap_info.offset = 0;
  5573. }
  5574. }
  5575. md_update_sb(mddev, 1);
  5576. return rv;
  5577. }
  5578. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5579. {
  5580. struct md_rdev *rdev;
  5581. if (mddev->pers == NULL)
  5582. return -ENODEV;
  5583. rdev = find_rdev(mddev, dev);
  5584. if (!rdev)
  5585. return -ENODEV;
  5586. md_error(mddev, rdev);
  5587. if (!test_bit(Faulty, &rdev->flags))
  5588. return -EBUSY;
  5589. return 0;
  5590. }
  5591. /*
  5592. * We have a problem here : there is no easy way to give a CHS
  5593. * virtual geometry. We currently pretend that we have a 2 heads
  5594. * 4 sectors (with a BIG number of cylinders...). This drives
  5595. * dosfs just mad... ;-)
  5596. */
  5597. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5598. {
  5599. struct mddev *mddev = bdev->bd_disk->private_data;
  5600. geo->heads = 2;
  5601. geo->sectors = 4;
  5602. geo->cylinders = mddev->array_sectors / 8;
  5603. return 0;
  5604. }
  5605. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5606. unsigned int cmd, unsigned long arg)
  5607. {
  5608. int err = 0;
  5609. void __user *argp = (void __user *)arg;
  5610. struct mddev *mddev = NULL;
  5611. int ro;
  5612. switch (cmd) {
  5613. case RAID_VERSION:
  5614. case GET_ARRAY_INFO:
  5615. case GET_DISK_INFO:
  5616. break;
  5617. default:
  5618. if (!capable(CAP_SYS_ADMIN))
  5619. return -EACCES;
  5620. }
  5621. /*
  5622. * Commands dealing with the RAID driver but not any
  5623. * particular array:
  5624. */
  5625. switch (cmd)
  5626. {
  5627. case RAID_VERSION:
  5628. err = get_version(argp);
  5629. goto done;
  5630. case PRINT_RAID_DEBUG:
  5631. err = 0;
  5632. md_print_devices();
  5633. goto done;
  5634. #ifndef MODULE
  5635. case RAID_AUTORUN:
  5636. err = 0;
  5637. autostart_arrays(arg);
  5638. goto done;
  5639. #endif
  5640. default:;
  5641. }
  5642. /*
  5643. * Commands creating/starting a new array:
  5644. */
  5645. mddev = bdev->bd_disk->private_data;
  5646. if (!mddev) {
  5647. BUG();
  5648. goto abort;
  5649. }
  5650. err = mddev_lock(mddev);
  5651. if (err) {
  5652. printk(KERN_INFO
  5653. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5654. err, cmd);
  5655. goto abort;
  5656. }
  5657. switch (cmd)
  5658. {
  5659. case SET_ARRAY_INFO:
  5660. {
  5661. mdu_array_info_t info;
  5662. if (!arg)
  5663. memset(&info, 0, sizeof(info));
  5664. else if (copy_from_user(&info, argp, sizeof(info))) {
  5665. err = -EFAULT;
  5666. goto abort_unlock;
  5667. }
  5668. if (mddev->pers) {
  5669. err = update_array_info(mddev, &info);
  5670. if (err) {
  5671. printk(KERN_WARNING "md: couldn't update"
  5672. " array info. %d\n", err);
  5673. goto abort_unlock;
  5674. }
  5675. goto done_unlock;
  5676. }
  5677. if (!list_empty(&mddev->disks)) {
  5678. printk(KERN_WARNING
  5679. "md: array %s already has disks!\n",
  5680. mdname(mddev));
  5681. err = -EBUSY;
  5682. goto abort_unlock;
  5683. }
  5684. if (mddev->raid_disks) {
  5685. printk(KERN_WARNING
  5686. "md: array %s already initialised!\n",
  5687. mdname(mddev));
  5688. err = -EBUSY;
  5689. goto abort_unlock;
  5690. }
  5691. err = set_array_info(mddev, &info);
  5692. if (err) {
  5693. printk(KERN_WARNING "md: couldn't set"
  5694. " array info. %d\n", err);
  5695. goto abort_unlock;
  5696. }
  5697. }
  5698. goto done_unlock;
  5699. default:;
  5700. }
  5701. /*
  5702. * Commands querying/configuring an existing array:
  5703. */
  5704. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5705. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5706. if ((!mddev->raid_disks && !mddev->external)
  5707. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5708. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5709. && cmd != GET_BITMAP_FILE) {
  5710. err = -ENODEV;
  5711. goto abort_unlock;
  5712. }
  5713. /*
  5714. * Commands even a read-only array can execute:
  5715. */
  5716. switch (cmd)
  5717. {
  5718. case GET_ARRAY_INFO:
  5719. err = get_array_info(mddev, argp);
  5720. goto done_unlock;
  5721. case GET_BITMAP_FILE:
  5722. err = get_bitmap_file(mddev, argp);
  5723. goto done_unlock;
  5724. case GET_DISK_INFO:
  5725. err = get_disk_info(mddev, argp);
  5726. goto done_unlock;
  5727. case RESTART_ARRAY_RW:
  5728. err = restart_array(mddev);
  5729. goto done_unlock;
  5730. case STOP_ARRAY:
  5731. err = do_md_stop(mddev, 0, 1);
  5732. goto done_unlock;
  5733. case STOP_ARRAY_RO:
  5734. err = md_set_readonly(mddev, 1);
  5735. goto done_unlock;
  5736. case BLKROSET:
  5737. if (get_user(ro, (int __user *)(arg))) {
  5738. err = -EFAULT;
  5739. goto done_unlock;
  5740. }
  5741. err = -EINVAL;
  5742. /* if the bdev is going readonly the value of mddev->ro
  5743. * does not matter, no writes are coming
  5744. */
  5745. if (ro)
  5746. goto done_unlock;
  5747. /* are we are already prepared for writes? */
  5748. if (mddev->ro != 1)
  5749. goto done_unlock;
  5750. /* transitioning to readauto need only happen for
  5751. * arrays that call md_write_start
  5752. */
  5753. if (mddev->pers) {
  5754. err = restart_array(mddev);
  5755. if (err == 0) {
  5756. mddev->ro = 2;
  5757. set_disk_ro(mddev->gendisk, 0);
  5758. }
  5759. }
  5760. goto done_unlock;
  5761. }
  5762. /*
  5763. * The remaining ioctls are changing the state of the
  5764. * superblock, so we do not allow them on read-only arrays.
  5765. * However non-MD ioctls (e.g. get-size) will still come through
  5766. * here and hit the 'default' below, so only disallow
  5767. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5768. */
  5769. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5770. if (mddev->ro == 2) {
  5771. mddev->ro = 0;
  5772. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5773. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5774. md_wakeup_thread(mddev->thread);
  5775. } else {
  5776. err = -EROFS;
  5777. goto abort_unlock;
  5778. }
  5779. }
  5780. switch (cmd)
  5781. {
  5782. case ADD_NEW_DISK:
  5783. {
  5784. mdu_disk_info_t info;
  5785. if (copy_from_user(&info, argp, sizeof(info)))
  5786. err = -EFAULT;
  5787. else
  5788. err = add_new_disk(mddev, &info);
  5789. goto done_unlock;
  5790. }
  5791. case HOT_REMOVE_DISK:
  5792. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5793. goto done_unlock;
  5794. case HOT_ADD_DISK:
  5795. err = hot_add_disk(mddev, new_decode_dev(arg));
  5796. goto done_unlock;
  5797. case SET_DISK_FAULTY:
  5798. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5799. goto done_unlock;
  5800. case RUN_ARRAY:
  5801. err = do_md_run(mddev);
  5802. goto done_unlock;
  5803. case SET_BITMAP_FILE:
  5804. err = set_bitmap_file(mddev, (int)arg);
  5805. goto done_unlock;
  5806. default:
  5807. err = -EINVAL;
  5808. goto abort_unlock;
  5809. }
  5810. done_unlock:
  5811. abort_unlock:
  5812. if (mddev->hold_active == UNTIL_IOCTL &&
  5813. err != -EINVAL)
  5814. mddev->hold_active = 0;
  5815. mddev_unlock(mddev);
  5816. return err;
  5817. done:
  5818. if (err)
  5819. MD_BUG();
  5820. abort:
  5821. return err;
  5822. }
  5823. #ifdef CONFIG_COMPAT
  5824. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5825. unsigned int cmd, unsigned long arg)
  5826. {
  5827. switch (cmd) {
  5828. case HOT_REMOVE_DISK:
  5829. case HOT_ADD_DISK:
  5830. case SET_DISK_FAULTY:
  5831. case SET_BITMAP_FILE:
  5832. /* These take in integer arg, do not convert */
  5833. break;
  5834. default:
  5835. arg = (unsigned long)compat_ptr(arg);
  5836. break;
  5837. }
  5838. return md_ioctl(bdev, mode, cmd, arg);
  5839. }
  5840. #endif /* CONFIG_COMPAT */
  5841. static int md_open(struct block_device *bdev, fmode_t mode)
  5842. {
  5843. /*
  5844. * Succeed if we can lock the mddev, which confirms that
  5845. * it isn't being stopped right now.
  5846. */
  5847. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5848. int err;
  5849. if (mddev->gendisk != bdev->bd_disk) {
  5850. /* we are racing with mddev_put which is discarding this
  5851. * bd_disk.
  5852. */
  5853. mddev_put(mddev);
  5854. /* Wait until bdev->bd_disk is definitely gone */
  5855. flush_workqueue(md_misc_wq);
  5856. /* Then retry the open from the top */
  5857. return -ERESTARTSYS;
  5858. }
  5859. BUG_ON(mddev != bdev->bd_disk->private_data);
  5860. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5861. goto out;
  5862. err = 0;
  5863. atomic_inc(&mddev->openers);
  5864. mutex_unlock(&mddev->open_mutex);
  5865. check_disk_change(bdev);
  5866. out:
  5867. return err;
  5868. }
  5869. static int md_release(struct gendisk *disk, fmode_t mode)
  5870. {
  5871. struct mddev *mddev = disk->private_data;
  5872. BUG_ON(!mddev);
  5873. atomic_dec(&mddev->openers);
  5874. mddev_put(mddev);
  5875. return 0;
  5876. }
  5877. static int md_media_changed(struct gendisk *disk)
  5878. {
  5879. struct mddev *mddev = disk->private_data;
  5880. return mddev->changed;
  5881. }
  5882. static int md_revalidate(struct gendisk *disk)
  5883. {
  5884. struct mddev *mddev = disk->private_data;
  5885. mddev->changed = 0;
  5886. return 0;
  5887. }
  5888. static const struct block_device_operations md_fops =
  5889. {
  5890. .owner = THIS_MODULE,
  5891. .open = md_open,
  5892. .release = md_release,
  5893. .ioctl = md_ioctl,
  5894. #ifdef CONFIG_COMPAT
  5895. .compat_ioctl = md_compat_ioctl,
  5896. #endif
  5897. .getgeo = md_getgeo,
  5898. .media_changed = md_media_changed,
  5899. .revalidate_disk= md_revalidate,
  5900. };
  5901. static int md_thread(void * arg)
  5902. {
  5903. struct md_thread *thread = arg;
  5904. /*
  5905. * md_thread is a 'system-thread', it's priority should be very
  5906. * high. We avoid resource deadlocks individually in each
  5907. * raid personality. (RAID5 does preallocation) We also use RR and
  5908. * the very same RT priority as kswapd, thus we will never get
  5909. * into a priority inversion deadlock.
  5910. *
  5911. * we definitely have to have equal or higher priority than
  5912. * bdflush, otherwise bdflush will deadlock if there are too
  5913. * many dirty RAID5 blocks.
  5914. */
  5915. allow_signal(SIGKILL);
  5916. while (!kthread_should_stop()) {
  5917. /* We need to wait INTERRUPTIBLE so that
  5918. * we don't add to the load-average.
  5919. * That means we need to be sure no signals are
  5920. * pending
  5921. */
  5922. if (signal_pending(current))
  5923. flush_signals(current);
  5924. wait_event_interruptible_timeout
  5925. (thread->wqueue,
  5926. test_bit(THREAD_WAKEUP, &thread->flags)
  5927. || kthread_should_stop(),
  5928. thread->timeout);
  5929. clear_bit(THREAD_WAKEUP, &thread->flags);
  5930. if (!kthread_should_stop())
  5931. thread->run(thread->mddev);
  5932. }
  5933. return 0;
  5934. }
  5935. void md_wakeup_thread(struct md_thread *thread)
  5936. {
  5937. if (thread) {
  5938. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5939. set_bit(THREAD_WAKEUP, &thread->flags);
  5940. wake_up(&thread->wqueue);
  5941. }
  5942. }
  5943. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5944. const char *name)
  5945. {
  5946. struct md_thread *thread;
  5947. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5948. if (!thread)
  5949. return NULL;
  5950. init_waitqueue_head(&thread->wqueue);
  5951. thread->run = run;
  5952. thread->mddev = mddev;
  5953. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5954. thread->tsk = kthread_run(md_thread, thread,
  5955. "%s_%s",
  5956. mdname(thread->mddev),
  5957. name ?: mddev->pers->name);
  5958. if (IS_ERR(thread->tsk)) {
  5959. kfree(thread);
  5960. return NULL;
  5961. }
  5962. return thread;
  5963. }
  5964. void md_unregister_thread(struct md_thread **threadp)
  5965. {
  5966. struct md_thread *thread = *threadp;
  5967. if (!thread)
  5968. return;
  5969. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5970. /* Locking ensures that mddev_unlock does not wake_up a
  5971. * non-existent thread
  5972. */
  5973. spin_lock(&pers_lock);
  5974. *threadp = NULL;
  5975. spin_unlock(&pers_lock);
  5976. kthread_stop(thread->tsk);
  5977. kfree(thread);
  5978. }
  5979. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5980. {
  5981. if (!mddev) {
  5982. MD_BUG();
  5983. return;
  5984. }
  5985. if (!rdev || test_bit(Faulty, &rdev->flags))
  5986. return;
  5987. if (!mddev->pers || !mddev->pers->error_handler)
  5988. return;
  5989. mddev->pers->error_handler(mddev,rdev);
  5990. if (mddev->degraded)
  5991. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5992. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5993. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5994. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5995. md_wakeup_thread(mddev->thread);
  5996. if (mddev->event_work.func)
  5997. queue_work(md_misc_wq, &mddev->event_work);
  5998. md_new_event_inintr(mddev);
  5999. }
  6000. /* seq_file implementation /proc/mdstat */
  6001. static void status_unused(struct seq_file *seq)
  6002. {
  6003. int i = 0;
  6004. struct md_rdev *rdev;
  6005. seq_printf(seq, "unused devices: ");
  6006. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6007. char b[BDEVNAME_SIZE];
  6008. i++;
  6009. seq_printf(seq, "%s ",
  6010. bdevname(rdev->bdev,b));
  6011. }
  6012. if (!i)
  6013. seq_printf(seq, "<none>");
  6014. seq_printf(seq, "\n");
  6015. }
  6016. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6017. {
  6018. sector_t max_sectors, resync, res;
  6019. unsigned long dt, db;
  6020. sector_t rt;
  6021. int scale;
  6022. unsigned int per_milli;
  6023. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  6024. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6025. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6026. max_sectors = mddev->resync_max_sectors;
  6027. else
  6028. max_sectors = mddev->dev_sectors;
  6029. /*
  6030. * Should not happen.
  6031. */
  6032. if (!max_sectors) {
  6033. MD_BUG();
  6034. return;
  6035. }
  6036. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6037. * in a sector_t, and (max_sectors>>scale) will fit in a
  6038. * u32, as those are the requirements for sector_div.
  6039. * Thus 'scale' must be at least 10
  6040. */
  6041. scale = 10;
  6042. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6043. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6044. scale++;
  6045. }
  6046. res = (resync>>scale)*1000;
  6047. sector_div(res, (u32)((max_sectors>>scale)+1));
  6048. per_milli = res;
  6049. {
  6050. int i, x = per_milli/50, y = 20-x;
  6051. seq_printf(seq, "[");
  6052. for (i = 0; i < x; i++)
  6053. seq_printf(seq, "=");
  6054. seq_printf(seq, ">");
  6055. for (i = 0; i < y; i++)
  6056. seq_printf(seq, ".");
  6057. seq_printf(seq, "] ");
  6058. }
  6059. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6060. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6061. "reshape" :
  6062. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6063. "check" :
  6064. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6065. "resync" : "recovery"))),
  6066. per_milli/10, per_milli % 10,
  6067. (unsigned long long) resync/2,
  6068. (unsigned long long) max_sectors/2);
  6069. /*
  6070. * dt: time from mark until now
  6071. * db: blocks written from mark until now
  6072. * rt: remaining time
  6073. *
  6074. * rt is a sector_t, so could be 32bit or 64bit.
  6075. * So we divide before multiply in case it is 32bit and close
  6076. * to the limit.
  6077. * We scale the divisor (db) by 32 to avoid losing precision
  6078. * near the end of resync when the number of remaining sectors
  6079. * is close to 'db'.
  6080. * We then divide rt by 32 after multiplying by db to compensate.
  6081. * The '+1' avoids division by zero if db is very small.
  6082. */
  6083. dt = ((jiffies - mddev->resync_mark) / HZ);
  6084. if (!dt) dt++;
  6085. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6086. - mddev->resync_mark_cnt;
  6087. rt = max_sectors - resync; /* number of remaining sectors */
  6088. sector_div(rt, db/32+1);
  6089. rt *= dt;
  6090. rt >>= 5;
  6091. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6092. ((unsigned long)rt % 60)/6);
  6093. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6094. }
  6095. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6096. {
  6097. struct list_head *tmp;
  6098. loff_t l = *pos;
  6099. struct mddev *mddev;
  6100. if (l >= 0x10000)
  6101. return NULL;
  6102. if (!l--)
  6103. /* header */
  6104. return (void*)1;
  6105. spin_lock(&all_mddevs_lock);
  6106. list_for_each(tmp,&all_mddevs)
  6107. if (!l--) {
  6108. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6109. mddev_get(mddev);
  6110. spin_unlock(&all_mddevs_lock);
  6111. return mddev;
  6112. }
  6113. spin_unlock(&all_mddevs_lock);
  6114. if (!l--)
  6115. return (void*)2;/* tail */
  6116. return NULL;
  6117. }
  6118. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6119. {
  6120. struct list_head *tmp;
  6121. struct mddev *next_mddev, *mddev = v;
  6122. ++*pos;
  6123. if (v == (void*)2)
  6124. return NULL;
  6125. spin_lock(&all_mddevs_lock);
  6126. if (v == (void*)1)
  6127. tmp = all_mddevs.next;
  6128. else
  6129. tmp = mddev->all_mddevs.next;
  6130. if (tmp != &all_mddevs)
  6131. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6132. else {
  6133. next_mddev = (void*)2;
  6134. *pos = 0x10000;
  6135. }
  6136. spin_unlock(&all_mddevs_lock);
  6137. if (v != (void*)1)
  6138. mddev_put(mddev);
  6139. return next_mddev;
  6140. }
  6141. static void md_seq_stop(struct seq_file *seq, void *v)
  6142. {
  6143. struct mddev *mddev = v;
  6144. if (mddev && v != (void*)1 && v != (void*)2)
  6145. mddev_put(mddev);
  6146. }
  6147. static int md_seq_show(struct seq_file *seq, void *v)
  6148. {
  6149. struct mddev *mddev = v;
  6150. sector_t sectors;
  6151. struct md_rdev *rdev;
  6152. if (v == (void*)1) {
  6153. struct md_personality *pers;
  6154. seq_printf(seq, "Personalities : ");
  6155. spin_lock(&pers_lock);
  6156. list_for_each_entry(pers, &pers_list, list)
  6157. seq_printf(seq, "[%s] ", pers->name);
  6158. spin_unlock(&pers_lock);
  6159. seq_printf(seq, "\n");
  6160. seq->poll_event = atomic_read(&md_event_count);
  6161. return 0;
  6162. }
  6163. if (v == (void*)2) {
  6164. status_unused(seq);
  6165. return 0;
  6166. }
  6167. if (mddev_lock(mddev) < 0)
  6168. return -EINTR;
  6169. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6170. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6171. mddev->pers ? "" : "in");
  6172. if (mddev->pers) {
  6173. if (mddev->ro==1)
  6174. seq_printf(seq, " (read-only)");
  6175. if (mddev->ro==2)
  6176. seq_printf(seq, " (auto-read-only)");
  6177. seq_printf(seq, " %s", mddev->pers->name);
  6178. }
  6179. sectors = 0;
  6180. rdev_for_each(rdev, mddev) {
  6181. char b[BDEVNAME_SIZE];
  6182. seq_printf(seq, " %s[%d]",
  6183. bdevname(rdev->bdev,b), rdev->desc_nr);
  6184. if (test_bit(WriteMostly, &rdev->flags))
  6185. seq_printf(seq, "(W)");
  6186. if (test_bit(Faulty, &rdev->flags)) {
  6187. seq_printf(seq, "(F)");
  6188. continue;
  6189. }
  6190. if (rdev->raid_disk < 0)
  6191. seq_printf(seq, "(S)"); /* spare */
  6192. if (test_bit(Replacement, &rdev->flags))
  6193. seq_printf(seq, "(R)");
  6194. sectors += rdev->sectors;
  6195. }
  6196. if (!list_empty(&mddev->disks)) {
  6197. if (mddev->pers)
  6198. seq_printf(seq, "\n %llu blocks",
  6199. (unsigned long long)
  6200. mddev->array_sectors / 2);
  6201. else
  6202. seq_printf(seq, "\n %llu blocks",
  6203. (unsigned long long)sectors / 2);
  6204. }
  6205. if (mddev->persistent) {
  6206. if (mddev->major_version != 0 ||
  6207. mddev->minor_version != 90) {
  6208. seq_printf(seq," super %d.%d",
  6209. mddev->major_version,
  6210. mddev->minor_version);
  6211. }
  6212. } else if (mddev->external)
  6213. seq_printf(seq, " super external:%s",
  6214. mddev->metadata_type);
  6215. else
  6216. seq_printf(seq, " super non-persistent");
  6217. if (mddev->pers) {
  6218. mddev->pers->status(seq, mddev);
  6219. seq_printf(seq, "\n ");
  6220. if (mddev->pers->sync_request) {
  6221. if (mddev->curr_resync > 2) {
  6222. status_resync(seq, mddev);
  6223. seq_printf(seq, "\n ");
  6224. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  6225. seq_printf(seq, "\tresync=DELAYED\n ");
  6226. else if (mddev->recovery_cp < MaxSector)
  6227. seq_printf(seq, "\tresync=PENDING\n ");
  6228. }
  6229. } else
  6230. seq_printf(seq, "\n ");
  6231. bitmap_status(seq, mddev->bitmap);
  6232. seq_printf(seq, "\n");
  6233. }
  6234. mddev_unlock(mddev);
  6235. return 0;
  6236. }
  6237. static const struct seq_operations md_seq_ops = {
  6238. .start = md_seq_start,
  6239. .next = md_seq_next,
  6240. .stop = md_seq_stop,
  6241. .show = md_seq_show,
  6242. };
  6243. static int md_seq_open(struct inode *inode, struct file *file)
  6244. {
  6245. struct seq_file *seq;
  6246. int error;
  6247. error = seq_open(file, &md_seq_ops);
  6248. if (error)
  6249. return error;
  6250. seq = file->private_data;
  6251. seq->poll_event = atomic_read(&md_event_count);
  6252. return error;
  6253. }
  6254. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6255. {
  6256. struct seq_file *seq = filp->private_data;
  6257. int mask;
  6258. poll_wait(filp, &md_event_waiters, wait);
  6259. /* always allow read */
  6260. mask = POLLIN | POLLRDNORM;
  6261. if (seq->poll_event != atomic_read(&md_event_count))
  6262. mask |= POLLERR | POLLPRI;
  6263. return mask;
  6264. }
  6265. static const struct file_operations md_seq_fops = {
  6266. .owner = THIS_MODULE,
  6267. .open = md_seq_open,
  6268. .read = seq_read,
  6269. .llseek = seq_lseek,
  6270. .release = seq_release_private,
  6271. .poll = mdstat_poll,
  6272. };
  6273. int register_md_personality(struct md_personality *p)
  6274. {
  6275. spin_lock(&pers_lock);
  6276. list_add_tail(&p->list, &pers_list);
  6277. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6278. spin_unlock(&pers_lock);
  6279. return 0;
  6280. }
  6281. int unregister_md_personality(struct md_personality *p)
  6282. {
  6283. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6284. spin_lock(&pers_lock);
  6285. list_del_init(&p->list);
  6286. spin_unlock(&pers_lock);
  6287. return 0;
  6288. }
  6289. static int is_mddev_idle(struct mddev *mddev, int init)
  6290. {
  6291. struct md_rdev * rdev;
  6292. int idle;
  6293. int curr_events;
  6294. idle = 1;
  6295. rcu_read_lock();
  6296. rdev_for_each_rcu(rdev, mddev) {
  6297. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6298. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6299. (int)part_stat_read(&disk->part0, sectors[1]) -
  6300. atomic_read(&disk->sync_io);
  6301. /* sync IO will cause sync_io to increase before the disk_stats
  6302. * as sync_io is counted when a request starts, and
  6303. * disk_stats is counted when it completes.
  6304. * So resync activity will cause curr_events to be smaller than
  6305. * when there was no such activity.
  6306. * non-sync IO will cause disk_stat to increase without
  6307. * increasing sync_io so curr_events will (eventually)
  6308. * be larger than it was before. Once it becomes
  6309. * substantially larger, the test below will cause
  6310. * the array to appear non-idle, and resync will slow
  6311. * down.
  6312. * If there is a lot of outstanding resync activity when
  6313. * we set last_event to curr_events, then all that activity
  6314. * completing might cause the array to appear non-idle
  6315. * and resync will be slowed down even though there might
  6316. * not have been non-resync activity. This will only
  6317. * happen once though. 'last_events' will soon reflect
  6318. * the state where there is little or no outstanding
  6319. * resync requests, and further resync activity will
  6320. * always make curr_events less than last_events.
  6321. *
  6322. */
  6323. if (init || curr_events - rdev->last_events > 64) {
  6324. rdev->last_events = curr_events;
  6325. idle = 0;
  6326. }
  6327. }
  6328. rcu_read_unlock();
  6329. return idle;
  6330. }
  6331. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6332. {
  6333. /* another "blocks" (512byte) blocks have been synced */
  6334. atomic_sub(blocks, &mddev->recovery_active);
  6335. wake_up(&mddev->recovery_wait);
  6336. if (!ok) {
  6337. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6338. md_wakeup_thread(mddev->thread);
  6339. // stop recovery, signal do_sync ....
  6340. }
  6341. }
  6342. /* md_write_start(mddev, bi)
  6343. * If we need to update some array metadata (e.g. 'active' flag
  6344. * in superblock) before writing, schedule a superblock update
  6345. * and wait for it to complete.
  6346. */
  6347. void md_write_start(struct mddev *mddev, struct bio *bi)
  6348. {
  6349. int did_change = 0;
  6350. if (bio_data_dir(bi) != WRITE)
  6351. return;
  6352. BUG_ON(mddev->ro == 1);
  6353. if (mddev->ro == 2) {
  6354. /* need to switch to read/write */
  6355. mddev->ro = 0;
  6356. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6357. md_wakeup_thread(mddev->thread);
  6358. md_wakeup_thread(mddev->sync_thread);
  6359. did_change = 1;
  6360. }
  6361. atomic_inc(&mddev->writes_pending);
  6362. if (mddev->safemode == 1)
  6363. mddev->safemode = 0;
  6364. if (mddev->in_sync) {
  6365. spin_lock_irq(&mddev->write_lock);
  6366. if (mddev->in_sync) {
  6367. mddev->in_sync = 0;
  6368. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6369. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6370. md_wakeup_thread(mddev->thread);
  6371. did_change = 1;
  6372. }
  6373. spin_unlock_irq(&mddev->write_lock);
  6374. }
  6375. if (did_change)
  6376. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6377. wait_event(mddev->sb_wait,
  6378. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6379. }
  6380. void md_write_end(struct mddev *mddev)
  6381. {
  6382. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6383. if (mddev->safemode == 2)
  6384. md_wakeup_thread(mddev->thread);
  6385. else if (mddev->safemode_delay)
  6386. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6387. }
  6388. }
  6389. /* md_allow_write(mddev)
  6390. * Calling this ensures that the array is marked 'active' so that writes
  6391. * may proceed without blocking. It is important to call this before
  6392. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6393. * Must be called with mddev_lock held.
  6394. *
  6395. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6396. * is dropped, so return -EAGAIN after notifying userspace.
  6397. */
  6398. int md_allow_write(struct mddev *mddev)
  6399. {
  6400. if (!mddev->pers)
  6401. return 0;
  6402. if (mddev->ro)
  6403. return 0;
  6404. if (!mddev->pers->sync_request)
  6405. return 0;
  6406. spin_lock_irq(&mddev->write_lock);
  6407. if (mddev->in_sync) {
  6408. mddev->in_sync = 0;
  6409. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6410. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6411. if (mddev->safemode_delay &&
  6412. mddev->safemode == 0)
  6413. mddev->safemode = 1;
  6414. spin_unlock_irq(&mddev->write_lock);
  6415. md_update_sb(mddev, 0);
  6416. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6417. } else
  6418. spin_unlock_irq(&mddev->write_lock);
  6419. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6420. return -EAGAIN;
  6421. else
  6422. return 0;
  6423. }
  6424. EXPORT_SYMBOL_GPL(md_allow_write);
  6425. #define SYNC_MARKS 10
  6426. #define SYNC_MARK_STEP (3*HZ)
  6427. void md_do_sync(struct mddev *mddev)
  6428. {
  6429. struct mddev *mddev2;
  6430. unsigned int currspeed = 0,
  6431. window;
  6432. sector_t max_sectors,j, io_sectors;
  6433. unsigned long mark[SYNC_MARKS];
  6434. sector_t mark_cnt[SYNC_MARKS];
  6435. int last_mark,m;
  6436. struct list_head *tmp;
  6437. sector_t last_check;
  6438. int skipped = 0;
  6439. struct md_rdev *rdev;
  6440. char *desc;
  6441. /* just incase thread restarts... */
  6442. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6443. return;
  6444. if (mddev->ro) /* never try to sync a read-only array */
  6445. return;
  6446. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6447. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6448. desc = "data-check";
  6449. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6450. desc = "requested-resync";
  6451. else
  6452. desc = "resync";
  6453. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6454. desc = "reshape";
  6455. else
  6456. desc = "recovery";
  6457. /* we overload curr_resync somewhat here.
  6458. * 0 == not engaged in resync at all
  6459. * 2 == checking that there is no conflict with another sync
  6460. * 1 == like 2, but have yielded to allow conflicting resync to
  6461. * commense
  6462. * other == active in resync - this many blocks
  6463. *
  6464. * Before starting a resync we must have set curr_resync to
  6465. * 2, and then checked that every "conflicting" array has curr_resync
  6466. * less than ours. When we find one that is the same or higher
  6467. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6468. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6469. * This will mean we have to start checking from the beginning again.
  6470. *
  6471. */
  6472. do {
  6473. mddev->curr_resync = 2;
  6474. try_again:
  6475. if (kthread_should_stop())
  6476. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6477. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6478. goto skip;
  6479. for_each_mddev(mddev2, tmp) {
  6480. if (mddev2 == mddev)
  6481. continue;
  6482. if (!mddev->parallel_resync
  6483. && mddev2->curr_resync
  6484. && match_mddev_units(mddev, mddev2)) {
  6485. DEFINE_WAIT(wq);
  6486. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6487. /* arbitrarily yield */
  6488. mddev->curr_resync = 1;
  6489. wake_up(&resync_wait);
  6490. }
  6491. if (mddev > mddev2 && mddev->curr_resync == 1)
  6492. /* no need to wait here, we can wait the next
  6493. * time 'round when curr_resync == 2
  6494. */
  6495. continue;
  6496. /* We need to wait 'interruptible' so as not to
  6497. * contribute to the load average, and not to
  6498. * be caught by 'softlockup'
  6499. */
  6500. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6501. if (!kthread_should_stop() &&
  6502. mddev2->curr_resync >= mddev->curr_resync) {
  6503. printk(KERN_INFO "md: delaying %s of %s"
  6504. " until %s has finished (they"
  6505. " share one or more physical units)\n",
  6506. desc, mdname(mddev), mdname(mddev2));
  6507. mddev_put(mddev2);
  6508. if (signal_pending(current))
  6509. flush_signals(current);
  6510. schedule();
  6511. finish_wait(&resync_wait, &wq);
  6512. goto try_again;
  6513. }
  6514. finish_wait(&resync_wait, &wq);
  6515. }
  6516. }
  6517. } while (mddev->curr_resync < 2);
  6518. j = 0;
  6519. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6520. /* resync follows the size requested by the personality,
  6521. * which defaults to physical size, but can be virtual size
  6522. */
  6523. max_sectors = mddev->resync_max_sectors;
  6524. mddev->resync_mismatches = 0;
  6525. /* we don't use the checkpoint if there's a bitmap */
  6526. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6527. j = mddev->resync_min;
  6528. else if (!mddev->bitmap)
  6529. j = mddev->recovery_cp;
  6530. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6531. max_sectors = mddev->resync_max_sectors;
  6532. else {
  6533. /* recovery follows the physical size of devices */
  6534. max_sectors = mddev->dev_sectors;
  6535. j = MaxSector;
  6536. rcu_read_lock();
  6537. rdev_for_each_rcu(rdev, mddev)
  6538. if (rdev->raid_disk >= 0 &&
  6539. !test_bit(Faulty, &rdev->flags) &&
  6540. !test_bit(In_sync, &rdev->flags) &&
  6541. rdev->recovery_offset < j)
  6542. j = rdev->recovery_offset;
  6543. rcu_read_unlock();
  6544. }
  6545. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6546. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6547. " %d KB/sec/disk.\n", speed_min(mddev));
  6548. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6549. "(but not more than %d KB/sec) for %s.\n",
  6550. speed_max(mddev), desc);
  6551. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6552. io_sectors = 0;
  6553. for (m = 0; m < SYNC_MARKS; m++) {
  6554. mark[m] = jiffies;
  6555. mark_cnt[m] = io_sectors;
  6556. }
  6557. last_mark = 0;
  6558. mddev->resync_mark = mark[last_mark];
  6559. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6560. /*
  6561. * Tune reconstruction:
  6562. */
  6563. window = 32*(PAGE_SIZE/512);
  6564. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6565. window/2, (unsigned long long)max_sectors/2);
  6566. atomic_set(&mddev->recovery_active, 0);
  6567. last_check = 0;
  6568. if (j>2) {
  6569. printk(KERN_INFO
  6570. "md: resuming %s of %s from checkpoint.\n",
  6571. desc, mdname(mddev));
  6572. mddev->curr_resync = j;
  6573. }
  6574. mddev->curr_resync_completed = j;
  6575. while (j < max_sectors) {
  6576. sector_t sectors;
  6577. skipped = 0;
  6578. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6579. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6580. (mddev->curr_resync - mddev->curr_resync_completed)
  6581. > (max_sectors >> 4)) ||
  6582. (j - mddev->curr_resync_completed)*2
  6583. >= mddev->resync_max - mddev->curr_resync_completed
  6584. )) {
  6585. /* time to update curr_resync_completed */
  6586. wait_event(mddev->recovery_wait,
  6587. atomic_read(&mddev->recovery_active) == 0);
  6588. mddev->curr_resync_completed = j;
  6589. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6590. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6591. }
  6592. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6593. /* As this condition is controlled by user-space,
  6594. * we can block indefinitely, so use '_interruptible'
  6595. * to avoid triggering warnings.
  6596. */
  6597. flush_signals(current); /* just in case */
  6598. wait_event_interruptible(mddev->recovery_wait,
  6599. mddev->resync_max > j
  6600. || kthread_should_stop());
  6601. }
  6602. if (kthread_should_stop())
  6603. goto interrupted;
  6604. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6605. currspeed < speed_min(mddev));
  6606. if (sectors == 0) {
  6607. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6608. goto out;
  6609. }
  6610. if (!skipped) { /* actual IO requested */
  6611. io_sectors += sectors;
  6612. atomic_add(sectors, &mddev->recovery_active);
  6613. }
  6614. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6615. break;
  6616. j += sectors;
  6617. if (j>1) mddev->curr_resync = j;
  6618. mddev->curr_mark_cnt = io_sectors;
  6619. if (last_check == 0)
  6620. /* this is the earliest that rebuild will be
  6621. * visible in /proc/mdstat
  6622. */
  6623. md_new_event(mddev);
  6624. if (last_check + window > io_sectors || j == max_sectors)
  6625. continue;
  6626. last_check = io_sectors;
  6627. repeat:
  6628. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6629. /* step marks */
  6630. int next = (last_mark+1) % SYNC_MARKS;
  6631. mddev->resync_mark = mark[next];
  6632. mddev->resync_mark_cnt = mark_cnt[next];
  6633. mark[next] = jiffies;
  6634. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6635. last_mark = next;
  6636. }
  6637. if (kthread_should_stop())
  6638. goto interrupted;
  6639. /*
  6640. * this loop exits only if either when we are slower than
  6641. * the 'hard' speed limit, or the system was IO-idle for
  6642. * a jiffy.
  6643. * the system might be non-idle CPU-wise, but we only care
  6644. * about not overloading the IO subsystem. (things like an
  6645. * e2fsck being done on the RAID array should execute fast)
  6646. */
  6647. cond_resched();
  6648. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6649. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6650. if (currspeed > speed_min(mddev)) {
  6651. if ((currspeed > speed_max(mddev)) ||
  6652. !is_mddev_idle(mddev, 0)) {
  6653. msleep(500);
  6654. goto repeat;
  6655. }
  6656. }
  6657. }
  6658. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6659. /*
  6660. * this also signals 'finished resyncing' to md_stop
  6661. */
  6662. out:
  6663. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6664. /* tell personality that we are finished */
  6665. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6666. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6667. mddev->curr_resync > 2) {
  6668. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6669. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6670. if (mddev->curr_resync >= mddev->recovery_cp) {
  6671. printk(KERN_INFO
  6672. "md: checkpointing %s of %s.\n",
  6673. desc, mdname(mddev));
  6674. mddev->recovery_cp =
  6675. mddev->curr_resync_completed;
  6676. }
  6677. } else
  6678. mddev->recovery_cp = MaxSector;
  6679. } else {
  6680. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6681. mddev->curr_resync = MaxSector;
  6682. rcu_read_lock();
  6683. rdev_for_each_rcu(rdev, mddev)
  6684. if (rdev->raid_disk >= 0 &&
  6685. mddev->delta_disks >= 0 &&
  6686. !test_bit(Faulty, &rdev->flags) &&
  6687. !test_bit(In_sync, &rdev->flags) &&
  6688. rdev->recovery_offset < mddev->curr_resync)
  6689. rdev->recovery_offset = mddev->curr_resync;
  6690. rcu_read_unlock();
  6691. }
  6692. }
  6693. skip:
  6694. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6695. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6696. /* We completed so min/max setting can be forgotten if used. */
  6697. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6698. mddev->resync_min = 0;
  6699. mddev->resync_max = MaxSector;
  6700. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6701. mddev->resync_min = mddev->curr_resync_completed;
  6702. mddev->curr_resync = 0;
  6703. wake_up(&resync_wait);
  6704. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6705. md_wakeup_thread(mddev->thread);
  6706. return;
  6707. interrupted:
  6708. /*
  6709. * got a signal, exit.
  6710. */
  6711. printk(KERN_INFO
  6712. "md: md_do_sync() got signal ... exiting\n");
  6713. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6714. goto out;
  6715. }
  6716. EXPORT_SYMBOL_GPL(md_do_sync);
  6717. static int remove_and_add_spares(struct mddev *mddev)
  6718. {
  6719. struct md_rdev *rdev;
  6720. int spares = 0;
  6721. int removed = 0;
  6722. mddev->curr_resync_completed = 0;
  6723. rdev_for_each(rdev, mddev)
  6724. if (rdev->raid_disk >= 0 &&
  6725. !test_bit(Blocked, &rdev->flags) &&
  6726. (test_bit(Faulty, &rdev->flags) ||
  6727. ! test_bit(In_sync, &rdev->flags)) &&
  6728. atomic_read(&rdev->nr_pending)==0) {
  6729. if (mddev->pers->hot_remove_disk(
  6730. mddev, rdev) == 0) {
  6731. sysfs_unlink_rdev(mddev, rdev);
  6732. rdev->raid_disk = -1;
  6733. removed++;
  6734. }
  6735. }
  6736. if (removed)
  6737. sysfs_notify(&mddev->kobj, NULL,
  6738. "degraded");
  6739. rdev_for_each(rdev, mddev) {
  6740. if (rdev->raid_disk >= 0 &&
  6741. !test_bit(In_sync, &rdev->flags) &&
  6742. !test_bit(Faulty, &rdev->flags))
  6743. spares++;
  6744. if (rdev->raid_disk < 0
  6745. && !test_bit(Faulty, &rdev->flags)) {
  6746. rdev->recovery_offset = 0;
  6747. if (mddev->pers->
  6748. hot_add_disk(mddev, rdev) == 0) {
  6749. if (sysfs_link_rdev(mddev, rdev))
  6750. /* failure here is OK */;
  6751. spares++;
  6752. md_new_event(mddev);
  6753. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6754. }
  6755. }
  6756. }
  6757. return spares;
  6758. }
  6759. static void reap_sync_thread(struct mddev *mddev)
  6760. {
  6761. struct md_rdev *rdev;
  6762. /* resync has finished, collect result */
  6763. md_unregister_thread(&mddev->sync_thread);
  6764. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6765. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6766. /* success...*/
  6767. /* activate any spares */
  6768. if (mddev->pers->spare_active(mddev))
  6769. sysfs_notify(&mddev->kobj, NULL,
  6770. "degraded");
  6771. }
  6772. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6773. mddev->pers->finish_reshape)
  6774. mddev->pers->finish_reshape(mddev);
  6775. /* If array is no-longer degraded, then any saved_raid_disk
  6776. * information must be scrapped. Also if any device is now
  6777. * In_sync we must scrape the saved_raid_disk for that device
  6778. * do the superblock for an incrementally recovered device
  6779. * written out.
  6780. */
  6781. rdev_for_each(rdev, mddev)
  6782. if (!mddev->degraded ||
  6783. test_bit(In_sync, &rdev->flags))
  6784. rdev->saved_raid_disk = -1;
  6785. md_update_sb(mddev, 1);
  6786. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6787. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6788. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6789. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6790. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6791. /* flag recovery needed just to double check */
  6792. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6793. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6794. md_new_event(mddev);
  6795. if (mddev->event_work.func)
  6796. queue_work(md_misc_wq, &mddev->event_work);
  6797. }
  6798. /*
  6799. * This routine is regularly called by all per-raid-array threads to
  6800. * deal with generic issues like resync and super-block update.
  6801. * Raid personalities that don't have a thread (linear/raid0) do not
  6802. * need this as they never do any recovery or update the superblock.
  6803. *
  6804. * It does not do any resync itself, but rather "forks" off other threads
  6805. * to do that as needed.
  6806. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6807. * "->recovery" and create a thread at ->sync_thread.
  6808. * When the thread finishes it sets MD_RECOVERY_DONE
  6809. * and wakeups up this thread which will reap the thread and finish up.
  6810. * This thread also removes any faulty devices (with nr_pending == 0).
  6811. *
  6812. * The overall approach is:
  6813. * 1/ if the superblock needs updating, update it.
  6814. * 2/ If a recovery thread is running, don't do anything else.
  6815. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6816. * 4/ If there are any faulty devices, remove them.
  6817. * 5/ If array is degraded, try to add spares devices
  6818. * 6/ If array has spares or is not in-sync, start a resync thread.
  6819. */
  6820. void md_check_recovery(struct mddev *mddev)
  6821. {
  6822. if (mddev->suspended)
  6823. return;
  6824. if (mddev->bitmap)
  6825. bitmap_daemon_work(mddev);
  6826. if (signal_pending(current)) {
  6827. if (mddev->pers->sync_request && !mddev->external) {
  6828. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6829. mdname(mddev));
  6830. mddev->safemode = 2;
  6831. }
  6832. flush_signals(current);
  6833. }
  6834. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6835. return;
  6836. if ( ! (
  6837. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6838. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6839. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6840. (mddev->external == 0 && mddev->safemode == 1) ||
  6841. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6842. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6843. ))
  6844. return;
  6845. if (mddev_trylock(mddev)) {
  6846. int spares = 0;
  6847. if (mddev->ro) {
  6848. /* Only thing we do on a ro array is remove
  6849. * failed devices.
  6850. */
  6851. struct md_rdev *rdev;
  6852. rdev_for_each(rdev, mddev)
  6853. if (rdev->raid_disk >= 0 &&
  6854. !test_bit(Blocked, &rdev->flags) &&
  6855. test_bit(Faulty, &rdev->flags) &&
  6856. atomic_read(&rdev->nr_pending)==0) {
  6857. if (mddev->pers->hot_remove_disk(
  6858. mddev, rdev) == 0) {
  6859. sysfs_unlink_rdev(mddev, rdev);
  6860. rdev->raid_disk = -1;
  6861. }
  6862. }
  6863. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6864. goto unlock;
  6865. }
  6866. if (!mddev->external) {
  6867. int did_change = 0;
  6868. spin_lock_irq(&mddev->write_lock);
  6869. if (mddev->safemode &&
  6870. !atomic_read(&mddev->writes_pending) &&
  6871. !mddev->in_sync &&
  6872. mddev->recovery_cp == MaxSector) {
  6873. mddev->in_sync = 1;
  6874. did_change = 1;
  6875. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6876. }
  6877. if (mddev->safemode == 1)
  6878. mddev->safemode = 0;
  6879. spin_unlock_irq(&mddev->write_lock);
  6880. if (did_change)
  6881. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6882. }
  6883. if (mddev->flags)
  6884. md_update_sb(mddev, 0);
  6885. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6886. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6887. /* resync/recovery still happening */
  6888. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6889. goto unlock;
  6890. }
  6891. if (mddev->sync_thread) {
  6892. reap_sync_thread(mddev);
  6893. goto unlock;
  6894. }
  6895. /* Set RUNNING before clearing NEEDED to avoid
  6896. * any transients in the value of "sync_action".
  6897. */
  6898. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6899. /* Clear some bits that don't mean anything, but
  6900. * might be left set
  6901. */
  6902. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6903. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6904. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6905. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6906. goto unlock;
  6907. /* no recovery is running.
  6908. * remove any failed drives, then
  6909. * add spares if possible.
  6910. * Spare are also removed and re-added, to allow
  6911. * the personality to fail the re-add.
  6912. */
  6913. if (mddev->reshape_position != MaxSector) {
  6914. if (mddev->pers->check_reshape == NULL ||
  6915. mddev->pers->check_reshape(mddev) != 0)
  6916. /* Cannot proceed */
  6917. goto unlock;
  6918. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6919. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6920. } else if ((spares = remove_and_add_spares(mddev))) {
  6921. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6922. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6923. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6924. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6925. } else if (mddev->recovery_cp < MaxSector) {
  6926. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6927. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6928. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6929. /* nothing to be done ... */
  6930. goto unlock;
  6931. if (mddev->pers->sync_request) {
  6932. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6933. /* We are adding a device or devices to an array
  6934. * which has the bitmap stored on all devices.
  6935. * So make sure all bitmap pages get written
  6936. */
  6937. bitmap_write_all(mddev->bitmap);
  6938. }
  6939. mddev->sync_thread = md_register_thread(md_do_sync,
  6940. mddev,
  6941. "resync");
  6942. if (!mddev->sync_thread) {
  6943. printk(KERN_ERR "%s: could not start resync"
  6944. " thread...\n",
  6945. mdname(mddev));
  6946. /* leave the spares where they are, it shouldn't hurt */
  6947. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6948. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6949. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6950. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6951. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6952. } else
  6953. md_wakeup_thread(mddev->sync_thread);
  6954. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6955. md_new_event(mddev);
  6956. }
  6957. unlock:
  6958. if (!mddev->sync_thread) {
  6959. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6960. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6961. &mddev->recovery))
  6962. if (mddev->sysfs_action)
  6963. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6964. }
  6965. mddev_unlock(mddev);
  6966. }
  6967. }
  6968. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6969. {
  6970. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6971. wait_event_timeout(rdev->blocked_wait,
  6972. !test_bit(Blocked, &rdev->flags) &&
  6973. !test_bit(BlockedBadBlocks, &rdev->flags),
  6974. msecs_to_jiffies(5000));
  6975. rdev_dec_pending(rdev, mddev);
  6976. }
  6977. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6978. void md_finish_reshape(struct mddev *mddev)
  6979. {
  6980. /* called be personality module when reshape completes. */
  6981. struct md_rdev *rdev;
  6982. rdev_for_each(rdev, mddev) {
  6983. if (rdev->data_offset > rdev->new_data_offset)
  6984. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  6985. else
  6986. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  6987. rdev->data_offset = rdev->new_data_offset;
  6988. }
  6989. }
  6990. EXPORT_SYMBOL(md_finish_reshape);
  6991. /* Bad block management.
  6992. * We can record which blocks on each device are 'bad' and so just
  6993. * fail those blocks, or that stripe, rather than the whole device.
  6994. * Entries in the bad-block table are 64bits wide. This comprises:
  6995. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6996. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6997. * A 'shift' can be set so that larger blocks are tracked and
  6998. * consequently larger devices can be covered.
  6999. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7000. *
  7001. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7002. * might need to retry if it is very unlucky.
  7003. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7004. * so we use the write_seqlock_irq variant.
  7005. *
  7006. * When looking for a bad block we specify a range and want to
  7007. * know if any block in the range is bad. So we binary-search
  7008. * to the last range that starts at-or-before the given endpoint,
  7009. * (or "before the sector after the target range")
  7010. * then see if it ends after the given start.
  7011. * We return
  7012. * 0 if there are no known bad blocks in the range
  7013. * 1 if there are known bad block which are all acknowledged
  7014. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7015. * plus the start/length of the first bad section we overlap.
  7016. */
  7017. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7018. sector_t *first_bad, int *bad_sectors)
  7019. {
  7020. int hi;
  7021. int lo = 0;
  7022. u64 *p = bb->page;
  7023. int rv = 0;
  7024. sector_t target = s + sectors;
  7025. unsigned seq;
  7026. if (bb->shift > 0) {
  7027. /* round the start down, and the end up */
  7028. s >>= bb->shift;
  7029. target += (1<<bb->shift) - 1;
  7030. target >>= bb->shift;
  7031. sectors = target - s;
  7032. }
  7033. /* 'target' is now the first block after the bad range */
  7034. retry:
  7035. seq = read_seqbegin(&bb->lock);
  7036. hi = bb->count;
  7037. /* Binary search between lo and hi for 'target'
  7038. * i.e. for the last range that starts before 'target'
  7039. */
  7040. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7041. * are known not to be the last range before target.
  7042. * VARIANT: hi-lo is the number of possible
  7043. * ranges, and decreases until it reaches 1
  7044. */
  7045. while (hi - lo > 1) {
  7046. int mid = (lo + hi) / 2;
  7047. sector_t a = BB_OFFSET(p[mid]);
  7048. if (a < target)
  7049. /* This could still be the one, earlier ranges
  7050. * could not. */
  7051. lo = mid;
  7052. else
  7053. /* This and later ranges are definitely out. */
  7054. hi = mid;
  7055. }
  7056. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7057. if (hi > lo) {
  7058. /* need to check all range that end after 's' to see if
  7059. * any are unacknowledged.
  7060. */
  7061. while (lo >= 0 &&
  7062. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7063. if (BB_OFFSET(p[lo]) < target) {
  7064. /* starts before the end, and finishes after
  7065. * the start, so they must overlap
  7066. */
  7067. if (rv != -1 && BB_ACK(p[lo]))
  7068. rv = 1;
  7069. else
  7070. rv = -1;
  7071. *first_bad = BB_OFFSET(p[lo]);
  7072. *bad_sectors = BB_LEN(p[lo]);
  7073. }
  7074. lo--;
  7075. }
  7076. }
  7077. if (read_seqretry(&bb->lock, seq))
  7078. goto retry;
  7079. return rv;
  7080. }
  7081. EXPORT_SYMBOL_GPL(md_is_badblock);
  7082. /*
  7083. * Add a range of bad blocks to the table.
  7084. * This might extend the table, or might contract it
  7085. * if two adjacent ranges can be merged.
  7086. * We binary-search to find the 'insertion' point, then
  7087. * decide how best to handle it.
  7088. */
  7089. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7090. int acknowledged)
  7091. {
  7092. u64 *p;
  7093. int lo, hi;
  7094. int rv = 1;
  7095. if (bb->shift < 0)
  7096. /* badblocks are disabled */
  7097. return 0;
  7098. if (bb->shift) {
  7099. /* round the start down, and the end up */
  7100. sector_t next = s + sectors;
  7101. s >>= bb->shift;
  7102. next += (1<<bb->shift) - 1;
  7103. next >>= bb->shift;
  7104. sectors = next - s;
  7105. }
  7106. write_seqlock_irq(&bb->lock);
  7107. p = bb->page;
  7108. lo = 0;
  7109. hi = bb->count;
  7110. /* Find the last range that starts at-or-before 's' */
  7111. while (hi - lo > 1) {
  7112. int mid = (lo + hi) / 2;
  7113. sector_t a = BB_OFFSET(p[mid]);
  7114. if (a <= s)
  7115. lo = mid;
  7116. else
  7117. hi = mid;
  7118. }
  7119. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7120. hi = lo;
  7121. if (hi > lo) {
  7122. /* we found a range that might merge with the start
  7123. * of our new range
  7124. */
  7125. sector_t a = BB_OFFSET(p[lo]);
  7126. sector_t e = a + BB_LEN(p[lo]);
  7127. int ack = BB_ACK(p[lo]);
  7128. if (e >= s) {
  7129. /* Yes, we can merge with a previous range */
  7130. if (s == a && s + sectors >= e)
  7131. /* new range covers old */
  7132. ack = acknowledged;
  7133. else
  7134. ack = ack && acknowledged;
  7135. if (e < s + sectors)
  7136. e = s + sectors;
  7137. if (e - a <= BB_MAX_LEN) {
  7138. p[lo] = BB_MAKE(a, e-a, ack);
  7139. s = e;
  7140. } else {
  7141. /* does not all fit in one range,
  7142. * make p[lo] maximal
  7143. */
  7144. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7145. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7146. s = a + BB_MAX_LEN;
  7147. }
  7148. sectors = e - s;
  7149. }
  7150. }
  7151. if (sectors && hi < bb->count) {
  7152. /* 'hi' points to the first range that starts after 's'.
  7153. * Maybe we can merge with the start of that range */
  7154. sector_t a = BB_OFFSET(p[hi]);
  7155. sector_t e = a + BB_LEN(p[hi]);
  7156. int ack = BB_ACK(p[hi]);
  7157. if (a <= s + sectors) {
  7158. /* merging is possible */
  7159. if (e <= s + sectors) {
  7160. /* full overlap */
  7161. e = s + sectors;
  7162. ack = acknowledged;
  7163. } else
  7164. ack = ack && acknowledged;
  7165. a = s;
  7166. if (e - a <= BB_MAX_LEN) {
  7167. p[hi] = BB_MAKE(a, e-a, ack);
  7168. s = e;
  7169. } else {
  7170. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7171. s = a + BB_MAX_LEN;
  7172. }
  7173. sectors = e - s;
  7174. lo = hi;
  7175. hi++;
  7176. }
  7177. }
  7178. if (sectors == 0 && hi < bb->count) {
  7179. /* we might be able to combine lo and hi */
  7180. /* Note: 's' is at the end of 'lo' */
  7181. sector_t a = BB_OFFSET(p[hi]);
  7182. int lolen = BB_LEN(p[lo]);
  7183. int hilen = BB_LEN(p[hi]);
  7184. int newlen = lolen + hilen - (s - a);
  7185. if (s >= a && newlen < BB_MAX_LEN) {
  7186. /* yes, we can combine them */
  7187. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7188. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7189. memmove(p + hi, p + hi + 1,
  7190. (bb->count - hi - 1) * 8);
  7191. bb->count--;
  7192. }
  7193. }
  7194. while (sectors) {
  7195. /* didn't merge (it all).
  7196. * Need to add a range just before 'hi' */
  7197. if (bb->count >= MD_MAX_BADBLOCKS) {
  7198. /* No room for more */
  7199. rv = 0;
  7200. break;
  7201. } else {
  7202. int this_sectors = sectors;
  7203. memmove(p + hi + 1, p + hi,
  7204. (bb->count - hi) * 8);
  7205. bb->count++;
  7206. if (this_sectors > BB_MAX_LEN)
  7207. this_sectors = BB_MAX_LEN;
  7208. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7209. sectors -= this_sectors;
  7210. s += this_sectors;
  7211. }
  7212. }
  7213. bb->changed = 1;
  7214. if (!acknowledged)
  7215. bb->unacked_exist = 1;
  7216. write_sequnlock_irq(&bb->lock);
  7217. return rv;
  7218. }
  7219. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7220. int is_new)
  7221. {
  7222. int rv;
  7223. if (is_new)
  7224. s += rdev->new_data_offset;
  7225. else
  7226. s += rdev->data_offset;
  7227. rv = md_set_badblocks(&rdev->badblocks,
  7228. s, sectors, 0);
  7229. if (rv) {
  7230. /* Make sure they get written out promptly */
  7231. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7232. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7233. md_wakeup_thread(rdev->mddev->thread);
  7234. }
  7235. return rv;
  7236. }
  7237. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7238. /*
  7239. * Remove a range of bad blocks from the table.
  7240. * This may involve extending the table if we spilt a region,
  7241. * but it must not fail. So if the table becomes full, we just
  7242. * drop the remove request.
  7243. */
  7244. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7245. {
  7246. u64 *p;
  7247. int lo, hi;
  7248. sector_t target = s + sectors;
  7249. int rv = 0;
  7250. if (bb->shift > 0) {
  7251. /* When clearing we round the start up and the end down.
  7252. * This should not matter as the shift should align with
  7253. * the block size and no rounding should ever be needed.
  7254. * However it is better the think a block is bad when it
  7255. * isn't than to think a block is not bad when it is.
  7256. */
  7257. s += (1<<bb->shift) - 1;
  7258. s >>= bb->shift;
  7259. target >>= bb->shift;
  7260. sectors = target - s;
  7261. }
  7262. write_seqlock_irq(&bb->lock);
  7263. p = bb->page;
  7264. lo = 0;
  7265. hi = bb->count;
  7266. /* Find the last range that starts before 'target' */
  7267. while (hi - lo > 1) {
  7268. int mid = (lo + hi) / 2;
  7269. sector_t a = BB_OFFSET(p[mid]);
  7270. if (a < target)
  7271. lo = mid;
  7272. else
  7273. hi = mid;
  7274. }
  7275. if (hi > lo) {
  7276. /* p[lo] is the last range that could overlap the
  7277. * current range. Earlier ranges could also overlap,
  7278. * but only this one can overlap the end of the range.
  7279. */
  7280. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7281. /* Partial overlap, leave the tail of this range */
  7282. int ack = BB_ACK(p[lo]);
  7283. sector_t a = BB_OFFSET(p[lo]);
  7284. sector_t end = a + BB_LEN(p[lo]);
  7285. if (a < s) {
  7286. /* we need to split this range */
  7287. if (bb->count >= MD_MAX_BADBLOCKS) {
  7288. rv = 0;
  7289. goto out;
  7290. }
  7291. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7292. bb->count++;
  7293. p[lo] = BB_MAKE(a, s-a, ack);
  7294. lo++;
  7295. }
  7296. p[lo] = BB_MAKE(target, end - target, ack);
  7297. /* there is no longer an overlap */
  7298. hi = lo;
  7299. lo--;
  7300. }
  7301. while (lo >= 0 &&
  7302. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7303. /* This range does overlap */
  7304. if (BB_OFFSET(p[lo]) < s) {
  7305. /* Keep the early parts of this range. */
  7306. int ack = BB_ACK(p[lo]);
  7307. sector_t start = BB_OFFSET(p[lo]);
  7308. p[lo] = BB_MAKE(start, s - start, ack);
  7309. /* now low doesn't overlap, so.. */
  7310. break;
  7311. }
  7312. lo--;
  7313. }
  7314. /* 'lo' is strictly before, 'hi' is strictly after,
  7315. * anything between needs to be discarded
  7316. */
  7317. if (hi - lo > 1) {
  7318. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7319. bb->count -= (hi - lo - 1);
  7320. }
  7321. }
  7322. bb->changed = 1;
  7323. out:
  7324. write_sequnlock_irq(&bb->lock);
  7325. return rv;
  7326. }
  7327. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7328. int is_new)
  7329. {
  7330. if (is_new)
  7331. s += rdev->new_data_offset;
  7332. else
  7333. s += rdev->data_offset;
  7334. return md_clear_badblocks(&rdev->badblocks,
  7335. s, sectors);
  7336. }
  7337. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7338. /*
  7339. * Acknowledge all bad blocks in a list.
  7340. * This only succeeds if ->changed is clear. It is used by
  7341. * in-kernel metadata updates
  7342. */
  7343. void md_ack_all_badblocks(struct badblocks *bb)
  7344. {
  7345. if (bb->page == NULL || bb->changed)
  7346. /* no point even trying */
  7347. return;
  7348. write_seqlock_irq(&bb->lock);
  7349. if (bb->changed == 0 && bb->unacked_exist) {
  7350. u64 *p = bb->page;
  7351. int i;
  7352. for (i = 0; i < bb->count ; i++) {
  7353. if (!BB_ACK(p[i])) {
  7354. sector_t start = BB_OFFSET(p[i]);
  7355. int len = BB_LEN(p[i]);
  7356. p[i] = BB_MAKE(start, len, 1);
  7357. }
  7358. }
  7359. bb->unacked_exist = 0;
  7360. }
  7361. write_sequnlock_irq(&bb->lock);
  7362. }
  7363. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7364. /* sysfs access to bad-blocks list.
  7365. * We present two files.
  7366. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7367. * are recorded as bad. The list is truncated to fit within
  7368. * the one-page limit of sysfs.
  7369. * Writing "sector length" to this file adds an acknowledged
  7370. * bad block list.
  7371. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7372. * been acknowledged. Writing to this file adds bad blocks
  7373. * without acknowledging them. This is largely for testing.
  7374. */
  7375. static ssize_t
  7376. badblocks_show(struct badblocks *bb, char *page, int unack)
  7377. {
  7378. size_t len;
  7379. int i;
  7380. u64 *p = bb->page;
  7381. unsigned seq;
  7382. if (bb->shift < 0)
  7383. return 0;
  7384. retry:
  7385. seq = read_seqbegin(&bb->lock);
  7386. len = 0;
  7387. i = 0;
  7388. while (len < PAGE_SIZE && i < bb->count) {
  7389. sector_t s = BB_OFFSET(p[i]);
  7390. unsigned int length = BB_LEN(p[i]);
  7391. int ack = BB_ACK(p[i]);
  7392. i++;
  7393. if (unack && ack)
  7394. continue;
  7395. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7396. (unsigned long long)s << bb->shift,
  7397. length << bb->shift);
  7398. }
  7399. if (unack && len == 0)
  7400. bb->unacked_exist = 0;
  7401. if (read_seqretry(&bb->lock, seq))
  7402. goto retry;
  7403. return len;
  7404. }
  7405. #define DO_DEBUG 1
  7406. static ssize_t
  7407. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7408. {
  7409. unsigned long long sector;
  7410. int length;
  7411. char newline;
  7412. #ifdef DO_DEBUG
  7413. /* Allow clearing via sysfs *only* for testing/debugging.
  7414. * Normally only a successful write may clear a badblock
  7415. */
  7416. int clear = 0;
  7417. if (page[0] == '-') {
  7418. clear = 1;
  7419. page++;
  7420. }
  7421. #endif /* DO_DEBUG */
  7422. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7423. case 3:
  7424. if (newline != '\n')
  7425. return -EINVAL;
  7426. case 2:
  7427. if (length <= 0)
  7428. return -EINVAL;
  7429. break;
  7430. default:
  7431. return -EINVAL;
  7432. }
  7433. #ifdef DO_DEBUG
  7434. if (clear) {
  7435. md_clear_badblocks(bb, sector, length);
  7436. return len;
  7437. }
  7438. #endif /* DO_DEBUG */
  7439. if (md_set_badblocks(bb, sector, length, !unack))
  7440. return len;
  7441. else
  7442. return -ENOSPC;
  7443. }
  7444. static int md_notify_reboot(struct notifier_block *this,
  7445. unsigned long code, void *x)
  7446. {
  7447. struct list_head *tmp;
  7448. struct mddev *mddev;
  7449. int need_delay = 0;
  7450. for_each_mddev(mddev, tmp) {
  7451. if (mddev_trylock(mddev)) {
  7452. if (mddev->pers)
  7453. __md_stop_writes(mddev);
  7454. mddev->safemode = 2;
  7455. mddev_unlock(mddev);
  7456. }
  7457. need_delay = 1;
  7458. }
  7459. /*
  7460. * certain more exotic SCSI devices are known to be
  7461. * volatile wrt too early system reboots. While the
  7462. * right place to handle this issue is the given
  7463. * driver, we do want to have a safe RAID driver ...
  7464. */
  7465. if (need_delay)
  7466. mdelay(1000*1);
  7467. return NOTIFY_DONE;
  7468. }
  7469. static struct notifier_block md_notifier = {
  7470. .notifier_call = md_notify_reboot,
  7471. .next = NULL,
  7472. .priority = INT_MAX, /* before any real devices */
  7473. };
  7474. static void md_geninit(void)
  7475. {
  7476. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7477. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7478. }
  7479. static int __init md_init(void)
  7480. {
  7481. int ret = -ENOMEM;
  7482. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7483. if (!md_wq)
  7484. goto err_wq;
  7485. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7486. if (!md_misc_wq)
  7487. goto err_misc_wq;
  7488. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7489. goto err_md;
  7490. if ((ret = register_blkdev(0, "mdp")) < 0)
  7491. goto err_mdp;
  7492. mdp_major = ret;
  7493. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7494. md_probe, NULL, NULL);
  7495. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7496. md_probe, NULL, NULL);
  7497. register_reboot_notifier(&md_notifier);
  7498. raid_table_header = register_sysctl_table(raid_root_table);
  7499. md_geninit();
  7500. return 0;
  7501. err_mdp:
  7502. unregister_blkdev(MD_MAJOR, "md");
  7503. err_md:
  7504. destroy_workqueue(md_misc_wq);
  7505. err_misc_wq:
  7506. destroy_workqueue(md_wq);
  7507. err_wq:
  7508. return ret;
  7509. }
  7510. #ifndef MODULE
  7511. /*
  7512. * Searches all registered partitions for autorun RAID arrays
  7513. * at boot time.
  7514. */
  7515. static LIST_HEAD(all_detected_devices);
  7516. struct detected_devices_node {
  7517. struct list_head list;
  7518. dev_t dev;
  7519. };
  7520. void md_autodetect_dev(dev_t dev)
  7521. {
  7522. struct detected_devices_node *node_detected_dev;
  7523. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7524. if (node_detected_dev) {
  7525. node_detected_dev->dev = dev;
  7526. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7527. } else {
  7528. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7529. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7530. }
  7531. }
  7532. static void autostart_arrays(int part)
  7533. {
  7534. struct md_rdev *rdev;
  7535. struct detected_devices_node *node_detected_dev;
  7536. dev_t dev;
  7537. int i_scanned, i_passed;
  7538. i_scanned = 0;
  7539. i_passed = 0;
  7540. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7541. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7542. i_scanned++;
  7543. node_detected_dev = list_entry(all_detected_devices.next,
  7544. struct detected_devices_node, list);
  7545. list_del(&node_detected_dev->list);
  7546. dev = node_detected_dev->dev;
  7547. kfree(node_detected_dev);
  7548. rdev = md_import_device(dev,0, 90);
  7549. if (IS_ERR(rdev))
  7550. continue;
  7551. if (test_bit(Faulty, &rdev->flags)) {
  7552. MD_BUG();
  7553. continue;
  7554. }
  7555. set_bit(AutoDetected, &rdev->flags);
  7556. list_add(&rdev->same_set, &pending_raid_disks);
  7557. i_passed++;
  7558. }
  7559. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7560. i_scanned, i_passed);
  7561. autorun_devices(part);
  7562. }
  7563. #endif /* !MODULE */
  7564. static __exit void md_exit(void)
  7565. {
  7566. struct mddev *mddev;
  7567. struct list_head *tmp;
  7568. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7569. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7570. unregister_blkdev(MD_MAJOR,"md");
  7571. unregister_blkdev(mdp_major, "mdp");
  7572. unregister_reboot_notifier(&md_notifier);
  7573. unregister_sysctl_table(raid_table_header);
  7574. remove_proc_entry("mdstat", NULL);
  7575. for_each_mddev(mddev, tmp) {
  7576. export_array(mddev);
  7577. mddev->hold_active = 0;
  7578. }
  7579. destroy_workqueue(md_misc_wq);
  7580. destroy_workqueue(md_wq);
  7581. }
  7582. subsys_initcall(md_init);
  7583. module_exit(md_exit)
  7584. static int get_ro(char *buffer, struct kernel_param *kp)
  7585. {
  7586. return sprintf(buffer, "%d", start_readonly);
  7587. }
  7588. static int set_ro(const char *val, struct kernel_param *kp)
  7589. {
  7590. char *e;
  7591. int num = simple_strtoul(val, &e, 10);
  7592. if (*val && (*e == '\0' || *e == '\n')) {
  7593. start_readonly = num;
  7594. return 0;
  7595. }
  7596. return -EINVAL;
  7597. }
  7598. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7599. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7600. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7601. EXPORT_SYMBOL(register_md_personality);
  7602. EXPORT_SYMBOL(unregister_md_personality);
  7603. EXPORT_SYMBOL(md_error);
  7604. EXPORT_SYMBOL(md_done_sync);
  7605. EXPORT_SYMBOL(md_write_start);
  7606. EXPORT_SYMBOL(md_write_end);
  7607. EXPORT_SYMBOL(md_register_thread);
  7608. EXPORT_SYMBOL(md_unregister_thread);
  7609. EXPORT_SYMBOL(md_wakeup_thread);
  7610. EXPORT_SYMBOL(md_check_recovery);
  7611. MODULE_LICENSE("GPL");
  7612. MODULE_DESCRIPTION("MD RAID framework");
  7613. MODULE_ALIAS("md");
  7614. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);