ll_rw_blk.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/scatterlist.h>
  33. /*
  34. * for max sense size
  35. */
  36. #include <scsi/scsi_cmnd.h>
  37. static void blk_unplug_work(struct work_struct *work);
  38. static void blk_unplug_timeout(unsigned long data);
  39. static void drive_stat_acct(struct request *rq, int new_io);
  40. static void init_request_from_bio(struct request *req, struct bio *bio);
  41. static int __make_request(struct request_queue *q, struct bio *bio);
  42. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  43. static void blk_recalc_rq_segments(struct request *rq);
  44. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  45. struct bio *bio);
  46. /*
  47. * For the allocated request tables
  48. */
  49. static struct kmem_cache *request_cachep;
  50. /*
  51. * For queue allocation
  52. */
  53. static struct kmem_cache *requestq_cachep;
  54. /*
  55. * For io context allocations
  56. */
  57. static struct kmem_cache *iocontext_cachep;
  58. /*
  59. * Controlling structure to kblockd
  60. */
  61. static struct workqueue_struct *kblockd_workqueue;
  62. unsigned long blk_max_low_pfn, blk_max_pfn;
  63. EXPORT_SYMBOL(blk_max_low_pfn);
  64. EXPORT_SYMBOL(blk_max_pfn);
  65. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  66. /* Amount of time in which a process may batch requests */
  67. #define BLK_BATCH_TIME (HZ/50UL)
  68. /* Number of requests a "batching" process may submit */
  69. #define BLK_BATCH_REQ 32
  70. /*
  71. * Return the threshold (number of used requests) at which the queue is
  72. * considered to be congested. It include a little hysteresis to keep the
  73. * context switch rate down.
  74. */
  75. static inline int queue_congestion_on_threshold(struct request_queue *q)
  76. {
  77. return q->nr_congestion_on;
  78. }
  79. /*
  80. * The threshold at which a queue is considered to be uncongested
  81. */
  82. static inline int queue_congestion_off_threshold(struct request_queue *q)
  83. {
  84. return q->nr_congestion_off;
  85. }
  86. static void blk_queue_congestion_threshold(struct request_queue *q)
  87. {
  88. int nr;
  89. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  90. if (nr > q->nr_requests)
  91. nr = q->nr_requests;
  92. q->nr_congestion_on = nr;
  93. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  94. if (nr < 1)
  95. nr = 1;
  96. q->nr_congestion_off = nr;
  97. }
  98. /**
  99. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  100. * @bdev: device
  101. *
  102. * Locates the passed device's request queue and returns the address of its
  103. * backing_dev_info
  104. *
  105. * Will return NULL if the request queue cannot be located.
  106. */
  107. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  108. {
  109. struct backing_dev_info *ret = NULL;
  110. struct request_queue *q = bdev_get_queue(bdev);
  111. if (q)
  112. ret = &q->backing_dev_info;
  113. return ret;
  114. }
  115. EXPORT_SYMBOL(blk_get_backing_dev_info);
  116. /**
  117. * blk_queue_prep_rq - set a prepare_request function for queue
  118. * @q: queue
  119. * @pfn: prepare_request function
  120. *
  121. * It's possible for a queue to register a prepare_request callback which
  122. * is invoked before the request is handed to the request_fn. The goal of
  123. * the function is to prepare a request for I/O, it can be used to build a
  124. * cdb from the request data for instance.
  125. *
  126. */
  127. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  128. {
  129. q->prep_rq_fn = pfn;
  130. }
  131. EXPORT_SYMBOL(blk_queue_prep_rq);
  132. /**
  133. * blk_queue_merge_bvec - set a merge_bvec function for queue
  134. * @q: queue
  135. * @mbfn: merge_bvec_fn
  136. *
  137. * Usually queues have static limitations on the max sectors or segments that
  138. * we can put in a request. Stacking drivers may have some settings that
  139. * are dynamic, and thus we have to query the queue whether it is ok to
  140. * add a new bio_vec to a bio at a given offset or not. If the block device
  141. * has such limitations, it needs to register a merge_bvec_fn to control
  142. * the size of bio's sent to it. Note that a block device *must* allow a
  143. * single page to be added to an empty bio. The block device driver may want
  144. * to use the bio_split() function to deal with these bio's. By default
  145. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  146. * honored.
  147. */
  148. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  149. {
  150. q->merge_bvec_fn = mbfn;
  151. }
  152. EXPORT_SYMBOL(blk_queue_merge_bvec);
  153. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  154. {
  155. q->softirq_done_fn = fn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_softirq_done);
  158. /**
  159. * blk_queue_make_request - define an alternate make_request function for a device
  160. * @q: the request queue for the device to be affected
  161. * @mfn: the alternate make_request function
  162. *
  163. * Description:
  164. * The normal way for &struct bios to be passed to a device
  165. * driver is for them to be collected into requests on a request
  166. * queue, and then to allow the device driver to select requests
  167. * off that queue when it is ready. This works well for many block
  168. * devices. However some block devices (typically virtual devices
  169. * such as md or lvm) do not benefit from the processing on the
  170. * request queue, and are served best by having the requests passed
  171. * directly to them. This can be achieved by providing a function
  172. * to blk_queue_make_request().
  173. *
  174. * Caveat:
  175. * The driver that does this *must* be able to deal appropriately
  176. * with buffers in "highmemory". This can be accomplished by either calling
  177. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  178. * blk_queue_bounce() to create a buffer in normal memory.
  179. **/
  180. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  181. {
  182. /*
  183. * set defaults
  184. */
  185. q->nr_requests = BLKDEV_MAX_RQ;
  186. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  187. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  188. q->make_request_fn = mfn;
  189. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  190. q->backing_dev_info.state = 0;
  191. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  192. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  193. blk_queue_hardsect_size(q, 512);
  194. blk_queue_dma_alignment(q, 511);
  195. blk_queue_congestion_threshold(q);
  196. q->nr_batching = BLK_BATCH_REQ;
  197. q->unplug_thresh = 4; /* hmm */
  198. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  199. if (q->unplug_delay == 0)
  200. q->unplug_delay = 1;
  201. INIT_WORK(&q->unplug_work, blk_unplug_work);
  202. q->unplug_timer.function = blk_unplug_timeout;
  203. q->unplug_timer.data = (unsigned long)q;
  204. /*
  205. * by default assume old behaviour and bounce for any highmem page
  206. */
  207. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  208. }
  209. EXPORT_SYMBOL(blk_queue_make_request);
  210. static void rq_init(struct request_queue *q, struct request *rq)
  211. {
  212. INIT_LIST_HEAD(&rq->queuelist);
  213. INIT_LIST_HEAD(&rq->donelist);
  214. rq->errors = 0;
  215. rq->bio = rq->biotail = NULL;
  216. INIT_HLIST_NODE(&rq->hash);
  217. RB_CLEAR_NODE(&rq->rb_node);
  218. rq->ioprio = 0;
  219. rq->buffer = NULL;
  220. rq->ref_count = 1;
  221. rq->q = q;
  222. rq->special = NULL;
  223. rq->data_len = 0;
  224. rq->data = NULL;
  225. rq->nr_phys_segments = 0;
  226. rq->sense = NULL;
  227. rq->end_io = NULL;
  228. rq->end_io_data = NULL;
  229. rq->completion_data = NULL;
  230. rq->next_rq = NULL;
  231. }
  232. /**
  233. * blk_queue_ordered - does this queue support ordered writes
  234. * @q: the request queue
  235. * @ordered: one of QUEUE_ORDERED_*
  236. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  237. *
  238. * Description:
  239. * For journalled file systems, doing ordered writes on a commit
  240. * block instead of explicitly doing wait_on_buffer (which is bad
  241. * for performance) can be a big win. Block drivers supporting this
  242. * feature should call this function and indicate so.
  243. *
  244. **/
  245. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  246. prepare_flush_fn *prepare_flush_fn)
  247. {
  248. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  249. prepare_flush_fn == NULL) {
  250. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  251. return -EINVAL;
  252. }
  253. if (ordered != QUEUE_ORDERED_NONE &&
  254. ordered != QUEUE_ORDERED_DRAIN &&
  255. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  256. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  257. ordered != QUEUE_ORDERED_TAG &&
  258. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  259. ordered != QUEUE_ORDERED_TAG_FUA) {
  260. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  261. return -EINVAL;
  262. }
  263. q->ordered = ordered;
  264. q->next_ordered = ordered;
  265. q->prepare_flush_fn = prepare_flush_fn;
  266. return 0;
  267. }
  268. EXPORT_SYMBOL(blk_queue_ordered);
  269. /*
  270. * Cache flushing for ordered writes handling
  271. */
  272. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  273. {
  274. if (!q->ordseq)
  275. return 0;
  276. return 1 << ffz(q->ordseq);
  277. }
  278. unsigned blk_ordered_req_seq(struct request *rq)
  279. {
  280. struct request_queue *q = rq->q;
  281. BUG_ON(q->ordseq == 0);
  282. if (rq == &q->pre_flush_rq)
  283. return QUEUE_ORDSEQ_PREFLUSH;
  284. if (rq == &q->bar_rq)
  285. return QUEUE_ORDSEQ_BAR;
  286. if (rq == &q->post_flush_rq)
  287. return QUEUE_ORDSEQ_POSTFLUSH;
  288. /*
  289. * !fs requests don't need to follow barrier ordering. Always
  290. * put them at the front. This fixes the following deadlock.
  291. *
  292. * http://thread.gmane.org/gmane.linux.kernel/537473
  293. */
  294. if (!blk_fs_request(rq))
  295. return QUEUE_ORDSEQ_DRAIN;
  296. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  297. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  298. return QUEUE_ORDSEQ_DRAIN;
  299. else
  300. return QUEUE_ORDSEQ_DONE;
  301. }
  302. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  303. {
  304. struct request *rq;
  305. if (error && !q->orderr)
  306. q->orderr = error;
  307. BUG_ON(q->ordseq & seq);
  308. q->ordseq |= seq;
  309. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  310. return;
  311. /*
  312. * Okay, sequence complete.
  313. */
  314. q->ordseq = 0;
  315. rq = q->orig_bar_rq;
  316. if (__blk_end_request(rq, q->orderr, blk_rq_bytes(rq)))
  317. BUG();
  318. }
  319. static void pre_flush_end_io(struct request *rq, int error)
  320. {
  321. elv_completed_request(rq->q, rq);
  322. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  323. }
  324. static void bar_end_io(struct request *rq, int error)
  325. {
  326. elv_completed_request(rq->q, rq);
  327. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  328. }
  329. static void post_flush_end_io(struct request *rq, int error)
  330. {
  331. elv_completed_request(rq->q, rq);
  332. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  333. }
  334. static void queue_flush(struct request_queue *q, unsigned which)
  335. {
  336. struct request *rq;
  337. rq_end_io_fn *end_io;
  338. if (which == QUEUE_ORDERED_PREFLUSH) {
  339. rq = &q->pre_flush_rq;
  340. end_io = pre_flush_end_io;
  341. } else {
  342. rq = &q->post_flush_rq;
  343. end_io = post_flush_end_io;
  344. }
  345. rq->cmd_flags = REQ_HARDBARRIER;
  346. rq_init(q, rq);
  347. rq->elevator_private = NULL;
  348. rq->elevator_private2 = NULL;
  349. rq->rq_disk = q->bar_rq.rq_disk;
  350. rq->end_io = end_io;
  351. q->prepare_flush_fn(q, rq);
  352. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  353. }
  354. static inline struct request *start_ordered(struct request_queue *q,
  355. struct request *rq)
  356. {
  357. q->orderr = 0;
  358. q->ordered = q->next_ordered;
  359. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  360. /*
  361. * Prep proxy barrier request.
  362. */
  363. blkdev_dequeue_request(rq);
  364. q->orig_bar_rq = rq;
  365. rq = &q->bar_rq;
  366. rq->cmd_flags = 0;
  367. rq_init(q, rq);
  368. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  369. rq->cmd_flags |= REQ_RW;
  370. if (q->ordered & QUEUE_ORDERED_FUA)
  371. rq->cmd_flags |= REQ_FUA;
  372. rq->elevator_private = NULL;
  373. rq->elevator_private2 = NULL;
  374. init_request_from_bio(rq, q->orig_bar_rq->bio);
  375. rq->end_io = bar_end_io;
  376. /*
  377. * Queue ordered sequence. As we stack them at the head, we
  378. * need to queue in reverse order. Note that we rely on that
  379. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  380. * request gets inbetween ordered sequence. If this request is
  381. * an empty barrier, we don't need to do a postflush ever since
  382. * there will be no data written between the pre and post flush.
  383. * Hence a single flush will suffice.
  384. */
  385. if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
  386. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  387. else
  388. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  389. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  390. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  391. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  392. rq = &q->pre_flush_rq;
  393. } else
  394. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  395. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  396. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  397. else
  398. rq = NULL;
  399. return rq;
  400. }
  401. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  402. {
  403. struct request *rq = *rqp;
  404. const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  405. if (!q->ordseq) {
  406. if (!is_barrier)
  407. return 1;
  408. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  409. *rqp = start_ordered(q, rq);
  410. return 1;
  411. } else {
  412. /*
  413. * This can happen when the queue switches to
  414. * ORDERED_NONE while this request is on it.
  415. */
  416. blkdev_dequeue_request(rq);
  417. if (__blk_end_request(rq, -EOPNOTSUPP,
  418. blk_rq_bytes(rq)))
  419. BUG();
  420. *rqp = NULL;
  421. return 0;
  422. }
  423. }
  424. /*
  425. * Ordered sequence in progress
  426. */
  427. /* Special requests are not subject to ordering rules. */
  428. if (!blk_fs_request(rq) &&
  429. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  430. return 1;
  431. if (q->ordered & QUEUE_ORDERED_TAG) {
  432. /* Ordered by tag. Blocking the next barrier is enough. */
  433. if (is_barrier && rq != &q->bar_rq)
  434. *rqp = NULL;
  435. } else {
  436. /* Ordered by draining. Wait for turn. */
  437. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  438. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  439. *rqp = NULL;
  440. }
  441. return 1;
  442. }
  443. static void req_bio_endio(struct request *rq, struct bio *bio,
  444. unsigned int nbytes, int error)
  445. {
  446. struct request_queue *q = rq->q;
  447. if (&q->bar_rq != rq) {
  448. if (error)
  449. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  450. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  451. error = -EIO;
  452. if (unlikely(nbytes > bio->bi_size)) {
  453. printk("%s: want %u bytes done, only %u left\n",
  454. __FUNCTION__, nbytes, bio->bi_size);
  455. nbytes = bio->bi_size;
  456. }
  457. bio->bi_size -= nbytes;
  458. bio->bi_sector += (nbytes >> 9);
  459. if (bio->bi_size == 0)
  460. bio_endio(bio, error);
  461. } else {
  462. /*
  463. * Okay, this is the barrier request in progress, just
  464. * record the error;
  465. */
  466. if (error && !q->orderr)
  467. q->orderr = error;
  468. }
  469. }
  470. /**
  471. * blk_queue_bounce_limit - set bounce buffer limit for queue
  472. * @q: the request queue for the device
  473. * @dma_addr: bus address limit
  474. *
  475. * Description:
  476. * Different hardware can have different requirements as to what pages
  477. * it can do I/O directly to. A low level driver can call
  478. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  479. * buffers for doing I/O to pages residing above @page.
  480. **/
  481. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  482. {
  483. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  484. int dma = 0;
  485. q->bounce_gfp = GFP_NOIO;
  486. #if BITS_PER_LONG == 64
  487. /* Assume anything <= 4GB can be handled by IOMMU.
  488. Actually some IOMMUs can handle everything, but I don't
  489. know of a way to test this here. */
  490. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  491. dma = 1;
  492. q->bounce_pfn = max_low_pfn;
  493. #else
  494. if (bounce_pfn < blk_max_low_pfn)
  495. dma = 1;
  496. q->bounce_pfn = bounce_pfn;
  497. #endif
  498. if (dma) {
  499. init_emergency_isa_pool();
  500. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  501. q->bounce_pfn = bounce_pfn;
  502. }
  503. }
  504. EXPORT_SYMBOL(blk_queue_bounce_limit);
  505. /**
  506. * blk_queue_max_sectors - set max sectors for a request for this queue
  507. * @q: the request queue for the device
  508. * @max_sectors: max sectors in the usual 512b unit
  509. *
  510. * Description:
  511. * Enables a low level driver to set an upper limit on the size of
  512. * received requests.
  513. **/
  514. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  515. {
  516. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  517. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  518. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  519. }
  520. if (BLK_DEF_MAX_SECTORS > max_sectors)
  521. q->max_hw_sectors = q->max_sectors = max_sectors;
  522. else {
  523. q->max_sectors = BLK_DEF_MAX_SECTORS;
  524. q->max_hw_sectors = max_sectors;
  525. }
  526. }
  527. EXPORT_SYMBOL(blk_queue_max_sectors);
  528. /**
  529. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  530. * @q: the request queue for the device
  531. * @max_segments: max number of segments
  532. *
  533. * Description:
  534. * Enables a low level driver to set an upper limit on the number of
  535. * physical data segments in a request. This would be the largest sized
  536. * scatter list the driver could handle.
  537. **/
  538. void blk_queue_max_phys_segments(struct request_queue *q,
  539. unsigned short max_segments)
  540. {
  541. if (!max_segments) {
  542. max_segments = 1;
  543. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  544. }
  545. q->max_phys_segments = max_segments;
  546. }
  547. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  548. /**
  549. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  550. * @q: the request queue for the device
  551. * @max_segments: max number of segments
  552. *
  553. * Description:
  554. * Enables a low level driver to set an upper limit on the number of
  555. * hw data segments in a request. This would be the largest number of
  556. * address/length pairs the host adapter can actually give as once
  557. * to the device.
  558. **/
  559. void blk_queue_max_hw_segments(struct request_queue *q,
  560. unsigned short max_segments)
  561. {
  562. if (!max_segments) {
  563. max_segments = 1;
  564. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  565. }
  566. q->max_hw_segments = max_segments;
  567. }
  568. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  569. /**
  570. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  571. * @q: the request queue for the device
  572. * @max_size: max size of segment in bytes
  573. *
  574. * Description:
  575. * Enables a low level driver to set an upper limit on the size of a
  576. * coalesced segment
  577. **/
  578. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  579. {
  580. if (max_size < PAGE_CACHE_SIZE) {
  581. max_size = PAGE_CACHE_SIZE;
  582. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  583. }
  584. q->max_segment_size = max_size;
  585. }
  586. EXPORT_SYMBOL(blk_queue_max_segment_size);
  587. /**
  588. * blk_queue_hardsect_size - set hardware sector size for the queue
  589. * @q: the request queue for the device
  590. * @size: the hardware sector size, in bytes
  591. *
  592. * Description:
  593. * This should typically be set to the lowest possible sector size
  594. * that the hardware can operate on (possible without reverting to
  595. * even internal read-modify-write operations). Usually the default
  596. * of 512 covers most hardware.
  597. **/
  598. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  599. {
  600. q->hardsect_size = size;
  601. }
  602. EXPORT_SYMBOL(blk_queue_hardsect_size);
  603. /*
  604. * Returns the minimum that is _not_ zero, unless both are zero.
  605. */
  606. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  607. /**
  608. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  609. * @t: the stacking driver (top)
  610. * @b: the underlying device (bottom)
  611. **/
  612. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  613. {
  614. /* zero is "infinity" */
  615. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  616. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  617. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  618. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  619. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  620. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  621. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  622. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  623. }
  624. EXPORT_SYMBOL(blk_queue_stack_limits);
  625. /**
  626. * blk_queue_segment_boundary - set boundary rules for segment merging
  627. * @q: the request queue for the device
  628. * @mask: the memory boundary mask
  629. **/
  630. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  631. {
  632. if (mask < PAGE_CACHE_SIZE - 1) {
  633. mask = PAGE_CACHE_SIZE - 1;
  634. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  635. }
  636. q->seg_boundary_mask = mask;
  637. }
  638. EXPORT_SYMBOL(blk_queue_segment_boundary);
  639. /**
  640. * blk_queue_dma_alignment - set dma length and memory alignment
  641. * @q: the request queue for the device
  642. * @mask: alignment mask
  643. *
  644. * description:
  645. * set required memory and length aligment for direct dma transactions.
  646. * this is used when buiding direct io requests for the queue.
  647. *
  648. **/
  649. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  650. {
  651. q->dma_alignment = mask;
  652. }
  653. EXPORT_SYMBOL(blk_queue_dma_alignment);
  654. /**
  655. * blk_queue_update_dma_alignment - update dma length and memory alignment
  656. * @q: the request queue for the device
  657. * @mask: alignment mask
  658. *
  659. * description:
  660. * update required memory and length aligment for direct dma transactions.
  661. * If the requested alignment is larger than the current alignment, then
  662. * the current queue alignment is updated to the new value, otherwise it
  663. * is left alone. The design of this is to allow multiple objects
  664. * (driver, device, transport etc) to set their respective
  665. * alignments without having them interfere.
  666. *
  667. **/
  668. void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
  669. {
  670. BUG_ON(mask > PAGE_SIZE);
  671. if (mask > q->dma_alignment)
  672. q->dma_alignment = mask;
  673. }
  674. EXPORT_SYMBOL(blk_queue_update_dma_alignment);
  675. /**
  676. * blk_queue_find_tag - find a request by its tag and queue
  677. * @q: The request queue for the device
  678. * @tag: The tag of the request
  679. *
  680. * Notes:
  681. * Should be used when a device returns a tag and you want to match
  682. * it with a request.
  683. *
  684. * no locks need be held.
  685. **/
  686. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  687. {
  688. return blk_map_queue_find_tag(q->queue_tags, tag);
  689. }
  690. EXPORT_SYMBOL(blk_queue_find_tag);
  691. /**
  692. * __blk_free_tags - release a given set of tag maintenance info
  693. * @bqt: the tag map to free
  694. *
  695. * Tries to free the specified @bqt@. Returns true if it was
  696. * actually freed and false if there are still references using it
  697. */
  698. static int __blk_free_tags(struct blk_queue_tag *bqt)
  699. {
  700. int retval;
  701. retval = atomic_dec_and_test(&bqt->refcnt);
  702. if (retval) {
  703. BUG_ON(bqt->busy);
  704. kfree(bqt->tag_index);
  705. bqt->tag_index = NULL;
  706. kfree(bqt->tag_map);
  707. bqt->tag_map = NULL;
  708. kfree(bqt);
  709. }
  710. return retval;
  711. }
  712. /**
  713. * __blk_queue_free_tags - release tag maintenance info
  714. * @q: the request queue for the device
  715. *
  716. * Notes:
  717. * blk_cleanup_queue() will take care of calling this function, if tagging
  718. * has been used. So there's no need to call this directly.
  719. **/
  720. static void __blk_queue_free_tags(struct request_queue *q)
  721. {
  722. struct blk_queue_tag *bqt = q->queue_tags;
  723. if (!bqt)
  724. return;
  725. __blk_free_tags(bqt);
  726. q->queue_tags = NULL;
  727. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  728. }
  729. /**
  730. * blk_free_tags - release a given set of tag maintenance info
  731. * @bqt: the tag map to free
  732. *
  733. * For externally managed @bqt@ frees the map. Callers of this
  734. * function must guarantee to have released all the queues that
  735. * might have been using this tag map.
  736. */
  737. void blk_free_tags(struct blk_queue_tag *bqt)
  738. {
  739. if (unlikely(!__blk_free_tags(bqt)))
  740. BUG();
  741. }
  742. EXPORT_SYMBOL(blk_free_tags);
  743. /**
  744. * blk_queue_free_tags - release tag maintenance info
  745. * @q: the request queue for the device
  746. *
  747. * Notes:
  748. * This is used to disabled tagged queuing to a device, yet leave
  749. * queue in function.
  750. **/
  751. void blk_queue_free_tags(struct request_queue *q)
  752. {
  753. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  754. }
  755. EXPORT_SYMBOL(blk_queue_free_tags);
  756. static int
  757. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  758. {
  759. struct request **tag_index;
  760. unsigned long *tag_map;
  761. int nr_ulongs;
  762. if (q && depth > q->nr_requests * 2) {
  763. depth = q->nr_requests * 2;
  764. printk(KERN_ERR "%s: adjusted depth to %d\n",
  765. __FUNCTION__, depth);
  766. }
  767. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  768. if (!tag_index)
  769. goto fail;
  770. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  771. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  772. if (!tag_map)
  773. goto fail;
  774. tags->real_max_depth = depth;
  775. tags->max_depth = depth;
  776. tags->tag_index = tag_index;
  777. tags->tag_map = tag_map;
  778. return 0;
  779. fail:
  780. kfree(tag_index);
  781. return -ENOMEM;
  782. }
  783. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  784. int depth)
  785. {
  786. struct blk_queue_tag *tags;
  787. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  788. if (!tags)
  789. goto fail;
  790. if (init_tag_map(q, tags, depth))
  791. goto fail;
  792. tags->busy = 0;
  793. atomic_set(&tags->refcnt, 1);
  794. return tags;
  795. fail:
  796. kfree(tags);
  797. return NULL;
  798. }
  799. /**
  800. * blk_init_tags - initialize the tag info for an external tag map
  801. * @depth: the maximum queue depth supported
  802. * @tags: the tag to use
  803. **/
  804. struct blk_queue_tag *blk_init_tags(int depth)
  805. {
  806. return __blk_queue_init_tags(NULL, depth);
  807. }
  808. EXPORT_SYMBOL(blk_init_tags);
  809. /**
  810. * blk_queue_init_tags - initialize the queue tag info
  811. * @q: the request queue for the device
  812. * @depth: the maximum queue depth supported
  813. * @tags: the tag to use
  814. **/
  815. int blk_queue_init_tags(struct request_queue *q, int depth,
  816. struct blk_queue_tag *tags)
  817. {
  818. int rc;
  819. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  820. if (!tags && !q->queue_tags) {
  821. tags = __blk_queue_init_tags(q, depth);
  822. if (!tags)
  823. goto fail;
  824. } else if (q->queue_tags) {
  825. if ((rc = blk_queue_resize_tags(q, depth)))
  826. return rc;
  827. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  828. return 0;
  829. } else
  830. atomic_inc(&tags->refcnt);
  831. /*
  832. * assign it, all done
  833. */
  834. q->queue_tags = tags;
  835. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  836. INIT_LIST_HEAD(&q->tag_busy_list);
  837. return 0;
  838. fail:
  839. kfree(tags);
  840. return -ENOMEM;
  841. }
  842. EXPORT_SYMBOL(blk_queue_init_tags);
  843. /**
  844. * blk_queue_resize_tags - change the queueing depth
  845. * @q: the request queue for the device
  846. * @new_depth: the new max command queueing depth
  847. *
  848. * Notes:
  849. * Must be called with the queue lock held.
  850. **/
  851. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  852. {
  853. struct blk_queue_tag *bqt = q->queue_tags;
  854. struct request **tag_index;
  855. unsigned long *tag_map;
  856. int max_depth, nr_ulongs;
  857. if (!bqt)
  858. return -ENXIO;
  859. /*
  860. * if we already have large enough real_max_depth. just
  861. * adjust max_depth. *NOTE* as requests with tag value
  862. * between new_depth and real_max_depth can be in-flight, tag
  863. * map can not be shrunk blindly here.
  864. */
  865. if (new_depth <= bqt->real_max_depth) {
  866. bqt->max_depth = new_depth;
  867. return 0;
  868. }
  869. /*
  870. * Currently cannot replace a shared tag map with a new
  871. * one, so error out if this is the case
  872. */
  873. if (atomic_read(&bqt->refcnt) != 1)
  874. return -EBUSY;
  875. /*
  876. * save the old state info, so we can copy it back
  877. */
  878. tag_index = bqt->tag_index;
  879. tag_map = bqt->tag_map;
  880. max_depth = bqt->real_max_depth;
  881. if (init_tag_map(q, bqt, new_depth))
  882. return -ENOMEM;
  883. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  884. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  885. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  886. kfree(tag_index);
  887. kfree(tag_map);
  888. return 0;
  889. }
  890. EXPORT_SYMBOL(blk_queue_resize_tags);
  891. /**
  892. * blk_queue_end_tag - end tag operations for a request
  893. * @q: the request queue for the device
  894. * @rq: the request that has completed
  895. *
  896. * Description:
  897. * Typically called when end_that_request_first() returns 0, meaning
  898. * all transfers have been done for a request. It's important to call
  899. * this function before end_that_request_last(), as that will put the
  900. * request back on the free list thus corrupting the internal tag list.
  901. *
  902. * Notes:
  903. * queue lock must be held.
  904. **/
  905. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  906. {
  907. struct blk_queue_tag *bqt = q->queue_tags;
  908. int tag = rq->tag;
  909. BUG_ON(tag == -1);
  910. if (unlikely(tag >= bqt->real_max_depth))
  911. /*
  912. * This can happen after tag depth has been reduced.
  913. * FIXME: how about a warning or info message here?
  914. */
  915. return;
  916. list_del_init(&rq->queuelist);
  917. rq->cmd_flags &= ~REQ_QUEUED;
  918. rq->tag = -1;
  919. if (unlikely(bqt->tag_index[tag] == NULL))
  920. printk(KERN_ERR "%s: tag %d is missing\n",
  921. __FUNCTION__, tag);
  922. bqt->tag_index[tag] = NULL;
  923. if (unlikely(!test_bit(tag, bqt->tag_map))) {
  924. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  925. __FUNCTION__, tag);
  926. return;
  927. }
  928. /*
  929. * The tag_map bit acts as a lock for tag_index[bit], so we need
  930. * unlock memory barrier semantics.
  931. */
  932. clear_bit_unlock(tag, bqt->tag_map);
  933. bqt->busy--;
  934. }
  935. EXPORT_SYMBOL(blk_queue_end_tag);
  936. /**
  937. * blk_queue_start_tag - find a free tag and assign it
  938. * @q: the request queue for the device
  939. * @rq: the block request that needs tagging
  940. *
  941. * Description:
  942. * This can either be used as a stand-alone helper, or possibly be
  943. * assigned as the queue &prep_rq_fn (in which case &struct request
  944. * automagically gets a tag assigned). Note that this function
  945. * assumes that any type of request can be queued! if this is not
  946. * true for your device, you must check the request type before
  947. * calling this function. The request will also be removed from
  948. * the request queue, so it's the drivers responsibility to readd
  949. * it if it should need to be restarted for some reason.
  950. *
  951. * Notes:
  952. * queue lock must be held.
  953. **/
  954. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  955. {
  956. struct blk_queue_tag *bqt = q->queue_tags;
  957. int tag;
  958. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  959. printk(KERN_ERR
  960. "%s: request %p for device [%s] already tagged %d",
  961. __FUNCTION__, rq,
  962. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  963. BUG();
  964. }
  965. /*
  966. * Protect against shared tag maps, as we may not have exclusive
  967. * access to the tag map.
  968. */
  969. do {
  970. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  971. if (tag >= bqt->max_depth)
  972. return 1;
  973. } while (test_and_set_bit_lock(tag, bqt->tag_map));
  974. /*
  975. * We need lock ordering semantics given by test_and_set_bit_lock.
  976. * See blk_queue_end_tag for details.
  977. */
  978. rq->cmd_flags |= REQ_QUEUED;
  979. rq->tag = tag;
  980. bqt->tag_index[tag] = rq;
  981. blkdev_dequeue_request(rq);
  982. list_add(&rq->queuelist, &q->tag_busy_list);
  983. bqt->busy++;
  984. return 0;
  985. }
  986. EXPORT_SYMBOL(blk_queue_start_tag);
  987. /**
  988. * blk_queue_invalidate_tags - invalidate all pending tags
  989. * @q: the request queue for the device
  990. *
  991. * Description:
  992. * Hardware conditions may dictate a need to stop all pending requests.
  993. * In this case, we will safely clear the block side of the tag queue and
  994. * readd all requests to the request queue in the right order.
  995. *
  996. * Notes:
  997. * queue lock must be held.
  998. **/
  999. void blk_queue_invalidate_tags(struct request_queue *q)
  1000. {
  1001. struct list_head *tmp, *n;
  1002. list_for_each_safe(tmp, n, &q->tag_busy_list)
  1003. blk_requeue_request(q, list_entry_rq(tmp));
  1004. }
  1005. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1006. void blk_dump_rq_flags(struct request *rq, char *msg)
  1007. {
  1008. int bit;
  1009. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1010. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1011. rq->cmd_flags);
  1012. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1013. rq->nr_sectors,
  1014. rq->current_nr_sectors);
  1015. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1016. if (blk_pc_request(rq)) {
  1017. printk("cdb: ");
  1018. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1019. printk("%02x ", rq->cmd[bit]);
  1020. printk("\n");
  1021. }
  1022. }
  1023. EXPORT_SYMBOL(blk_dump_rq_flags);
  1024. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1025. {
  1026. struct request rq;
  1027. struct bio *nxt = bio->bi_next;
  1028. rq.q = q;
  1029. rq.bio = rq.biotail = bio;
  1030. bio->bi_next = NULL;
  1031. blk_recalc_rq_segments(&rq);
  1032. bio->bi_next = nxt;
  1033. bio->bi_phys_segments = rq.nr_phys_segments;
  1034. bio->bi_hw_segments = rq.nr_hw_segments;
  1035. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1036. }
  1037. EXPORT_SYMBOL(blk_recount_segments);
  1038. static void blk_recalc_rq_segments(struct request *rq)
  1039. {
  1040. int nr_phys_segs;
  1041. int nr_hw_segs;
  1042. unsigned int phys_size;
  1043. unsigned int hw_size;
  1044. struct bio_vec *bv, *bvprv = NULL;
  1045. int seg_size;
  1046. int hw_seg_size;
  1047. int cluster;
  1048. struct req_iterator iter;
  1049. int high, highprv = 1;
  1050. struct request_queue *q = rq->q;
  1051. if (!rq->bio)
  1052. return;
  1053. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1054. hw_seg_size = seg_size = 0;
  1055. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1056. rq_for_each_segment(bv, rq, iter) {
  1057. /*
  1058. * the trick here is making sure that a high page is never
  1059. * considered part of another segment, since that might
  1060. * change with the bounce page.
  1061. */
  1062. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1063. if (high || highprv)
  1064. goto new_hw_segment;
  1065. if (cluster) {
  1066. if (seg_size + bv->bv_len > q->max_segment_size)
  1067. goto new_segment;
  1068. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1069. goto new_segment;
  1070. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1071. goto new_segment;
  1072. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1073. goto new_hw_segment;
  1074. seg_size += bv->bv_len;
  1075. hw_seg_size += bv->bv_len;
  1076. bvprv = bv;
  1077. continue;
  1078. }
  1079. new_segment:
  1080. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1081. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1082. hw_seg_size += bv->bv_len;
  1083. else {
  1084. new_hw_segment:
  1085. if (nr_hw_segs == 1 &&
  1086. hw_seg_size > rq->bio->bi_hw_front_size)
  1087. rq->bio->bi_hw_front_size = hw_seg_size;
  1088. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1089. nr_hw_segs++;
  1090. }
  1091. nr_phys_segs++;
  1092. bvprv = bv;
  1093. seg_size = bv->bv_len;
  1094. highprv = high;
  1095. }
  1096. if (nr_hw_segs == 1 &&
  1097. hw_seg_size > rq->bio->bi_hw_front_size)
  1098. rq->bio->bi_hw_front_size = hw_seg_size;
  1099. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1100. rq->biotail->bi_hw_back_size = hw_seg_size;
  1101. rq->nr_phys_segments = nr_phys_segs;
  1102. rq->nr_hw_segments = nr_hw_segs;
  1103. }
  1104. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1105. struct bio *nxt)
  1106. {
  1107. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1108. return 0;
  1109. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1110. return 0;
  1111. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1112. return 0;
  1113. /*
  1114. * bio and nxt are contigous in memory, check if the queue allows
  1115. * these two to be merged into one
  1116. */
  1117. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1118. return 1;
  1119. return 0;
  1120. }
  1121. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1122. struct bio *nxt)
  1123. {
  1124. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1125. blk_recount_segments(q, bio);
  1126. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1127. blk_recount_segments(q, nxt);
  1128. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1129. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1130. return 0;
  1131. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1132. return 0;
  1133. return 1;
  1134. }
  1135. /*
  1136. * map a request to scatterlist, return number of sg entries setup. Caller
  1137. * must make sure sg can hold rq->nr_phys_segments entries
  1138. */
  1139. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1140. struct scatterlist *sglist)
  1141. {
  1142. struct bio_vec *bvec, *bvprv;
  1143. struct req_iterator iter;
  1144. struct scatterlist *sg;
  1145. int nsegs, cluster;
  1146. nsegs = 0;
  1147. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1148. /*
  1149. * for each bio in rq
  1150. */
  1151. bvprv = NULL;
  1152. sg = NULL;
  1153. rq_for_each_segment(bvec, rq, iter) {
  1154. int nbytes = bvec->bv_len;
  1155. if (bvprv && cluster) {
  1156. if (sg->length + nbytes > q->max_segment_size)
  1157. goto new_segment;
  1158. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1159. goto new_segment;
  1160. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1161. goto new_segment;
  1162. sg->length += nbytes;
  1163. } else {
  1164. new_segment:
  1165. if (!sg)
  1166. sg = sglist;
  1167. else {
  1168. /*
  1169. * If the driver previously mapped a shorter
  1170. * list, we could see a termination bit
  1171. * prematurely unless it fully inits the sg
  1172. * table on each mapping. We KNOW that there
  1173. * must be more entries here or the driver
  1174. * would be buggy, so force clear the
  1175. * termination bit to avoid doing a full
  1176. * sg_init_table() in drivers for each command.
  1177. */
  1178. sg->page_link &= ~0x02;
  1179. sg = sg_next(sg);
  1180. }
  1181. sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
  1182. nsegs++;
  1183. }
  1184. bvprv = bvec;
  1185. } /* segments in rq */
  1186. if (sg)
  1187. sg_mark_end(sg);
  1188. return nsegs;
  1189. }
  1190. EXPORT_SYMBOL(blk_rq_map_sg);
  1191. /*
  1192. * the standard queue merge functions, can be overridden with device
  1193. * specific ones if so desired
  1194. */
  1195. static inline int ll_new_mergeable(struct request_queue *q,
  1196. struct request *req,
  1197. struct bio *bio)
  1198. {
  1199. int nr_phys_segs = bio_phys_segments(q, bio);
  1200. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1201. req->cmd_flags |= REQ_NOMERGE;
  1202. if (req == q->last_merge)
  1203. q->last_merge = NULL;
  1204. return 0;
  1205. }
  1206. /*
  1207. * A hw segment is just getting larger, bump just the phys
  1208. * counter.
  1209. */
  1210. req->nr_phys_segments += nr_phys_segs;
  1211. return 1;
  1212. }
  1213. static inline int ll_new_hw_segment(struct request_queue *q,
  1214. struct request *req,
  1215. struct bio *bio)
  1216. {
  1217. int nr_hw_segs = bio_hw_segments(q, bio);
  1218. int nr_phys_segs = bio_phys_segments(q, bio);
  1219. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1220. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1221. req->cmd_flags |= REQ_NOMERGE;
  1222. if (req == q->last_merge)
  1223. q->last_merge = NULL;
  1224. return 0;
  1225. }
  1226. /*
  1227. * This will form the start of a new hw segment. Bump both
  1228. * counters.
  1229. */
  1230. req->nr_hw_segments += nr_hw_segs;
  1231. req->nr_phys_segments += nr_phys_segs;
  1232. return 1;
  1233. }
  1234. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1235. struct bio *bio)
  1236. {
  1237. unsigned short max_sectors;
  1238. int len;
  1239. if (unlikely(blk_pc_request(req)))
  1240. max_sectors = q->max_hw_sectors;
  1241. else
  1242. max_sectors = q->max_sectors;
  1243. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1244. req->cmd_flags |= REQ_NOMERGE;
  1245. if (req == q->last_merge)
  1246. q->last_merge = NULL;
  1247. return 0;
  1248. }
  1249. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1250. blk_recount_segments(q, req->biotail);
  1251. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1252. blk_recount_segments(q, bio);
  1253. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1254. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1255. !BIOVEC_VIRT_OVERSIZE(len)) {
  1256. int mergeable = ll_new_mergeable(q, req, bio);
  1257. if (mergeable) {
  1258. if (req->nr_hw_segments == 1)
  1259. req->bio->bi_hw_front_size = len;
  1260. if (bio->bi_hw_segments == 1)
  1261. bio->bi_hw_back_size = len;
  1262. }
  1263. return mergeable;
  1264. }
  1265. return ll_new_hw_segment(q, req, bio);
  1266. }
  1267. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1268. struct bio *bio)
  1269. {
  1270. unsigned short max_sectors;
  1271. int len;
  1272. if (unlikely(blk_pc_request(req)))
  1273. max_sectors = q->max_hw_sectors;
  1274. else
  1275. max_sectors = q->max_sectors;
  1276. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1277. req->cmd_flags |= REQ_NOMERGE;
  1278. if (req == q->last_merge)
  1279. q->last_merge = NULL;
  1280. return 0;
  1281. }
  1282. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1283. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1284. blk_recount_segments(q, bio);
  1285. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1286. blk_recount_segments(q, req->bio);
  1287. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1288. !BIOVEC_VIRT_OVERSIZE(len)) {
  1289. int mergeable = ll_new_mergeable(q, req, bio);
  1290. if (mergeable) {
  1291. if (bio->bi_hw_segments == 1)
  1292. bio->bi_hw_front_size = len;
  1293. if (req->nr_hw_segments == 1)
  1294. req->biotail->bi_hw_back_size = len;
  1295. }
  1296. return mergeable;
  1297. }
  1298. return ll_new_hw_segment(q, req, bio);
  1299. }
  1300. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1301. struct request *next)
  1302. {
  1303. int total_phys_segments;
  1304. int total_hw_segments;
  1305. /*
  1306. * First check if the either of the requests are re-queued
  1307. * requests. Can't merge them if they are.
  1308. */
  1309. if (req->special || next->special)
  1310. return 0;
  1311. /*
  1312. * Will it become too large?
  1313. */
  1314. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1315. return 0;
  1316. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1317. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1318. total_phys_segments--;
  1319. if (total_phys_segments > q->max_phys_segments)
  1320. return 0;
  1321. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1322. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1323. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1324. /*
  1325. * propagate the combined length to the end of the requests
  1326. */
  1327. if (req->nr_hw_segments == 1)
  1328. req->bio->bi_hw_front_size = len;
  1329. if (next->nr_hw_segments == 1)
  1330. next->biotail->bi_hw_back_size = len;
  1331. total_hw_segments--;
  1332. }
  1333. if (total_hw_segments > q->max_hw_segments)
  1334. return 0;
  1335. /* Merge is OK... */
  1336. req->nr_phys_segments = total_phys_segments;
  1337. req->nr_hw_segments = total_hw_segments;
  1338. return 1;
  1339. }
  1340. /*
  1341. * "plug" the device if there are no outstanding requests: this will
  1342. * force the transfer to start only after we have put all the requests
  1343. * on the list.
  1344. *
  1345. * This is called with interrupts off and no requests on the queue and
  1346. * with the queue lock held.
  1347. */
  1348. void blk_plug_device(struct request_queue *q)
  1349. {
  1350. WARN_ON(!irqs_disabled());
  1351. /*
  1352. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1353. * which will restart the queueing
  1354. */
  1355. if (blk_queue_stopped(q))
  1356. return;
  1357. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1358. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1359. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1360. }
  1361. }
  1362. EXPORT_SYMBOL(blk_plug_device);
  1363. /*
  1364. * remove the queue from the plugged list, if present. called with
  1365. * queue lock held and interrupts disabled.
  1366. */
  1367. int blk_remove_plug(struct request_queue *q)
  1368. {
  1369. WARN_ON(!irqs_disabled());
  1370. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1371. return 0;
  1372. del_timer(&q->unplug_timer);
  1373. return 1;
  1374. }
  1375. EXPORT_SYMBOL(blk_remove_plug);
  1376. /*
  1377. * remove the plug and let it rip..
  1378. */
  1379. void __generic_unplug_device(struct request_queue *q)
  1380. {
  1381. if (unlikely(blk_queue_stopped(q)))
  1382. return;
  1383. if (!blk_remove_plug(q))
  1384. return;
  1385. q->request_fn(q);
  1386. }
  1387. EXPORT_SYMBOL(__generic_unplug_device);
  1388. /**
  1389. * generic_unplug_device - fire a request queue
  1390. * @q: The &struct request_queue in question
  1391. *
  1392. * Description:
  1393. * Linux uses plugging to build bigger requests queues before letting
  1394. * the device have at them. If a queue is plugged, the I/O scheduler
  1395. * is still adding and merging requests on the queue. Once the queue
  1396. * gets unplugged, the request_fn defined for the queue is invoked and
  1397. * transfers started.
  1398. **/
  1399. void generic_unplug_device(struct request_queue *q)
  1400. {
  1401. spin_lock_irq(q->queue_lock);
  1402. __generic_unplug_device(q);
  1403. spin_unlock_irq(q->queue_lock);
  1404. }
  1405. EXPORT_SYMBOL(generic_unplug_device);
  1406. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1407. struct page *page)
  1408. {
  1409. struct request_queue *q = bdi->unplug_io_data;
  1410. blk_unplug(q);
  1411. }
  1412. static void blk_unplug_work(struct work_struct *work)
  1413. {
  1414. struct request_queue *q =
  1415. container_of(work, struct request_queue, unplug_work);
  1416. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1417. q->rq.count[READ] + q->rq.count[WRITE]);
  1418. q->unplug_fn(q);
  1419. }
  1420. static void blk_unplug_timeout(unsigned long data)
  1421. {
  1422. struct request_queue *q = (struct request_queue *)data;
  1423. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1424. q->rq.count[READ] + q->rq.count[WRITE]);
  1425. kblockd_schedule_work(&q->unplug_work);
  1426. }
  1427. void blk_unplug(struct request_queue *q)
  1428. {
  1429. /*
  1430. * devices don't necessarily have an ->unplug_fn defined
  1431. */
  1432. if (q->unplug_fn) {
  1433. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1434. q->rq.count[READ] + q->rq.count[WRITE]);
  1435. q->unplug_fn(q);
  1436. }
  1437. }
  1438. EXPORT_SYMBOL(blk_unplug);
  1439. /**
  1440. * blk_start_queue - restart a previously stopped queue
  1441. * @q: The &struct request_queue in question
  1442. *
  1443. * Description:
  1444. * blk_start_queue() will clear the stop flag on the queue, and call
  1445. * the request_fn for the queue if it was in a stopped state when
  1446. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1447. **/
  1448. void blk_start_queue(struct request_queue *q)
  1449. {
  1450. WARN_ON(!irqs_disabled());
  1451. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1452. /*
  1453. * one level of recursion is ok and is much faster than kicking
  1454. * the unplug handling
  1455. */
  1456. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1457. q->request_fn(q);
  1458. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1459. } else {
  1460. blk_plug_device(q);
  1461. kblockd_schedule_work(&q->unplug_work);
  1462. }
  1463. }
  1464. EXPORT_SYMBOL(blk_start_queue);
  1465. /**
  1466. * blk_stop_queue - stop a queue
  1467. * @q: The &struct request_queue in question
  1468. *
  1469. * Description:
  1470. * The Linux block layer assumes that a block driver will consume all
  1471. * entries on the request queue when the request_fn strategy is called.
  1472. * Often this will not happen, because of hardware limitations (queue
  1473. * depth settings). If a device driver gets a 'queue full' response,
  1474. * or if it simply chooses not to queue more I/O at one point, it can
  1475. * call this function to prevent the request_fn from being called until
  1476. * the driver has signalled it's ready to go again. This happens by calling
  1477. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1478. **/
  1479. void blk_stop_queue(struct request_queue *q)
  1480. {
  1481. blk_remove_plug(q);
  1482. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1483. }
  1484. EXPORT_SYMBOL(blk_stop_queue);
  1485. /**
  1486. * blk_sync_queue - cancel any pending callbacks on a queue
  1487. * @q: the queue
  1488. *
  1489. * Description:
  1490. * The block layer may perform asynchronous callback activity
  1491. * on a queue, such as calling the unplug function after a timeout.
  1492. * A block device may call blk_sync_queue to ensure that any
  1493. * such activity is cancelled, thus allowing it to release resources
  1494. * that the callbacks might use. The caller must already have made sure
  1495. * that its ->make_request_fn will not re-add plugging prior to calling
  1496. * this function.
  1497. *
  1498. */
  1499. void blk_sync_queue(struct request_queue *q)
  1500. {
  1501. del_timer_sync(&q->unplug_timer);
  1502. kblockd_flush_work(&q->unplug_work);
  1503. }
  1504. EXPORT_SYMBOL(blk_sync_queue);
  1505. /**
  1506. * blk_run_queue - run a single device queue
  1507. * @q: The queue to run
  1508. */
  1509. void blk_run_queue(struct request_queue *q)
  1510. {
  1511. unsigned long flags;
  1512. spin_lock_irqsave(q->queue_lock, flags);
  1513. blk_remove_plug(q);
  1514. /*
  1515. * Only recurse once to avoid overrunning the stack, let the unplug
  1516. * handling reinvoke the handler shortly if we already got there.
  1517. */
  1518. if (!elv_queue_empty(q)) {
  1519. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1520. q->request_fn(q);
  1521. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1522. } else {
  1523. blk_plug_device(q);
  1524. kblockd_schedule_work(&q->unplug_work);
  1525. }
  1526. }
  1527. spin_unlock_irqrestore(q->queue_lock, flags);
  1528. }
  1529. EXPORT_SYMBOL(blk_run_queue);
  1530. /**
  1531. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1532. * @kobj: the kobj belonging of the request queue to be released
  1533. *
  1534. * Description:
  1535. * blk_cleanup_queue is the pair to blk_init_queue() or
  1536. * blk_queue_make_request(). It should be called when a request queue is
  1537. * being released; typically when a block device is being de-registered.
  1538. * Currently, its primary task it to free all the &struct request
  1539. * structures that were allocated to the queue and the queue itself.
  1540. *
  1541. * Caveat:
  1542. * Hopefully the low level driver will have finished any
  1543. * outstanding requests first...
  1544. **/
  1545. static void blk_release_queue(struct kobject *kobj)
  1546. {
  1547. struct request_queue *q =
  1548. container_of(kobj, struct request_queue, kobj);
  1549. struct request_list *rl = &q->rq;
  1550. blk_sync_queue(q);
  1551. if (rl->rq_pool)
  1552. mempool_destroy(rl->rq_pool);
  1553. if (q->queue_tags)
  1554. __blk_queue_free_tags(q);
  1555. blk_trace_shutdown(q);
  1556. bdi_destroy(&q->backing_dev_info);
  1557. kmem_cache_free(requestq_cachep, q);
  1558. }
  1559. void blk_put_queue(struct request_queue *q)
  1560. {
  1561. kobject_put(&q->kobj);
  1562. }
  1563. EXPORT_SYMBOL(blk_put_queue);
  1564. void blk_cleanup_queue(struct request_queue * q)
  1565. {
  1566. mutex_lock(&q->sysfs_lock);
  1567. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1568. mutex_unlock(&q->sysfs_lock);
  1569. if (q->elevator)
  1570. elevator_exit(q->elevator);
  1571. blk_put_queue(q);
  1572. }
  1573. EXPORT_SYMBOL(blk_cleanup_queue);
  1574. static int blk_init_free_list(struct request_queue *q)
  1575. {
  1576. struct request_list *rl = &q->rq;
  1577. rl->count[READ] = rl->count[WRITE] = 0;
  1578. rl->starved[READ] = rl->starved[WRITE] = 0;
  1579. rl->elvpriv = 0;
  1580. init_waitqueue_head(&rl->wait[READ]);
  1581. init_waitqueue_head(&rl->wait[WRITE]);
  1582. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1583. mempool_free_slab, request_cachep, q->node);
  1584. if (!rl->rq_pool)
  1585. return -ENOMEM;
  1586. return 0;
  1587. }
  1588. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1589. {
  1590. return blk_alloc_queue_node(gfp_mask, -1);
  1591. }
  1592. EXPORT_SYMBOL(blk_alloc_queue);
  1593. static struct kobj_type queue_ktype;
  1594. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1595. {
  1596. struct request_queue *q;
  1597. int err;
  1598. q = kmem_cache_alloc_node(requestq_cachep,
  1599. gfp_mask | __GFP_ZERO, node_id);
  1600. if (!q)
  1601. return NULL;
  1602. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1603. q->backing_dev_info.unplug_io_data = q;
  1604. err = bdi_init(&q->backing_dev_info);
  1605. if (err) {
  1606. kmem_cache_free(requestq_cachep, q);
  1607. return NULL;
  1608. }
  1609. init_timer(&q->unplug_timer);
  1610. kobject_init(&q->kobj, &queue_ktype);
  1611. mutex_init(&q->sysfs_lock);
  1612. return q;
  1613. }
  1614. EXPORT_SYMBOL(blk_alloc_queue_node);
  1615. /**
  1616. * blk_init_queue - prepare a request queue for use with a block device
  1617. * @rfn: The function to be called to process requests that have been
  1618. * placed on the queue.
  1619. * @lock: Request queue spin lock
  1620. *
  1621. * Description:
  1622. * If a block device wishes to use the standard request handling procedures,
  1623. * which sorts requests and coalesces adjacent requests, then it must
  1624. * call blk_init_queue(). The function @rfn will be called when there
  1625. * are requests on the queue that need to be processed. If the device
  1626. * supports plugging, then @rfn may not be called immediately when requests
  1627. * are available on the queue, but may be called at some time later instead.
  1628. * Plugged queues are generally unplugged when a buffer belonging to one
  1629. * of the requests on the queue is needed, or due to memory pressure.
  1630. *
  1631. * @rfn is not required, or even expected, to remove all requests off the
  1632. * queue, but only as many as it can handle at a time. If it does leave
  1633. * requests on the queue, it is responsible for arranging that the requests
  1634. * get dealt with eventually.
  1635. *
  1636. * The queue spin lock must be held while manipulating the requests on the
  1637. * request queue; this lock will be taken also from interrupt context, so irq
  1638. * disabling is needed for it.
  1639. *
  1640. * Function returns a pointer to the initialized request queue, or NULL if
  1641. * it didn't succeed.
  1642. *
  1643. * Note:
  1644. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1645. * when the block device is deactivated (such as at module unload).
  1646. **/
  1647. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1648. {
  1649. return blk_init_queue_node(rfn, lock, -1);
  1650. }
  1651. EXPORT_SYMBOL(blk_init_queue);
  1652. struct request_queue *
  1653. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1654. {
  1655. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1656. if (!q)
  1657. return NULL;
  1658. q->node = node_id;
  1659. if (blk_init_free_list(q)) {
  1660. kmem_cache_free(requestq_cachep, q);
  1661. return NULL;
  1662. }
  1663. /*
  1664. * if caller didn't supply a lock, they get per-queue locking with
  1665. * our embedded lock
  1666. */
  1667. if (!lock) {
  1668. spin_lock_init(&q->__queue_lock);
  1669. lock = &q->__queue_lock;
  1670. }
  1671. q->request_fn = rfn;
  1672. q->prep_rq_fn = NULL;
  1673. q->unplug_fn = generic_unplug_device;
  1674. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1675. q->queue_lock = lock;
  1676. blk_queue_segment_boundary(q, 0xffffffff);
  1677. blk_queue_make_request(q, __make_request);
  1678. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1679. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1680. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1681. q->sg_reserved_size = INT_MAX;
  1682. /*
  1683. * all done
  1684. */
  1685. if (!elevator_init(q, NULL)) {
  1686. blk_queue_congestion_threshold(q);
  1687. return q;
  1688. }
  1689. blk_put_queue(q);
  1690. return NULL;
  1691. }
  1692. EXPORT_SYMBOL(blk_init_queue_node);
  1693. int blk_get_queue(struct request_queue *q)
  1694. {
  1695. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1696. kobject_get(&q->kobj);
  1697. return 0;
  1698. }
  1699. return 1;
  1700. }
  1701. EXPORT_SYMBOL(blk_get_queue);
  1702. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1703. {
  1704. if (rq->cmd_flags & REQ_ELVPRIV)
  1705. elv_put_request(q, rq);
  1706. mempool_free(rq, q->rq.rq_pool);
  1707. }
  1708. static struct request *
  1709. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1710. {
  1711. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1712. if (!rq)
  1713. return NULL;
  1714. /*
  1715. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1716. * see bio.h and blkdev.h
  1717. */
  1718. rq->cmd_flags = rw | REQ_ALLOCED;
  1719. if (priv) {
  1720. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1721. mempool_free(rq, q->rq.rq_pool);
  1722. return NULL;
  1723. }
  1724. rq->cmd_flags |= REQ_ELVPRIV;
  1725. }
  1726. return rq;
  1727. }
  1728. /*
  1729. * ioc_batching returns true if the ioc is a valid batching request and
  1730. * should be given priority access to a request.
  1731. */
  1732. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1733. {
  1734. if (!ioc)
  1735. return 0;
  1736. /*
  1737. * Make sure the process is able to allocate at least 1 request
  1738. * even if the batch times out, otherwise we could theoretically
  1739. * lose wakeups.
  1740. */
  1741. return ioc->nr_batch_requests == q->nr_batching ||
  1742. (ioc->nr_batch_requests > 0
  1743. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1744. }
  1745. /*
  1746. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1747. * will cause the process to be a "batcher" on all queues in the system. This
  1748. * is the behaviour we want though - once it gets a wakeup it should be given
  1749. * a nice run.
  1750. */
  1751. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1752. {
  1753. if (!ioc || ioc_batching(q, ioc))
  1754. return;
  1755. ioc->nr_batch_requests = q->nr_batching;
  1756. ioc->last_waited = jiffies;
  1757. }
  1758. static void __freed_request(struct request_queue *q, int rw)
  1759. {
  1760. struct request_list *rl = &q->rq;
  1761. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1762. blk_clear_queue_congested(q, rw);
  1763. if (rl->count[rw] + 1 <= q->nr_requests) {
  1764. if (waitqueue_active(&rl->wait[rw]))
  1765. wake_up(&rl->wait[rw]);
  1766. blk_clear_queue_full(q, rw);
  1767. }
  1768. }
  1769. /*
  1770. * A request has just been released. Account for it, update the full and
  1771. * congestion status, wake up any waiters. Called under q->queue_lock.
  1772. */
  1773. static void freed_request(struct request_queue *q, int rw, int priv)
  1774. {
  1775. struct request_list *rl = &q->rq;
  1776. rl->count[rw]--;
  1777. if (priv)
  1778. rl->elvpriv--;
  1779. __freed_request(q, rw);
  1780. if (unlikely(rl->starved[rw ^ 1]))
  1781. __freed_request(q, rw ^ 1);
  1782. }
  1783. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1784. /*
  1785. * Get a free request, queue_lock must be held.
  1786. * Returns NULL on failure, with queue_lock held.
  1787. * Returns !NULL on success, with queue_lock *not held*.
  1788. */
  1789. static struct request *get_request(struct request_queue *q, int rw_flags,
  1790. struct bio *bio, gfp_t gfp_mask)
  1791. {
  1792. struct request *rq = NULL;
  1793. struct request_list *rl = &q->rq;
  1794. struct io_context *ioc = NULL;
  1795. const int rw = rw_flags & 0x01;
  1796. int may_queue, priv;
  1797. may_queue = elv_may_queue(q, rw_flags);
  1798. if (may_queue == ELV_MQUEUE_NO)
  1799. goto rq_starved;
  1800. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1801. if (rl->count[rw]+1 >= q->nr_requests) {
  1802. ioc = current_io_context(GFP_ATOMIC, q->node);
  1803. /*
  1804. * The queue will fill after this allocation, so set
  1805. * it as full, and mark this process as "batching".
  1806. * This process will be allowed to complete a batch of
  1807. * requests, others will be blocked.
  1808. */
  1809. if (!blk_queue_full(q, rw)) {
  1810. ioc_set_batching(q, ioc);
  1811. blk_set_queue_full(q, rw);
  1812. } else {
  1813. if (may_queue != ELV_MQUEUE_MUST
  1814. && !ioc_batching(q, ioc)) {
  1815. /*
  1816. * The queue is full and the allocating
  1817. * process is not a "batcher", and not
  1818. * exempted by the IO scheduler
  1819. */
  1820. goto out;
  1821. }
  1822. }
  1823. }
  1824. blk_set_queue_congested(q, rw);
  1825. }
  1826. /*
  1827. * Only allow batching queuers to allocate up to 50% over the defined
  1828. * limit of requests, otherwise we could have thousands of requests
  1829. * allocated with any setting of ->nr_requests
  1830. */
  1831. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1832. goto out;
  1833. rl->count[rw]++;
  1834. rl->starved[rw] = 0;
  1835. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1836. if (priv)
  1837. rl->elvpriv++;
  1838. spin_unlock_irq(q->queue_lock);
  1839. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1840. if (unlikely(!rq)) {
  1841. /*
  1842. * Allocation failed presumably due to memory. Undo anything
  1843. * we might have messed up.
  1844. *
  1845. * Allocating task should really be put onto the front of the
  1846. * wait queue, but this is pretty rare.
  1847. */
  1848. spin_lock_irq(q->queue_lock);
  1849. freed_request(q, rw, priv);
  1850. /*
  1851. * in the very unlikely event that allocation failed and no
  1852. * requests for this direction was pending, mark us starved
  1853. * so that freeing of a request in the other direction will
  1854. * notice us. another possible fix would be to split the
  1855. * rq mempool into READ and WRITE
  1856. */
  1857. rq_starved:
  1858. if (unlikely(rl->count[rw] == 0))
  1859. rl->starved[rw] = 1;
  1860. goto out;
  1861. }
  1862. /*
  1863. * ioc may be NULL here, and ioc_batching will be false. That's
  1864. * OK, if the queue is under the request limit then requests need
  1865. * not count toward the nr_batch_requests limit. There will always
  1866. * be some limit enforced by BLK_BATCH_TIME.
  1867. */
  1868. if (ioc_batching(q, ioc))
  1869. ioc->nr_batch_requests--;
  1870. rq_init(q, rq);
  1871. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1872. out:
  1873. return rq;
  1874. }
  1875. /*
  1876. * No available requests for this queue, unplug the device and wait for some
  1877. * requests to become available.
  1878. *
  1879. * Called with q->queue_lock held, and returns with it unlocked.
  1880. */
  1881. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1882. struct bio *bio)
  1883. {
  1884. const int rw = rw_flags & 0x01;
  1885. struct request *rq;
  1886. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1887. while (!rq) {
  1888. DEFINE_WAIT(wait);
  1889. struct request_list *rl = &q->rq;
  1890. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1891. TASK_UNINTERRUPTIBLE);
  1892. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1893. if (!rq) {
  1894. struct io_context *ioc;
  1895. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1896. __generic_unplug_device(q);
  1897. spin_unlock_irq(q->queue_lock);
  1898. io_schedule();
  1899. /*
  1900. * After sleeping, we become a "batching" process and
  1901. * will be able to allocate at least one request, and
  1902. * up to a big batch of them for a small period time.
  1903. * See ioc_batching, ioc_set_batching
  1904. */
  1905. ioc = current_io_context(GFP_NOIO, q->node);
  1906. ioc_set_batching(q, ioc);
  1907. spin_lock_irq(q->queue_lock);
  1908. }
  1909. finish_wait(&rl->wait[rw], &wait);
  1910. }
  1911. return rq;
  1912. }
  1913. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1914. {
  1915. struct request *rq;
  1916. BUG_ON(rw != READ && rw != WRITE);
  1917. spin_lock_irq(q->queue_lock);
  1918. if (gfp_mask & __GFP_WAIT) {
  1919. rq = get_request_wait(q, rw, NULL);
  1920. } else {
  1921. rq = get_request(q, rw, NULL, gfp_mask);
  1922. if (!rq)
  1923. spin_unlock_irq(q->queue_lock);
  1924. }
  1925. /* q->queue_lock is unlocked at this point */
  1926. return rq;
  1927. }
  1928. EXPORT_SYMBOL(blk_get_request);
  1929. /**
  1930. * blk_start_queueing - initiate dispatch of requests to device
  1931. * @q: request queue to kick into gear
  1932. *
  1933. * This is basically a helper to remove the need to know whether a queue
  1934. * is plugged or not if someone just wants to initiate dispatch of requests
  1935. * for this queue.
  1936. *
  1937. * The queue lock must be held with interrupts disabled.
  1938. */
  1939. void blk_start_queueing(struct request_queue *q)
  1940. {
  1941. if (!blk_queue_plugged(q))
  1942. q->request_fn(q);
  1943. else
  1944. __generic_unplug_device(q);
  1945. }
  1946. EXPORT_SYMBOL(blk_start_queueing);
  1947. /**
  1948. * blk_requeue_request - put a request back on queue
  1949. * @q: request queue where request should be inserted
  1950. * @rq: request to be inserted
  1951. *
  1952. * Description:
  1953. * Drivers often keep queueing requests until the hardware cannot accept
  1954. * more, when that condition happens we need to put the request back
  1955. * on the queue. Must be called with queue lock held.
  1956. */
  1957. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1958. {
  1959. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1960. if (blk_rq_tagged(rq))
  1961. blk_queue_end_tag(q, rq);
  1962. elv_requeue_request(q, rq);
  1963. }
  1964. EXPORT_SYMBOL(blk_requeue_request);
  1965. /**
  1966. * blk_insert_request - insert a special request in to a request queue
  1967. * @q: request queue where request should be inserted
  1968. * @rq: request to be inserted
  1969. * @at_head: insert request at head or tail of queue
  1970. * @data: private data
  1971. *
  1972. * Description:
  1973. * Many block devices need to execute commands asynchronously, so they don't
  1974. * block the whole kernel from preemption during request execution. This is
  1975. * accomplished normally by inserting aritficial requests tagged as
  1976. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1977. * scheduled for actual execution by the request queue.
  1978. *
  1979. * We have the option of inserting the head or the tail of the queue.
  1980. * Typically we use the tail for new ioctls and so forth. We use the head
  1981. * of the queue for things like a QUEUE_FULL message from a device, or a
  1982. * host that is unable to accept a particular command.
  1983. */
  1984. void blk_insert_request(struct request_queue *q, struct request *rq,
  1985. int at_head, void *data)
  1986. {
  1987. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1988. unsigned long flags;
  1989. /*
  1990. * tell I/O scheduler that this isn't a regular read/write (ie it
  1991. * must not attempt merges on this) and that it acts as a soft
  1992. * barrier
  1993. */
  1994. rq->cmd_type = REQ_TYPE_SPECIAL;
  1995. rq->cmd_flags |= REQ_SOFTBARRIER;
  1996. rq->special = data;
  1997. spin_lock_irqsave(q->queue_lock, flags);
  1998. /*
  1999. * If command is tagged, release the tag
  2000. */
  2001. if (blk_rq_tagged(rq))
  2002. blk_queue_end_tag(q, rq);
  2003. drive_stat_acct(rq, 1);
  2004. __elv_add_request(q, rq, where, 0);
  2005. blk_start_queueing(q);
  2006. spin_unlock_irqrestore(q->queue_lock, flags);
  2007. }
  2008. EXPORT_SYMBOL(blk_insert_request);
  2009. static int __blk_rq_unmap_user(struct bio *bio)
  2010. {
  2011. int ret = 0;
  2012. if (bio) {
  2013. if (bio_flagged(bio, BIO_USER_MAPPED))
  2014. bio_unmap_user(bio);
  2015. else
  2016. ret = bio_uncopy_user(bio);
  2017. }
  2018. return ret;
  2019. }
  2020. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  2021. struct bio *bio)
  2022. {
  2023. if (!rq->bio)
  2024. blk_rq_bio_prep(q, rq, bio);
  2025. else if (!ll_back_merge_fn(q, rq, bio))
  2026. return -EINVAL;
  2027. else {
  2028. rq->biotail->bi_next = bio;
  2029. rq->biotail = bio;
  2030. rq->data_len += bio->bi_size;
  2031. }
  2032. return 0;
  2033. }
  2034. EXPORT_SYMBOL(blk_rq_append_bio);
  2035. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2036. void __user *ubuf, unsigned int len)
  2037. {
  2038. unsigned long uaddr;
  2039. struct bio *bio, *orig_bio;
  2040. int reading, ret;
  2041. reading = rq_data_dir(rq) == READ;
  2042. /*
  2043. * if alignment requirement is satisfied, map in user pages for
  2044. * direct dma. else, set up kernel bounce buffers
  2045. */
  2046. uaddr = (unsigned long) ubuf;
  2047. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2048. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2049. else
  2050. bio = bio_copy_user(q, uaddr, len, reading);
  2051. if (IS_ERR(bio))
  2052. return PTR_ERR(bio);
  2053. orig_bio = bio;
  2054. blk_queue_bounce(q, &bio);
  2055. /*
  2056. * We link the bounce buffer in and could have to traverse it
  2057. * later so we have to get a ref to prevent it from being freed
  2058. */
  2059. bio_get(bio);
  2060. ret = blk_rq_append_bio(q, rq, bio);
  2061. if (!ret)
  2062. return bio->bi_size;
  2063. /* if it was boucned we must call the end io function */
  2064. bio_endio(bio, 0);
  2065. __blk_rq_unmap_user(orig_bio);
  2066. bio_put(bio);
  2067. return ret;
  2068. }
  2069. /**
  2070. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2071. * @q: request queue where request should be inserted
  2072. * @rq: request structure to fill
  2073. * @ubuf: the user buffer
  2074. * @len: length of user data
  2075. *
  2076. * Description:
  2077. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2078. * a kernel bounce buffer is used.
  2079. *
  2080. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2081. * still in process context.
  2082. *
  2083. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2084. * before being submitted to the device, as pages mapped may be out of
  2085. * reach. It's the callers responsibility to make sure this happens. The
  2086. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2087. * unmapping.
  2088. */
  2089. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2090. void __user *ubuf, unsigned long len)
  2091. {
  2092. unsigned long bytes_read = 0;
  2093. struct bio *bio = NULL;
  2094. int ret;
  2095. if (len > (q->max_hw_sectors << 9))
  2096. return -EINVAL;
  2097. if (!len || !ubuf)
  2098. return -EINVAL;
  2099. while (bytes_read != len) {
  2100. unsigned long map_len, end, start;
  2101. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2102. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2103. >> PAGE_SHIFT;
  2104. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2105. /*
  2106. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2107. * pages. If this happens we just lower the requested
  2108. * mapping len by a page so that we can fit
  2109. */
  2110. if (end - start > BIO_MAX_PAGES)
  2111. map_len -= PAGE_SIZE;
  2112. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2113. if (ret < 0)
  2114. goto unmap_rq;
  2115. if (!bio)
  2116. bio = rq->bio;
  2117. bytes_read += ret;
  2118. ubuf += ret;
  2119. }
  2120. rq->buffer = rq->data = NULL;
  2121. return 0;
  2122. unmap_rq:
  2123. blk_rq_unmap_user(bio);
  2124. return ret;
  2125. }
  2126. EXPORT_SYMBOL(blk_rq_map_user);
  2127. /**
  2128. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2129. * @q: request queue where request should be inserted
  2130. * @rq: request to map data to
  2131. * @iov: pointer to the iovec
  2132. * @iov_count: number of elements in the iovec
  2133. * @len: I/O byte count
  2134. *
  2135. * Description:
  2136. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2137. * a kernel bounce buffer is used.
  2138. *
  2139. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2140. * still in process context.
  2141. *
  2142. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2143. * before being submitted to the device, as pages mapped may be out of
  2144. * reach. It's the callers responsibility to make sure this happens. The
  2145. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2146. * unmapping.
  2147. */
  2148. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2149. struct sg_iovec *iov, int iov_count, unsigned int len)
  2150. {
  2151. struct bio *bio;
  2152. if (!iov || iov_count <= 0)
  2153. return -EINVAL;
  2154. /* we don't allow misaligned data like bio_map_user() does. If the
  2155. * user is using sg, they're expected to know the alignment constraints
  2156. * and respect them accordingly */
  2157. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2158. if (IS_ERR(bio))
  2159. return PTR_ERR(bio);
  2160. if (bio->bi_size != len) {
  2161. bio_endio(bio, 0);
  2162. bio_unmap_user(bio);
  2163. return -EINVAL;
  2164. }
  2165. bio_get(bio);
  2166. blk_rq_bio_prep(q, rq, bio);
  2167. rq->buffer = rq->data = NULL;
  2168. return 0;
  2169. }
  2170. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2171. /**
  2172. * blk_rq_unmap_user - unmap a request with user data
  2173. * @bio: start of bio list
  2174. *
  2175. * Description:
  2176. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2177. * supply the original rq->bio from the blk_rq_map_user() return, since
  2178. * the io completion may have changed rq->bio.
  2179. */
  2180. int blk_rq_unmap_user(struct bio *bio)
  2181. {
  2182. struct bio *mapped_bio;
  2183. int ret = 0, ret2;
  2184. while (bio) {
  2185. mapped_bio = bio;
  2186. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2187. mapped_bio = bio->bi_private;
  2188. ret2 = __blk_rq_unmap_user(mapped_bio);
  2189. if (ret2 && !ret)
  2190. ret = ret2;
  2191. mapped_bio = bio;
  2192. bio = bio->bi_next;
  2193. bio_put(mapped_bio);
  2194. }
  2195. return ret;
  2196. }
  2197. EXPORT_SYMBOL(blk_rq_unmap_user);
  2198. /**
  2199. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2200. * @q: request queue where request should be inserted
  2201. * @rq: request to fill
  2202. * @kbuf: the kernel buffer
  2203. * @len: length of user data
  2204. * @gfp_mask: memory allocation flags
  2205. */
  2206. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2207. unsigned int len, gfp_t gfp_mask)
  2208. {
  2209. struct bio *bio;
  2210. if (len > (q->max_hw_sectors << 9))
  2211. return -EINVAL;
  2212. if (!len || !kbuf)
  2213. return -EINVAL;
  2214. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2215. if (IS_ERR(bio))
  2216. return PTR_ERR(bio);
  2217. if (rq_data_dir(rq) == WRITE)
  2218. bio->bi_rw |= (1 << BIO_RW);
  2219. blk_rq_bio_prep(q, rq, bio);
  2220. blk_queue_bounce(q, &rq->bio);
  2221. rq->buffer = rq->data = NULL;
  2222. return 0;
  2223. }
  2224. EXPORT_SYMBOL(blk_rq_map_kern);
  2225. /**
  2226. * blk_execute_rq_nowait - insert a request into queue for execution
  2227. * @q: queue to insert the request in
  2228. * @bd_disk: matching gendisk
  2229. * @rq: request to insert
  2230. * @at_head: insert request at head or tail of queue
  2231. * @done: I/O completion handler
  2232. *
  2233. * Description:
  2234. * Insert a fully prepared request at the back of the io scheduler queue
  2235. * for execution. Don't wait for completion.
  2236. */
  2237. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2238. struct request *rq, int at_head,
  2239. rq_end_io_fn *done)
  2240. {
  2241. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2242. rq->rq_disk = bd_disk;
  2243. rq->cmd_flags |= REQ_NOMERGE;
  2244. rq->end_io = done;
  2245. WARN_ON(irqs_disabled());
  2246. spin_lock_irq(q->queue_lock);
  2247. __elv_add_request(q, rq, where, 1);
  2248. __generic_unplug_device(q);
  2249. spin_unlock_irq(q->queue_lock);
  2250. }
  2251. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2252. /**
  2253. * blk_execute_rq - insert a request into queue for execution
  2254. * @q: queue to insert the request in
  2255. * @bd_disk: matching gendisk
  2256. * @rq: request to insert
  2257. * @at_head: insert request at head or tail of queue
  2258. *
  2259. * Description:
  2260. * Insert a fully prepared request at the back of the io scheduler queue
  2261. * for execution and wait for completion.
  2262. */
  2263. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2264. struct request *rq, int at_head)
  2265. {
  2266. DECLARE_COMPLETION_ONSTACK(wait);
  2267. char sense[SCSI_SENSE_BUFFERSIZE];
  2268. int err = 0;
  2269. /*
  2270. * we need an extra reference to the request, so we can look at
  2271. * it after io completion
  2272. */
  2273. rq->ref_count++;
  2274. if (!rq->sense) {
  2275. memset(sense, 0, sizeof(sense));
  2276. rq->sense = sense;
  2277. rq->sense_len = 0;
  2278. }
  2279. rq->end_io_data = &wait;
  2280. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2281. wait_for_completion(&wait);
  2282. if (rq->errors)
  2283. err = -EIO;
  2284. return err;
  2285. }
  2286. EXPORT_SYMBOL(blk_execute_rq);
  2287. static void bio_end_empty_barrier(struct bio *bio, int err)
  2288. {
  2289. if (err)
  2290. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2291. complete(bio->bi_private);
  2292. }
  2293. /**
  2294. * blkdev_issue_flush - queue a flush
  2295. * @bdev: blockdev to issue flush for
  2296. * @error_sector: error sector
  2297. *
  2298. * Description:
  2299. * Issue a flush for the block device in question. Caller can supply
  2300. * room for storing the error offset in case of a flush error, if they
  2301. * wish to. Caller must run wait_for_completion() on its own.
  2302. */
  2303. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2304. {
  2305. DECLARE_COMPLETION_ONSTACK(wait);
  2306. struct request_queue *q;
  2307. struct bio *bio;
  2308. int ret;
  2309. if (bdev->bd_disk == NULL)
  2310. return -ENXIO;
  2311. q = bdev_get_queue(bdev);
  2312. if (!q)
  2313. return -ENXIO;
  2314. bio = bio_alloc(GFP_KERNEL, 0);
  2315. if (!bio)
  2316. return -ENOMEM;
  2317. bio->bi_end_io = bio_end_empty_barrier;
  2318. bio->bi_private = &wait;
  2319. bio->bi_bdev = bdev;
  2320. submit_bio(1 << BIO_RW_BARRIER, bio);
  2321. wait_for_completion(&wait);
  2322. /*
  2323. * The driver must store the error location in ->bi_sector, if
  2324. * it supports it. For non-stacked drivers, this should be copied
  2325. * from rq->sector.
  2326. */
  2327. if (error_sector)
  2328. *error_sector = bio->bi_sector;
  2329. ret = 0;
  2330. if (!bio_flagged(bio, BIO_UPTODATE))
  2331. ret = -EIO;
  2332. bio_put(bio);
  2333. return ret;
  2334. }
  2335. EXPORT_SYMBOL(blkdev_issue_flush);
  2336. static void drive_stat_acct(struct request *rq, int new_io)
  2337. {
  2338. int rw = rq_data_dir(rq);
  2339. if (!blk_fs_request(rq) || !rq->rq_disk)
  2340. return;
  2341. if (!new_io) {
  2342. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2343. } else {
  2344. disk_round_stats(rq->rq_disk);
  2345. rq->rq_disk->in_flight++;
  2346. }
  2347. }
  2348. /*
  2349. * add-request adds a request to the linked list.
  2350. * queue lock is held and interrupts disabled, as we muck with the
  2351. * request queue list.
  2352. */
  2353. static inline void add_request(struct request_queue * q, struct request * req)
  2354. {
  2355. drive_stat_acct(req, 1);
  2356. /*
  2357. * elevator indicated where it wants this request to be
  2358. * inserted at elevator_merge time
  2359. */
  2360. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2361. }
  2362. /*
  2363. * disk_round_stats() - Round off the performance stats on a struct
  2364. * disk_stats.
  2365. *
  2366. * The average IO queue length and utilisation statistics are maintained
  2367. * by observing the current state of the queue length and the amount of
  2368. * time it has been in this state for.
  2369. *
  2370. * Normally, that accounting is done on IO completion, but that can result
  2371. * in more than a second's worth of IO being accounted for within any one
  2372. * second, leading to >100% utilisation. To deal with that, we call this
  2373. * function to do a round-off before returning the results when reading
  2374. * /proc/diskstats. This accounts immediately for all queue usage up to
  2375. * the current jiffies and restarts the counters again.
  2376. */
  2377. void disk_round_stats(struct gendisk *disk)
  2378. {
  2379. unsigned long now = jiffies;
  2380. if (now == disk->stamp)
  2381. return;
  2382. if (disk->in_flight) {
  2383. __disk_stat_add(disk, time_in_queue,
  2384. disk->in_flight * (now - disk->stamp));
  2385. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2386. }
  2387. disk->stamp = now;
  2388. }
  2389. EXPORT_SYMBOL_GPL(disk_round_stats);
  2390. /*
  2391. * queue lock must be held
  2392. */
  2393. void __blk_put_request(struct request_queue *q, struct request *req)
  2394. {
  2395. if (unlikely(!q))
  2396. return;
  2397. if (unlikely(--req->ref_count))
  2398. return;
  2399. elv_completed_request(q, req);
  2400. /*
  2401. * Request may not have originated from ll_rw_blk. if not,
  2402. * it didn't come out of our reserved rq pools
  2403. */
  2404. if (req->cmd_flags & REQ_ALLOCED) {
  2405. int rw = rq_data_dir(req);
  2406. int priv = req->cmd_flags & REQ_ELVPRIV;
  2407. BUG_ON(!list_empty(&req->queuelist));
  2408. BUG_ON(!hlist_unhashed(&req->hash));
  2409. blk_free_request(q, req);
  2410. freed_request(q, rw, priv);
  2411. }
  2412. }
  2413. EXPORT_SYMBOL_GPL(__blk_put_request);
  2414. void blk_put_request(struct request *req)
  2415. {
  2416. unsigned long flags;
  2417. struct request_queue *q = req->q;
  2418. /*
  2419. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2420. * following if (q) test.
  2421. */
  2422. if (q) {
  2423. spin_lock_irqsave(q->queue_lock, flags);
  2424. __blk_put_request(q, req);
  2425. spin_unlock_irqrestore(q->queue_lock, flags);
  2426. }
  2427. }
  2428. EXPORT_SYMBOL(blk_put_request);
  2429. /**
  2430. * blk_end_sync_rq - executes a completion event on a request
  2431. * @rq: request to complete
  2432. * @error: end io status of the request
  2433. */
  2434. void blk_end_sync_rq(struct request *rq, int error)
  2435. {
  2436. struct completion *waiting = rq->end_io_data;
  2437. rq->end_io_data = NULL;
  2438. __blk_put_request(rq->q, rq);
  2439. /*
  2440. * complete last, if this is a stack request the process (and thus
  2441. * the rq pointer) could be invalid right after this complete()
  2442. */
  2443. complete(waiting);
  2444. }
  2445. EXPORT_SYMBOL(blk_end_sync_rq);
  2446. /*
  2447. * Has to be called with the request spinlock acquired
  2448. */
  2449. static int attempt_merge(struct request_queue *q, struct request *req,
  2450. struct request *next)
  2451. {
  2452. if (!rq_mergeable(req) || !rq_mergeable(next))
  2453. return 0;
  2454. /*
  2455. * not contiguous
  2456. */
  2457. if (req->sector + req->nr_sectors != next->sector)
  2458. return 0;
  2459. if (rq_data_dir(req) != rq_data_dir(next)
  2460. || req->rq_disk != next->rq_disk
  2461. || next->special)
  2462. return 0;
  2463. /*
  2464. * If we are allowed to merge, then append bio list
  2465. * from next to rq and release next. merge_requests_fn
  2466. * will have updated segment counts, update sector
  2467. * counts here.
  2468. */
  2469. if (!ll_merge_requests_fn(q, req, next))
  2470. return 0;
  2471. /*
  2472. * At this point we have either done a back merge
  2473. * or front merge. We need the smaller start_time of
  2474. * the merged requests to be the current request
  2475. * for accounting purposes.
  2476. */
  2477. if (time_after(req->start_time, next->start_time))
  2478. req->start_time = next->start_time;
  2479. req->biotail->bi_next = next->bio;
  2480. req->biotail = next->biotail;
  2481. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2482. elv_merge_requests(q, req, next);
  2483. if (req->rq_disk) {
  2484. disk_round_stats(req->rq_disk);
  2485. req->rq_disk->in_flight--;
  2486. }
  2487. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2488. __blk_put_request(q, next);
  2489. return 1;
  2490. }
  2491. static inline int attempt_back_merge(struct request_queue *q,
  2492. struct request *rq)
  2493. {
  2494. struct request *next = elv_latter_request(q, rq);
  2495. if (next)
  2496. return attempt_merge(q, rq, next);
  2497. return 0;
  2498. }
  2499. static inline int attempt_front_merge(struct request_queue *q,
  2500. struct request *rq)
  2501. {
  2502. struct request *prev = elv_former_request(q, rq);
  2503. if (prev)
  2504. return attempt_merge(q, prev, rq);
  2505. return 0;
  2506. }
  2507. static void init_request_from_bio(struct request *req, struct bio *bio)
  2508. {
  2509. req->cmd_type = REQ_TYPE_FS;
  2510. /*
  2511. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2512. */
  2513. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2514. req->cmd_flags |= REQ_FAILFAST;
  2515. /*
  2516. * REQ_BARRIER implies no merging, but lets make it explicit
  2517. */
  2518. if (unlikely(bio_barrier(bio)))
  2519. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2520. if (bio_sync(bio))
  2521. req->cmd_flags |= REQ_RW_SYNC;
  2522. if (bio_rw_meta(bio))
  2523. req->cmd_flags |= REQ_RW_META;
  2524. req->errors = 0;
  2525. req->hard_sector = req->sector = bio->bi_sector;
  2526. req->ioprio = bio_prio(bio);
  2527. req->start_time = jiffies;
  2528. blk_rq_bio_prep(req->q, req, bio);
  2529. }
  2530. static int __make_request(struct request_queue *q, struct bio *bio)
  2531. {
  2532. struct request *req;
  2533. int el_ret, nr_sectors, barrier, err;
  2534. const unsigned short prio = bio_prio(bio);
  2535. const int sync = bio_sync(bio);
  2536. int rw_flags;
  2537. nr_sectors = bio_sectors(bio);
  2538. /*
  2539. * low level driver can indicate that it wants pages above a
  2540. * certain limit bounced to low memory (ie for highmem, or even
  2541. * ISA dma in theory)
  2542. */
  2543. blk_queue_bounce(q, &bio);
  2544. barrier = bio_barrier(bio);
  2545. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2546. err = -EOPNOTSUPP;
  2547. goto end_io;
  2548. }
  2549. spin_lock_irq(q->queue_lock);
  2550. if (unlikely(barrier) || elv_queue_empty(q))
  2551. goto get_rq;
  2552. el_ret = elv_merge(q, &req, bio);
  2553. switch (el_ret) {
  2554. case ELEVATOR_BACK_MERGE:
  2555. BUG_ON(!rq_mergeable(req));
  2556. if (!ll_back_merge_fn(q, req, bio))
  2557. break;
  2558. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2559. req->biotail->bi_next = bio;
  2560. req->biotail = bio;
  2561. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2562. req->ioprio = ioprio_best(req->ioprio, prio);
  2563. drive_stat_acct(req, 0);
  2564. if (!attempt_back_merge(q, req))
  2565. elv_merged_request(q, req, el_ret);
  2566. goto out;
  2567. case ELEVATOR_FRONT_MERGE:
  2568. BUG_ON(!rq_mergeable(req));
  2569. if (!ll_front_merge_fn(q, req, bio))
  2570. break;
  2571. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2572. bio->bi_next = req->bio;
  2573. req->bio = bio;
  2574. /*
  2575. * may not be valid. if the low level driver said
  2576. * it didn't need a bounce buffer then it better
  2577. * not touch req->buffer either...
  2578. */
  2579. req->buffer = bio_data(bio);
  2580. req->current_nr_sectors = bio_cur_sectors(bio);
  2581. req->hard_cur_sectors = req->current_nr_sectors;
  2582. req->sector = req->hard_sector = bio->bi_sector;
  2583. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2584. req->ioprio = ioprio_best(req->ioprio, prio);
  2585. drive_stat_acct(req, 0);
  2586. if (!attempt_front_merge(q, req))
  2587. elv_merged_request(q, req, el_ret);
  2588. goto out;
  2589. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2590. default:
  2591. ;
  2592. }
  2593. get_rq:
  2594. /*
  2595. * This sync check and mask will be re-done in init_request_from_bio(),
  2596. * but we need to set it earlier to expose the sync flag to the
  2597. * rq allocator and io schedulers.
  2598. */
  2599. rw_flags = bio_data_dir(bio);
  2600. if (sync)
  2601. rw_flags |= REQ_RW_SYNC;
  2602. /*
  2603. * Grab a free request. This is might sleep but can not fail.
  2604. * Returns with the queue unlocked.
  2605. */
  2606. req = get_request_wait(q, rw_flags, bio);
  2607. /*
  2608. * After dropping the lock and possibly sleeping here, our request
  2609. * may now be mergeable after it had proven unmergeable (above).
  2610. * We don't worry about that case for efficiency. It won't happen
  2611. * often, and the elevators are able to handle it.
  2612. */
  2613. init_request_from_bio(req, bio);
  2614. spin_lock_irq(q->queue_lock);
  2615. if (elv_queue_empty(q))
  2616. blk_plug_device(q);
  2617. add_request(q, req);
  2618. out:
  2619. if (sync)
  2620. __generic_unplug_device(q);
  2621. spin_unlock_irq(q->queue_lock);
  2622. return 0;
  2623. end_io:
  2624. bio_endio(bio, err);
  2625. return 0;
  2626. }
  2627. /*
  2628. * If bio->bi_dev is a partition, remap the location
  2629. */
  2630. static inline void blk_partition_remap(struct bio *bio)
  2631. {
  2632. struct block_device *bdev = bio->bi_bdev;
  2633. if (bio_sectors(bio) && bdev != bdev->bd_contains) {
  2634. struct hd_struct *p = bdev->bd_part;
  2635. const int rw = bio_data_dir(bio);
  2636. p->sectors[rw] += bio_sectors(bio);
  2637. p->ios[rw]++;
  2638. bio->bi_sector += p->start_sect;
  2639. bio->bi_bdev = bdev->bd_contains;
  2640. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2641. bdev->bd_dev, bio->bi_sector,
  2642. bio->bi_sector - p->start_sect);
  2643. }
  2644. }
  2645. static void handle_bad_sector(struct bio *bio)
  2646. {
  2647. char b[BDEVNAME_SIZE];
  2648. printk(KERN_INFO "attempt to access beyond end of device\n");
  2649. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2650. bdevname(bio->bi_bdev, b),
  2651. bio->bi_rw,
  2652. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2653. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2654. set_bit(BIO_EOF, &bio->bi_flags);
  2655. }
  2656. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2657. static DECLARE_FAULT_ATTR(fail_make_request);
  2658. static int __init setup_fail_make_request(char *str)
  2659. {
  2660. return setup_fault_attr(&fail_make_request, str);
  2661. }
  2662. __setup("fail_make_request=", setup_fail_make_request);
  2663. static int should_fail_request(struct bio *bio)
  2664. {
  2665. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2666. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2667. return should_fail(&fail_make_request, bio->bi_size);
  2668. return 0;
  2669. }
  2670. static int __init fail_make_request_debugfs(void)
  2671. {
  2672. return init_fault_attr_dentries(&fail_make_request,
  2673. "fail_make_request");
  2674. }
  2675. late_initcall(fail_make_request_debugfs);
  2676. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2677. static inline int should_fail_request(struct bio *bio)
  2678. {
  2679. return 0;
  2680. }
  2681. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2682. /*
  2683. * Check whether this bio extends beyond the end of the device.
  2684. */
  2685. static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
  2686. {
  2687. sector_t maxsector;
  2688. if (!nr_sectors)
  2689. return 0;
  2690. /* Test device or partition size, when known. */
  2691. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2692. if (maxsector) {
  2693. sector_t sector = bio->bi_sector;
  2694. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2695. /*
  2696. * This may well happen - the kernel calls bread()
  2697. * without checking the size of the device, e.g., when
  2698. * mounting a device.
  2699. */
  2700. handle_bad_sector(bio);
  2701. return 1;
  2702. }
  2703. }
  2704. return 0;
  2705. }
  2706. /**
  2707. * generic_make_request: hand a buffer to its device driver for I/O
  2708. * @bio: The bio describing the location in memory and on the device.
  2709. *
  2710. * generic_make_request() is used to make I/O requests of block
  2711. * devices. It is passed a &struct bio, which describes the I/O that needs
  2712. * to be done.
  2713. *
  2714. * generic_make_request() does not return any status. The
  2715. * success/failure status of the request, along with notification of
  2716. * completion, is delivered asynchronously through the bio->bi_end_io
  2717. * function described (one day) else where.
  2718. *
  2719. * The caller of generic_make_request must make sure that bi_io_vec
  2720. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2721. * set to describe the device address, and the
  2722. * bi_end_io and optionally bi_private are set to describe how
  2723. * completion notification should be signaled.
  2724. *
  2725. * generic_make_request and the drivers it calls may use bi_next if this
  2726. * bio happens to be merged with someone else, and may change bi_dev and
  2727. * bi_sector for remaps as it sees fit. So the values of these fields
  2728. * should NOT be depended on after the call to generic_make_request.
  2729. */
  2730. static inline void __generic_make_request(struct bio *bio)
  2731. {
  2732. struct request_queue *q;
  2733. sector_t old_sector;
  2734. int ret, nr_sectors = bio_sectors(bio);
  2735. dev_t old_dev;
  2736. int err = -EIO;
  2737. might_sleep();
  2738. if (bio_check_eod(bio, nr_sectors))
  2739. goto end_io;
  2740. /*
  2741. * Resolve the mapping until finished. (drivers are
  2742. * still free to implement/resolve their own stacking
  2743. * by explicitly returning 0)
  2744. *
  2745. * NOTE: we don't repeat the blk_size check for each new device.
  2746. * Stacking drivers are expected to know what they are doing.
  2747. */
  2748. old_sector = -1;
  2749. old_dev = 0;
  2750. do {
  2751. char b[BDEVNAME_SIZE];
  2752. q = bdev_get_queue(bio->bi_bdev);
  2753. if (!q) {
  2754. printk(KERN_ERR
  2755. "generic_make_request: Trying to access "
  2756. "nonexistent block-device %s (%Lu)\n",
  2757. bdevname(bio->bi_bdev, b),
  2758. (long long) bio->bi_sector);
  2759. end_io:
  2760. bio_endio(bio, err);
  2761. break;
  2762. }
  2763. if (unlikely(nr_sectors > q->max_hw_sectors)) {
  2764. printk("bio too big device %s (%u > %u)\n",
  2765. bdevname(bio->bi_bdev, b),
  2766. bio_sectors(bio),
  2767. q->max_hw_sectors);
  2768. goto end_io;
  2769. }
  2770. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2771. goto end_io;
  2772. if (should_fail_request(bio))
  2773. goto end_io;
  2774. /*
  2775. * If this device has partitions, remap block n
  2776. * of partition p to block n+start(p) of the disk.
  2777. */
  2778. blk_partition_remap(bio);
  2779. if (old_sector != -1)
  2780. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2781. old_sector);
  2782. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2783. old_sector = bio->bi_sector;
  2784. old_dev = bio->bi_bdev->bd_dev;
  2785. if (bio_check_eod(bio, nr_sectors))
  2786. goto end_io;
  2787. if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
  2788. err = -EOPNOTSUPP;
  2789. goto end_io;
  2790. }
  2791. ret = q->make_request_fn(q, bio);
  2792. } while (ret);
  2793. }
  2794. /*
  2795. * We only want one ->make_request_fn to be active at a time,
  2796. * else stack usage with stacked devices could be a problem.
  2797. * So use current->bio_{list,tail} to keep a list of requests
  2798. * submited by a make_request_fn function.
  2799. * current->bio_tail is also used as a flag to say if
  2800. * generic_make_request is currently active in this task or not.
  2801. * If it is NULL, then no make_request is active. If it is non-NULL,
  2802. * then a make_request is active, and new requests should be added
  2803. * at the tail
  2804. */
  2805. void generic_make_request(struct bio *bio)
  2806. {
  2807. if (current->bio_tail) {
  2808. /* make_request is active */
  2809. *(current->bio_tail) = bio;
  2810. bio->bi_next = NULL;
  2811. current->bio_tail = &bio->bi_next;
  2812. return;
  2813. }
  2814. /* following loop may be a bit non-obvious, and so deserves some
  2815. * explanation.
  2816. * Before entering the loop, bio->bi_next is NULL (as all callers
  2817. * ensure that) so we have a list with a single bio.
  2818. * We pretend that we have just taken it off a longer list, so
  2819. * we assign bio_list to the next (which is NULL) and bio_tail
  2820. * to &bio_list, thus initialising the bio_list of new bios to be
  2821. * added. __generic_make_request may indeed add some more bios
  2822. * through a recursive call to generic_make_request. If it
  2823. * did, we find a non-NULL value in bio_list and re-enter the loop
  2824. * from the top. In this case we really did just take the bio
  2825. * of the top of the list (no pretending) and so fixup bio_list and
  2826. * bio_tail or bi_next, and call into __generic_make_request again.
  2827. *
  2828. * The loop was structured like this to make only one call to
  2829. * __generic_make_request (which is important as it is large and
  2830. * inlined) and to keep the structure simple.
  2831. */
  2832. BUG_ON(bio->bi_next);
  2833. do {
  2834. current->bio_list = bio->bi_next;
  2835. if (bio->bi_next == NULL)
  2836. current->bio_tail = &current->bio_list;
  2837. else
  2838. bio->bi_next = NULL;
  2839. __generic_make_request(bio);
  2840. bio = current->bio_list;
  2841. } while (bio);
  2842. current->bio_tail = NULL; /* deactivate */
  2843. }
  2844. EXPORT_SYMBOL(generic_make_request);
  2845. /**
  2846. * submit_bio: submit a bio to the block device layer for I/O
  2847. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2848. * @bio: The &struct bio which describes the I/O
  2849. *
  2850. * submit_bio() is very similar in purpose to generic_make_request(), and
  2851. * uses that function to do most of the work. Both are fairly rough
  2852. * interfaces, @bio must be presetup and ready for I/O.
  2853. *
  2854. */
  2855. void submit_bio(int rw, struct bio *bio)
  2856. {
  2857. int count = bio_sectors(bio);
  2858. bio->bi_rw |= rw;
  2859. /*
  2860. * If it's a regular read/write or a barrier with data attached,
  2861. * go through the normal accounting stuff before submission.
  2862. */
  2863. if (!bio_empty_barrier(bio)) {
  2864. BIO_BUG_ON(!bio->bi_size);
  2865. BIO_BUG_ON(!bio->bi_io_vec);
  2866. if (rw & WRITE) {
  2867. count_vm_events(PGPGOUT, count);
  2868. } else {
  2869. task_io_account_read(bio->bi_size);
  2870. count_vm_events(PGPGIN, count);
  2871. }
  2872. if (unlikely(block_dump)) {
  2873. char b[BDEVNAME_SIZE];
  2874. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2875. current->comm, task_pid_nr(current),
  2876. (rw & WRITE) ? "WRITE" : "READ",
  2877. (unsigned long long)bio->bi_sector,
  2878. bdevname(bio->bi_bdev,b));
  2879. }
  2880. }
  2881. generic_make_request(bio);
  2882. }
  2883. EXPORT_SYMBOL(submit_bio);
  2884. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2885. {
  2886. if (blk_fs_request(rq)) {
  2887. rq->hard_sector += nsect;
  2888. rq->hard_nr_sectors -= nsect;
  2889. /*
  2890. * Move the I/O submission pointers ahead if required.
  2891. */
  2892. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2893. (rq->sector <= rq->hard_sector)) {
  2894. rq->sector = rq->hard_sector;
  2895. rq->nr_sectors = rq->hard_nr_sectors;
  2896. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2897. rq->current_nr_sectors = rq->hard_cur_sectors;
  2898. rq->buffer = bio_data(rq->bio);
  2899. }
  2900. /*
  2901. * if total number of sectors is less than the first segment
  2902. * size, something has gone terribly wrong
  2903. */
  2904. if (rq->nr_sectors < rq->current_nr_sectors) {
  2905. printk("blk: request botched\n");
  2906. rq->nr_sectors = rq->current_nr_sectors;
  2907. }
  2908. }
  2909. }
  2910. /**
  2911. * __end_that_request_first - end I/O on a request
  2912. * @req: the request being processed
  2913. * @error: 0 for success, < 0 for error
  2914. * @nr_bytes: number of bytes to complete
  2915. *
  2916. * Description:
  2917. * Ends I/O on a number of bytes attached to @req, and sets it up
  2918. * for the next range of segments (if any) in the cluster.
  2919. *
  2920. * Return:
  2921. * 0 - we are done with this request, call end_that_request_last()
  2922. * 1 - still buffers pending for this request
  2923. **/
  2924. static int __end_that_request_first(struct request *req, int error,
  2925. int nr_bytes)
  2926. {
  2927. int total_bytes, bio_nbytes, next_idx = 0;
  2928. struct bio *bio;
  2929. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2930. /*
  2931. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2932. * sense key with us all the way through
  2933. */
  2934. if (!blk_pc_request(req))
  2935. req->errors = 0;
  2936. if (error) {
  2937. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2938. printk("end_request: I/O error, dev %s, sector %llu\n",
  2939. req->rq_disk ? req->rq_disk->disk_name : "?",
  2940. (unsigned long long)req->sector);
  2941. }
  2942. if (blk_fs_request(req) && req->rq_disk) {
  2943. const int rw = rq_data_dir(req);
  2944. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2945. }
  2946. total_bytes = bio_nbytes = 0;
  2947. while ((bio = req->bio) != NULL) {
  2948. int nbytes;
  2949. /*
  2950. * For an empty barrier request, the low level driver must
  2951. * store a potential error location in ->sector. We pass
  2952. * that back up in ->bi_sector.
  2953. */
  2954. if (blk_empty_barrier(req))
  2955. bio->bi_sector = req->sector;
  2956. if (nr_bytes >= bio->bi_size) {
  2957. req->bio = bio->bi_next;
  2958. nbytes = bio->bi_size;
  2959. req_bio_endio(req, bio, nbytes, error);
  2960. next_idx = 0;
  2961. bio_nbytes = 0;
  2962. } else {
  2963. int idx = bio->bi_idx + next_idx;
  2964. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2965. blk_dump_rq_flags(req, "__end_that");
  2966. printk("%s: bio idx %d >= vcnt %d\n",
  2967. __FUNCTION__,
  2968. bio->bi_idx, bio->bi_vcnt);
  2969. break;
  2970. }
  2971. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2972. BIO_BUG_ON(nbytes > bio->bi_size);
  2973. /*
  2974. * not a complete bvec done
  2975. */
  2976. if (unlikely(nbytes > nr_bytes)) {
  2977. bio_nbytes += nr_bytes;
  2978. total_bytes += nr_bytes;
  2979. break;
  2980. }
  2981. /*
  2982. * advance to the next vector
  2983. */
  2984. next_idx++;
  2985. bio_nbytes += nbytes;
  2986. }
  2987. total_bytes += nbytes;
  2988. nr_bytes -= nbytes;
  2989. if ((bio = req->bio)) {
  2990. /*
  2991. * end more in this run, or just return 'not-done'
  2992. */
  2993. if (unlikely(nr_bytes <= 0))
  2994. break;
  2995. }
  2996. }
  2997. /*
  2998. * completely done
  2999. */
  3000. if (!req->bio)
  3001. return 0;
  3002. /*
  3003. * if the request wasn't completed, update state
  3004. */
  3005. if (bio_nbytes) {
  3006. req_bio_endio(req, bio, bio_nbytes, error);
  3007. bio->bi_idx += next_idx;
  3008. bio_iovec(bio)->bv_offset += nr_bytes;
  3009. bio_iovec(bio)->bv_len -= nr_bytes;
  3010. }
  3011. blk_recalc_rq_sectors(req, total_bytes >> 9);
  3012. blk_recalc_rq_segments(req);
  3013. return 1;
  3014. }
  3015. /*
  3016. * splice the completion data to a local structure and hand off to
  3017. * process_completion_queue() to complete the requests
  3018. */
  3019. static void blk_done_softirq(struct softirq_action *h)
  3020. {
  3021. struct list_head *cpu_list, local_list;
  3022. local_irq_disable();
  3023. cpu_list = &__get_cpu_var(blk_cpu_done);
  3024. list_replace_init(cpu_list, &local_list);
  3025. local_irq_enable();
  3026. while (!list_empty(&local_list)) {
  3027. struct request *rq = list_entry(local_list.next, struct request, donelist);
  3028. list_del_init(&rq->donelist);
  3029. rq->q->softirq_done_fn(rq);
  3030. }
  3031. }
  3032. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  3033. void *hcpu)
  3034. {
  3035. /*
  3036. * If a CPU goes away, splice its entries to the current CPU
  3037. * and trigger a run of the softirq
  3038. */
  3039. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3040. int cpu = (unsigned long) hcpu;
  3041. local_irq_disable();
  3042. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3043. &__get_cpu_var(blk_cpu_done));
  3044. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3045. local_irq_enable();
  3046. }
  3047. return NOTIFY_OK;
  3048. }
  3049. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3050. .notifier_call = blk_cpu_notify,
  3051. };
  3052. /**
  3053. * blk_complete_request - end I/O on a request
  3054. * @req: the request being processed
  3055. *
  3056. * Description:
  3057. * Ends all I/O on a request. It does not handle partial completions,
  3058. * unless the driver actually implements this in its completion callback
  3059. * through requeueing. The actual completion happens out-of-order,
  3060. * through a softirq handler. The user must have registered a completion
  3061. * callback through blk_queue_softirq_done().
  3062. **/
  3063. void blk_complete_request(struct request *req)
  3064. {
  3065. struct list_head *cpu_list;
  3066. unsigned long flags;
  3067. BUG_ON(!req->q->softirq_done_fn);
  3068. local_irq_save(flags);
  3069. cpu_list = &__get_cpu_var(blk_cpu_done);
  3070. list_add_tail(&req->donelist, cpu_list);
  3071. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3072. local_irq_restore(flags);
  3073. }
  3074. EXPORT_SYMBOL(blk_complete_request);
  3075. /*
  3076. * queue lock must be held
  3077. */
  3078. static void end_that_request_last(struct request *req, int error)
  3079. {
  3080. struct gendisk *disk = req->rq_disk;
  3081. if (unlikely(laptop_mode) && blk_fs_request(req))
  3082. laptop_io_completion();
  3083. /*
  3084. * Account IO completion. bar_rq isn't accounted as a normal
  3085. * IO on queueing nor completion. Accounting the containing
  3086. * request is enough.
  3087. */
  3088. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3089. unsigned long duration = jiffies - req->start_time;
  3090. const int rw = rq_data_dir(req);
  3091. __disk_stat_inc(disk, ios[rw]);
  3092. __disk_stat_add(disk, ticks[rw], duration);
  3093. disk_round_stats(disk);
  3094. disk->in_flight--;
  3095. }
  3096. if (req->end_io)
  3097. req->end_io(req, error);
  3098. else
  3099. __blk_put_request(req->q, req);
  3100. }
  3101. static inline void __end_request(struct request *rq, int uptodate,
  3102. unsigned int nr_bytes)
  3103. {
  3104. int error = 0;
  3105. if (uptodate <= 0)
  3106. error = uptodate ? uptodate : -EIO;
  3107. __blk_end_request(rq, error, nr_bytes);
  3108. }
  3109. /**
  3110. * blk_rq_bytes - Returns bytes left to complete in the entire request
  3111. **/
  3112. unsigned int blk_rq_bytes(struct request *rq)
  3113. {
  3114. if (blk_fs_request(rq))
  3115. return rq->hard_nr_sectors << 9;
  3116. return rq->data_len;
  3117. }
  3118. EXPORT_SYMBOL_GPL(blk_rq_bytes);
  3119. /**
  3120. * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
  3121. **/
  3122. unsigned int blk_rq_cur_bytes(struct request *rq)
  3123. {
  3124. if (blk_fs_request(rq))
  3125. return rq->current_nr_sectors << 9;
  3126. if (rq->bio)
  3127. return rq->bio->bi_size;
  3128. return rq->data_len;
  3129. }
  3130. EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
  3131. /**
  3132. * end_queued_request - end all I/O on a queued request
  3133. * @rq: the request being processed
  3134. * @uptodate: error value or 0/1 uptodate flag
  3135. *
  3136. * Description:
  3137. * Ends all I/O on a request, and removes it from the block layer queues.
  3138. * Not suitable for normal IO completion, unless the driver still has
  3139. * the request attached to the block layer.
  3140. *
  3141. **/
  3142. void end_queued_request(struct request *rq, int uptodate)
  3143. {
  3144. __end_request(rq, uptodate, blk_rq_bytes(rq));
  3145. }
  3146. EXPORT_SYMBOL(end_queued_request);
  3147. /**
  3148. * end_dequeued_request - end all I/O on a dequeued request
  3149. * @rq: the request being processed
  3150. * @uptodate: error value or 0/1 uptodate flag
  3151. *
  3152. * Description:
  3153. * Ends all I/O on a request. The request must already have been
  3154. * dequeued using blkdev_dequeue_request(), as is normally the case
  3155. * for most drivers.
  3156. *
  3157. **/
  3158. void end_dequeued_request(struct request *rq, int uptodate)
  3159. {
  3160. __end_request(rq, uptodate, blk_rq_bytes(rq));
  3161. }
  3162. EXPORT_SYMBOL(end_dequeued_request);
  3163. /**
  3164. * end_request - end I/O on the current segment of the request
  3165. * @req: the request being processed
  3166. * @uptodate: error value or 0/1 uptodate flag
  3167. *
  3168. * Description:
  3169. * Ends I/O on the current segment of a request. If that is the only
  3170. * remaining segment, the request is also completed and freed.
  3171. *
  3172. * This is a remnant of how older block drivers handled IO completions.
  3173. * Modern drivers typically end IO on the full request in one go, unless
  3174. * they have a residual value to account for. For that case this function
  3175. * isn't really useful, unless the residual just happens to be the
  3176. * full current segment. In other words, don't use this function in new
  3177. * code. Either use end_request_completely(), or the
  3178. * end_that_request_chunk() (along with end_that_request_last()) for
  3179. * partial completions.
  3180. *
  3181. **/
  3182. void end_request(struct request *req, int uptodate)
  3183. {
  3184. __end_request(req, uptodate, req->hard_cur_sectors << 9);
  3185. }
  3186. EXPORT_SYMBOL(end_request);
  3187. static void complete_request(struct request *rq, int error)
  3188. {
  3189. if (blk_rq_tagged(rq))
  3190. blk_queue_end_tag(rq->q, rq);
  3191. if (blk_queued_rq(rq))
  3192. blkdev_dequeue_request(rq);
  3193. if (blk_bidi_rq(rq) && !rq->end_io)
  3194. __blk_put_request(rq->next_rq->q, rq->next_rq);
  3195. end_that_request_last(rq, error);
  3196. }
  3197. /**
  3198. * blk_end_io - Generic end_io function to complete a request.
  3199. * @rq: the request being processed
  3200. * @error: 0 for success, < 0 for error
  3201. * @nr_bytes: number of bytes to complete @rq
  3202. * @bidi_bytes: number of bytes to complete @rq->next_rq
  3203. * @drv_callback: function called between completion of bios in the request
  3204. * and completion of the request.
  3205. * If the callback returns non 0, this helper returns without
  3206. * completion of the request.
  3207. *
  3208. * Description:
  3209. * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
  3210. * If @rq has leftover, sets it up for the next range of segments.
  3211. *
  3212. * Return:
  3213. * 0 - we are done with this request
  3214. * 1 - this request is not freed yet, it still has pending buffers.
  3215. **/
  3216. static int blk_end_io(struct request *rq, int error, int nr_bytes,
  3217. int bidi_bytes, int (drv_callback)(struct request *))
  3218. {
  3219. struct request_queue *q = rq->q;
  3220. unsigned long flags = 0UL;
  3221. if (blk_fs_request(rq) || blk_pc_request(rq)) {
  3222. if (__end_that_request_first(rq, error, nr_bytes))
  3223. return 1;
  3224. /* Bidi request must be completed as a whole */
  3225. if (blk_bidi_rq(rq) &&
  3226. __end_that_request_first(rq->next_rq, error, bidi_bytes))
  3227. return 1;
  3228. }
  3229. /* Special feature for tricky drivers */
  3230. if (drv_callback && drv_callback(rq))
  3231. return 1;
  3232. add_disk_randomness(rq->rq_disk);
  3233. spin_lock_irqsave(q->queue_lock, flags);
  3234. complete_request(rq, error);
  3235. spin_unlock_irqrestore(q->queue_lock, flags);
  3236. return 0;
  3237. }
  3238. /**
  3239. * blk_end_request - Helper function for drivers to complete the request.
  3240. * @rq: the request being processed
  3241. * @error: 0 for success, < 0 for error
  3242. * @nr_bytes: number of bytes to complete
  3243. *
  3244. * Description:
  3245. * Ends I/O on a number of bytes attached to @rq.
  3246. * If @rq has leftover, sets it up for the next range of segments.
  3247. *
  3248. * Return:
  3249. * 0 - we are done with this request
  3250. * 1 - still buffers pending for this request
  3251. **/
  3252. int blk_end_request(struct request *rq, int error, int nr_bytes)
  3253. {
  3254. return blk_end_io(rq, error, nr_bytes, 0, NULL);
  3255. }
  3256. EXPORT_SYMBOL_GPL(blk_end_request);
  3257. /**
  3258. * __blk_end_request - Helper function for drivers to complete the request.
  3259. * @rq: the request being processed
  3260. * @error: 0 for success, < 0 for error
  3261. * @nr_bytes: number of bytes to complete
  3262. *
  3263. * Description:
  3264. * Must be called with queue lock held unlike blk_end_request().
  3265. *
  3266. * Return:
  3267. * 0 - we are done with this request
  3268. * 1 - still buffers pending for this request
  3269. **/
  3270. int __blk_end_request(struct request *rq, int error, int nr_bytes)
  3271. {
  3272. if (blk_fs_request(rq) || blk_pc_request(rq)) {
  3273. if (__end_that_request_first(rq, error, nr_bytes))
  3274. return 1;
  3275. }
  3276. add_disk_randomness(rq->rq_disk);
  3277. complete_request(rq, error);
  3278. return 0;
  3279. }
  3280. EXPORT_SYMBOL_GPL(__blk_end_request);
  3281. /**
  3282. * blk_end_bidi_request - Helper function for drivers to complete bidi request.
  3283. * @rq: the bidi request being processed
  3284. * @error: 0 for success, < 0 for error
  3285. * @nr_bytes: number of bytes to complete @rq
  3286. * @bidi_bytes: number of bytes to complete @rq->next_rq
  3287. *
  3288. * Description:
  3289. * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
  3290. *
  3291. * Return:
  3292. * 0 - we are done with this request
  3293. * 1 - still buffers pending for this request
  3294. **/
  3295. int blk_end_bidi_request(struct request *rq, int error, int nr_bytes,
  3296. int bidi_bytes)
  3297. {
  3298. return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
  3299. }
  3300. EXPORT_SYMBOL_GPL(blk_end_bidi_request);
  3301. /**
  3302. * blk_end_request_callback - Special helper function for tricky drivers
  3303. * @rq: the request being processed
  3304. * @error: 0 for success, < 0 for error
  3305. * @nr_bytes: number of bytes to complete
  3306. * @drv_callback: function called between completion of bios in the request
  3307. * and completion of the request.
  3308. * If the callback returns non 0, this helper returns without
  3309. * completion of the request.
  3310. *
  3311. * Description:
  3312. * Ends I/O on a number of bytes attached to @rq.
  3313. * If @rq has leftover, sets it up for the next range of segments.
  3314. *
  3315. * This special helper function is used only for existing tricky drivers.
  3316. * (e.g. cdrom_newpc_intr() of ide-cd)
  3317. * This interface will be removed when such drivers are rewritten.
  3318. * Don't use this interface in other places anymore.
  3319. *
  3320. * Return:
  3321. * 0 - we are done with this request
  3322. * 1 - this request is not freed yet.
  3323. * this request still has pending buffers or
  3324. * the driver doesn't want to finish this request yet.
  3325. **/
  3326. int blk_end_request_callback(struct request *rq, int error, int nr_bytes,
  3327. int (drv_callback)(struct request *))
  3328. {
  3329. return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
  3330. }
  3331. EXPORT_SYMBOL_GPL(blk_end_request_callback);
  3332. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3333. struct bio *bio)
  3334. {
  3335. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3336. rq->cmd_flags |= (bio->bi_rw & 3);
  3337. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3338. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3339. rq->current_nr_sectors = bio_cur_sectors(bio);
  3340. rq->hard_cur_sectors = rq->current_nr_sectors;
  3341. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3342. rq->buffer = bio_data(bio);
  3343. rq->data_len = bio->bi_size;
  3344. rq->bio = rq->biotail = bio;
  3345. if (bio->bi_bdev)
  3346. rq->rq_disk = bio->bi_bdev->bd_disk;
  3347. }
  3348. int kblockd_schedule_work(struct work_struct *work)
  3349. {
  3350. return queue_work(kblockd_workqueue, work);
  3351. }
  3352. EXPORT_SYMBOL(kblockd_schedule_work);
  3353. void kblockd_flush_work(struct work_struct *work)
  3354. {
  3355. cancel_work_sync(work);
  3356. }
  3357. EXPORT_SYMBOL(kblockd_flush_work);
  3358. int __init blk_dev_init(void)
  3359. {
  3360. int i;
  3361. kblockd_workqueue = create_workqueue("kblockd");
  3362. if (!kblockd_workqueue)
  3363. panic("Failed to create kblockd\n");
  3364. request_cachep = kmem_cache_create("blkdev_requests",
  3365. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3366. requestq_cachep = kmem_cache_create("blkdev_queue",
  3367. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3368. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3369. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3370. for_each_possible_cpu(i)
  3371. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3372. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3373. register_hotcpu_notifier(&blk_cpu_notifier);
  3374. blk_max_low_pfn = max_low_pfn - 1;
  3375. blk_max_pfn = max_pfn - 1;
  3376. return 0;
  3377. }
  3378. /*
  3379. * IO Context helper functions
  3380. */
  3381. void put_io_context(struct io_context *ioc)
  3382. {
  3383. if (ioc == NULL)
  3384. return;
  3385. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3386. if (atomic_dec_and_test(&ioc->refcount)) {
  3387. struct cfq_io_context *cic;
  3388. rcu_read_lock();
  3389. if (ioc->aic && ioc->aic->dtor)
  3390. ioc->aic->dtor(ioc->aic);
  3391. if (ioc->cic_root.rb_node != NULL) {
  3392. struct rb_node *n = rb_first(&ioc->cic_root);
  3393. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3394. cic->dtor(ioc);
  3395. }
  3396. rcu_read_unlock();
  3397. kmem_cache_free(iocontext_cachep, ioc);
  3398. }
  3399. }
  3400. EXPORT_SYMBOL(put_io_context);
  3401. /* Called by the exitting task */
  3402. void exit_io_context(void)
  3403. {
  3404. struct io_context *ioc;
  3405. struct cfq_io_context *cic;
  3406. task_lock(current);
  3407. ioc = current->io_context;
  3408. current->io_context = NULL;
  3409. task_unlock(current);
  3410. ioc->task = NULL;
  3411. if (ioc->aic && ioc->aic->exit)
  3412. ioc->aic->exit(ioc->aic);
  3413. if (ioc->cic_root.rb_node != NULL) {
  3414. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3415. cic->exit(ioc);
  3416. }
  3417. put_io_context(ioc);
  3418. }
  3419. /*
  3420. * If the current task has no IO context then create one and initialise it.
  3421. * Otherwise, return its existing IO context.
  3422. *
  3423. * This returned IO context doesn't have a specifically elevated refcount,
  3424. * but since the current task itself holds a reference, the context can be
  3425. * used in general code, so long as it stays within `current` context.
  3426. */
  3427. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3428. {
  3429. struct task_struct *tsk = current;
  3430. struct io_context *ret;
  3431. ret = tsk->io_context;
  3432. if (likely(ret))
  3433. return ret;
  3434. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3435. if (ret) {
  3436. atomic_set(&ret->refcount, 1);
  3437. ret->task = current;
  3438. ret->ioprio_changed = 0;
  3439. ret->last_waited = jiffies; /* doesn't matter... */
  3440. ret->nr_batch_requests = 0; /* because this is 0 */
  3441. ret->aic = NULL;
  3442. ret->cic_root.rb_node = NULL;
  3443. ret->ioc_data = NULL;
  3444. /* make sure set_task_ioprio() sees the settings above */
  3445. smp_wmb();
  3446. tsk->io_context = ret;
  3447. }
  3448. return ret;
  3449. }
  3450. /*
  3451. * If the current task has no IO context then create one and initialise it.
  3452. * If it does have a context, take a ref on it.
  3453. *
  3454. * This is always called in the context of the task which submitted the I/O.
  3455. */
  3456. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3457. {
  3458. struct io_context *ret;
  3459. ret = current_io_context(gfp_flags, node);
  3460. if (likely(ret))
  3461. atomic_inc(&ret->refcount);
  3462. return ret;
  3463. }
  3464. EXPORT_SYMBOL(get_io_context);
  3465. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3466. {
  3467. struct io_context *src = *psrc;
  3468. struct io_context *dst = *pdst;
  3469. if (src) {
  3470. BUG_ON(atomic_read(&src->refcount) == 0);
  3471. atomic_inc(&src->refcount);
  3472. put_io_context(dst);
  3473. *pdst = src;
  3474. }
  3475. }
  3476. EXPORT_SYMBOL(copy_io_context);
  3477. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3478. {
  3479. struct io_context *temp;
  3480. temp = *ioc1;
  3481. *ioc1 = *ioc2;
  3482. *ioc2 = temp;
  3483. }
  3484. EXPORT_SYMBOL(swap_io_context);
  3485. /*
  3486. * sysfs parts below
  3487. */
  3488. struct queue_sysfs_entry {
  3489. struct attribute attr;
  3490. ssize_t (*show)(struct request_queue *, char *);
  3491. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3492. };
  3493. static ssize_t
  3494. queue_var_show(unsigned int var, char *page)
  3495. {
  3496. return sprintf(page, "%d\n", var);
  3497. }
  3498. static ssize_t
  3499. queue_var_store(unsigned long *var, const char *page, size_t count)
  3500. {
  3501. char *p = (char *) page;
  3502. *var = simple_strtoul(p, &p, 10);
  3503. return count;
  3504. }
  3505. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3506. {
  3507. return queue_var_show(q->nr_requests, (page));
  3508. }
  3509. static ssize_t
  3510. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3511. {
  3512. struct request_list *rl = &q->rq;
  3513. unsigned long nr;
  3514. int ret = queue_var_store(&nr, page, count);
  3515. if (nr < BLKDEV_MIN_RQ)
  3516. nr = BLKDEV_MIN_RQ;
  3517. spin_lock_irq(q->queue_lock);
  3518. q->nr_requests = nr;
  3519. blk_queue_congestion_threshold(q);
  3520. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3521. blk_set_queue_congested(q, READ);
  3522. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3523. blk_clear_queue_congested(q, READ);
  3524. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3525. blk_set_queue_congested(q, WRITE);
  3526. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3527. blk_clear_queue_congested(q, WRITE);
  3528. if (rl->count[READ] >= q->nr_requests) {
  3529. blk_set_queue_full(q, READ);
  3530. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3531. blk_clear_queue_full(q, READ);
  3532. wake_up(&rl->wait[READ]);
  3533. }
  3534. if (rl->count[WRITE] >= q->nr_requests) {
  3535. blk_set_queue_full(q, WRITE);
  3536. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3537. blk_clear_queue_full(q, WRITE);
  3538. wake_up(&rl->wait[WRITE]);
  3539. }
  3540. spin_unlock_irq(q->queue_lock);
  3541. return ret;
  3542. }
  3543. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3544. {
  3545. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3546. return queue_var_show(ra_kb, (page));
  3547. }
  3548. static ssize_t
  3549. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3550. {
  3551. unsigned long ra_kb;
  3552. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3553. spin_lock_irq(q->queue_lock);
  3554. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3555. spin_unlock_irq(q->queue_lock);
  3556. return ret;
  3557. }
  3558. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3559. {
  3560. int max_sectors_kb = q->max_sectors >> 1;
  3561. return queue_var_show(max_sectors_kb, (page));
  3562. }
  3563. static ssize_t
  3564. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3565. {
  3566. unsigned long max_sectors_kb,
  3567. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3568. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3569. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3570. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3571. return -EINVAL;
  3572. /*
  3573. * Take the queue lock to update the readahead and max_sectors
  3574. * values synchronously:
  3575. */
  3576. spin_lock_irq(q->queue_lock);
  3577. q->max_sectors = max_sectors_kb << 1;
  3578. spin_unlock_irq(q->queue_lock);
  3579. return ret;
  3580. }
  3581. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3582. {
  3583. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3584. return queue_var_show(max_hw_sectors_kb, (page));
  3585. }
  3586. static struct queue_sysfs_entry queue_requests_entry = {
  3587. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3588. .show = queue_requests_show,
  3589. .store = queue_requests_store,
  3590. };
  3591. static struct queue_sysfs_entry queue_ra_entry = {
  3592. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3593. .show = queue_ra_show,
  3594. .store = queue_ra_store,
  3595. };
  3596. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3597. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3598. .show = queue_max_sectors_show,
  3599. .store = queue_max_sectors_store,
  3600. };
  3601. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3602. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3603. .show = queue_max_hw_sectors_show,
  3604. };
  3605. static struct queue_sysfs_entry queue_iosched_entry = {
  3606. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3607. .show = elv_iosched_show,
  3608. .store = elv_iosched_store,
  3609. };
  3610. static struct attribute *default_attrs[] = {
  3611. &queue_requests_entry.attr,
  3612. &queue_ra_entry.attr,
  3613. &queue_max_hw_sectors_entry.attr,
  3614. &queue_max_sectors_entry.attr,
  3615. &queue_iosched_entry.attr,
  3616. NULL,
  3617. };
  3618. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3619. static ssize_t
  3620. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3621. {
  3622. struct queue_sysfs_entry *entry = to_queue(attr);
  3623. struct request_queue *q =
  3624. container_of(kobj, struct request_queue, kobj);
  3625. ssize_t res;
  3626. if (!entry->show)
  3627. return -EIO;
  3628. mutex_lock(&q->sysfs_lock);
  3629. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3630. mutex_unlock(&q->sysfs_lock);
  3631. return -ENOENT;
  3632. }
  3633. res = entry->show(q, page);
  3634. mutex_unlock(&q->sysfs_lock);
  3635. return res;
  3636. }
  3637. static ssize_t
  3638. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3639. const char *page, size_t length)
  3640. {
  3641. struct queue_sysfs_entry *entry = to_queue(attr);
  3642. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3643. ssize_t res;
  3644. if (!entry->store)
  3645. return -EIO;
  3646. mutex_lock(&q->sysfs_lock);
  3647. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3648. mutex_unlock(&q->sysfs_lock);
  3649. return -ENOENT;
  3650. }
  3651. res = entry->store(q, page, length);
  3652. mutex_unlock(&q->sysfs_lock);
  3653. return res;
  3654. }
  3655. static struct sysfs_ops queue_sysfs_ops = {
  3656. .show = queue_attr_show,
  3657. .store = queue_attr_store,
  3658. };
  3659. static struct kobj_type queue_ktype = {
  3660. .sysfs_ops = &queue_sysfs_ops,
  3661. .default_attrs = default_attrs,
  3662. .release = blk_release_queue,
  3663. };
  3664. int blk_register_queue(struct gendisk *disk)
  3665. {
  3666. int ret;
  3667. struct request_queue *q = disk->queue;
  3668. if (!q || !q->request_fn)
  3669. return -ENXIO;
  3670. ret = kobject_add(&q->kobj, kobject_get(&disk->dev.kobj),
  3671. "%s", "queue");
  3672. if (ret < 0)
  3673. return ret;
  3674. kobject_uevent(&q->kobj, KOBJ_ADD);
  3675. ret = elv_register_queue(q);
  3676. if (ret) {
  3677. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3678. kobject_del(&q->kobj);
  3679. return ret;
  3680. }
  3681. return 0;
  3682. }
  3683. void blk_unregister_queue(struct gendisk *disk)
  3684. {
  3685. struct request_queue *q = disk->queue;
  3686. if (q && q->request_fn) {
  3687. elv_unregister_queue(q);
  3688. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3689. kobject_del(&q->kobj);
  3690. kobject_put(&disk->dev.kobj);
  3691. }
  3692. }