tda18271-fe.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /*
  2. tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner
  3. Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org)
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/delay.h>
  17. #include <linux/videodev2.h>
  18. #include "tuner-driver.h"
  19. #include "tda18271.h"
  20. #include "tda18271-priv.h"
  21. static int tda18271_debug;
  22. module_param_named(debug, tda18271_debug, int, 0644);
  23. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  24. #define dprintk(level, fmt, arg...) do {\
  25. if (tda18271_debug >= level) \
  26. printk(KERN_DEBUG "%s: " fmt, __FUNCTION__, ##arg); } while (0)
  27. /*---------------------------------------------------------------------*/
  28. #define TDA18271_ANALOG 0
  29. #define TDA18271_DIGITAL 1
  30. struct tda18271_priv {
  31. u8 i2c_addr;
  32. struct i2c_adapter *i2c_adap;
  33. unsigned char tda18271_regs[TDA18271_NUM_REGS];
  34. int mode;
  35. u32 frequency;
  36. u32 bandwidth;
  37. };
  38. static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  39. {
  40. struct tda18271_priv *priv = fe->tuner_priv;
  41. struct analog_tuner_ops *ops = fe->ops.analog_demod_ops;
  42. int ret = 0;
  43. switch (priv->mode) {
  44. case TDA18271_ANALOG:
  45. if (ops && ops->i2c_gate_ctrl)
  46. ret = ops->i2c_gate_ctrl(fe, enable);
  47. break;
  48. case TDA18271_DIGITAL:
  49. if (fe->ops.i2c_gate_ctrl)
  50. ret = fe->ops.i2c_gate_ctrl(fe, enable);
  51. break;
  52. }
  53. return ret;
  54. };
  55. /*---------------------------------------------------------------------*/
  56. static void tda18271_dump_regs(struct dvb_frontend *fe)
  57. {
  58. struct tda18271_priv *priv = fe->tuner_priv;
  59. unsigned char *regs = priv->tda18271_regs;
  60. dprintk(1, "=== TDA18271 REG DUMP ===\n");
  61. dprintk(1, "ID_BYTE = 0x%x\n", 0xff & regs[R_ID]);
  62. dprintk(1, "THERMO_BYTE = 0x%x\n", 0xff & regs[R_TM]);
  63. dprintk(1, "POWER_LEVEL_BYTE = 0x%x\n", 0xff & regs[R_PL]);
  64. dprintk(1, "EASY_PROG_BYTE_1 = 0x%x\n", 0xff & regs[R_EP1]);
  65. dprintk(1, "EASY_PROG_BYTE_2 = 0x%x\n", 0xff & regs[R_EP2]);
  66. dprintk(1, "EASY_PROG_BYTE_3 = 0x%x\n", 0xff & regs[R_EP3]);
  67. dprintk(1, "EASY_PROG_BYTE_4 = 0x%x\n", 0xff & regs[R_EP4]);
  68. dprintk(1, "EASY_PROG_BYTE_5 = 0x%x\n", 0xff & regs[R_EP5]);
  69. dprintk(1, "CAL_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_CPD]);
  70. dprintk(1, "CAL_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_CD1]);
  71. dprintk(1, "CAL_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_CD2]);
  72. dprintk(1, "CAL_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_CD3]);
  73. dprintk(1, "MAIN_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_MPD]);
  74. dprintk(1, "MAIN_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_MD1]);
  75. dprintk(1, "MAIN_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_MD2]);
  76. dprintk(1, "MAIN_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_MD3]);
  77. }
  78. static void tda18271_read_regs(struct dvb_frontend *fe)
  79. {
  80. struct tda18271_priv *priv = fe->tuner_priv;
  81. unsigned char *regs = priv->tda18271_regs;
  82. unsigned char buf = 0x00;
  83. int ret;
  84. struct i2c_msg msg[] = {
  85. { .addr = priv->i2c_addr, .flags = 0,
  86. .buf = &buf, .len = 1 },
  87. { .addr = priv->i2c_addr, .flags = I2C_M_RD,
  88. .buf = regs, .len = 16 }
  89. };
  90. tda18271_i2c_gate_ctrl(fe, 1);
  91. /* read all registers */
  92. ret = i2c_transfer(priv->i2c_adap, msg, 2);
  93. tda18271_i2c_gate_ctrl(fe, 0);
  94. if (ret != 2)
  95. printk("ERROR: %s: i2c_transfer returned: %d\n",
  96. __FUNCTION__, ret);
  97. if (tda18271_debug > 2)
  98. tda18271_dump_regs(fe);
  99. }
  100. static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
  101. {
  102. struct tda18271_priv *priv = fe->tuner_priv;
  103. unsigned char *regs = priv->tda18271_regs;
  104. unsigned char buf[TDA18271_NUM_REGS+1];
  105. struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0,
  106. .buf = buf, .len = len+1 };
  107. int i, ret;
  108. BUG_ON((len == 0) || (idx+len > sizeof(buf)));
  109. buf[0] = idx;
  110. for (i = 1; i <= len; i++) {
  111. buf[i] = regs[idx-1+i];
  112. }
  113. tda18271_i2c_gate_ctrl(fe, 1);
  114. /* write registers */
  115. ret = i2c_transfer(priv->i2c_adap, &msg, 1);
  116. tda18271_i2c_gate_ctrl(fe, 0);
  117. if (ret != 1)
  118. printk(KERN_WARNING "ERROR: %s: i2c_transfer returned: %d\n",
  119. __FUNCTION__, ret);
  120. }
  121. /*---------------------------------------------------------------------*/
  122. static int tda18271_init_regs(struct dvb_frontend *fe)
  123. {
  124. struct tda18271_priv *priv = fe->tuner_priv;
  125. unsigned char *regs = priv->tda18271_regs;
  126. printk(KERN_INFO "tda18271: initializing registers\n");
  127. /* initialize registers */
  128. regs[R_ID] = 0x83;
  129. regs[R_TM] = 0x08;
  130. regs[R_PL] = 0x80;
  131. regs[R_EP1] = 0xc6;
  132. regs[R_EP2] = 0xdf;
  133. regs[R_EP3] = 0x16;
  134. regs[R_EP4] = 0x60;
  135. regs[R_EP5] = 0x80;
  136. regs[R_CPD] = 0x80;
  137. regs[R_CD1] = 0x00;
  138. regs[R_CD2] = 0x00;
  139. regs[R_CD3] = 0x00;
  140. regs[R_MPD] = 0x00;
  141. regs[R_MD1] = 0x00;
  142. regs[R_MD2] = 0x00;
  143. regs[R_MD3] = 0x00;
  144. regs[R_EB1] = 0xff;
  145. regs[R_EB2] = 0x01;
  146. regs[R_EB3] = 0x84;
  147. regs[R_EB4] = 0x41;
  148. regs[R_EB5] = 0x01;
  149. regs[R_EB6] = 0x84;
  150. regs[R_EB7] = 0x40;
  151. regs[R_EB8] = 0x07;
  152. regs[R_EB9] = 0x00;
  153. regs[R_EB10] = 0x00;
  154. regs[R_EB11] = 0x96;
  155. regs[R_EB12] = 0x0f;
  156. regs[R_EB13] = 0xc1;
  157. regs[R_EB14] = 0x00;
  158. regs[R_EB15] = 0x8f;
  159. regs[R_EB16] = 0x00;
  160. regs[R_EB17] = 0x00;
  161. regs[R_EB18] = 0x00;
  162. regs[R_EB19] = 0x00;
  163. regs[R_EB20] = 0x20;
  164. regs[R_EB21] = 0x33;
  165. regs[R_EB22] = 0x48;
  166. regs[R_EB23] = 0xb0;
  167. tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS);
  168. /* setup AGC1 & AGC2 */
  169. regs[R_EB17] = 0x00;
  170. tda18271_write_regs(fe, R_EB17, 1);
  171. regs[R_EB17] = 0x03;
  172. tda18271_write_regs(fe, R_EB17, 1);
  173. regs[R_EB17] = 0x43;
  174. tda18271_write_regs(fe, R_EB17, 1);
  175. regs[R_EB17] = 0x4c;
  176. tda18271_write_regs(fe, R_EB17, 1);
  177. regs[R_EB20] = 0xa0;
  178. tda18271_write_regs(fe, R_EB20, 1);
  179. regs[R_EB20] = 0xa7;
  180. tda18271_write_regs(fe, R_EB20, 1);
  181. regs[R_EB20] = 0xe7;
  182. tda18271_write_regs(fe, R_EB20, 1);
  183. regs[R_EB20] = 0xec;
  184. tda18271_write_regs(fe, R_EB20, 1);
  185. /* image rejection calibration */
  186. /* low-band */
  187. regs[R_EP3] = 0x1f;
  188. regs[R_EP4] = 0x66;
  189. regs[R_EP5] = 0x81;
  190. regs[R_CPD] = 0xcc;
  191. regs[R_CD1] = 0x6c;
  192. regs[R_CD2] = 0x00;
  193. regs[R_CD3] = 0x00;
  194. regs[R_MPD] = 0xcd;
  195. regs[R_MD1] = 0x77;
  196. regs[R_MD2] = 0x08;
  197. regs[R_MD3] = 0x00;
  198. tda18271_write_regs(fe, R_EP3, 11);
  199. msleep(5); /* pll locking */
  200. regs[R_EP1] = 0xc6;
  201. tda18271_write_regs(fe, R_EP1, 1);
  202. msleep(5); /* wanted low measurement */
  203. regs[R_EP3] = 0x1f;
  204. regs[R_EP4] = 0x66;
  205. regs[R_EP5] = 0x85;
  206. regs[R_CPD] = 0xcb;
  207. regs[R_CD1] = 0x66;
  208. regs[R_CD2] = 0x70;
  209. regs[R_CD3] = 0x00;
  210. tda18271_write_regs(fe, R_EP3, 7);
  211. msleep(5); /* pll locking */
  212. regs[R_EP2] = 0xdf;
  213. tda18271_write_regs(fe, R_EP2, 1);
  214. msleep(30); /* image low optimization completion */
  215. /* mid-band */
  216. regs[R_EP3] = 0x1f;
  217. regs[R_EP4] = 0x66;
  218. regs[R_EP5] = 0x82;
  219. regs[R_CPD] = 0xa8;
  220. regs[R_CD1] = 0x66;
  221. regs[R_CD2] = 0x00;
  222. regs[R_CD3] = 0x00;
  223. regs[R_MPD] = 0xa9;
  224. regs[R_MD1] = 0x73;
  225. regs[R_MD2] = 0x1a;
  226. regs[R_MD3] = 0x00;
  227. tda18271_write_regs(fe, R_EP3, 11);
  228. msleep(5); /* pll locking */
  229. regs[R_EP1] = 0xc6;
  230. tda18271_write_regs(fe, R_EP1, 1);
  231. msleep(5); /* wanted mid measurement */
  232. regs[R_EP3] = 0x1f;
  233. regs[R_EP4] = 0x66;
  234. regs[R_EP5] = 0x86;
  235. regs[R_CPD] = 0xa8;
  236. regs[R_CD1] = 0x66;
  237. regs[R_CD2] = 0xa0;
  238. regs[R_CD3] = 0x00;
  239. tda18271_write_regs(fe, R_EP3, 7);
  240. msleep(5); /* pll locking */
  241. regs[R_EP2] = 0xdf;
  242. tda18271_write_regs(fe, R_EP2, 1);
  243. msleep(30); /* image mid optimization completion */
  244. /* high-band */
  245. regs[R_EP3] = 0x1f;
  246. regs[R_EP4] = 0x66;
  247. regs[R_EP5] = 0x83;
  248. regs[R_CPD] = 0x98;
  249. regs[R_CD1] = 0x65;
  250. regs[R_CD2] = 0x00;
  251. regs[R_CD3] = 0x00;
  252. regs[R_MPD] = 0x99;
  253. regs[R_MD1] = 0x71;
  254. regs[R_MD2] = 0xcd;
  255. regs[R_MD3] = 0x00;
  256. tda18271_write_regs(fe, R_EP3, 11);
  257. msleep(5); /* pll locking */
  258. regs[R_EP1] = 0xc6;
  259. tda18271_write_regs(fe, R_EP1, 1);
  260. msleep(5); /* wanted high measurement */
  261. regs[R_EP3] = 0x1f;
  262. regs[R_EP4] = 0x66;
  263. regs[R_EP5] = 0x87;
  264. regs[R_CPD] = 0x98;
  265. regs[R_CD1] = 0x65;
  266. regs[R_CD2] = 0x50;
  267. regs[R_CD3] = 0x00;
  268. tda18271_write_regs(fe, R_EP3, 7);
  269. msleep(5); /* pll locking */
  270. regs[R_EP2] = 0xdf;
  271. tda18271_write_regs(fe, R_EP2, 1);
  272. msleep(30); /* image high optimization completion */
  273. regs[R_EP4] = 0x64;
  274. tda18271_write_regs(fe, R_EP4, 1);
  275. regs[R_EP1] = 0xc6;
  276. tda18271_write_regs(fe, R_EP1, 1);
  277. return 0;
  278. }
  279. static int tda18271_tune(struct dvb_frontend *fe,
  280. u32 ifc, u32 freq, u32 bw, u8 std)
  281. {
  282. struct tda18271_priv *priv = fe->tuner_priv;
  283. unsigned char *regs = priv->tda18271_regs;
  284. u32 div, N = 0;
  285. int i;
  286. tda18271_read_regs(fe);
  287. /* test IR_CAL_OK to see if we need init */
  288. if ((regs[R_EP1] & 0x08) == 0)
  289. tda18271_init_regs(fe);
  290. dprintk(1, "freq = %d, ifc = %d\n", freq, ifc);
  291. /* RF tracking filter calibration */
  292. /* calculate BP_Filter */
  293. i = 0;
  294. while ((tda18271_bp_filter[i].rfmax * 1000) < freq) {
  295. if (tda18271_bp_filter[i + 1].rfmax == 0)
  296. break;
  297. i++;
  298. }
  299. dprintk(2, "bp filter = 0x%x, i = %d\n", tda18271_bp_filter[i].val, i);
  300. regs[R_EP1] &= ~0x07; /* clear bp filter bits */
  301. regs[R_EP1] |= tda18271_bp_filter[i].val;
  302. tda18271_write_regs(fe, R_EP1, 1);
  303. regs[R_EB4] &= 0x07;
  304. regs[R_EB4] |= 0x60;
  305. tda18271_write_regs(fe, R_EB4, 1);
  306. regs[R_EB7] = 0x60;
  307. tda18271_write_regs(fe, R_EB7, 1);
  308. regs[R_EB14] = 0x00;
  309. tda18271_write_regs(fe, R_EB14, 1);
  310. regs[R_EB20] = 0xcc;
  311. tda18271_write_regs(fe, R_EB20, 1);
  312. /* set CAL mode to RF tracking filter calibration */
  313. regs[R_EB4] |= 0x03;
  314. /* calculate CAL PLL */
  315. switch (priv->mode) {
  316. case TDA18271_ANALOG:
  317. N = freq - 1250000;
  318. break;
  319. case TDA18271_DIGITAL:
  320. N = freq + bw / 2;
  321. break;
  322. }
  323. i = 0;
  324. while ((tda18271_cal_pll[i].lomax * 1000) < N) {
  325. if (tda18271_cal_pll[i + 1].lomax == 0)
  326. break;
  327. i++;
  328. }
  329. dprintk(2, "cal pll, pd = 0x%x, d = 0x%x, i = %d\n",
  330. tda18271_cal_pll[i].pd, tda18271_cal_pll[i].d, i);
  331. regs[R_CPD] = tda18271_cal_pll[i].pd;
  332. div = ((tda18271_cal_pll[i].d * (N / 1000)) << 7) / 125;
  333. regs[R_CD1] = 0xff & (div >> 16);
  334. regs[R_CD2] = 0xff & (div >> 8);
  335. regs[R_CD3] = 0xff & div;
  336. /* calculate MAIN PLL */
  337. switch (priv->mode) {
  338. case TDA18271_ANALOG:
  339. N = freq - 250000;
  340. break;
  341. case TDA18271_DIGITAL:
  342. N = freq + bw / 2 + 1000000;
  343. break;
  344. }
  345. i = 0;
  346. while ((tda18271_main_pll[i].lomax * 1000) < N) {
  347. if (tda18271_main_pll[i + 1].lomax == 0)
  348. break;
  349. i++;
  350. }
  351. dprintk(2, "main pll, pd = 0x%x, d = 0x%x, i = %d\n",
  352. tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
  353. regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd);
  354. switch (priv->mode) {
  355. case TDA18271_ANALOG:
  356. regs[R_MPD] &= ~0x08;
  357. break;
  358. case TDA18271_DIGITAL:
  359. regs[R_MPD] |= 0x08;
  360. break;
  361. }
  362. div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
  363. regs[R_MD1] = 0xff & (div >> 16);
  364. regs[R_MD2] = 0xff & (div >> 8);
  365. regs[R_MD3] = 0xff & div;
  366. tda18271_write_regs(fe, R_EP3, 11);
  367. msleep(5); /* RF tracking filter calibration initialization */
  368. /* search for K,M,CO for RF Calibration */
  369. i = 0;
  370. while ((tda18271_km[i].rfmax * 1000) < freq) {
  371. if (tda18271_km[i + 1].rfmax == 0)
  372. break;
  373. i++;
  374. }
  375. dprintk(2, "km = 0x%x, i = %d\n", tda18271_km[i].val, i);
  376. regs[R_EB13] &= 0x83;
  377. regs[R_EB13] |= tda18271_km[i].val;
  378. tda18271_write_regs(fe, R_EB13, 1);
  379. /* search for RF_BAND */
  380. i = 0;
  381. while ((tda18271_rf_band[i].rfmax * 1000) < freq) {
  382. if (tda18271_rf_band[i + 1].rfmax == 0)
  383. break;
  384. i++;
  385. }
  386. dprintk(2, "rf band = 0x%x, i = %d\n", tda18271_rf_band[i].val, i);
  387. regs[R_EP2] &= ~0xe0; /* clear rf band bits */
  388. regs[R_EP2] |= (tda18271_rf_band[i].val << 5);
  389. /* search for Gain_Taper */
  390. i = 0;
  391. while ((tda18271_gain_taper[i].rfmax * 1000) < freq) {
  392. if (tda18271_gain_taper[i + 1].rfmax == 0)
  393. break;
  394. i++;
  395. }
  396. dprintk(2, "gain taper = 0x%x, i = %d\n",
  397. tda18271_gain_taper[i].val, i);
  398. regs[R_EP2] &= ~0x1f; /* clear gain taper bits */
  399. regs[R_EP2] |= tda18271_gain_taper[i].val;
  400. tda18271_write_regs(fe, R_EP2, 1);
  401. tda18271_write_regs(fe, R_EP1, 1);
  402. tda18271_write_regs(fe, R_EP2, 1);
  403. tda18271_write_regs(fe, R_EP1, 1);
  404. regs[R_EB4] &= 0x07;
  405. regs[R_EB4] |= 0x40;
  406. tda18271_write_regs(fe, R_EB4, 1);
  407. regs[R_EB7] = 0x40;
  408. tda18271_write_regs(fe, R_EB7, 1);
  409. msleep(10);
  410. regs[R_EB20] = 0xec;
  411. tda18271_write_regs(fe, R_EB20, 1);
  412. msleep(60); /* RF tracking filter calibration completion */
  413. regs[R_EP4] &= ~0x03; /* set cal mode to normal */
  414. tda18271_write_regs(fe, R_EP4, 1);
  415. tda18271_write_regs(fe, R_EP1, 1);
  416. /* RF tracking filer correction for VHF_Low band */
  417. i = 0;
  418. while ((tda18271_rf_cal[i].rfmax * 1000) < freq) {
  419. if (tda18271_rf_cal[i].rfmax == 0)
  420. break;
  421. i++;
  422. }
  423. dprintk(2, "rf cal = 0x%x, i = %d\n", tda18271_rf_cal[i].val, i);
  424. /* VHF_Low band only */
  425. if (tda18271_rf_cal[i].rfmax != 0) {
  426. regs[R_EB14] = tda18271_rf_cal[i].val;
  427. tda18271_write_regs(fe, R_EB14, 1);
  428. }
  429. /* Channel Configuration */
  430. switch (priv->mode) {
  431. case TDA18271_ANALOG:
  432. regs[R_EB22] = 0x2c;
  433. break;
  434. case TDA18271_DIGITAL:
  435. regs[R_EB22] = 0x37;
  436. break;
  437. }
  438. tda18271_write_regs(fe, R_EB22, 1);
  439. regs[R_EP1] |= 0x40; /* set dis power level on */
  440. /* set standard */
  441. regs[R_EP3] &= ~0x1f; /* clear std bits */
  442. /* see table 22 */
  443. regs[R_EP3] |= std;
  444. regs[R_EP4] &= ~0x03; /* set cal mode to normal */
  445. regs[R_EP4] &= ~0x1c; /* clear if level bits */
  446. switch (priv->mode) {
  447. case TDA18271_ANALOG:
  448. regs[R_MPD] &= ~0x80; /* IF notch = 0 */
  449. break;
  450. case TDA18271_DIGITAL:
  451. regs[R_EP4] |= 0x04;
  452. regs[R_MPD] |= 0x80;
  453. break;
  454. }
  455. regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */
  456. /* FIXME: image rejection validity EP5[2:0] */
  457. /* calculate MAIN PLL */
  458. N = freq + ifc;
  459. i = 0;
  460. while ((tda18271_main_pll[i].lomax * 1000) < N) {
  461. if (tda18271_main_pll[i + 1].lomax == 0)
  462. break;
  463. i++;
  464. }
  465. dprintk(2, "main pll, pd = 0x%x, d = 0x%x, i = %d\n",
  466. tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
  467. regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd);
  468. switch (priv->mode) {
  469. case TDA18271_ANALOG:
  470. regs[R_MPD] &= ~0x08;
  471. break;
  472. case TDA18271_DIGITAL:
  473. regs[R_MPD] |= 0x08;
  474. break;
  475. }
  476. div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
  477. regs[R_MD1] = 0xff & (div >> 16);
  478. regs[R_MD2] = 0xff & (div >> 8);
  479. regs[R_MD3] = 0xff & div;
  480. tda18271_write_regs(fe, R_TM, 15);
  481. msleep(5);
  482. return 0;
  483. }
  484. /* ------------------------------------------------------------------ */
  485. static int tda18271_set_params(struct dvb_frontend *fe,
  486. struct dvb_frontend_parameters *params)
  487. {
  488. struct tda18271_priv *priv = fe->tuner_priv;
  489. u8 std;
  490. u32 bw, sgIF = 0;
  491. u32 freq = params->frequency;
  492. priv->mode = TDA18271_DIGITAL;
  493. /* see table 22 */
  494. if (fe->ops.info.type == FE_ATSC) {
  495. switch (params->u.vsb.modulation) {
  496. case VSB_8:
  497. case VSB_16:
  498. std = 0x1b; /* device-specific (spec says 0x1c) */
  499. sgIF = 5380000;
  500. break;
  501. case QAM_64:
  502. case QAM_256:
  503. std = 0x18; /* device-specific (spec says 0x1d) */
  504. sgIF = 4000000;
  505. break;
  506. default:
  507. printk(KERN_WARNING "%s: modulation not set!\n",
  508. __FUNCTION__);
  509. return -EINVAL;
  510. }
  511. freq += 1750000; /* Adjust to center (+1.75MHZ) */
  512. bw = 6000000;
  513. } else if (fe->ops.info.type == FE_OFDM) {
  514. switch (params->u.ofdm.bandwidth) {
  515. case BANDWIDTH_6_MHZ:
  516. std = 0x1b; /* device-specific (spec says 0x1c) */
  517. bw = 6000000;
  518. sgIF = 3300000;
  519. break;
  520. case BANDWIDTH_7_MHZ:
  521. std = 0x19; /* device-specific (spec says 0x1d) */
  522. bw = 7000000;
  523. sgIF = 3800000;
  524. break;
  525. case BANDWIDTH_8_MHZ:
  526. std = 0x1a; /* device-specific (spec says 0x1e) */
  527. bw = 8000000;
  528. sgIF = 4300000;
  529. break;
  530. default:
  531. printk(KERN_WARNING "%s: bandwidth not set!\n",
  532. __FUNCTION__);
  533. return -EINVAL;
  534. }
  535. } else {
  536. printk(KERN_WARNING "%s: modulation type not supported!\n",
  537. __FUNCTION__);
  538. return -EINVAL;
  539. }
  540. return tda18271_tune(fe, sgIF, freq, bw, std);
  541. }
  542. static int tda18271_set_analog_params(struct dvb_frontend *fe,
  543. struct analog_parameters *params)
  544. {
  545. struct tda18271_priv *priv = fe->tuner_priv;
  546. u8 std;
  547. unsigned int sgIF;
  548. char *mode;
  549. priv->mode = TDA18271_ANALOG;
  550. /* see table 22 */
  551. if (params->std & V4L2_STD_MN) {
  552. std = 0x0d;
  553. sgIF = 92;
  554. mode = "MN";
  555. } else if (params->std & V4L2_STD_B) {
  556. std = 0x0e;
  557. sgIF = 108;
  558. mode = "B";
  559. } else if (params->std & V4L2_STD_GH) {
  560. std = 0x0f;
  561. sgIF = 124;
  562. mode = "GH";
  563. } else if (params->std & V4L2_STD_PAL_I) {
  564. std = 0x0f;
  565. sgIF = 124;
  566. mode = "I";
  567. } else if (params->std & V4L2_STD_DK) {
  568. std = 0x0f;
  569. sgIF = 124;
  570. mode = "DK";
  571. } else if (params->std & V4L2_STD_SECAM_L) {
  572. std = 0x0f;
  573. sgIF = 124;
  574. mode = "L";
  575. } else if (params->std & V4L2_STD_SECAM_LC) {
  576. std = 0x0f;
  577. sgIF = 20;
  578. mode = "LC";
  579. } else {
  580. std = 0x0f;
  581. sgIF = 124;
  582. mode = "xx";
  583. }
  584. if (params->mode == V4L2_TUNER_RADIO)
  585. sgIF = 88; /* if frequency is 5.5 MHz */
  586. dprintk(1, "setting tda18271 to system %s\n", mode);
  587. return tda18271_tune(fe, sgIF * 62500, params->frequency * 62500,
  588. 0, std);
  589. }
  590. static int tda18271_release(struct dvb_frontend *fe)
  591. {
  592. kfree(fe->tuner_priv);
  593. fe->tuner_priv = NULL;
  594. return 0;
  595. }
  596. static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency)
  597. {
  598. struct tda18271_priv *priv = fe->tuner_priv;
  599. *frequency = priv->frequency;
  600. return 0;
  601. }
  602. static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
  603. {
  604. struct tda18271_priv *priv = fe->tuner_priv;
  605. *bandwidth = priv->bandwidth;
  606. return 0;
  607. }
  608. static struct dvb_tuner_ops tda18271_tuner_ops = {
  609. .info = {
  610. .name = "NXP TDA18271HD",
  611. .frequency_min = 45000000,
  612. .frequency_max = 864000000,
  613. .frequency_step = 62500
  614. },
  615. .init = tda18271_init_regs,
  616. .set_params = tda18271_set_params,
  617. .set_analog_params = tda18271_set_analog_params,
  618. .release = tda18271_release,
  619. .get_frequency = tda18271_get_frequency,
  620. .get_bandwidth = tda18271_get_bandwidth,
  621. };
  622. struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr,
  623. struct i2c_adapter *i2c)
  624. {
  625. struct tda18271_priv *priv = NULL;
  626. dprintk(1, "@ %d-%04x\n", i2c_adapter_id(i2c), addr);
  627. priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL);
  628. if (priv == NULL)
  629. return NULL;
  630. priv->i2c_addr = addr;
  631. priv->i2c_adap = i2c;
  632. memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops,
  633. sizeof(struct dvb_tuner_ops));
  634. fe->tuner_priv = priv;
  635. return fe;
  636. }
  637. EXPORT_SYMBOL_GPL(tda18271_attach);
  638. MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver");
  639. MODULE_AUTHOR("Michael Krufky <mkrufky@linuxtv.org>");
  640. MODULE_LICENSE("GPL");
  641. /*
  642. * Overrides for Emacs so that we follow Linus's tabbing style.
  643. * ---------------------------------------------------------------------------
  644. * Local variables:
  645. * c-basic-offset: 8
  646. * End:
  647. */