vmx.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. static int enable_vpid = 1;
  35. module_param(enable_vpid, bool, 0);
  36. static int flexpriority_enabled = 1;
  37. module_param(flexpriority_enabled, bool, 0);
  38. static int enable_ept = 1;
  39. module_param(enable_ept, bool, 0);
  40. struct vmcs {
  41. u32 revision_id;
  42. u32 abort;
  43. char data[0];
  44. };
  45. struct vcpu_vmx {
  46. struct kvm_vcpu vcpu;
  47. struct list_head local_vcpus_link;
  48. int launched;
  49. u8 fail;
  50. u32 idt_vectoring_info;
  51. struct kvm_msr_entry *guest_msrs;
  52. struct kvm_msr_entry *host_msrs;
  53. int nmsrs;
  54. int save_nmsrs;
  55. int msr_offset_efer;
  56. #ifdef CONFIG_X86_64
  57. int msr_offset_kernel_gs_base;
  58. #endif
  59. struct vmcs *vmcs;
  60. struct {
  61. int loaded;
  62. u16 fs_sel, gs_sel, ldt_sel;
  63. int gs_ldt_reload_needed;
  64. int fs_reload_needed;
  65. int guest_efer_loaded;
  66. } host_state;
  67. struct {
  68. struct {
  69. bool pending;
  70. u8 vector;
  71. unsigned rip;
  72. } irq;
  73. } rmode;
  74. int vpid;
  75. };
  76. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  77. {
  78. return container_of(vcpu, struct vcpu_vmx, vcpu);
  79. }
  80. static int init_rmode(struct kvm *kvm);
  81. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  82. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  83. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  84. static struct page *vmx_io_bitmap_a;
  85. static struct page *vmx_io_bitmap_b;
  86. static struct page *vmx_msr_bitmap;
  87. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  88. static DEFINE_SPINLOCK(vmx_vpid_lock);
  89. static struct vmcs_config {
  90. int size;
  91. int order;
  92. u32 revision_id;
  93. u32 pin_based_exec_ctrl;
  94. u32 cpu_based_exec_ctrl;
  95. u32 cpu_based_2nd_exec_ctrl;
  96. u32 vmexit_ctrl;
  97. u32 vmentry_ctrl;
  98. } vmcs_config;
  99. struct vmx_capability {
  100. u32 ept;
  101. u32 vpid;
  102. } vmx_capability;
  103. #define VMX_SEGMENT_FIELD(seg) \
  104. [VCPU_SREG_##seg] = { \
  105. .selector = GUEST_##seg##_SELECTOR, \
  106. .base = GUEST_##seg##_BASE, \
  107. .limit = GUEST_##seg##_LIMIT, \
  108. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  109. }
  110. static struct kvm_vmx_segment_field {
  111. unsigned selector;
  112. unsigned base;
  113. unsigned limit;
  114. unsigned ar_bytes;
  115. } kvm_vmx_segment_fields[] = {
  116. VMX_SEGMENT_FIELD(CS),
  117. VMX_SEGMENT_FIELD(DS),
  118. VMX_SEGMENT_FIELD(ES),
  119. VMX_SEGMENT_FIELD(FS),
  120. VMX_SEGMENT_FIELD(GS),
  121. VMX_SEGMENT_FIELD(SS),
  122. VMX_SEGMENT_FIELD(TR),
  123. VMX_SEGMENT_FIELD(LDTR),
  124. };
  125. /*
  126. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  127. * away by decrementing the array size.
  128. */
  129. static const u32 vmx_msr_index[] = {
  130. #ifdef CONFIG_X86_64
  131. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  132. #endif
  133. MSR_EFER, MSR_K6_STAR,
  134. };
  135. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  136. static void load_msrs(struct kvm_msr_entry *e, int n)
  137. {
  138. int i;
  139. for (i = 0; i < n; ++i)
  140. wrmsrl(e[i].index, e[i].data);
  141. }
  142. static void save_msrs(struct kvm_msr_entry *e, int n)
  143. {
  144. int i;
  145. for (i = 0; i < n; ++i)
  146. rdmsrl(e[i].index, e[i].data);
  147. }
  148. static inline int is_page_fault(u32 intr_info)
  149. {
  150. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  151. INTR_INFO_VALID_MASK)) ==
  152. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  153. }
  154. static inline int is_no_device(u32 intr_info)
  155. {
  156. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  157. INTR_INFO_VALID_MASK)) ==
  158. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  159. }
  160. static inline int is_invalid_opcode(u32 intr_info)
  161. {
  162. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  163. INTR_INFO_VALID_MASK)) ==
  164. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  165. }
  166. static inline int is_external_interrupt(u32 intr_info)
  167. {
  168. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  169. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  170. }
  171. static inline int cpu_has_vmx_msr_bitmap(void)
  172. {
  173. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  174. }
  175. static inline int cpu_has_vmx_tpr_shadow(void)
  176. {
  177. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  178. }
  179. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  180. {
  181. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  182. }
  183. static inline int cpu_has_secondary_exec_ctrls(void)
  184. {
  185. return (vmcs_config.cpu_based_exec_ctrl &
  186. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  187. }
  188. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  189. {
  190. return flexpriority_enabled
  191. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  192. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  193. }
  194. static inline int cpu_has_vmx_invept_individual_addr(void)
  195. {
  196. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  197. }
  198. static inline int cpu_has_vmx_invept_context(void)
  199. {
  200. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  201. }
  202. static inline int cpu_has_vmx_invept_global(void)
  203. {
  204. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  205. }
  206. static inline int cpu_has_vmx_ept(void)
  207. {
  208. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  209. SECONDARY_EXEC_ENABLE_EPT);
  210. }
  211. static inline int vm_need_ept(void)
  212. {
  213. return (cpu_has_vmx_ept() && enable_ept);
  214. }
  215. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  216. {
  217. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  218. (irqchip_in_kernel(kvm)));
  219. }
  220. static inline int cpu_has_vmx_vpid(void)
  221. {
  222. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  223. SECONDARY_EXEC_ENABLE_VPID);
  224. }
  225. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  226. {
  227. int i;
  228. for (i = 0; i < vmx->nmsrs; ++i)
  229. if (vmx->guest_msrs[i].index == msr)
  230. return i;
  231. return -1;
  232. }
  233. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  234. {
  235. struct {
  236. u64 vpid : 16;
  237. u64 rsvd : 48;
  238. u64 gva;
  239. } operand = { vpid, 0, gva };
  240. asm volatile (__ex(ASM_VMX_INVVPID)
  241. /* CF==1 or ZF==1 --> rc = -1 */
  242. "; ja 1f ; ud2 ; 1:"
  243. : : "a"(&operand), "c"(ext) : "cc", "memory");
  244. }
  245. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  246. {
  247. struct {
  248. u64 eptp, gpa;
  249. } operand = {eptp, gpa};
  250. asm volatile (__ex(ASM_VMX_INVEPT)
  251. /* CF==1 or ZF==1 --> rc = -1 */
  252. "; ja 1f ; ud2 ; 1:\n"
  253. : : "a" (&operand), "c" (ext) : "cc", "memory");
  254. }
  255. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  256. {
  257. int i;
  258. i = __find_msr_index(vmx, msr);
  259. if (i >= 0)
  260. return &vmx->guest_msrs[i];
  261. return NULL;
  262. }
  263. static void vmcs_clear(struct vmcs *vmcs)
  264. {
  265. u64 phys_addr = __pa(vmcs);
  266. u8 error;
  267. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  268. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  269. : "cc", "memory");
  270. if (error)
  271. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  272. vmcs, phys_addr);
  273. }
  274. static void __vcpu_clear(void *arg)
  275. {
  276. struct vcpu_vmx *vmx = arg;
  277. int cpu = raw_smp_processor_id();
  278. if (vmx->vcpu.cpu == cpu)
  279. vmcs_clear(vmx->vmcs);
  280. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  281. per_cpu(current_vmcs, cpu) = NULL;
  282. rdtscll(vmx->vcpu.arch.host_tsc);
  283. list_del(&vmx->local_vcpus_link);
  284. vmx->vcpu.cpu = -1;
  285. vmx->launched = 0;
  286. }
  287. static void vcpu_clear(struct vcpu_vmx *vmx)
  288. {
  289. if (vmx->vcpu.cpu == -1)
  290. return;
  291. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  292. }
  293. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  294. {
  295. if (vmx->vpid == 0)
  296. return;
  297. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  298. }
  299. static inline void ept_sync_global(void)
  300. {
  301. if (cpu_has_vmx_invept_global())
  302. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  303. }
  304. static inline void ept_sync_context(u64 eptp)
  305. {
  306. if (vm_need_ept()) {
  307. if (cpu_has_vmx_invept_context())
  308. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  309. else
  310. ept_sync_global();
  311. }
  312. }
  313. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  314. {
  315. if (vm_need_ept()) {
  316. if (cpu_has_vmx_invept_individual_addr())
  317. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  318. eptp, gpa);
  319. else
  320. ept_sync_context(eptp);
  321. }
  322. }
  323. static unsigned long vmcs_readl(unsigned long field)
  324. {
  325. unsigned long value;
  326. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  327. : "=a"(value) : "d"(field) : "cc");
  328. return value;
  329. }
  330. static u16 vmcs_read16(unsigned long field)
  331. {
  332. return vmcs_readl(field);
  333. }
  334. static u32 vmcs_read32(unsigned long field)
  335. {
  336. return vmcs_readl(field);
  337. }
  338. static u64 vmcs_read64(unsigned long field)
  339. {
  340. #ifdef CONFIG_X86_64
  341. return vmcs_readl(field);
  342. #else
  343. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  344. #endif
  345. }
  346. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  347. {
  348. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  349. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  350. dump_stack();
  351. }
  352. static void vmcs_writel(unsigned long field, unsigned long value)
  353. {
  354. u8 error;
  355. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  356. : "=q"(error) : "a"(value), "d"(field) : "cc");
  357. if (unlikely(error))
  358. vmwrite_error(field, value);
  359. }
  360. static void vmcs_write16(unsigned long field, u16 value)
  361. {
  362. vmcs_writel(field, value);
  363. }
  364. static void vmcs_write32(unsigned long field, u32 value)
  365. {
  366. vmcs_writel(field, value);
  367. }
  368. static void vmcs_write64(unsigned long field, u64 value)
  369. {
  370. vmcs_writel(field, value);
  371. #ifndef CONFIG_X86_64
  372. asm volatile ("");
  373. vmcs_writel(field+1, value >> 32);
  374. #endif
  375. }
  376. static void vmcs_clear_bits(unsigned long field, u32 mask)
  377. {
  378. vmcs_writel(field, vmcs_readl(field) & ~mask);
  379. }
  380. static void vmcs_set_bits(unsigned long field, u32 mask)
  381. {
  382. vmcs_writel(field, vmcs_readl(field) | mask);
  383. }
  384. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  385. {
  386. u32 eb;
  387. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  388. if (!vcpu->fpu_active)
  389. eb |= 1u << NM_VECTOR;
  390. if (vcpu->guest_debug.enabled)
  391. eb |= 1u << 1;
  392. if (vcpu->arch.rmode.active)
  393. eb = ~0;
  394. if (vm_need_ept())
  395. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  396. vmcs_write32(EXCEPTION_BITMAP, eb);
  397. }
  398. static void reload_tss(void)
  399. {
  400. /*
  401. * VT restores TR but not its size. Useless.
  402. */
  403. struct descriptor_table gdt;
  404. struct desc_struct *descs;
  405. get_gdt(&gdt);
  406. descs = (void *)gdt.base;
  407. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  408. load_TR_desc();
  409. }
  410. static void load_transition_efer(struct vcpu_vmx *vmx)
  411. {
  412. int efer_offset = vmx->msr_offset_efer;
  413. u64 host_efer = vmx->host_msrs[efer_offset].data;
  414. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  415. u64 ignore_bits;
  416. if (efer_offset < 0)
  417. return;
  418. /*
  419. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  420. * outside long mode
  421. */
  422. ignore_bits = EFER_NX | EFER_SCE;
  423. #ifdef CONFIG_X86_64
  424. ignore_bits |= EFER_LMA | EFER_LME;
  425. /* SCE is meaningful only in long mode on Intel */
  426. if (guest_efer & EFER_LMA)
  427. ignore_bits &= ~(u64)EFER_SCE;
  428. #endif
  429. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  430. return;
  431. vmx->host_state.guest_efer_loaded = 1;
  432. guest_efer &= ~ignore_bits;
  433. guest_efer |= host_efer & ignore_bits;
  434. wrmsrl(MSR_EFER, guest_efer);
  435. vmx->vcpu.stat.efer_reload++;
  436. }
  437. static void reload_host_efer(struct vcpu_vmx *vmx)
  438. {
  439. if (vmx->host_state.guest_efer_loaded) {
  440. vmx->host_state.guest_efer_loaded = 0;
  441. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  442. }
  443. }
  444. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  445. {
  446. struct vcpu_vmx *vmx = to_vmx(vcpu);
  447. if (vmx->host_state.loaded)
  448. return;
  449. vmx->host_state.loaded = 1;
  450. /*
  451. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  452. * allow segment selectors with cpl > 0 or ti == 1.
  453. */
  454. vmx->host_state.ldt_sel = read_ldt();
  455. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  456. vmx->host_state.fs_sel = read_fs();
  457. if (!(vmx->host_state.fs_sel & 7)) {
  458. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  459. vmx->host_state.fs_reload_needed = 0;
  460. } else {
  461. vmcs_write16(HOST_FS_SELECTOR, 0);
  462. vmx->host_state.fs_reload_needed = 1;
  463. }
  464. vmx->host_state.gs_sel = read_gs();
  465. if (!(vmx->host_state.gs_sel & 7))
  466. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  467. else {
  468. vmcs_write16(HOST_GS_SELECTOR, 0);
  469. vmx->host_state.gs_ldt_reload_needed = 1;
  470. }
  471. #ifdef CONFIG_X86_64
  472. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  473. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  474. #else
  475. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  476. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  477. #endif
  478. #ifdef CONFIG_X86_64
  479. if (is_long_mode(&vmx->vcpu))
  480. save_msrs(vmx->host_msrs +
  481. vmx->msr_offset_kernel_gs_base, 1);
  482. #endif
  483. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  484. load_transition_efer(vmx);
  485. }
  486. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  487. {
  488. unsigned long flags;
  489. if (!vmx->host_state.loaded)
  490. return;
  491. ++vmx->vcpu.stat.host_state_reload;
  492. vmx->host_state.loaded = 0;
  493. if (vmx->host_state.fs_reload_needed)
  494. load_fs(vmx->host_state.fs_sel);
  495. if (vmx->host_state.gs_ldt_reload_needed) {
  496. load_ldt(vmx->host_state.ldt_sel);
  497. /*
  498. * If we have to reload gs, we must take care to
  499. * preserve our gs base.
  500. */
  501. local_irq_save(flags);
  502. load_gs(vmx->host_state.gs_sel);
  503. #ifdef CONFIG_X86_64
  504. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  505. #endif
  506. local_irq_restore(flags);
  507. }
  508. reload_tss();
  509. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  510. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  511. reload_host_efer(vmx);
  512. }
  513. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  514. {
  515. preempt_disable();
  516. __vmx_load_host_state(vmx);
  517. preempt_enable();
  518. }
  519. /*
  520. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  521. * vcpu mutex is already taken.
  522. */
  523. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  524. {
  525. struct vcpu_vmx *vmx = to_vmx(vcpu);
  526. u64 phys_addr = __pa(vmx->vmcs);
  527. u64 tsc_this, delta, new_offset;
  528. if (vcpu->cpu != cpu) {
  529. vcpu_clear(vmx);
  530. kvm_migrate_timers(vcpu);
  531. vpid_sync_vcpu_all(vmx);
  532. local_irq_disable();
  533. list_add(&vmx->local_vcpus_link,
  534. &per_cpu(vcpus_on_cpu, cpu));
  535. local_irq_enable();
  536. }
  537. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  538. u8 error;
  539. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  540. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  541. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  542. : "cc");
  543. if (error)
  544. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  545. vmx->vmcs, phys_addr);
  546. }
  547. if (vcpu->cpu != cpu) {
  548. struct descriptor_table dt;
  549. unsigned long sysenter_esp;
  550. vcpu->cpu = cpu;
  551. /*
  552. * Linux uses per-cpu TSS and GDT, so set these when switching
  553. * processors.
  554. */
  555. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  556. get_gdt(&dt);
  557. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  558. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  559. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  560. /*
  561. * Make sure the time stamp counter is monotonous.
  562. */
  563. rdtscll(tsc_this);
  564. if (tsc_this < vcpu->arch.host_tsc) {
  565. delta = vcpu->arch.host_tsc - tsc_this;
  566. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  567. vmcs_write64(TSC_OFFSET, new_offset);
  568. }
  569. }
  570. }
  571. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  572. {
  573. __vmx_load_host_state(to_vmx(vcpu));
  574. }
  575. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  576. {
  577. if (vcpu->fpu_active)
  578. return;
  579. vcpu->fpu_active = 1;
  580. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  581. if (vcpu->arch.cr0 & X86_CR0_TS)
  582. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  583. update_exception_bitmap(vcpu);
  584. }
  585. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  586. {
  587. if (!vcpu->fpu_active)
  588. return;
  589. vcpu->fpu_active = 0;
  590. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  591. update_exception_bitmap(vcpu);
  592. }
  593. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  594. {
  595. vcpu_clear(to_vmx(vcpu));
  596. }
  597. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  598. {
  599. return vmcs_readl(GUEST_RFLAGS);
  600. }
  601. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  602. {
  603. if (vcpu->arch.rmode.active)
  604. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  605. vmcs_writel(GUEST_RFLAGS, rflags);
  606. }
  607. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  608. {
  609. unsigned long rip;
  610. u32 interruptibility;
  611. rip = vmcs_readl(GUEST_RIP);
  612. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  613. vmcs_writel(GUEST_RIP, rip);
  614. /*
  615. * We emulated an instruction, so temporary interrupt blocking
  616. * should be removed, if set.
  617. */
  618. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  619. if (interruptibility & 3)
  620. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  621. interruptibility & ~3);
  622. vcpu->arch.interrupt_window_open = 1;
  623. }
  624. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  625. bool has_error_code, u32 error_code)
  626. {
  627. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  628. nr | INTR_TYPE_EXCEPTION
  629. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  630. | INTR_INFO_VALID_MASK);
  631. if (has_error_code)
  632. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  633. }
  634. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  635. {
  636. struct vcpu_vmx *vmx = to_vmx(vcpu);
  637. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  638. }
  639. /*
  640. * Swap MSR entry in host/guest MSR entry array.
  641. */
  642. #ifdef CONFIG_X86_64
  643. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  644. {
  645. struct kvm_msr_entry tmp;
  646. tmp = vmx->guest_msrs[to];
  647. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  648. vmx->guest_msrs[from] = tmp;
  649. tmp = vmx->host_msrs[to];
  650. vmx->host_msrs[to] = vmx->host_msrs[from];
  651. vmx->host_msrs[from] = tmp;
  652. }
  653. #endif
  654. /*
  655. * Set up the vmcs to automatically save and restore system
  656. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  657. * mode, as fiddling with msrs is very expensive.
  658. */
  659. static void setup_msrs(struct vcpu_vmx *vmx)
  660. {
  661. int save_nmsrs;
  662. vmx_load_host_state(vmx);
  663. save_nmsrs = 0;
  664. #ifdef CONFIG_X86_64
  665. if (is_long_mode(&vmx->vcpu)) {
  666. int index;
  667. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  668. if (index >= 0)
  669. move_msr_up(vmx, index, save_nmsrs++);
  670. index = __find_msr_index(vmx, MSR_LSTAR);
  671. if (index >= 0)
  672. move_msr_up(vmx, index, save_nmsrs++);
  673. index = __find_msr_index(vmx, MSR_CSTAR);
  674. if (index >= 0)
  675. move_msr_up(vmx, index, save_nmsrs++);
  676. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  677. if (index >= 0)
  678. move_msr_up(vmx, index, save_nmsrs++);
  679. /*
  680. * MSR_K6_STAR is only needed on long mode guests, and only
  681. * if efer.sce is enabled.
  682. */
  683. index = __find_msr_index(vmx, MSR_K6_STAR);
  684. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  685. move_msr_up(vmx, index, save_nmsrs++);
  686. }
  687. #endif
  688. vmx->save_nmsrs = save_nmsrs;
  689. #ifdef CONFIG_X86_64
  690. vmx->msr_offset_kernel_gs_base =
  691. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  692. #endif
  693. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  694. }
  695. /*
  696. * reads and returns guest's timestamp counter "register"
  697. * guest_tsc = host_tsc + tsc_offset -- 21.3
  698. */
  699. static u64 guest_read_tsc(void)
  700. {
  701. u64 host_tsc, tsc_offset;
  702. rdtscll(host_tsc);
  703. tsc_offset = vmcs_read64(TSC_OFFSET);
  704. return host_tsc + tsc_offset;
  705. }
  706. /*
  707. * writes 'guest_tsc' into guest's timestamp counter "register"
  708. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  709. */
  710. static void guest_write_tsc(u64 guest_tsc)
  711. {
  712. u64 host_tsc;
  713. rdtscll(host_tsc);
  714. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  715. }
  716. /*
  717. * Reads an msr value (of 'msr_index') into 'pdata'.
  718. * Returns 0 on success, non-0 otherwise.
  719. * Assumes vcpu_load() was already called.
  720. */
  721. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  722. {
  723. u64 data;
  724. struct kvm_msr_entry *msr;
  725. if (!pdata) {
  726. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  727. return -EINVAL;
  728. }
  729. switch (msr_index) {
  730. #ifdef CONFIG_X86_64
  731. case MSR_FS_BASE:
  732. data = vmcs_readl(GUEST_FS_BASE);
  733. break;
  734. case MSR_GS_BASE:
  735. data = vmcs_readl(GUEST_GS_BASE);
  736. break;
  737. case MSR_EFER:
  738. return kvm_get_msr_common(vcpu, msr_index, pdata);
  739. #endif
  740. case MSR_IA32_TIME_STAMP_COUNTER:
  741. data = guest_read_tsc();
  742. break;
  743. case MSR_IA32_SYSENTER_CS:
  744. data = vmcs_read32(GUEST_SYSENTER_CS);
  745. break;
  746. case MSR_IA32_SYSENTER_EIP:
  747. data = vmcs_readl(GUEST_SYSENTER_EIP);
  748. break;
  749. case MSR_IA32_SYSENTER_ESP:
  750. data = vmcs_readl(GUEST_SYSENTER_ESP);
  751. break;
  752. default:
  753. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  754. if (msr) {
  755. data = msr->data;
  756. break;
  757. }
  758. return kvm_get_msr_common(vcpu, msr_index, pdata);
  759. }
  760. *pdata = data;
  761. return 0;
  762. }
  763. /*
  764. * Writes msr value into into the appropriate "register".
  765. * Returns 0 on success, non-0 otherwise.
  766. * Assumes vcpu_load() was already called.
  767. */
  768. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  769. {
  770. struct vcpu_vmx *vmx = to_vmx(vcpu);
  771. struct kvm_msr_entry *msr;
  772. int ret = 0;
  773. switch (msr_index) {
  774. #ifdef CONFIG_X86_64
  775. case MSR_EFER:
  776. vmx_load_host_state(vmx);
  777. ret = kvm_set_msr_common(vcpu, msr_index, data);
  778. break;
  779. case MSR_FS_BASE:
  780. vmcs_writel(GUEST_FS_BASE, data);
  781. break;
  782. case MSR_GS_BASE:
  783. vmcs_writel(GUEST_GS_BASE, data);
  784. break;
  785. #endif
  786. case MSR_IA32_SYSENTER_CS:
  787. vmcs_write32(GUEST_SYSENTER_CS, data);
  788. break;
  789. case MSR_IA32_SYSENTER_EIP:
  790. vmcs_writel(GUEST_SYSENTER_EIP, data);
  791. break;
  792. case MSR_IA32_SYSENTER_ESP:
  793. vmcs_writel(GUEST_SYSENTER_ESP, data);
  794. break;
  795. case MSR_IA32_TIME_STAMP_COUNTER:
  796. guest_write_tsc(data);
  797. break;
  798. default:
  799. vmx_load_host_state(vmx);
  800. msr = find_msr_entry(vmx, msr_index);
  801. if (msr) {
  802. msr->data = data;
  803. break;
  804. }
  805. ret = kvm_set_msr_common(vcpu, msr_index, data);
  806. }
  807. return ret;
  808. }
  809. /*
  810. * Sync the rsp and rip registers into the vcpu structure. This allows
  811. * registers to be accessed by indexing vcpu->arch.regs.
  812. */
  813. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  814. {
  815. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  816. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  817. }
  818. /*
  819. * Syncs rsp and rip back into the vmcs. Should be called after possible
  820. * modification.
  821. */
  822. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  823. {
  824. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  825. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  826. }
  827. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  828. {
  829. unsigned long dr7 = 0x400;
  830. int old_singlestep;
  831. old_singlestep = vcpu->guest_debug.singlestep;
  832. vcpu->guest_debug.enabled = dbg->enabled;
  833. if (vcpu->guest_debug.enabled) {
  834. int i;
  835. dr7 |= 0x200; /* exact */
  836. for (i = 0; i < 4; ++i) {
  837. if (!dbg->breakpoints[i].enabled)
  838. continue;
  839. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  840. dr7 |= 2 << (i*2); /* global enable */
  841. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  842. }
  843. vcpu->guest_debug.singlestep = dbg->singlestep;
  844. } else
  845. vcpu->guest_debug.singlestep = 0;
  846. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  847. unsigned long flags;
  848. flags = vmcs_readl(GUEST_RFLAGS);
  849. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  850. vmcs_writel(GUEST_RFLAGS, flags);
  851. }
  852. update_exception_bitmap(vcpu);
  853. vmcs_writel(GUEST_DR7, dr7);
  854. return 0;
  855. }
  856. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  857. {
  858. struct vcpu_vmx *vmx = to_vmx(vcpu);
  859. u32 idtv_info_field;
  860. idtv_info_field = vmx->idt_vectoring_info;
  861. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  862. if (is_external_interrupt(idtv_info_field))
  863. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  864. else
  865. printk(KERN_DEBUG "pending exception: not handled yet\n");
  866. }
  867. return -1;
  868. }
  869. static __init int cpu_has_kvm_support(void)
  870. {
  871. unsigned long ecx = cpuid_ecx(1);
  872. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  873. }
  874. static __init int vmx_disabled_by_bios(void)
  875. {
  876. u64 msr;
  877. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  878. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  879. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  880. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  881. /* locked but not enabled */
  882. }
  883. static void hardware_enable(void *garbage)
  884. {
  885. int cpu = raw_smp_processor_id();
  886. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  887. u64 old;
  888. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  889. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  890. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  891. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  892. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  893. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  894. /* enable and lock */
  895. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  896. MSR_IA32_FEATURE_CONTROL_LOCKED |
  897. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  898. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  899. asm volatile (ASM_VMX_VMXON_RAX
  900. : : "a"(&phys_addr), "m"(phys_addr)
  901. : "memory", "cc");
  902. }
  903. static void vmclear_local_vcpus(void)
  904. {
  905. int cpu = raw_smp_processor_id();
  906. struct vcpu_vmx *vmx, *n;
  907. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  908. local_vcpus_link)
  909. __vcpu_clear(vmx);
  910. }
  911. static void hardware_disable(void *garbage)
  912. {
  913. vmclear_local_vcpus();
  914. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  915. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  916. }
  917. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  918. u32 msr, u32 *result)
  919. {
  920. u32 vmx_msr_low, vmx_msr_high;
  921. u32 ctl = ctl_min | ctl_opt;
  922. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  923. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  924. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  925. /* Ensure minimum (required) set of control bits are supported. */
  926. if (ctl_min & ~ctl)
  927. return -EIO;
  928. *result = ctl;
  929. return 0;
  930. }
  931. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  932. {
  933. u32 vmx_msr_low, vmx_msr_high;
  934. u32 min, opt, min2, opt2;
  935. u32 _pin_based_exec_control = 0;
  936. u32 _cpu_based_exec_control = 0;
  937. u32 _cpu_based_2nd_exec_control = 0;
  938. u32 _vmexit_control = 0;
  939. u32 _vmentry_control = 0;
  940. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  941. opt = 0;
  942. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  943. &_pin_based_exec_control) < 0)
  944. return -EIO;
  945. min = CPU_BASED_HLT_EXITING |
  946. #ifdef CONFIG_X86_64
  947. CPU_BASED_CR8_LOAD_EXITING |
  948. CPU_BASED_CR8_STORE_EXITING |
  949. #endif
  950. CPU_BASED_CR3_LOAD_EXITING |
  951. CPU_BASED_CR3_STORE_EXITING |
  952. CPU_BASED_USE_IO_BITMAPS |
  953. CPU_BASED_MOV_DR_EXITING |
  954. CPU_BASED_USE_TSC_OFFSETING;
  955. opt = CPU_BASED_TPR_SHADOW |
  956. CPU_BASED_USE_MSR_BITMAPS |
  957. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  958. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  959. &_cpu_based_exec_control) < 0)
  960. return -EIO;
  961. #ifdef CONFIG_X86_64
  962. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  963. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  964. ~CPU_BASED_CR8_STORE_EXITING;
  965. #endif
  966. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  967. min2 = 0;
  968. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  969. SECONDARY_EXEC_WBINVD_EXITING |
  970. SECONDARY_EXEC_ENABLE_VPID |
  971. SECONDARY_EXEC_ENABLE_EPT;
  972. if (adjust_vmx_controls(min2, opt2,
  973. MSR_IA32_VMX_PROCBASED_CTLS2,
  974. &_cpu_based_2nd_exec_control) < 0)
  975. return -EIO;
  976. }
  977. #ifndef CONFIG_X86_64
  978. if (!(_cpu_based_2nd_exec_control &
  979. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  980. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  981. #endif
  982. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  983. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  984. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  985. CPU_BASED_CR3_STORE_EXITING);
  986. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  987. &_cpu_based_exec_control) < 0)
  988. return -EIO;
  989. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  990. vmx_capability.ept, vmx_capability.vpid);
  991. }
  992. min = 0;
  993. #ifdef CONFIG_X86_64
  994. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  995. #endif
  996. opt = 0;
  997. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  998. &_vmexit_control) < 0)
  999. return -EIO;
  1000. min = opt = 0;
  1001. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1002. &_vmentry_control) < 0)
  1003. return -EIO;
  1004. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1005. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1006. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1007. return -EIO;
  1008. #ifdef CONFIG_X86_64
  1009. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1010. if (vmx_msr_high & (1u<<16))
  1011. return -EIO;
  1012. #endif
  1013. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1014. if (((vmx_msr_high >> 18) & 15) != 6)
  1015. return -EIO;
  1016. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1017. vmcs_conf->order = get_order(vmcs_config.size);
  1018. vmcs_conf->revision_id = vmx_msr_low;
  1019. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1020. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1021. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1022. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1023. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1024. return 0;
  1025. }
  1026. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1027. {
  1028. int node = cpu_to_node(cpu);
  1029. struct page *pages;
  1030. struct vmcs *vmcs;
  1031. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1032. if (!pages)
  1033. return NULL;
  1034. vmcs = page_address(pages);
  1035. memset(vmcs, 0, vmcs_config.size);
  1036. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1037. return vmcs;
  1038. }
  1039. static struct vmcs *alloc_vmcs(void)
  1040. {
  1041. return alloc_vmcs_cpu(raw_smp_processor_id());
  1042. }
  1043. static void free_vmcs(struct vmcs *vmcs)
  1044. {
  1045. free_pages((unsigned long)vmcs, vmcs_config.order);
  1046. }
  1047. static void free_kvm_area(void)
  1048. {
  1049. int cpu;
  1050. for_each_online_cpu(cpu)
  1051. free_vmcs(per_cpu(vmxarea, cpu));
  1052. }
  1053. static __init int alloc_kvm_area(void)
  1054. {
  1055. int cpu;
  1056. for_each_online_cpu(cpu) {
  1057. struct vmcs *vmcs;
  1058. vmcs = alloc_vmcs_cpu(cpu);
  1059. if (!vmcs) {
  1060. free_kvm_area();
  1061. return -ENOMEM;
  1062. }
  1063. per_cpu(vmxarea, cpu) = vmcs;
  1064. }
  1065. return 0;
  1066. }
  1067. static __init int hardware_setup(void)
  1068. {
  1069. if (setup_vmcs_config(&vmcs_config) < 0)
  1070. return -EIO;
  1071. if (boot_cpu_has(X86_FEATURE_NX))
  1072. kvm_enable_efer_bits(EFER_NX);
  1073. return alloc_kvm_area();
  1074. }
  1075. static __exit void hardware_unsetup(void)
  1076. {
  1077. free_kvm_area();
  1078. }
  1079. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1080. {
  1081. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1082. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1083. vmcs_write16(sf->selector, save->selector);
  1084. vmcs_writel(sf->base, save->base);
  1085. vmcs_write32(sf->limit, save->limit);
  1086. vmcs_write32(sf->ar_bytes, save->ar);
  1087. } else {
  1088. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1089. << AR_DPL_SHIFT;
  1090. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1091. }
  1092. }
  1093. static void enter_pmode(struct kvm_vcpu *vcpu)
  1094. {
  1095. unsigned long flags;
  1096. vcpu->arch.rmode.active = 0;
  1097. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1098. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1099. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1100. flags = vmcs_readl(GUEST_RFLAGS);
  1101. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1102. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1103. vmcs_writel(GUEST_RFLAGS, flags);
  1104. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1105. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1106. update_exception_bitmap(vcpu);
  1107. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1108. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1109. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1110. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1111. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1112. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1113. vmcs_write16(GUEST_CS_SELECTOR,
  1114. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1115. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1116. }
  1117. static gva_t rmode_tss_base(struct kvm *kvm)
  1118. {
  1119. if (!kvm->arch.tss_addr) {
  1120. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1121. kvm->memslots[0].npages - 3;
  1122. return base_gfn << PAGE_SHIFT;
  1123. }
  1124. return kvm->arch.tss_addr;
  1125. }
  1126. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1127. {
  1128. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1129. save->selector = vmcs_read16(sf->selector);
  1130. save->base = vmcs_readl(sf->base);
  1131. save->limit = vmcs_read32(sf->limit);
  1132. save->ar = vmcs_read32(sf->ar_bytes);
  1133. vmcs_write16(sf->selector, save->base >> 4);
  1134. vmcs_write32(sf->base, save->base & 0xfffff);
  1135. vmcs_write32(sf->limit, 0xffff);
  1136. vmcs_write32(sf->ar_bytes, 0xf3);
  1137. }
  1138. static void enter_rmode(struct kvm_vcpu *vcpu)
  1139. {
  1140. unsigned long flags;
  1141. vcpu->arch.rmode.active = 1;
  1142. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1143. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1144. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1145. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1146. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1147. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1148. flags = vmcs_readl(GUEST_RFLAGS);
  1149. vcpu->arch.rmode.save_iopl
  1150. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1151. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1152. vmcs_writel(GUEST_RFLAGS, flags);
  1153. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1154. update_exception_bitmap(vcpu);
  1155. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1156. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1157. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1158. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1159. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1160. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1161. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1162. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1163. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1164. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1165. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1166. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1167. kvm_mmu_reset_context(vcpu);
  1168. init_rmode(vcpu->kvm);
  1169. }
  1170. #ifdef CONFIG_X86_64
  1171. static void enter_lmode(struct kvm_vcpu *vcpu)
  1172. {
  1173. u32 guest_tr_ar;
  1174. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1175. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1176. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1177. __func__);
  1178. vmcs_write32(GUEST_TR_AR_BYTES,
  1179. (guest_tr_ar & ~AR_TYPE_MASK)
  1180. | AR_TYPE_BUSY_64_TSS);
  1181. }
  1182. vcpu->arch.shadow_efer |= EFER_LMA;
  1183. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1184. vmcs_write32(VM_ENTRY_CONTROLS,
  1185. vmcs_read32(VM_ENTRY_CONTROLS)
  1186. | VM_ENTRY_IA32E_MODE);
  1187. }
  1188. static void exit_lmode(struct kvm_vcpu *vcpu)
  1189. {
  1190. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1191. vmcs_write32(VM_ENTRY_CONTROLS,
  1192. vmcs_read32(VM_ENTRY_CONTROLS)
  1193. & ~VM_ENTRY_IA32E_MODE);
  1194. }
  1195. #endif
  1196. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1197. {
  1198. vpid_sync_vcpu_all(to_vmx(vcpu));
  1199. }
  1200. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1201. {
  1202. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1203. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1204. }
  1205. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1206. {
  1207. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1208. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1209. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1210. return;
  1211. }
  1212. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1213. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1214. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1215. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1216. }
  1217. }
  1218. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1219. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1220. unsigned long cr0,
  1221. struct kvm_vcpu *vcpu)
  1222. {
  1223. if (!(cr0 & X86_CR0_PG)) {
  1224. /* From paging/starting to nonpaging */
  1225. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1226. vmcs_config.cpu_based_exec_ctrl |
  1227. (CPU_BASED_CR3_LOAD_EXITING |
  1228. CPU_BASED_CR3_STORE_EXITING));
  1229. vcpu->arch.cr0 = cr0;
  1230. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1231. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1232. *hw_cr0 &= ~X86_CR0_WP;
  1233. } else if (!is_paging(vcpu)) {
  1234. /* From nonpaging to paging */
  1235. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1236. vmcs_config.cpu_based_exec_ctrl &
  1237. ~(CPU_BASED_CR3_LOAD_EXITING |
  1238. CPU_BASED_CR3_STORE_EXITING));
  1239. vcpu->arch.cr0 = cr0;
  1240. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1241. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1242. *hw_cr0 &= ~X86_CR0_WP;
  1243. }
  1244. }
  1245. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1246. struct kvm_vcpu *vcpu)
  1247. {
  1248. if (!is_paging(vcpu)) {
  1249. *hw_cr4 &= ~X86_CR4_PAE;
  1250. *hw_cr4 |= X86_CR4_PSE;
  1251. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1252. *hw_cr4 &= ~X86_CR4_PAE;
  1253. }
  1254. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1255. {
  1256. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1257. KVM_VM_CR0_ALWAYS_ON;
  1258. vmx_fpu_deactivate(vcpu);
  1259. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1260. enter_pmode(vcpu);
  1261. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1262. enter_rmode(vcpu);
  1263. #ifdef CONFIG_X86_64
  1264. if (vcpu->arch.shadow_efer & EFER_LME) {
  1265. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1266. enter_lmode(vcpu);
  1267. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1268. exit_lmode(vcpu);
  1269. }
  1270. #endif
  1271. if (vm_need_ept())
  1272. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1273. vmcs_writel(CR0_READ_SHADOW, cr0);
  1274. vmcs_writel(GUEST_CR0, hw_cr0);
  1275. vcpu->arch.cr0 = cr0;
  1276. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1277. vmx_fpu_activate(vcpu);
  1278. }
  1279. static u64 construct_eptp(unsigned long root_hpa)
  1280. {
  1281. u64 eptp;
  1282. /* TODO write the value reading from MSR */
  1283. eptp = VMX_EPT_DEFAULT_MT |
  1284. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1285. eptp |= (root_hpa & PAGE_MASK);
  1286. return eptp;
  1287. }
  1288. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1289. {
  1290. unsigned long guest_cr3;
  1291. u64 eptp;
  1292. guest_cr3 = cr3;
  1293. if (vm_need_ept()) {
  1294. eptp = construct_eptp(cr3);
  1295. vmcs_write64(EPT_POINTER, eptp);
  1296. ept_sync_context(eptp);
  1297. ept_load_pdptrs(vcpu);
  1298. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1299. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1300. }
  1301. vmx_flush_tlb(vcpu);
  1302. vmcs_writel(GUEST_CR3, guest_cr3);
  1303. if (vcpu->arch.cr0 & X86_CR0_PE)
  1304. vmx_fpu_deactivate(vcpu);
  1305. }
  1306. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1307. {
  1308. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1309. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1310. vcpu->arch.cr4 = cr4;
  1311. if (vm_need_ept())
  1312. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1313. vmcs_writel(CR4_READ_SHADOW, cr4);
  1314. vmcs_writel(GUEST_CR4, hw_cr4);
  1315. }
  1316. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1317. {
  1318. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1319. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1320. vcpu->arch.shadow_efer = efer;
  1321. if (!msr)
  1322. return;
  1323. if (efer & EFER_LMA) {
  1324. vmcs_write32(VM_ENTRY_CONTROLS,
  1325. vmcs_read32(VM_ENTRY_CONTROLS) |
  1326. VM_ENTRY_IA32E_MODE);
  1327. msr->data = efer;
  1328. } else {
  1329. vmcs_write32(VM_ENTRY_CONTROLS,
  1330. vmcs_read32(VM_ENTRY_CONTROLS) &
  1331. ~VM_ENTRY_IA32E_MODE);
  1332. msr->data = efer & ~EFER_LME;
  1333. }
  1334. setup_msrs(vmx);
  1335. }
  1336. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1337. {
  1338. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1339. return vmcs_readl(sf->base);
  1340. }
  1341. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1342. struct kvm_segment *var, int seg)
  1343. {
  1344. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1345. u32 ar;
  1346. var->base = vmcs_readl(sf->base);
  1347. var->limit = vmcs_read32(sf->limit);
  1348. var->selector = vmcs_read16(sf->selector);
  1349. ar = vmcs_read32(sf->ar_bytes);
  1350. if (ar & AR_UNUSABLE_MASK)
  1351. ar = 0;
  1352. var->type = ar & 15;
  1353. var->s = (ar >> 4) & 1;
  1354. var->dpl = (ar >> 5) & 3;
  1355. var->present = (ar >> 7) & 1;
  1356. var->avl = (ar >> 12) & 1;
  1357. var->l = (ar >> 13) & 1;
  1358. var->db = (ar >> 14) & 1;
  1359. var->g = (ar >> 15) & 1;
  1360. var->unusable = (ar >> 16) & 1;
  1361. }
  1362. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1363. {
  1364. struct kvm_segment kvm_seg;
  1365. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1366. return 0;
  1367. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1368. return 3;
  1369. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1370. return kvm_seg.selector & 3;
  1371. }
  1372. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1373. {
  1374. u32 ar;
  1375. if (var->unusable)
  1376. ar = 1 << 16;
  1377. else {
  1378. ar = var->type & 15;
  1379. ar |= (var->s & 1) << 4;
  1380. ar |= (var->dpl & 3) << 5;
  1381. ar |= (var->present & 1) << 7;
  1382. ar |= (var->avl & 1) << 12;
  1383. ar |= (var->l & 1) << 13;
  1384. ar |= (var->db & 1) << 14;
  1385. ar |= (var->g & 1) << 15;
  1386. }
  1387. if (ar == 0) /* a 0 value means unusable */
  1388. ar = AR_UNUSABLE_MASK;
  1389. return ar;
  1390. }
  1391. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1392. struct kvm_segment *var, int seg)
  1393. {
  1394. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1395. u32 ar;
  1396. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1397. vcpu->arch.rmode.tr.selector = var->selector;
  1398. vcpu->arch.rmode.tr.base = var->base;
  1399. vcpu->arch.rmode.tr.limit = var->limit;
  1400. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1401. return;
  1402. }
  1403. vmcs_writel(sf->base, var->base);
  1404. vmcs_write32(sf->limit, var->limit);
  1405. vmcs_write16(sf->selector, var->selector);
  1406. if (vcpu->arch.rmode.active && var->s) {
  1407. /*
  1408. * Hack real-mode segments into vm86 compatibility.
  1409. */
  1410. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1411. vmcs_writel(sf->base, 0xf0000);
  1412. ar = 0xf3;
  1413. } else
  1414. ar = vmx_segment_access_rights(var);
  1415. vmcs_write32(sf->ar_bytes, ar);
  1416. }
  1417. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1418. {
  1419. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1420. *db = (ar >> 14) & 1;
  1421. *l = (ar >> 13) & 1;
  1422. }
  1423. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1424. {
  1425. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1426. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1427. }
  1428. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1429. {
  1430. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1431. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1432. }
  1433. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1434. {
  1435. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1436. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1437. }
  1438. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1439. {
  1440. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1441. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1442. }
  1443. static int init_rmode_tss(struct kvm *kvm)
  1444. {
  1445. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1446. u16 data = 0;
  1447. int ret = 0;
  1448. int r;
  1449. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1450. if (r < 0)
  1451. goto out;
  1452. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1453. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1454. if (r < 0)
  1455. goto out;
  1456. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1457. if (r < 0)
  1458. goto out;
  1459. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1460. if (r < 0)
  1461. goto out;
  1462. data = ~0;
  1463. r = kvm_write_guest_page(kvm, fn, &data,
  1464. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1465. sizeof(u8));
  1466. if (r < 0)
  1467. goto out;
  1468. ret = 1;
  1469. out:
  1470. return ret;
  1471. }
  1472. static int init_rmode_identity_map(struct kvm *kvm)
  1473. {
  1474. int i, r, ret;
  1475. pfn_t identity_map_pfn;
  1476. u32 tmp;
  1477. if (!vm_need_ept())
  1478. return 1;
  1479. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1480. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1481. "haven't been allocated!\n");
  1482. return 0;
  1483. }
  1484. if (likely(kvm->arch.ept_identity_pagetable_done))
  1485. return 1;
  1486. ret = 0;
  1487. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1488. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1489. if (r < 0)
  1490. goto out;
  1491. /* Set up identity-mapping pagetable for EPT in real mode */
  1492. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1493. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1494. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1495. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1496. &tmp, i * sizeof(tmp), sizeof(tmp));
  1497. if (r < 0)
  1498. goto out;
  1499. }
  1500. kvm->arch.ept_identity_pagetable_done = true;
  1501. ret = 1;
  1502. out:
  1503. return ret;
  1504. }
  1505. static void seg_setup(int seg)
  1506. {
  1507. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1508. vmcs_write16(sf->selector, 0);
  1509. vmcs_writel(sf->base, 0);
  1510. vmcs_write32(sf->limit, 0xffff);
  1511. vmcs_write32(sf->ar_bytes, 0x93);
  1512. }
  1513. static int alloc_apic_access_page(struct kvm *kvm)
  1514. {
  1515. struct kvm_userspace_memory_region kvm_userspace_mem;
  1516. int r = 0;
  1517. down_write(&kvm->slots_lock);
  1518. if (kvm->arch.apic_access_page)
  1519. goto out;
  1520. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1521. kvm_userspace_mem.flags = 0;
  1522. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1523. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1524. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1525. if (r)
  1526. goto out;
  1527. down_read(&current->mm->mmap_sem);
  1528. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1529. up_read(&current->mm->mmap_sem);
  1530. out:
  1531. up_write(&kvm->slots_lock);
  1532. return r;
  1533. }
  1534. static int alloc_identity_pagetable(struct kvm *kvm)
  1535. {
  1536. struct kvm_userspace_memory_region kvm_userspace_mem;
  1537. int r = 0;
  1538. down_write(&kvm->slots_lock);
  1539. if (kvm->arch.ept_identity_pagetable)
  1540. goto out;
  1541. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1542. kvm_userspace_mem.flags = 0;
  1543. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1544. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1545. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1546. if (r)
  1547. goto out;
  1548. down_read(&current->mm->mmap_sem);
  1549. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1550. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1551. up_read(&current->mm->mmap_sem);
  1552. out:
  1553. up_write(&kvm->slots_lock);
  1554. return r;
  1555. }
  1556. static void allocate_vpid(struct vcpu_vmx *vmx)
  1557. {
  1558. int vpid;
  1559. vmx->vpid = 0;
  1560. if (!enable_vpid || !cpu_has_vmx_vpid())
  1561. return;
  1562. spin_lock(&vmx_vpid_lock);
  1563. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1564. if (vpid < VMX_NR_VPIDS) {
  1565. vmx->vpid = vpid;
  1566. __set_bit(vpid, vmx_vpid_bitmap);
  1567. }
  1568. spin_unlock(&vmx_vpid_lock);
  1569. }
  1570. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1571. {
  1572. void *va;
  1573. if (!cpu_has_vmx_msr_bitmap())
  1574. return;
  1575. /*
  1576. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1577. * have the write-low and read-high bitmap offsets the wrong way round.
  1578. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1579. */
  1580. va = kmap(msr_bitmap);
  1581. if (msr <= 0x1fff) {
  1582. __clear_bit(msr, va + 0x000); /* read-low */
  1583. __clear_bit(msr, va + 0x800); /* write-low */
  1584. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1585. msr &= 0x1fff;
  1586. __clear_bit(msr, va + 0x400); /* read-high */
  1587. __clear_bit(msr, va + 0xc00); /* write-high */
  1588. }
  1589. kunmap(msr_bitmap);
  1590. }
  1591. /*
  1592. * Sets up the vmcs for emulated real mode.
  1593. */
  1594. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1595. {
  1596. u32 host_sysenter_cs;
  1597. u32 junk;
  1598. unsigned long a;
  1599. struct descriptor_table dt;
  1600. int i;
  1601. unsigned long kvm_vmx_return;
  1602. u32 exec_control;
  1603. /* I/O */
  1604. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1605. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1606. if (cpu_has_vmx_msr_bitmap())
  1607. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1608. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1609. /* Control */
  1610. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1611. vmcs_config.pin_based_exec_ctrl);
  1612. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1613. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1614. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1615. #ifdef CONFIG_X86_64
  1616. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1617. CPU_BASED_CR8_LOAD_EXITING;
  1618. #endif
  1619. }
  1620. if (!vm_need_ept())
  1621. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1622. CPU_BASED_CR3_LOAD_EXITING;
  1623. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1624. if (cpu_has_secondary_exec_ctrls()) {
  1625. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1626. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1627. exec_control &=
  1628. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1629. if (vmx->vpid == 0)
  1630. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1631. if (!vm_need_ept())
  1632. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1633. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1634. }
  1635. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1636. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1637. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1638. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1639. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1640. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1641. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1642. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1643. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1644. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1645. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1646. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1647. #ifdef CONFIG_X86_64
  1648. rdmsrl(MSR_FS_BASE, a);
  1649. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1650. rdmsrl(MSR_GS_BASE, a);
  1651. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1652. #else
  1653. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1654. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1655. #endif
  1656. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1657. get_idt(&dt);
  1658. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1659. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1660. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1661. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1662. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1663. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1664. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1665. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1666. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1667. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1668. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1669. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1670. for (i = 0; i < NR_VMX_MSR; ++i) {
  1671. u32 index = vmx_msr_index[i];
  1672. u32 data_low, data_high;
  1673. u64 data;
  1674. int j = vmx->nmsrs;
  1675. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1676. continue;
  1677. if (wrmsr_safe(index, data_low, data_high) < 0)
  1678. continue;
  1679. data = data_low | ((u64)data_high << 32);
  1680. vmx->host_msrs[j].index = index;
  1681. vmx->host_msrs[j].reserved = 0;
  1682. vmx->host_msrs[j].data = data;
  1683. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1684. ++vmx->nmsrs;
  1685. }
  1686. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1687. /* 22.2.1, 20.8.1 */
  1688. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1689. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1690. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1691. return 0;
  1692. }
  1693. static int init_rmode(struct kvm *kvm)
  1694. {
  1695. if (!init_rmode_tss(kvm))
  1696. return 0;
  1697. if (!init_rmode_identity_map(kvm))
  1698. return 0;
  1699. return 1;
  1700. }
  1701. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1702. {
  1703. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1704. u64 msr;
  1705. int ret;
  1706. down_read(&vcpu->kvm->slots_lock);
  1707. if (!init_rmode(vmx->vcpu.kvm)) {
  1708. ret = -ENOMEM;
  1709. goto out;
  1710. }
  1711. vmx->vcpu.arch.rmode.active = 0;
  1712. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1713. kvm_set_cr8(&vmx->vcpu, 0);
  1714. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1715. if (vmx->vcpu.vcpu_id == 0)
  1716. msr |= MSR_IA32_APICBASE_BSP;
  1717. kvm_set_apic_base(&vmx->vcpu, msr);
  1718. fx_init(&vmx->vcpu);
  1719. /*
  1720. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1721. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1722. */
  1723. if (vmx->vcpu.vcpu_id == 0) {
  1724. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1725. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1726. } else {
  1727. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1728. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1729. }
  1730. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1731. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1732. seg_setup(VCPU_SREG_DS);
  1733. seg_setup(VCPU_SREG_ES);
  1734. seg_setup(VCPU_SREG_FS);
  1735. seg_setup(VCPU_SREG_GS);
  1736. seg_setup(VCPU_SREG_SS);
  1737. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1738. vmcs_writel(GUEST_TR_BASE, 0);
  1739. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1740. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1741. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1742. vmcs_writel(GUEST_LDTR_BASE, 0);
  1743. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1744. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1745. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1746. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1747. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1748. vmcs_writel(GUEST_RFLAGS, 0x02);
  1749. if (vmx->vcpu.vcpu_id == 0)
  1750. vmcs_writel(GUEST_RIP, 0xfff0);
  1751. else
  1752. vmcs_writel(GUEST_RIP, 0);
  1753. vmcs_writel(GUEST_RSP, 0);
  1754. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1755. vmcs_writel(GUEST_DR7, 0x400);
  1756. vmcs_writel(GUEST_GDTR_BASE, 0);
  1757. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1758. vmcs_writel(GUEST_IDTR_BASE, 0);
  1759. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1760. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1761. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1762. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1763. guest_write_tsc(0);
  1764. /* Special registers */
  1765. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1766. setup_msrs(vmx);
  1767. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1768. if (cpu_has_vmx_tpr_shadow()) {
  1769. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1770. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1771. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1772. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1773. vmcs_write32(TPR_THRESHOLD, 0);
  1774. }
  1775. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1776. vmcs_write64(APIC_ACCESS_ADDR,
  1777. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1778. if (vmx->vpid != 0)
  1779. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1780. vmx->vcpu.arch.cr0 = 0x60000010;
  1781. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1782. vmx_set_cr4(&vmx->vcpu, 0);
  1783. vmx_set_efer(&vmx->vcpu, 0);
  1784. vmx_fpu_activate(&vmx->vcpu);
  1785. update_exception_bitmap(&vmx->vcpu);
  1786. vpid_sync_vcpu_all(vmx);
  1787. ret = 0;
  1788. out:
  1789. up_read(&vcpu->kvm->slots_lock);
  1790. return ret;
  1791. }
  1792. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1793. {
  1794. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1795. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1796. if (vcpu->arch.rmode.active) {
  1797. vmx->rmode.irq.pending = true;
  1798. vmx->rmode.irq.vector = irq;
  1799. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1800. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1801. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1802. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1803. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1804. return;
  1805. }
  1806. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1807. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1808. }
  1809. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1810. {
  1811. int word_index = __ffs(vcpu->arch.irq_summary);
  1812. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1813. int irq = word_index * BITS_PER_LONG + bit_index;
  1814. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1815. if (!vcpu->arch.irq_pending[word_index])
  1816. clear_bit(word_index, &vcpu->arch.irq_summary);
  1817. vmx_inject_irq(vcpu, irq);
  1818. }
  1819. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1820. struct kvm_run *kvm_run)
  1821. {
  1822. u32 cpu_based_vm_exec_control;
  1823. vcpu->arch.interrupt_window_open =
  1824. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1825. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1826. if (vcpu->arch.interrupt_window_open &&
  1827. vcpu->arch.irq_summary &&
  1828. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1829. /*
  1830. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1831. */
  1832. kvm_do_inject_irq(vcpu);
  1833. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1834. if (!vcpu->arch.interrupt_window_open &&
  1835. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1836. /*
  1837. * Interrupts blocked. Wait for unblock.
  1838. */
  1839. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1840. else
  1841. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1842. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1843. }
  1844. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1845. {
  1846. int ret;
  1847. struct kvm_userspace_memory_region tss_mem = {
  1848. .slot = 8,
  1849. .guest_phys_addr = addr,
  1850. .memory_size = PAGE_SIZE * 3,
  1851. .flags = 0,
  1852. };
  1853. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1854. if (ret)
  1855. return ret;
  1856. kvm->arch.tss_addr = addr;
  1857. return 0;
  1858. }
  1859. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1860. {
  1861. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1862. set_debugreg(dbg->bp[0], 0);
  1863. set_debugreg(dbg->bp[1], 1);
  1864. set_debugreg(dbg->bp[2], 2);
  1865. set_debugreg(dbg->bp[3], 3);
  1866. if (dbg->singlestep) {
  1867. unsigned long flags;
  1868. flags = vmcs_readl(GUEST_RFLAGS);
  1869. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1870. vmcs_writel(GUEST_RFLAGS, flags);
  1871. }
  1872. }
  1873. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1874. int vec, u32 err_code)
  1875. {
  1876. if (!vcpu->arch.rmode.active)
  1877. return 0;
  1878. /*
  1879. * Instruction with address size override prefix opcode 0x67
  1880. * Cause the #SS fault with 0 error code in VM86 mode.
  1881. */
  1882. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1883. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1884. return 1;
  1885. return 0;
  1886. }
  1887. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1888. {
  1889. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1890. u32 intr_info, error_code;
  1891. unsigned long cr2, rip;
  1892. u32 vect_info;
  1893. enum emulation_result er;
  1894. vect_info = vmx->idt_vectoring_info;
  1895. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1896. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1897. !is_page_fault(intr_info))
  1898. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1899. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1900. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1901. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1902. set_bit(irq, vcpu->arch.irq_pending);
  1903. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1904. }
  1905. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1906. return 1; /* already handled by vmx_vcpu_run() */
  1907. if (is_no_device(intr_info)) {
  1908. vmx_fpu_activate(vcpu);
  1909. return 1;
  1910. }
  1911. if (is_invalid_opcode(intr_info)) {
  1912. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1913. if (er != EMULATE_DONE)
  1914. kvm_queue_exception(vcpu, UD_VECTOR);
  1915. return 1;
  1916. }
  1917. error_code = 0;
  1918. rip = vmcs_readl(GUEST_RIP);
  1919. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1920. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1921. if (is_page_fault(intr_info)) {
  1922. /* EPT won't cause page fault directly */
  1923. if (vm_need_ept())
  1924. BUG();
  1925. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1926. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1927. (u32)((u64)cr2 >> 32), handler);
  1928. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1929. }
  1930. if (vcpu->arch.rmode.active &&
  1931. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1932. error_code)) {
  1933. if (vcpu->arch.halt_request) {
  1934. vcpu->arch.halt_request = 0;
  1935. return kvm_emulate_halt(vcpu);
  1936. }
  1937. return 1;
  1938. }
  1939. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1940. (INTR_TYPE_EXCEPTION | 1)) {
  1941. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1942. return 0;
  1943. }
  1944. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1945. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1946. kvm_run->ex.error_code = error_code;
  1947. return 0;
  1948. }
  1949. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1950. struct kvm_run *kvm_run)
  1951. {
  1952. ++vcpu->stat.irq_exits;
  1953. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1954. return 1;
  1955. }
  1956. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1957. {
  1958. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1959. return 0;
  1960. }
  1961. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1962. {
  1963. unsigned long exit_qualification;
  1964. int size, down, in, string, rep;
  1965. unsigned port;
  1966. ++vcpu->stat.io_exits;
  1967. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1968. string = (exit_qualification & 16) != 0;
  1969. if (string) {
  1970. if (emulate_instruction(vcpu,
  1971. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1972. return 0;
  1973. return 1;
  1974. }
  1975. size = (exit_qualification & 7) + 1;
  1976. in = (exit_qualification & 8) != 0;
  1977. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1978. rep = (exit_qualification & 32) != 0;
  1979. port = exit_qualification >> 16;
  1980. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1981. }
  1982. static void
  1983. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1984. {
  1985. /*
  1986. * Patch in the VMCALL instruction:
  1987. */
  1988. hypercall[0] = 0x0f;
  1989. hypercall[1] = 0x01;
  1990. hypercall[2] = 0xc1;
  1991. }
  1992. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1993. {
  1994. unsigned long exit_qualification;
  1995. int cr;
  1996. int reg;
  1997. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1998. cr = exit_qualification & 15;
  1999. reg = (exit_qualification >> 8) & 15;
  2000. switch ((exit_qualification >> 4) & 3) {
  2001. case 0: /* mov to cr */
  2002. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
  2003. (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
  2004. switch (cr) {
  2005. case 0:
  2006. vcpu_load_rsp_rip(vcpu);
  2007. kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
  2008. skip_emulated_instruction(vcpu);
  2009. return 1;
  2010. case 3:
  2011. vcpu_load_rsp_rip(vcpu);
  2012. kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
  2013. skip_emulated_instruction(vcpu);
  2014. return 1;
  2015. case 4:
  2016. vcpu_load_rsp_rip(vcpu);
  2017. kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
  2018. skip_emulated_instruction(vcpu);
  2019. return 1;
  2020. case 8:
  2021. vcpu_load_rsp_rip(vcpu);
  2022. kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
  2023. skip_emulated_instruction(vcpu);
  2024. if (irqchip_in_kernel(vcpu->kvm))
  2025. return 1;
  2026. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2027. return 0;
  2028. };
  2029. break;
  2030. case 2: /* clts */
  2031. vcpu_load_rsp_rip(vcpu);
  2032. vmx_fpu_deactivate(vcpu);
  2033. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2034. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2035. vmx_fpu_activate(vcpu);
  2036. KVMTRACE_0D(CLTS, vcpu, handler);
  2037. skip_emulated_instruction(vcpu);
  2038. return 1;
  2039. case 1: /*mov from cr*/
  2040. switch (cr) {
  2041. case 3:
  2042. vcpu_load_rsp_rip(vcpu);
  2043. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  2044. vcpu_put_rsp_rip(vcpu);
  2045. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2046. (u32)vcpu->arch.regs[reg],
  2047. (u32)((u64)vcpu->arch.regs[reg] >> 32),
  2048. handler);
  2049. skip_emulated_instruction(vcpu);
  2050. return 1;
  2051. case 8:
  2052. vcpu_load_rsp_rip(vcpu);
  2053. vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
  2054. vcpu_put_rsp_rip(vcpu);
  2055. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2056. (u32)vcpu->arch.regs[reg], handler);
  2057. skip_emulated_instruction(vcpu);
  2058. return 1;
  2059. }
  2060. break;
  2061. case 3: /* lmsw */
  2062. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2063. skip_emulated_instruction(vcpu);
  2064. return 1;
  2065. default:
  2066. break;
  2067. }
  2068. kvm_run->exit_reason = 0;
  2069. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2070. (int)(exit_qualification >> 4) & 3, cr);
  2071. return 0;
  2072. }
  2073. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2074. {
  2075. unsigned long exit_qualification;
  2076. unsigned long val;
  2077. int dr, reg;
  2078. /*
  2079. * FIXME: this code assumes the host is debugging the guest.
  2080. * need to deal with guest debugging itself too.
  2081. */
  2082. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2083. dr = exit_qualification & 7;
  2084. reg = (exit_qualification >> 8) & 15;
  2085. vcpu_load_rsp_rip(vcpu);
  2086. if (exit_qualification & 16) {
  2087. /* mov from dr */
  2088. switch (dr) {
  2089. case 6:
  2090. val = 0xffff0ff0;
  2091. break;
  2092. case 7:
  2093. val = 0x400;
  2094. break;
  2095. default:
  2096. val = 0;
  2097. }
  2098. vcpu->arch.regs[reg] = val;
  2099. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2100. } else {
  2101. /* mov to dr */
  2102. }
  2103. vcpu_put_rsp_rip(vcpu);
  2104. skip_emulated_instruction(vcpu);
  2105. return 1;
  2106. }
  2107. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2108. {
  2109. kvm_emulate_cpuid(vcpu);
  2110. return 1;
  2111. }
  2112. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2113. {
  2114. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2115. u64 data;
  2116. if (vmx_get_msr(vcpu, ecx, &data)) {
  2117. kvm_inject_gp(vcpu, 0);
  2118. return 1;
  2119. }
  2120. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2121. handler);
  2122. /* FIXME: handling of bits 32:63 of rax, rdx */
  2123. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2124. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2125. skip_emulated_instruction(vcpu);
  2126. return 1;
  2127. }
  2128. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2129. {
  2130. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2131. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2132. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2133. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2134. handler);
  2135. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2136. kvm_inject_gp(vcpu, 0);
  2137. return 1;
  2138. }
  2139. skip_emulated_instruction(vcpu);
  2140. return 1;
  2141. }
  2142. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2143. struct kvm_run *kvm_run)
  2144. {
  2145. return 1;
  2146. }
  2147. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2148. struct kvm_run *kvm_run)
  2149. {
  2150. u32 cpu_based_vm_exec_control;
  2151. /* clear pending irq */
  2152. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2153. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2154. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2155. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2156. /*
  2157. * If the user space waits to inject interrupts, exit as soon as
  2158. * possible
  2159. */
  2160. if (kvm_run->request_interrupt_window &&
  2161. !vcpu->arch.irq_summary) {
  2162. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2163. ++vcpu->stat.irq_window_exits;
  2164. return 0;
  2165. }
  2166. return 1;
  2167. }
  2168. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2169. {
  2170. skip_emulated_instruction(vcpu);
  2171. return kvm_emulate_halt(vcpu);
  2172. }
  2173. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2174. {
  2175. skip_emulated_instruction(vcpu);
  2176. kvm_emulate_hypercall(vcpu);
  2177. return 1;
  2178. }
  2179. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2180. {
  2181. skip_emulated_instruction(vcpu);
  2182. /* TODO: Add support for VT-d/pass-through device */
  2183. return 1;
  2184. }
  2185. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2186. {
  2187. u64 exit_qualification;
  2188. enum emulation_result er;
  2189. unsigned long offset;
  2190. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2191. offset = exit_qualification & 0xffful;
  2192. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2193. if (er != EMULATE_DONE) {
  2194. printk(KERN_ERR
  2195. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2196. offset);
  2197. return -ENOTSUPP;
  2198. }
  2199. return 1;
  2200. }
  2201. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2202. {
  2203. unsigned long exit_qualification;
  2204. u16 tss_selector;
  2205. int reason;
  2206. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2207. reason = (u32)exit_qualification >> 30;
  2208. tss_selector = exit_qualification;
  2209. return kvm_task_switch(vcpu, tss_selector, reason);
  2210. }
  2211. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2212. {
  2213. u64 exit_qualification;
  2214. enum emulation_result er;
  2215. gpa_t gpa;
  2216. unsigned long hva;
  2217. int gla_validity;
  2218. int r;
  2219. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2220. if (exit_qualification & (1 << 6)) {
  2221. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2222. return -ENOTSUPP;
  2223. }
  2224. gla_validity = (exit_qualification >> 7) & 0x3;
  2225. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2226. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2227. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2228. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2229. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2230. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2231. (long unsigned int)exit_qualification);
  2232. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2233. kvm_run->hw.hardware_exit_reason = 0;
  2234. return -ENOTSUPP;
  2235. }
  2236. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2237. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2238. if (!kvm_is_error_hva(hva)) {
  2239. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2240. if (r < 0) {
  2241. printk(KERN_ERR "EPT: Not enough memory!\n");
  2242. return -ENOMEM;
  2243. }
  2244. return 1;
  2245. } else {
  2246. /* must be MMIO */
  2247. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2248. if (er == EMULATE_FAIL) {
  2249. printk(KERN_ERR
  2250. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2251. er);
  2252. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2253. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2254. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2255. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2256. (long unsigned int)exit_qualification);
  2257. return -ENOTSUPP;
  2258. } else if (er == EMULATE_DO_MMIO)
  2259. return 0;
  2260. }
  2261. return 1;
  2262. }
  2263. /*
  2264. * The exit handlers return 1 if the exit was handled fully and guest execution
  2265. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2266. * to be done to userspace and return 0.
  2267. */
  2268. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2269. struct kvm_run *kvm_run) = {
  2270. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2271. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2272. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2273. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2274. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2275. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2276. [EXIT_REASON_CPUID] = handle_cpuid,
  2277. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2278. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2279. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2280. [EXIT_REASON_HLT] = handle_halt,
  2281. [EXIT_REASON_VMCALL] = handle_vmcall,
  2282. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2283. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2284. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2285. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2286. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2287. };
  2288. static const int kvm_vmx_max_exit_handlers =
  2289. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2290. /*
  2291. * The guest has exited. See if we can fix it or if we need userspace
  2292. * assistance.
  2293. */
  2294. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2295. {
  2296. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2297. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2298. u32 vectoring_info = vmx->idt_vectoring_info;
  2299. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
  2300. (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
  2301. /* Access CR3 don't cause VMExit in paging mode, so we need
  2302. * to sync with guest real CR3. */
  2303. if (vm_need_ept() && is_paging(vcpu)) {
  2304. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2305. ept_load_pdptrs(vcpu);
  2306. }
  2307. if (unlikely(vmx->fail)) {
  2308. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2309. kvm_run->fail_entry.hardware_entry_failure_reason
  2310. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2311. return 0;
  2312. }
  2313. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2314. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2315. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2316. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2317. "exit reason is 0x%x\n", __func__, exit_reason);
  2318. if (exit_reason < kvm_vmx_max_exit_handlers
  2319. && kvm_vmx_exit_handlers[exit_reason])
  2320. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2321. else {
  2322. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2323. kvm_run->hw.hardware_exit_reason = exit_reason;
  2324. }
  2325. return 0;
  2326. }
  2327. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2328. {
  2329. int max_irr, tpr;
  2330. if (!vm_need_tpr_shadow(vcpu->kvm))
  2331. return;
  2332. if (!kvm_lapic_enabled(vcpu) ||
  2333. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2334. vmcs_write32(TPR_THRESHOLD, 0);
  2335. return;
  2336. }
  2337. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2338. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2339. }
  2340. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2341. {
  2342. u32 cpu_based_vm_exec_control;
  2343. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2344. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2345. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2346. }
  2347. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2348. {
  2349. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2350. u32 idtv_info_field, intr_info_field;
  2351. int has_ext_irq, interrupt_window_open;
  2352. int vector;
  2353. update_tpr_threshold(vcpu);
  2354. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  2355. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2356. idtv_info_field = vmx->idt_vectoring_info;
  2357. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2358. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2359. /* TODO: fault when IDT_Vectoring */
  2360. if (printk_ratelimit())
  2361. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2362. }
  2363. if (has_ext_irq)
  2364. enable_irq_window(vcpu);
  2365. return;
  2366. }
  2367. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2368. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2369. == INTR_TYPE_EXT_INTR
  2370. && vcpu->arch.rmode.active) {
  2371. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2372. vmx_inject_irq(vcpu, vect);
  2373. if (unlikely(has_ext_irq))
  2374. enable_irq_window(vcpu);
  2375. return;
  2376. }
  2377. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2378. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  2379. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2380. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2381. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2382. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2383. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2384. if (unlikely(has_ext_irq))
  2385. enable_irq_window(vcpu);
  2386. return;
  2387. }
  2388. if (!has_ext_irq)
  2389. return;
  2390. interrupt_window_open =
  2391. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2392. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2393. if (interrupt_window_open) {
  2394. vector = kvm_cpu_get_interrupt(vcpu);
  2395. vmx_inject_irq(vcpu, vector);
  2396. kvm_timer_intr_post(vcpu, vector);
  2397. } else
  2398. enable_irq_window(vcpu);
  2399. }
  2400. /*
  2401. * Failure to inject an interrupt should give us the information
  2402. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2403. * when fetching the interrupt redirection bitmap in the real-mode
  2404. * tss, this doesn't happen. So we do it ourselves.
  2405. */
  2406. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2407. {
  2408. vmx->rmode.irq.pending = 0;
  2409. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2410. return;
  2411. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2412. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2413. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2414. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2415. return;
  2416. }
  2417. vmx->idt_vectoring_info =
  2418. VECTORING_INFO_VALID_MASK
  2419. | INTR_TYPE_EXT_INTR
  2420. | vmx->rmode.irq.vector;
  2421. }
  2422. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2423. {
  2424. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2425. u32 intr_info;
  2426. /*
  2427. * Loading guest fpu may have cleared host cr0.ts
  2428. */
  2429. vmcs_writel(HOST_CR0, read_cr0());
  2430. asm(
  2431. /* Store host registers */
  2432. #ifdef CONFIG_X86_64
  2433. "push %%rdx; push %%rbp;"
  2434. "push %%rcx \n\t"
  2435. #else
  2436. "push %%edx; push %%ebp;"
  2437. "push %%ecx \n\t"
  2438. #endif
  2439. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2440. /* Check if vmlaunch of vmresume is needed */
  2441. "cmpl $0, %c[launched](%0) \n\t"
  2442. /* Load guest registers. Don't clobber flags. */
  2443. #ifdef CONFIG_X86_64
  2444. "mov %c[cr2](%0), %%rax \n\t"
  2445. "mov %%rax, %%cr2 \n\t"
  2446. "mov %c[rax](%0), %%rax \n\t"
  2447. "mov %c[rbx](%0), %%rbx \n\t"
  2448. "mov %c[rdx](%0), %%rdx \n\t"
  2449. "mov %c[rsi](%0), %%rsi \n\t"
  2450. "mov %c[rdi](%0), %%rdi \n\t"
  2451. "mov %c[rbp](%0), %%rbp \n\t"
  2452. "mov %c[r8](%0), %%r8 \n\t"
  2453. "mov %c[r9](%0), %%r9 \n\t"
  2454. "mov %c[r10](%0), %%r10 \n\t"
  2455. "mov %c[r11](%0), %%r11 \n\t"
  2456. "mov %c[r12](%0), %%r12 \n\t"
  2457. "mov %c[r13](%0), %%r13 \n\t"
  2458. "mov %c[r14](%0), %%r14 \n\t"
  2459. "mov %c[r15](%0), %%r15 \n\t"
  2460. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2461. #else
  2462. "mov %c[cr2](%0), %%eax \n\t"
  2463. "mov %%eax, %%cr2 \n\t"
  2464. "mov %c[rax](%0), %%eax \n\t"
  2465. "mov %c[rbx](%0), %%ebx \n\t"
  2466. "mov %c[rdx](%0), %%edx \n\t"
  2467. "mov %c[rsi](%0), %%esi \n\t"
  2468. "mov %c[rdi](%0), %%edi \n\t"
  2469. "mov %c[rbp](%0), %%ebp \n\t"
  2470. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2471. #endif
  2472. /* Enter guest mode */
  2473. "jne .Llaunched \n\t"
  2474. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2475. "jmp .Lkvm_vmx_return \n\t"
  2476. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2477. ".Lkvm_vmx_return: "
  2478. /* Save guest registers, load host registers, keep flags */
  2479. #ifdef CONFIG_X86_64
  2480. "xchg %0, (%%rsp) \n\t"
  2481. "mov %%rax, %c[rax](%0) \n\t"
  2482. "mov %%rbx, %c[rbx](%0) \n\t"
  2483. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2484. "mov %%rdx, %c[rdx](%0) \n\t"
  2485. "mov %%rsi, %c[rsi](%0) \n\t"
  2486. "mov %%rdi, %c[rdi](%0) \n\t"
  2487. "mov %%rbp, %c[rbp](%0) \n\t"
  2488. "mov %%r8, %c[r8](%0) \n\t"
  2489. "mov %%r9, %c[r9](%0) \n\t"
  2490. "mov %%r10, %c[r10](%0) \n\t"
  2491. "mov %%r11, %c[r11](%0) \n\t"
  2492. "mov %%r12, %c[r12](%0) \n\t"
  2493. "mov %%r13, %c[r13](%0) \n\t"
  2494. "mov %%r14, %c[r14](%0) \n\t"
  2495. "mov %%r15, %c[r15](%0) \n\t"
  2496. "mov %%cr2, %%rax \n\t"
  2497. "mov %%rax, %c[cr2](%0) \n\t"
  2498. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2499. #else
  2500. "xchg %0, (%%esp) \n\t"
  2501. "mov %%eax, %c[rax](%0) \n\t"
  2502. "mov %%ebx, %c[rbx](%0) \n\t"
  2503. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2504. "mov %%edx, %c[rdx](%0) \n\t"
  2505. "mov %%esi, %c[rsi](%0) \n\t"
  2506. "mov %%edi, %c[rdi](%0) \n\t"
  2507. "mov %%ebp, %c[rbp](%0) \n\t"
  2508. "mov %%cr2, %%eax \n\t"
  2509. "mov %%eax, %c[cr2](%0) \n\t"
  2510. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2511. #endif
  2512. "setbe %c[fail](%0) \n\t"
  2513. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2514. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2515. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2516. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2517. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2518. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2519. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2520. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2521. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2522. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2523. #ifdef CONFIG_X86_64
  2524. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2525. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2526. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2527. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2528. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2529. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2530. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2531. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2532. #endif
  2533. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2534. : "cc", "memory"
  2535. #ifdef CONFIG_X86_64
  2536. , "rbx", "rdi", "rsi"
  2537. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2538. #else
  2539. , "ebx", "edi", "rsi"
  2540. #endif
  2541. );
  2542. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2543. if (vmx->rmode.irq.pending)
  2544. fixup_rmode_irq(vmx);
  2545. vcpu->arch.interrupt_window_open =
  2546. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2547. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2548. vmx->launched = 1;
  2549. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2550. /* We need to handle NMIs before interrupts are enabled */
  2551. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  2552. KVMTRACE_0D(NMI, vcpu, handler);
  2553. asm("int $2");
  2554. }
  2555. }
  2556. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2557. {
  2558. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2559. if (vmx->vmcs) {
  2560. vcpu_clear(vmx);
  2561. free_vmcs(vmx->vmcs);
  2562. vmx->vmcs = NULL;
  2563. }
  2564. }
  2565. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2566. {
  2567. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2568. spin_lock(&vmx_vpid_lock);
  2569. if (vmx->vpid != 0)
  2570. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2571. spin_unlock(&vmx_vpid_lock);
  2572. vmx_free_vmcs(vcpu);
  2573. kfree(vmx->host_msrs);
  2574. kfree(vmx->guest_msrs);
  2575. kvm_vcpu_uninit(vcpu);
  2576. kmem_cache_free(kvm_vcpu_cache, vmx);
  2577. }
  2578. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2579. {
  2580. int err;
  2581. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2582. int cpu;
  2583. if (!vmx)
  2584. return ERR_PTR(-ENOMEM);
  2585. allocate_vpid(vmx);
  2586. if (id == 0 && vm_need_ept()) {
  2587. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2588. VMX_EPT_WRITABLE_MASK |
  2589. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2590. kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
  2591. VMX_EPT_FAKE_DIRTY_MASK, 0ull,
  2592. VMX_EPT_EXECUTABLE_MASK);
  2593. kvm_enable_tdp();
  2594. }
  2595. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2596. if (err)
  2597. goto free_vcpu;
  2598. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2599. if (!vmx->guest_msrs) {
  2600. err = -ENOMEM;
  2601. goto uninit_vcpu;
  2602. }
  2603. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2604. if (!vmx->host_msrs)
  2605. goto free_guest_msrs;
  2606. vmx->vmcs = alloc_vmcs();
  2607. if (!vmx->vmcs)
  2608. goto free_msrs;
  2609. vmcs_clear(vmx->vmcs);
  2610. cpu = get_cpu();
  2611. vmx_vcpu_load(&vmx->vcpu, cpu);
  2612. err = vmx_vcpu_setup(vmx);
  2613. vmx_vcpu_put(&vmx->vcpu);
  2614. put_cpu();
  2615. if (err)
  2616. goto free_vmcs;
  2617. if (vm_need_virtualize_apic_accesses(kvm))
  2618. if (alloc_apic_access_page(kvm) != 0)
  2619. goto free_vmcs;
  2620. if (vm_need_ept())
  2621. if (alloc_identity_pagetable(kvm) != 0)
  2622. goto free_vmcs;
  2623. return &vmx->vcpu;
  2624. free_vmcs:
  2625. free_vmcs(vmx->vmcs);
  2626. free_msrs:
  2627. kfree(vmx->host_msrs);
  2628. free_guest_msrs:
  2629. kfree(vmx->guest_msrs);
  2630. uninit_vcpu:
  2631. kvm_vcpu_uninit(&vmx->vcpu);
  2632. free_vcpu:
  2633. kmem_cache_free(kvm_vcpu_cache, vmx);
  2634. return ERR_PTR(err);
  2635. }
  2636. static void __init vmx_check_processor_compat(void *rtn)
  2637. {
  2638. struct vmcs_config vmcs_conf;
  2639. *(int *)rtn = 0;
  2640. if (setup_vmcs_config(&vmcs_conf) < 0)
  2641. *(int *)rtn = -EIO;
  2642. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2643. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2644. smp_processor_id());
  2645. *(int *)rtn = -EIO;
  2646. }
  2647. }
  2648. static int get_ept_level(void)
  2649. {
  2650. return VMX_EPT_DEFAULT_GAW + 1;
  2651. }
  2652. static struct kvm_x86_ops vmx_x86_ops = {
  2653. .cpu_has_kvm_support = cpu_has_kvm_support,
  2654. .disabled_by_bios = vmx_disabled_by_bios,
  2655. .hardware_setup = hardware_setup,
  2656. .hardware_unsetup = hardware_unsetup,
  2657. .check_processor_compatibility = vmx_check_processor_compat,
  2658. .hardware_enable = hardware_enable,
  2659. .hardware_disable = hardware_disable,
  2660. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2661. .vcpu_create = vmx_create_vcpu,
  2662. .vcpu_free = vmx_free_vcpu,
  2663. .vcpu_reset = vmx_vcpu_reset,
  2664. .prepare_guest_switch = vmx_save_host_state,
  2665. .vcpu_load = vmx_vcpu_load,
  2666. .vcpu_put = vmx_vcpu_put,
  2667. .vcpu_decache = vmx_vcpu_decache,
  2668. .set_guest_debug = set_guest_debug,
  2669. .guest_debug_pre = kvm_guest_debug_pre,
  2670. .get_msr = vmx_get_msr,
  2671. .set_msr = vmx_set_msr,
  2672. .get_segment_base = vmx_get_segment_base,
  2673. .get_segment = vmx_get_segment,
  2674. .set_segment = vmx_set_segment,
  2675. .get_cpl = vmx_get_cpl,
  2676. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2677. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2678. .set_cr0 = vmx_set_cr0,
  2679. .set_cr3 = vmx_set_cr3,
  2680. .set_cr4 = vmx_set_cr4,
  2681. .set_efer = vmx_set_efer,
  2682. .get_idt = vmx_get_idt,
  2683. .set_idt = vmx_set_idt,
  2684. .get_gdt = vmx_get_gdt,
  2685. .set_gdt = vmx_set_gdt,
  2686. .cache_regs = vcpu_load_rsp_rip,
  2687. .decache_regs = vcpu_put_rsp_rip,
  2688. .get_rflags = vmx_get_rflags,
  2689. .set_rflags = vmx_set_rflags,
  2690. .tlb_flush = vmx_flush_tlb,
  2691. .run = vmx_vcpu_run,
  2692. .handle_exit = kvm_handle_exit,
  2693. .skip_emulated_instruction = skip_emulated_instruction,
  2694. .patch_hypercall = vmx_patch_hypercall,
  2695. .get_irq = vmx_get_irq,
  2696. .set_irq = vmx_inject_irq,
  2697. .queue_exception = vmx_queue_exception,
  2698. .exception_injected = vmx_exception_injected,
  2699. .inject_pending_irq = vmx_intr_assist,
  2700. .inject_pending_vectors = do_interrupt_requests,
  2701. .set_tss_addr = vmx_set_tss_addr,
  2702. .get_tdp_level = get_ept_level,
  2703. };
  2704. static int __init vmx_init(void)
  2705. {
  2706. void *va;
  2707. int r;
  2708. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2709. if (!vmx_io_bitmap_a)
  2710. return -ENOMEM;
  2711. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2712. if (!vmx_io_bitmap_b) {
  2713. r = -ENOMEM;
  2714. goto out;
  2715. }
  2716. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2717. if (!vmx_msr_bitmap) {
  2718. r = -ENOMEM;
  2719. goto out1;
  2720. }
  2721. /*
  2722. * Allow direct access to the PC debug port (it is often used for I/O
  2723. * delays, but the vmexits simply slow things down).
  2724. */
  2725. va = kmap(vmx_io_bitmap_a);
  2726. memset(va, 0xff, PAGE_SIZE);
  2727. clear_bit(0x80, va);
  2728. kunmap(vmx_io_bitmap_a);
  2729. va = kmap(vmx_io_bitmap_b);
  2730. memset(va, 0xff, PAGE_SIZE);
  2731. kunmap(vmx_io_bitmap_b);
  2732. va = kmap(vmx_msr_bitmap);
  2733. memset(va, 0xff, PAGE_SIZE);
  2734. kunmap(vmx_msr_bitmap);
  2735. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2736. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2737. if (r)
  2738. goto out2;
  2739. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2740. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2741. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2742. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2743. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2744. if (cpu_has_vmx_ept())
  2745. bypass_guest_pf = 0;
  2746. if (bypass_guest_pf)
  2747. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2748. ept_sync_global();
  2749. return 0;
  2750. out2:
  2751. __free_page(vmx_msr_bitmap);
  2752. out1:
  2753. __free_page(vmx_io_bitmap_b);
  2754. out:
  2755. __free_page(vmx_io_bitmap_a);
  2756. return r;
  2757. }
  2758. static void __exit vmx_exit(void)
  2759. {
  2760. __free_page(vmx_msr_bitmap);
  2761. __free_page(vmx_io_bitmap_b);
  2762. __free_page(vmx_io_bitmap_a);
  2763. kvm_exit();
  2764. }
  2765. module_init(vmx_init)
  2766. module_exit(vmx_exit)