fs_enet-main.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/sched.h>
  21. #include <linux/string.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/delay.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/mii.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/bitops.h>
  37. #include <linux/fs.h>
  38. #include <linux/platform_device.h>
  39. #include <linux/phy.h>
  40. #include <linux/vmalloc.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/irq.h>
  44. #include <asm/uaccess.h>
  45. #include "fs_enet.h"
  46. /*************************************************/
  47. static char version[] __devinitdata =
  48. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  49. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  50. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  51. MODULE_LICENSE("GPL");
  52. MODULE_VERSION(DRV_MODULE_VERSION);
  53. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  54. module_param(fs_enet_debug, int, 0);
  55. MODULE_PARM_DESC(fs_enet_debug,
  56. "Freescale bitmapped debugging message enable value");
  57. static void fs_set_multicast_list(struct net_device *dev)
  58. {
  59. struct fs_enet_private *fep = netdev_priv(dev);
  60. (*fep->ops->set_multicast_list)(dev);
  61. }
  62. /* NAPI receive function */
  63. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  64. {
  65. struct fs_enet_private *fep = netdev_priv(dev);
  66. const struct fs_platform_info *fpi = fep->fpi;
  67. cbd_t *bdp;
  68. struct sk_buff *skb, *skbn, *skbt;
  69. int received = 0;
  70. u16 pkt_len, sc;
  71. int curidx;
  72. int rx_work_limit = 0; /* pacify gcc */
  73. rx_work_limit = min(dev->quota, *budget);
  74. if (!netif_running(dev))
  75. return 0;
  76. /*
  77. * First, grab all of the stats for the incoming packet.
  78. * These get messed up if we get called due to a busy condition.
  79. */
  80. bdp = fep->cur_rx;
  81. /* clear RX status bits for napi*/
  82. (*fep->ops->napi_clear_rx_event)(dev);
  83. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  84. curidx = bdp - fep->rx_bd_base;
  85. /*
  86. * Since we have allocated space to hold a complete frame,
  87. * the last indicator should be set.
  88. */
  89. if ((sc & BD_ENET_RX_LAST) == 0)
  90. printk(KERN_WARNING DRV_MODULE_NAME
  91. ": %s rcv is not +last\n",
  92. dev->name);
  93. /*
  94. * Check for errors.
  95. */
  96. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  97. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  98. fep->stats.rx_errors++;
  99. /* Frame too long or too short. */
  100. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  101. fep->stats.rx_length_errors++;
  102. /* Frame alignment */
  103. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  104. fep->stats.rx_frame_errors++;
  105. /* CRC Error */
  106. if (sc & BD_ENET_RX_CR)
  107. fep->stats.rx_crc_errors++;
  108. /* FIFO overrun */
  109. if (sc & BD_ENET_RX_OV)
  110. fep->stats.rx_crc_errors++;
  111. skb = fep->rx_skbuff[curidx];
  112. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  113. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  114. DMA_FROM_DEVICE);
  115. skbn = skb;
  116. } else {
  117. /* napi, got packet but no quota */
  118. if (--rx_work_limit < 0)
  119. break;
  120. skb = fep->rx_skbuff[curidx];
  121. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  122. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  123. DMA_FROM_DEVICE);
  124. /*
  125. * Process the incoming frame.
  126. */
  127. fep->stats.rx_packets++;
  128. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  129. fep->stats.rx_bytes += pkt_len + 4;
  130. if (pkt_len <= fpi->rx_copybreak) {
  131. /* +2 to make IP header L1 cache aligned */
  132. skbn = dev_alloc_skb(pkt_len + 2);
  133. if (skbn != NULL) {
  134. skb_reserve(skbn, 2); /* align IP header */
  135. memcpy(skbn->data, skb->data, pkt_len);
  136. /* swap */
  137. skbt = skb;
  138. skb = skbn;
  139. skbn = skbt;
  140. }
  141. } else
  142. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  143. if (skbn != NULL) {
  144. skb->dev = dev;
  145. skb_put(skb, pkt_len); /* Make room */
  146. skb->protocol = eth_type_trans(skb, dev);
  147. received++;
  148. netif_receive_skb(skb);
  149. } else {
  150. printk(KERN_WARNING DRV_MODULE_NAME
  151. ": %s Memory squeeze, dropping packet.\n",
  152. dev->name);
  153. fep->stats.rx_dropped++;
  154. skbn = skb;
  155. }
  156. }
  157. fep->rx_skbuff[curidx] = skbn;
  158. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  159. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  160. DMA_FROM_DEVICE));
  161. CBDW_DATLEN(bdp, 0);
  162. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  163. /*
  164. * Update BD pointer to next entry.
  165. */
  166. if ((sc & BD_ENET_RX_WRAP) == 0)
  167. bdp++;
  168. else
  169. bdp = fep->rx_bd_base;
  170. (*fep->ops->rx_bd_done)(dev);
  171. }
  172. fep->cur_rx = bdp;
  173. dev->quota -= received;
  174. *budget -= received;
  175. if (rx_work_limit < 0)
  176. return 1; /* not done */
  177. /* done */
  178. netif_rx_complete(dev);
  179. (*fep->ops->napi_enable_rx)(dev);
  180. return 0;
  181. }
  182. /* non NAPI receive function */
  183. static int fs_enet_rx_non_napi(struct net_device *dev)
  184. {
  185. struct fs_enet_private *fep = netdev_priv(dev);
  186. const struct fs_platform_info *fpi = fep->fpi;
  187. cbd_t *bdp;
  188. struct sk_buff *skb, *skbn, *skbt;
  189. int received = 0;
  190. u16 pkt_len, sc;
  191. int curidx;
  192. /*
  193. * First, grab all of the stats for the incoming packet.
  194. * These get messed up if we get called due to a busy condition.
  195. */
  196. bdp = fep->cur_rx;
  197. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  198. curidx = bdp - fep->rx_bd_base;
  199. /*
  200. * Since we have allocated space to hold a complete frame,
  201. * the last indicator should be set.
  202. */
  203. if ((sc & BD_ENET_RX_LAST) == 0)
  204. printk(KERN_WARNING DRV_MODULE_NAME
  205. ": %s rcv is not +last\n",
  206. dev->name);
  207. /*
  208. * Check for errors.
  209. */
  210. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  211. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  212. fep->stats.rx_errors++;
  213. /* Frame too long or too short. */
  214. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  215. fep->stats.rx_length_errors++;
  216. /* Frame alignment */
  217. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  218. fep->stats.rx_frame_errors++;
  219. /* CRC Error */
  220. if (sc & BD_ENET_RX_CR)
  221. fep->stats.rx_crc_errors++;
  222. /* FIFO overrun */
  223. if (sc & BD_ENET_RX_OV)
  224. fep->stats.rx_crc_errors++;
  225. skb = fep->rx_skbuff[curidx];
  226. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  227. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  228. DMA_FROM_DEVICE);
  229. skbn = skb;
  230. } else {
  231. skb = fep->rx_skbuff[curidx];
  232. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  233. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  234. DMA_FROM_DEVICE);
  235. /*
  236. * Process the incoming frame.
  237. */
  238. fep->stats.rx_packets++;
  239. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  240. fep->stats.rx_bytes += pkt_len + 4;
  241. if (pkt_len <= fpi->rx_copybreak) {
  242. /* +2 to make IP header L1 cache aligned */
  243. skbn = dev_alloc_skb(pkt_len + 2);
  244. if (skbn != NULL) {
  245. skb_reserve(skbn, 2); /* align IP header */
  246. memcpy(skbn->data, skb->data, pkt_len);
  247. /* swap */
  248. skbt = skb;
  249. skb = skbn;
  250. skbn = skbt;
  251. }
  252. } else
  253. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  254. if (skbn != NULL) {
  255. skb->dev = dev;
  256. skb_put(skb, pkt_len); /* Make room */
  257. skb->protocol = eth_type_trans(skb, dev);
  258. received++;
  259. netif_rx(skb);
  260. } else {
  261. printk(KERN_WARNING DRV_MODULE_NAME
  262. ": %s Memory squeeze, dropping packet.\n",
  263. dev->name);
  264. fep->stats.rx_dropped++;
  265. skbn = skb;
  266. }
  267. }
  268. fep->rx_skbuff[curidx] = skbn;
  269. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  270. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  271. DMA_FROM_DEVICE));
  272. CBDW_DATLEN(bdp, 0);
  273. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  274. /*
  275. * Update BD pointer to next entry.
  276. */
  277. if ((sc & BD_ENET_RX_WRAP) == 0)
  278. bdp++;
  279. else
  280. bdp = fep->rx_bd_base;
  281. (*fep->ops->rx_bd_done)(dev);
  282. }
  283. fep->cur_rx = bdp;
  284. return 0;
  285. }
  286. static void fs_enet_tx(struct net_device *dev)
  287. {
  288. struct fs_enet_private *fep = netdev_priv(dev);
  289. cbd_t *bdp;
  290. struct sk_buff *skb;
  291. int dirtyidx, do_wake, do_restart;
  292. u16 sc;
  293. spin_lock(&fep->lock);
  294. bdp = fep->dirty_tx;
  295. do_wake = do_restart = 0;
  296. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  297. dirtyidx = bdp - fep->tx_bd_base;
  298. if (fep->tx_free == fep->tx_ring)
  299. break;
  300. skb = fep->tx_skbuff[dirtyidx];
  301. /*
  302. * Check for errors.
  303. */
  304. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  305. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  306. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  307. fep->stats.tx_heartbeat_errors++;
  308. if (sc & BD_ENET_TX_LC) /* Late collision */
  309. fep->stats.tx_window_errors++;
  310. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  311. fep->stats.tx_aborted_errors++;
  312. if (sc & BD_ENET_TX_UN) /* Underrun */
  313. fep->stats.tx_fifo_errors++;
  314. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  315. fep->stats.tx_carrier_errors++;
  316. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  317. fep->stats.tx_errors++;
  318. do_restart = 1;
  319. }
  320. } else
  321. fep->stats.tx_packets++;
  322. if (sc & BD_ENET_TX_READY)
  323. printk(KERN_WARNING DRV_MODULE_NAME
  324. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  325. dev->name);
  326. /*
  327. * Deferred means some collisions occurred during transmit,
  328. * but we eventually sent the packet OK.
  329. */
  330. if (sc & BD_ENET_TX_DEF)
  331. fep->stats.collisions++;
  332. /* unmap */
  333. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  334. skb->len, DMA_TO_DEVICE);
  335. /*
  336. * Free the sk buffer associated with this last transmit.
  337. */
  338. dev_kfree_skb_irq(skb);
  339. fep->tx_skbuff[dirtyidx] = NULL;
  340. /*
  341. * Update pointer to next buffer descriptor to be transmitted.
  342. */
  343. if ((sc & BD_ENET_TX_WRAP) == 0)
  344. bdp++;
  345. else
  346. bdp = fep->tx_bd_base;
  347. /*
  348. * Since we have freed up a buffer, the ring is no longer
  349. * full.
  350. */
  351. if (!fep->tx_free++)
  352. do_wake = 1;
  353. }
  354. fep->dirty_tx = bdp;
  355. if (do_restart)
  356. (*fep->ops->tx_restart)(dev);
  357. spin_unlock(&fep->lock);
  358. if (do_wake)
  359. netif_wake_queue(dev);
  360. }
  361. /*
  362. * The interrupt handler.
  363. * This is called from the MPC core interrupt.
  364. */
  365. static irqreturn_t
  366. fs_enet_interrupt(int irq, void *dev_id)
  367. {
  368. struct net_device *dev = dev_id;
  369. struct fs_enet_private *fep;
  370. const struct fs_platform_info *fpi;
  371. u32 int_events;
  372. u32 int_clr_events;
  373. int nr, napi_ok;
  374. int handled;
  375. fep = netdev_priv(dev);
  376. fpi = fep->fpi;
  377. nr = 0;
  378. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  379. nr++;
  380. int_clr_events = int_events;
  381. if (fpi->use_napi)
  382. int_clr_events &= ~fep->ev_napi_rx;
  383. (*fep->ops->clear_int_events)(dev, int_clr_events);
  384. if (int_events & fep->ev_err)
  385. (*fep->ops->ev_error)(dev, int_events);
  386. if (int_events & fep->ev_rx) {
  387. if (!fpi->use_napi)
  388. fs_enet_rx_non_napi(dev);
  389. else {
  390. napi_ok = netif_rx_schedule_prep(dev);
  391. (*fep->ops->napi_disable_rx)(dev);
  392. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  393. /* NOTE: it is possible for FCCs in NAPI mode */
  394. /* to submit a spurious interrupt while in poll */
  395. if (napi_ok)
  396. __netif_rx_schedule(dev);
  397. }
  398. }
  399. if (int_events & fep->ev_tx)
  400. fs_enet_tx(dev);
  401. }
  402. handled = nr > 0;
  403. return IRQ_RETVAL(handled);
  404. }
  405. void fs_init_bds(struct net_device *dev)
  406. {
  407. struct fs_enet_private *fep = netdev_priv(dev);
  408. cbd_t *bdp;
  409. struct sk_buff *skb;
  410. int i;
  411. fs_cleanup_bds(dev);
  412. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  413. fep->tx_free = fep->tx_ring;
  414. fep->cur_rx = fep->rx_bd_base;
  415. /*
  416. * Initialize the receive buffer descriptors.
  417. */
  418. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  419. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  420. if (skb == NULL) {
  421. printk(KERN_WARNING DRV_MODULE_NAME
  422. ": %s Memory squeeze, unable to allocate skb\n",
  423. dev->name);
  424. break;
  425. }
  426. fep->rx_skbuff[i] = skb;
  427. skb->dev = dev;
  428. CBDW_BUFADDR(bdp,
  429. dma_map_single(fep->dev, skb->data,
  430. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  431. DMA_FROM_DEVICE));
  432. CBDW_DATLEN(bdp, 0); /* zero */
  433. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  434. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  435. }
  436. /*
  437. * if we failed, fillup remainder
  438. */
  439. for (; i < fep->rx_ring; i++, bdp++) {
  440. fep->rx_skbuff[i] = NULL;
  441. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  442. }
  443. /*
  444. * ...and the same for transmit.
  445. */
  446. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  447. fep->tx_skbuff[i] = NULL;
  448. CBDW_BUFADDR(bdp, 0);
  449. CBDW_DATLEN(bdp, 0);
  450. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  451. }
  452. }
  453. void fs_cleanup_bds(struct net_device *dev)
  454. {
  455. struct fs_enet_private *fep = netdev_priv(dev);
  456. struct sk_buff *skb;
  457. cbd_t *bdp;
  458. int i;
  459. /*
  460. * Reset SKB transmit buffers.
  461. */
  462. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  463. if ((skb = fep->tx_skbuff[i]) == NULL)
  464. continue;
  465. /* unmap */
  466. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  467. skb->len, DMA_TO_DEVICE);
  468. fep->tx_skbuff[i] = NULL;
  469. dev_kfree_skb(skb);
  470. }
  471. /*
  472. * Reset SKB receive buffers
  473. */
  474. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  475. if ((skb = fep->rx_skbuff[i]) == NULL)
  476. continue;
  477. /* unmap */
  478. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  479. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  480. DMA_FROM_DEVICE);
  481. fep->rx_skbuff[i] = NULL;
  482. dev_kfree_skb(skb);
  483. }
  484. }
  485. /**********************************************************************************/
  486. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  487. {
  488. struct fs_enet_private *fep = netdev_priv(dev);
  489. cbd_t *bdp;
  490. int curidx;
  491. u16 sc;
  492. unsigned long flags;
  493. spin_lock_irqsave(&fep->tx_lock, flags);
  494. /*
  495. * Fill in a Tx ring entry
  496. */
  497. bdp = fep->cur_tx;
  498. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  499. netif_stop_queue(dev);
  500. spin_unlock_irqrestore(&fep->tx_lock, flags);
  501. /*
  502. * Ooops. All transmit buffers are full. Bail out.
  503. * This should not happen, since the tx queue should be stopped.
  504. */
  505. printk(KERN_WARNING DRV_MODULE_NAME
  506. ": %s tx queue full!.\n", dev->name);
  507. return NETDEV_TX_BUSY;
  508. }
  509. curidx = bdp - fep->tx_bd_base;
  510. /*
  511. * Clear all of the status flags.
  512. */
  513. CBDC_SC(bdp, BD_ENET_TX_STATS);
  514. /*
  515. * Save skb pointer.
  516. */
  517. fep->tx_skbuff[curidx] = skb;
  518. fep->stats.tx_bytes += skb->len;
  519. /*
  520. * Push the data cache so the CPM does not get stale memory data.
  521. */
  522. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  523. skb->data, skb->len, DMA_TO_DEVICE));
  524. CBDW_DATLEN(bdp, skb->len);
  525. dev->trans_start = jiffies;
  526. /*
  527. * If this was the last BD in the ring, start at the beginning again.
  528. */
  529. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  530. fep->cur_tx++;
  531. else
  532. fep->cur_tx = fep->tx_bd_base;
  533. if (!--fep->tx_free)
  534. netif_stop_queue(dev);
  535. /* Trigger transmission start */
  536. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  537. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  538. /* note that while FEC does not have this bit
  539. * it marks it as available for software use
  540. * yay for hw reuse :) */
  541. if (skb->len <= 60)
  542. sc |= BD_ENET_TX_PAD;
  543. CBDS_SC(bdp, sc);
  544. (*fep->ops->tx_kickstart)(dev);
  545. spin_unlock_irqrestore(&fep->tx_lock, flags);
  546. return NETDEV_TX_OK;
  547. }
  548. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  549. irq_handler_t irqf)
  550. {
  551. struct fs_enet_private *fep = netdev_priv(dev);
  552. (*fep->ops->pre_request_irq)(dev, irq);
  553. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  554. }
  555. static void fs_free_irq(struct net_device *dev, int irq)
  556. {
  557. struct fs_enet_private *fep = netdev_priv(dev);
  558. free_irq(irq, dev);
  559. (*fep->ops->post_free_irq)(dev, irq);
  560. }
  561. static void fs_timeout(struct net_device *dev)
  562. {
  563. struct fs_enet_private *fep = netdev_priv(dev);
  564. unsigned long flags;
  565. int wake = 0;
  566. fep->stats.tx_errors++;
  567. spin_lock_irqsave(&fep->lock, flags);
  568. if (dev->flags & IFF_UP) {
  569. phy_stop(fep->phydev);
  570. (*fep->ops->stop)(dev);
  571. (*fep->ops->restart)(dev);
  572. phy_start(fep->phydev);
  573. }
  574. phy_start(fep->phydev);
  575. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  576. spin_unlock_irqrestore(&fep->lock, flags);
  577. if (wake)
  578. netif_wake_queue(dev);
  579. }
  580. /*-----------------------------------------------------------------------------
  581. * generic link-change handler - should be sufficient for most cases
  582. *-----------------------------------------------------------------------------*/
  583. static void generic_adjust_link(struct net_device *dev)
  584. {
  585. struct fs_enet_private *fep = netdev_priv(dev);
  586. struct phy_device *phydev = fep->phydev;
  587. int new_state = 0;
  588. if (phydev->link) {
  589. /* adjust to duplex mode */
  590. if (phydev->duplex != fep->oldduplex){
  591. new_state = 1;
  592. fep->oldduplex = phydev->duplex;
  593. }
  594. if (phydev->speed != fep->oldspeed) {
  595. new_state = 1;
  596. fep->oldspeed = phydev->speed;
  597. }
  598. if (!fep->oldlink) {
  599. new_state = 1;
  600. fep->oldlink = 1;
  601. netif_schedule(dev);
  602. netif_carrier_on(dev);
  603. netif_start_queue(dev);
  604. }
  605. if (new_state)
  606. fep->ops->restart(dev);
  607. } else if (fep->oldlink) {
  608. new_state = 1;
  609. fep->oldlink = 0;
  610. fep->oldspeed = 0;
  611. fep->oldduplex = -1;
  612. netif_carrier_off(dev);
  613. netif_stop_queue(dev);
  614. }
  615. if (new_state && netif_msg_link(fep))
  616. phy_print_status(phydev);
  617. }
  618. static void fs_adjust_link(struct net_device *dev)
  619. {
  620. struct fs_enet_private *fep = netdev_priv(dev);
  621. unsigned long flags;
  622. spin_lock_irqsave(&fep->lock, flags);
  623. if(fep->ops->adjust_link)
  624. fep->ops->adjust_link(dev);
  625. else
  626. generic_adjust_link(dev);
  627. spin_unlock_irqrestore(&fep->lock, flags);
  628. }
  629. static int fs_init_phy(struct net_device *dev)
  630. {
  631. struct fs_enet_private *fep = netdev_priv(dev);
  632. struct phy_device *phydev;
  633. fep->oldlink = 0;
  634. fep->oldspeed = 0;
  635. fep->oldduplex = -1;
  636. if(fep->fpi->bus_id)
  637. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  638. PHY_INTERFACE_MODE_MII);
  639. else {
  640. printk("No phy bus ID specified in BSP code\n");
  641. return -EINVAL;
  642. }
  643. if (IS_ERR(phydev)) {
  644. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  645. return PTR_ERR(phydev);
  646. }
  647. fep->phydev = phydev;
  648. return 0;
  649. }
  650. static int fs_enet_open(struct net_device *dev)
  651. {
  652. struct fs_enet_private *fep = netdev_priv(dev);
  653. int r;
  654. int err;
  655. /* Install our interrupt handler. */
  656. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  657. if (r != 0) {
  658. printk(KERN_ERR DRV_MODULE_NAME
  659. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  660. return -EINVAL;
  661. }
  662. err = fs_init_phy(dev);
  663. if(err)
  664. return err;
  665. phy_start(fep->phydev);
  666. return 0;
  667. }
  668. static int fs_enet_close(struct net_device *dev)
  669. {
  670. struct fs_enet_private *fep = netdev_priv(dev);
  671. unsigned long flags;
  672. netif_stop_queue(dev);
  673. netif_carrier_off(dev);
  674. phy_stop(fep->phydev);
  675. spin_lock_irqsave(&fep->lock, flags);
  676. (*fep->ops->stop)(dev);
  677. spin_unlock_irqrestore(&fep->lock, flags);
  678. /* release any irqs */
  679. phy_disconnect(fep->phydev);
  680. fep->phydev = NULL;
  681. fs_free_irq(dev, fep->interrupt);
  682. return 0;
  683. }
  684. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  685. {
  686. struct fs_enet_private *fep = netdev_priv(dev);
  687. return &fep->stats;
  688. }
  689. /*************************************************************************/
  690. static void fs_get_drvinfo(struct net_device *dev,
  691. struct ethtool_drvinfo *info)
  692. {
  693. strcpy(info->driver, DRV_MODULE_NAME);
  694. strcpy(info->version, DRV_MODULE_VERSION);
  695. }
  696. static int fs_get_regs_len(struct net_device *dev)
  697. {
  698. struct fs_enet_private *fep = netdev_priv(dev);
  699. return (*fep->ops->get_regs_len)(dev);
  700. }
  701. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  702. void *p)
  703. {
  704. struct fs_enet_private *fep = netdev_priv(dev);
  705. unsigned long flags;
  706. int r, len;
  707. len = regs->len;
  708. spin_lock_irqsave(&fep->lock, flags);
  709. r = (*fep->ops->get_regs)(dev, p, &len);
  710. spin_unlock_irqrestore(&fep->lock, flags);
  711. if (r == 0)
  712. regs->version = 0;
  713. }
  714. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  715. {
  716. struct fs_enet_private *fep = netdev_priv(dev);
  717. return phy_ethtool_gset(fep->phydev, cmd);
  718. }
  719. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  720. {
  721. struct fs_enet_private *fep = netdev_priv(dev);
  722. phy_ethtool_sset(fep->phydev, cmd);
  723. return 0;
  724. }
  725. static int fs_nway_reset(struct net_device *dev)
  726. {
  727. return 0;
  728. }
  729. static u32 fs_get_msglevel(struct net_device *dev)
  730. {
  731. struct fs_enet_private *fep = netdev_priv(dev);
  732. return fep->msg_enable;
  733. }
  734. static void fs_set_msglevel(struct net_device *dev, u32 value)
  735. {
  736. struct fs_enet_private *fep = netdev_priv(dev);
  737. fep->msg_enable = value;
  738. }
  739. static const struct ethtool_ops fs_ethtool_ops = {
  740. .get_drvinfo = fs_get_drvinfo,
  741. .get_regs_len = fs_get_regs_len,
  742. .get_settings = fs_get_settings,
  743. .set_settings = fs_set_settings,
  744. .nway_reset = fs_nway_reset,
  745. .get_link = ethtool_op_get_link,
  746. .get_msglevel = fs_get_msglevel,
  747. .set_msglevel = fs_set_msglevel,
  748. .get_tx_csum = ethtool_op_get_tx_csum,
  749. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  750. .get_sg = ethtool_op_get_sg,
  751. .set_sg = ethtool_op_set_sg,
  752. .get_regs = fs_get_regs,
  753. };
  754. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  755. {
  756. struct fs_enet_private *fep = netdev_priv(dev);
  757. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  758. unsigned long flags;
  759. int rc;
  760. if (!netif_running(dev))
  761. return -EINVAL;
  762. spin_lock_irqsave(&fep->lock, flags);
  763. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  764. spin_unlock_irqrestore(&fep->lock, flags);
  765. return rc;
  766. }
  767. extern int fs_mii_connect(struct net_device *dev);
  768. extern void fs_mii_disconnect(struct net_device *dev);
  769. static struct net_device *fs_init_instance(struct device *dev,
  770. struct fs_platform_info *fpi)
  771. {
  772. struct net_device *ndev = NULL;
  773. struct fs_enet_private *fep = NULL;
  774. int privsize, i, r, err = 0, registered = 0;
  775. fpi->fs_no = fs_get_id(fpi);
  776. /* guard */
  777. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  778. return ERR_PTR(-EINVAL);
  779. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  780. (fpi->rx_ring + fpi->tx_ring));
  781. ndev = alloc_etherdev(privsize);
  782. if (!ndev) {
  783. err = -ENOMEM;
  784. goto err;
  785. }
  786. SET_MODULE_OWNER(ndev);
  787. fep = netdev_priv(ndev);
  788. memset(fep, 0, privsize); /* clear everything */
  789. fep->dev = dev;
  790. dev_set_drvdata(dev, ndev);
  791. fep->fpi = fpi;
  792. if (fpi->init_ioports)
  793. fpi->init_ioports((struct fs_platform_info *)fpi);
  794. #ifdef CONFIG_FS_ENET_HAS_FEC
  795. if (fs_get_fec_index(fpi->fs_no) >= 0)
  796. fep->ops = &fs_fec_ops;
  797. #endif
  798. #ifdef CONFIG_FS_ENET_HAS_SCC
  799. if (fs_get_scc_index(fpi->fs_no) >=0 )
  800. fep->ops = &fs_scc_ops;
  801. #endif
  802. #ifdef CONFIG_FS_ENET_HAS_FCC
  803. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  804. fep->ops = &fs_fcc_ops;
  805. #endif
  806. if (fep->ops == NULL) {
  807. printk(KERN_ERR DRV_MODULE_NAME
  808. ": %s No matching ops found (%d).\n",
  809. ndev->name, fpi->fs_no);
  810. err = -EINVAL;
  811. goto err;
  812. }
  813. r = (*fep->ops->setup_data)(ndev);
  814. if (r != 0) {
  815. printk(KERN_ERR DRV_MODULE_NAME
  816. ": %s setup_data failed\n",
  817. ndev->name);
  818. err = r;
  819. goto err;
  820. }
  821. /* point rx_skbuff, tx_skbuff */
  822. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  823. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  824. /* init locks */
  825. spin_lock_init(&fep->lock);
  826. spin_lock_init(&fep->tx_lock);
  827. /*
  828. * Set the Ethernet address.
  829. */
  830. for (i = 0; i < 6; i++)
  831. ndev->dev_addr[i] = fpi->macaddr[i];
  832. r = (*fep->ops->allocate_bd)(ndev);
  833. if (fep->ring_base == NULL) {
  834. printk(KERN_ERR DRV_MODULE_NAME
  835. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  836. err = r;
  837. goto err;
  838. }
  839. /*
  840. * Set receive and transmit descriptor base.
  841. */
  842. fep->rx_bd_base = fep->ring_base;
  843. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  844. /* initialize ring size variables */
  845. fep->tx_ring = fpi->tx_ring;
  846. fep->rx_ring = fpi->rx_ring;
  847. /*
  848. * The FEC Ethernet specific entries in the device structure.
  849. */
  850. ndev->open = fs_enet_open;
  851. ndev->hard_start_xmit = fs_enet_start_xmit;
  852. ndev->tx_timeout = fs_timeout;
  853. ndev->watchdog_timeo = 2 * HZ;
  854. ndev->stop = fs_enet_close;
  855. ndev->get_stats = fs_enet_get_stats;
  856. ndev->set_multicast_list = fs_set_multicast_list;
  857. if (fpi->use_napi) {
  858. ndev->poll = fs_enet_rx_napi;
  859. ndev->weight = fpi->napi_weight;
  860. }
  861. ndev->ethtool_ops = &fs_ethtool_ops;
  862. ndev->do_ioctl = fs_ioctl;
  863. init_timer(&fep->phy_timer_list);
  864. netif_carrier_off(ndev);
  865. err = register_netdev(ndev);
  866. if (err != 0) {
  867. printk(KERN_ERR DRV_MODULE_NAME
  868. ": %s register_netdev failed.\n", ndev->name);
  869. goto err;
  870. }
  871. registered = 1;
  872. return ndev;
  873. err:
  874. if (ndev != NULL) {
  875. if (registered)
  876. unregister_netdev(ndev);
  877. if (fep != NULL) {
  878. (*fep->ops->free_bd)(ndev);
  879. (*fep->ops->cleanup_data)(ndev);
  880. }
  881. free_netdev(ndev);
  882. }
  883. dev_set_drvdata(dev, NULL);
  884. return ERR_PTR(err);
  885. }
  886. static int fs_cleanup_instance(struct net_device *ndev)
  887. {
  888. struct fs_enet_private *fep;
  889. const struct fs_platform_info *fpi;
  890. struct device *dev;
  891. if (ndev == NULL)
  892. return -EINVAL;
  893. fep = netdev_priv(ndev);
  894. if (fep == NULL)
  895. return -EINVAL;
  896. fpi = fep->fpi;
  897. unregister_netdev(ndev);
  898. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  899. fep->ring_base, fep->ring_mem_addr);
  900. /* reset it */
  901. (*fep->ops->cleanup_data)(ndev);
  902. dev = fep->dev;
  903. if (dev != NULL) {
  904. dev_set_drvdata(dev, NULL);
  905. fep->dev = NULL;
  906. }
  907. free_netdev(ndev);
  908. return 0;
  909. }
  910. /**************************************************************************************/
  911. /* handy pointer to the immap */
  912. void *fs_enet_immap = NULL;
  913. static int setup_immap(void)
  914. {
  915. phys_addr_t paddr = 0;
  916. unsigned long size = 0;
  917. #ifdef CONFIG_CPM1
  918. paddr = IMAP_ADDR;
  919. size = 0x10000; /* map 64K */
  920. #endif
  921. #ifdef CONFIG_CPM2
  922. paddr = CPM_MAP_ADDR;
  923. size = 0x40000; /* map 256 K */
  924. #endif
  925. fs_enet_immap = ioremap(paddr, size);
  926. if (fs_enet_immap == NULL)
  927. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  928. return 0;
  929. }
  930. static void cleanup_immap(void)
  931. {
  932. if (fs_enet_immap != NULL) {
  933. iounmap(fs_enet_immap);
  934. fs_enet_immap = NULL;
  935. }
  936. }
  937. /**************************************************************************************/
  938. static int __devinit fs_enet_probe(struct device *dev)
  939. {
  940. struct net_device *ndev;
  941. /* no fixup - no device */
  942. if (dev->platform_data == NULL) {
  943. printk(KERN_INFO "fs_enet: "
  944. "probe called with no platform data; "
  945. "remove unused devices\n");
  946. return -ENODEV;
  947. }
  948. ndev = fs_init_instance(dev, dev->platform_data);
  949. if (IS_ERR(ndev))
  950. return PTR_ERR(ndev);
  951. return 0;
  952. }
  953. static int fs_enet_remove(struct device *dev)
  954. {
  955. return fs_cleanup_instance(dev_get_drvdata(dev));
  956. }
  957. static struct device_driver fs_enet_fec_driver = {
  958. .name = "fsl-cpm-fec",
  959. .bus = &platform_bus_type,
  960. .probe = fs_enet_probe,
  961. .remove = fs_enet_remove,
  962. #ifdef CONFIG_PM
  963. /* .suspend = fs_enet_suspend, TODO */
  964. /* .resume = fs_enet_resume, TODO */
  965. #endif
  966. };
  967. static struct device_driver fs_enet_scc_driver = {
  968. .name = "fsl-cpm-scc",
  969. .bus = &platform_bus_type,
  970. .probe = fs_enet_probe,
  971. .remove = fs_enet_remove,
  972. #ifdef CONFIG_PM
  973. /* .suspend = fs_enet_suspend, TODO */
  974. /* .resume = fs_enet_resume, TODO */
  975. #endif
  976. };
  977. static struct device_driver fs_enet_fcc_driver = {
  978. .name = "fsl-cpm-fcc",
  979. .bus = &platform_bus_type,
  980. .probe = fs_enet_probe,
  981. .remove = fs_enet_remove,
  982. #ifdef CONFIG_PM
  983. /* .suspend = fs_enet_suspend, TODO */
  984. /* .resume = fs_enet_resume, TODO */
  985. #endif
  986. };
  987. static int __init fs_init(void)
  988. {
  989. int r;
  990. printk(KERN_INFO
  991. "%s", version);
  992. r = setup_immap();
  993. if (r != 0)
  994. return r;
  995. #ifdef CONFIG_FS_ENET_HAS_FCC
  996. /* let's insert mii stuff */
  997. r = fs_enet_mdio_bb_init();
  998. if (r != 0) {
  999. printk(KERN_ERR DRV_MODULE_NAME
  1000. "BB PHY init failed.\n");
  1001. return r;
  1002. }
  1003. r = driver_register(&fs_enet_fcc_driver);
  1004. if (r != 0)
  1005. goto err;
  1006. #endif
  1007. #ifdef CONFIG_FS_ENET_HAS_FEC
  1008. r = fs_enet_mdio_fec_init();
  1009. if (r != 0) {
  1010. printk(KERN_ERR DRV_MODULE_NAME
  1011. "FEC PHY init failed.\n");
  1012. return r;
  1013. }
  1014. r = driver_register(&fs_enet_fec_driver);
  1015. if (r != 0)
  1016. goto err;
  1017. #endif
  1018. #ifdef CONFIG_FS_ENET_HAS_SCC
  1019. r = driver_register(&fs_enet_scc_driver);
  1020. if (r != 0)
  1021. goto err;
  1022. #endif
  1023. return 0;
  1024. err:
  1025. cleanup_immap();
  1026. return r;
  1027. }
  1028. static void __exit fs_cleanup(void)
  1029. {
  1030. driver_unregister(&fs_enet_fec_driver);
  1031. driver_unregister(&fs_enet_fcc_driver);
  1032. driver_unregister(&fs_enet_scc_driver);
  1033. cleanup_immap();
  1034. }
  1035. /**************************************************************************************/
  1036. module_init(fs_init);
  1037. module_exit(fs_cleanup);