vmx.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, 0);
  37. static int enable_vpid = 1;
  38. module_param(enable_vpid, bool, 0);
  39. static int flexpriority_enabled = 1;
  40. module_param(flexpriority_enabled, bool, 0);
  41. static int enable_ept = 1;
  42. module_param(enable_ept, bool, 0);
  43. static int emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, 0);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. /* Support for vnmi-less CPUs */
  83. int soft_vnmi_blocked;
  84. ktime_t entry_time;
  85. s64 vnmi_blocked_time;
  86. };
  87. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  88. {
  89. return container_of(vcpu, struct vcpu_vmx, vcpu);
  90. }
  91. static int init_rmode(struct kvm *kvm);
  92. static u64 construct_eptp(unsigned long root_hpa);
  93. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  94. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  95. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  96. static struct page *vmx_io_bitmap_a;
  97. static struct page *vmx_io_bitmap_b;
  98. static struct page *vmx_msr_bitmap;
  99. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  100. static DEFINE_SPINLOCK(vmx_vpid_lock);
  101. static struct vmcs_config {
  102. int size;
  103. int order;
  104. u32 revision_id;
  105. u32 pin_based_exec_ctrl;
  106. u32 cpu_based_exec_ctrl;
  107. u32 cpu_based_2nd_exec_ctrl;
  108. u32 vmexit_ctrl;
  109. u32 vmentry_ctrl;
  110. } vmcs_config;
  111. static struct vmx_capability {
  112. u32 ept;
  113. u32 vpid;
  114. } vmx_capability;
  115. #define VMX_SEGMENT_FIELD(seg) \
  116. [VCPU_SREG_##seg] = { \
  117. .selector = GUEST_##seg##_SELECTOR, \
  118. .base = GUEST_##seg##_BASE, \
  119. .limit = GUEST_##seg##_LIMIT, \
  120. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  121. }
  122. static struct kvm_vmx_segment_field {
  123. unsigned selector;
  124. unsigned base;
  125. unsigned limit;
  126. unsigned ar_bytes;
  127. } kvm_vmx_segment_fields[] = {
  128. VMX_SEGMENT_FIELD(CS),
  129. VMX_SEGMENT_FIELD(DS),
  130. VMX_SEGMENT_FIELD(ES),
  131. VMX_SEGMENT_FIELD(FS),
  132. VMX_SEGMENT_FIELD(GS),
  133. VMX_SEGMENT_FIELD(SS),
  134. VMX_SEGMENT_FIELD(TR),
  135. VMX_SEGMENT_FIELD(LDTR),
  136. };
  137. /*
  138. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  139. * away by decrementing the array size.
  140. */
  141. static const u32 vmx_msr_index[] = {
  142. #ifdef CONFIG_X86_64
  143. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  144. #endif
  145. MSR_EFER, MSR_K6_STAR,
  146. };
  147. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  148. static void load_msrs(struct kvm_msr_entry *e, int n)
  149. {
  150. int i;
  151. for (i = 0; i < n; ++i)
  152. wrmsrl(e[i].index, e[i].data);
  153. }
  154. static void save_msrs(struct kvm_msr_entry *e, int n)
  155. {
  156. int i;
  157. for (i = 0; i < n; ++i)
  158. rdmsrl(e[i].index, e[i].data);
  159. }
  160. static inline int is_page_fault(u32 intr_info)
  161. {
  162. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  163. INTR_INFO_VALID_MASK)) ==
  164. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  165. }
  166. static inline int is_no_device(u32 intr_info)
  167. {
  168. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  169. INTR_INFO_VALID_MASK)) ==
  170. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  171. }
  172. static inline int is_invalid_opcode(u32 intr_info)
  173. {
  174. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  175. INTR_INFO_VALID_MASK)) ==
  176. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  177. }
  178. static inline int is_external_interrupt(u32 intr_info)
  179. {
  180. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  181. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  182. }
  183. static inline int cpu_has_vmx_msr_bitmap(void)
  184. {
  185. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  186. }
  187. static inline int cpu_has_vmx_tpr_shadow(void)
  188. {
  189. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  190. }
  191. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  192. {
  193. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  194. }
  195. static inline int cpu_has_secondary_exec_ctrls(void)
  196. {
  197. return (vmcs_config.cpu_based_exec_ctrl &
  198. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  199. }
  200. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  201. {
  202. return flexpriority_enabled
  203. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  204. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  205. }
  206. static inline int cpu_has_vmx_invept_individual_addr(void)
  207. {
  208. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  209. }
  210. static inline int cpu_has_vmx_invept_context(void)
  211. {
  212. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  213. }
  214. static inline int cpu_has_vmx_invept_global(void)
  215. {
  216. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  217. }
  218. static inline int cpu_has_vmx_ept(void)
  219. {
  220. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  221. SECONDARY_EXEC_ENABLE_EPT);
  222. }
  223. static inline int vm_need_ept(void)
  224. {
  225. return (cpu_has_vmx_ept() && enable_ept);
  226. }
  227. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  228. {
  229. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  230. (irqchip_in_kernel(kvm)));
  231. }
  232. static inline int cpu_has_vmx_vpid(void)
  233. {
  234. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_ENABLE_VPID);
  236. }
  237. static inline int cpu_has_virtual_nmis(void)
  238. {
  239. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  240. }
  241. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  242. {
  243. int i;
  244. for (i = 0; i < vmx->nmsrs; ++i)
  245. if (vmx->guest_msrs[i].index == msr)
  246. return i;
  247. return -1;
  248. }
  249. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  250. {
  251. struct {
  252. u64 vpid : 16;
  253. u64 rsvd : 48;
  254. u64 gva;
  255. } operand = { vpid, 0, gva };
  256. asm volatile (__ex(ASM_VMX_INVVPID)
  257. /* CF==1 or ZF==1 --> rc = -1 */
  258. "; ja 1f ; ud2 ; 1:"
  259. : : "a"(&operand), "c"(ext) : "cc", "memory");
  260. }
  261. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  262. {
  263. struct {
  264. u64 eptp, gpa;
  265. } operand = {eptp, gpa};
  266. asm volatile (__ex(ASM_VMX_INVEPT)
  267. /* CF==1 or ZF==1 --> rc = -1 */
  268. "; ja 1f ; ud2 ; 1:\n"
  269. : : "a" (&operand), "c" (ext) : "cc", "memory");
  270. }
  271. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  272. {
  273. int i;
  274. i = __find_msr_index(vmx, msr);
  275. if (i >= 0)
  276. return &vmx->guest_msrs[i];
  277. return NULL;
  278. }
  279. static void vmcs_clear(struct vmcs *vmcs)
  280. {
  281. u64 phys_addr = __pa(vmcs);
  282. u8 error;
  283. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  284. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  285. : "cc", "memory");
  286. if (error)
  287. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  288. vmcs, phys_addr);
  289. }
  290. static void __vcpu_clear(void *arg)
  291. {
  292. struct vcpu_vmx *vmx = arg;
  293. int cpu = raw_smp_processor_id();
  294. if (vmx->vcpu.cpu == cpu)
  295. vmcs_clear(vmx->vmcs);
  296. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  297. per_cpu(current_vmcs, cpu) = NULL;
  298. rdtscll(vmx->vcpu.arch.host_tsc);
  299. list_del(&vmx->local_vcpus_link);
  300. vmx->vcpu.cpu = -1;
  301. vmx->launched = 0;
  302. }
  303. static void vcpu_clear(struct vcpu_vmx *vmx)
  304. {
  305. if (vmx->vcpu.cpu == -1)
  306. return;
  307. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  308. }
  309. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  310. {
  311. if (vmx->vpid == 0)
  312. return;
  313. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  314. }
  315. static inline void ept_sync_global(void)
  316. {
  317. if (cpu_has_vmx_invept_global())
  318. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  319. }
  320. static inline void ept_sync_context(u64 eptp)
  321. {
  322. if (vm_need_ept()) {
  323. if (cpu_has_vmx_invept_context())
  324. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  325. else
  326. ept_sync_global();
  327. }
  328. }
  329. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  330. {
  331. if (vm_need_ept()) {
  332. if (cpu_has_vmx_invept_individual_addr())
  333. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  334. eptp, gpa);
  335. else
  336. ept_sync_context(eptp);
  337. }
  338. }
  339. static unsigned long vmcs_readl(unsigned long field)
  340. {
  341. unsigned long value;
  342. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  343. : "=a"(value) : "d"(field) : "cc");
  344. return value;
  345. }
  346. static u16 vmcs_read16(unsigned long field)
  347. {
  348. return vmcs_readl(field);
  349. }
  350. static u32 vmcs_read32(unsigned long field)
  351. {
  352. return vmcs_readl(field);
  353. }
  354. static u64 vmcs_read64(unsigned long field)
  355. {
  356. #ifdef CONFIG_X86_64
  357. return vmcs_readl(field);
  358. #else
  359. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  360. #endif
  361. }
  362. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  363. {
  364. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  365. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  366. dump_stack();
  367. }
  368. static void vmcs_writel(unsigned long field, unsigned long value)
  369. {
  370. u8 error;
  371. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  372. : "=q"(error) : "a"(value), "d"(field) : "cc");
  373. if (unlikely(error))
  374. vmwrite_error(field, value);
  375. }
  376. static void vmcs_write16(unsigned long field, u16 value)
  377. {
  378. vmcs_writel(field, value);
  379. }
  380. static void vmcs_write32(unsigned long field, u32 value)
  381. {
  382. vmcs_writel(field, value);
  383. }
  384. static void vmcs_write64(unsigned long field, u64 value)
  385. {
  386. vmcs_writel(field, value);
  387. #ifndef CONFIG_X86_64
  388. asm volatile ("");
  389. vmcs_writel(field+1, value >> 32);
  390. #endif
  391. }
  392. static void vmcs_clear_bits(unsigned long field, u32 mask)
  393. {
  394. vmcs_writel(field, vmcs_readl(field) & ~mask);
  395. }
  396. static void vmcs_set_bits(unsigned long field, u32 mask)
  397. {
  398. vmcs_writel(field, vmcs_readl(field) | mask);
  399. }
  400. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  401. {
  402. u32 eb;
  403. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  404. if (!vcpu->fpu_active)
  405. eb |= 1u << NM_VECTOR;
  406. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  407. if (vcpu->guest_debug &
  408. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  409. eb |= 1u << DB_VECTOR;
  410. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  411. eb |= 1u << BP_VECTOR;
  412. }
  413. if (vcpu->arch.rmode.active)
  414. eb = ~0;
  415. if (vm_need_ept())
  416. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  417. vmcs_write32(EXCEPTION_BITMAP, eb);
  418. }
  419. static void reload_tss(void)
  420. {
  421. /*
  422. * VT restores TR but not its size. Useless.
  423. */
  424. struct descriptor_table gdt;
  425. struct desc_struct *descs;
  426. kvm_get_gdt(&gdt);
  427. descs = (void *)gdt.base;
  428. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  429. load_TR_desc();
  430. }
  431. static void load_transition_efer(struct vcpu_vmx *vmx)
  432. {
  433. int efer_offset = vmx->msr_offset_efer;
  434. u64 host_efer = vmx->host_msrs[efer_offset].data;
  435. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  436. u64 ignore_bits;
  437. if (efer_offset < 0)
  438. return;
  439. /*
  440. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  441. * outside long mode
  442. */
  443. ignore_bits = EFER_NX | EFER_SCE;
  444. #ifdef CONFIG_X86_64
  445. ignore_bits |= EFER_LMA | EFER_LME;
  446. /* SCE is meaningful only in long mode on Intel */
  447. if (guest_efer & EFER_LMA)
  448. ignore_bits &= ~(u64)EFER_SCE;
  449. #endif
  450. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  451. return;
  452. vmx->host_state.guest_efer_loaded = 1;
  453. guest_efer &= ~ignore_bits;
  454. guest_efer |= host_efer & ignore_bits;
  455. wrmsrl(MSR_EFER, guest_efer);
  456. vmx->vcpu.stat.efer_reload++;
  457. }
  458. static void reload_host_efer(struct vcpu_vmx *vmx)
  459. {
  460. if (vmx->host_state.guest_efer_loaded) {
  461. vmx->host_state.guest_efer_loaded = 0;
  462. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  463. }
  464. }
  465. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  466. {
  467. struct vcpu_vmx *vmx = to_vmx(vcpu);
  468. if (vmx->host_state.loaded)
  469. return;
  470. vmx->host_state.loaded = 1;
  471. /*
  472. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  473. * allow segment selectors with cpl > 0 or ti == 1.
  474. */
  475. vmx->host_state.ldt_sel = kvm_read_ldt();
  476. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  477. vmx->host_state.fs_sel = kvm_read_fs();
  478. if (!(vmx->host_state.fs_sel & 7)) {
  479. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  480. vmx->host_state.fs_reload_needed = 0;
  481. } else {
  482. vmcs_write16(HOST_FS_SELECTOR, 0);
  483. vmx->host_state.fs_reload_needed = 1;
  484. }
  485. vmx->host_state.gs_sel = kvm_read_gs();
  486. if (!(vmx->host_state.gs_sel & 7))
  487. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  488. else {
  489. vmcs_write16(HOST_GS_SELECTOR, 0);
  490. vmx->host_state.gs_ldt_reload_needed = 1;
  491. }
  492. #ifdef CONFIG_X86_64
  493. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  494. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  495. #else
  496. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  497. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  498. #endif
  499. #ifdef CONFIG_X86_64
  500. if (is_long_mode(&vmx->vcpu))
  501. save_msrs(vmx->host_msrs +
  502. vmx->msr_offset_kernel_gs_base, 1);
  503. #endif
  504. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  505. load_transition_efer(vmx);
  506. }
  507. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  508. {
  509. unsigned long flags;
  510. if (!vmx->host_state.loaded)
  511. return;
  512. ++vmx->vcpu.stat.host_state_reload;
  513. vmx->host_state.loaded = 0;
  514. if (vmx->host_state.fs_reload_needed)
  515. kvm_load_fs(vmx->host_state.fs_sel);
  516. if (vmx->host_state.gs_ldt_reload_needed) {
  517. kvm_load_ldt(vmx->host_state.ldt_sel);
  518. /*
  519. * If we have to reload gs, we must take care to
  520. * preserve our gs base.
  521. */
  522. local_irq_save(flags);
  523. kvm_load_gs(vmx->host_state.gs_sel);
  524. #ifdef CONFIG_X86_64
  525. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  526. #endif
  527. local_irq_restore(flags);
  528. }
  529. reload_tss();
  530. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  531. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  532. reload_host_efer(vmx);
  533. }
  534. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  535. {
  536. preempt_disable();
  537. __vmx_load_host_state(vmx);
  538. preempt_enable();
  539. }
  540. /*
  541. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  542. * vcpu mutex is already taken.
  543. */
  544. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  545. {
  546. struct vcpu_vmx *vmx = to_vmx(vcpu);
  547. u64 phys_addr = __pa(vmx->vmcs);
  548. u64 tsc_this, delta, new_offset;
  549. if (vcpu->cpu != cpu) {
  550. vcpu_clear(vmx);
  551. kvm_migrate_timers(vcpu);
  552. vpid_sync_vcpu_all(vmx);
  553. local_irq_disable();
  554. list_add(&vmx->local_vcpus_link,
  555. &per_cpu(vcpus_on_cpu, cpu));
  556. local_irq_enable();
  557. }
  558. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  559. u8 error;
  560. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  561. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  562. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  563. : "cc");
  564. if (error)
  565. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  566. vmx->vmcs, phys_addr);
  567. }
  568. if (vcpu->cpu != cpu) {
  569. struct descriptor_table dt;
  570. unsigned long sysenter_esp;
  571. vcpu->cpu = cpu;
  572. /*
  573. * Linux uses per-cpu TSS and GDT, so set these when switching
  574. * processors.
  575. */
  576. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  577. kvm_get_gdt(&dt);
  578. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  579. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  580. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  581. /*
  582. * Make sure the time stamp counter is monotonous.
  583. */
  584. rdtscll(tsc_this);
  585. if (tsc_this < vcpu->arch.host_tsc) {
  586. delta = vcpu->arch.host_tsc - tsc_this;
  587. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  588. vmcs_write64(TSC_OFFSET, new_offset);
  589. }
  590. }
  591. }
  592. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  593. {
  594. __vmx_load_host_state(to_vmx(vcpu));
  595. }
  596. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  597. {
  598. if (vcpu->fpu_active)
  599. return;
  600. vcpu->fpu_active = 1;
  601. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  602. if (vcpu->arch.cr0 & X86_CR0_TS)
  603. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  604. update_exception_bitmap(vcpu);
  605. }
  606. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  607. {
  608. if (!vcpu->fpu_active)
  609. return;
  610. vcpu->fpu_active = 0;
  611. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  612. update_exception_bitmap(vcpu);
  613. }
  614. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  615. {
  616. return vmcs_readl(GUEST_RFLAGS);
  617. }
  618. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  619. {
  620. if (vcpu->arch.rmode.active)
  621. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  622. vmcs_writel(GUEST_RFLAGS, rflags);
  623. }
  624. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  625. {
  626. unsigned long rip;
  627. u32 interruptibility;
  628. rip = kvm_rip_read(vcpu);
  629. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  630. kvm_rip_write(vcpu, rip);
  631. /*
  632. * We emulated an instruction, so temporary interrupt blocking
  633. * should be removed, if set.
  634. */
  635. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  636. if (interruptibility & 3)
  637. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  638. interruptibility & ~3);
  639. vcpu->arch.interrupt_window_open = 1;
  640. }
  641. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  642. bool has_error_code, u32 error_code)
  643. {
  644. struct vcpu_vmx *vmx = to_vmx(vcpu);
  645. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  646. if (has_error_code) {
  647. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  648. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  649. }
  650. if (vcpu->arch.rmode.active) {
  651. vmx->rmode.irq.pending = true;
  652. vmx->rmode.irq.vector = nr;
  653. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  654. if (nr == BP_VECTOR || nr == OF_VECTOR)
  655. vmx->rmode.irq.rip++;
  656. intr_info |= INTR_TYPE_SOFT_INTR;
  657. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  658. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  659. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  660. return;
  661. }
  662. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  663. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  664. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  665. } else
  666. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  667. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  668. }
  669. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  670. {
  671. return false;
  672. }
  673. /*
  674. * Swap MSR entry in host/guest MSR entry array.
  675. */
  676. #ifdef CONFIG_X86_64
  677. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  678. {
  679. struct kvm_msr_entry tmp;
  680. tmp = vmx->guest_msrs[to];
  681. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  682. vmx->guest_msrs[from] = tmp;
  683. tmp = vmx->host_msrs[to];
  684. vmx->host_msrs[to] = vmx->host_msrs[from];
  685. vmx->host_msrs[from] = tmp;
  686. }
  687. #endif
  688. /*
  689. * Set up the vmcs to automatically save and restore system
  690. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  691. * mode, as fiddling with msrs is very expensive.
  692. */
  693. static void setup_msrs(struct vcpu_vmx *vmx)
  694. {
  695. int save_nmsrs;
  696. vmx_load_host_state(vmx);
  697. save_nmsrs = 0;
  698. #ifdef CONFIG_X86_64
  699. if (is_long_mode(&vmx->vcpu)) {
  700. int index;
  701. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  702. if (index >= 0)
  703. move_msr_up(vmx, index, save_nmsrs++);
  704. index = __find_msr_index(vmx, MSR_LSTAR);
  705. if (index >= 0)
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. index = __find_msr_index(vmx, MSR_CSTAR);
  708. if (index >= 0)
  709. move_msr_up(vmx, index, save_nmsrs++);
  710. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  711. if (index >= 0)
  712. move_msr_up(vmx, index, save_nmsrs++);
  713. /*
  714. * MSR_K6_STAR is only needed on long mode guests, and only
  715. * if efer.sce is enabled.
  716. */
  717. index = __find_msr_index(vmx, MSR_K6_STAR);
  718. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  719. move_msr_up(vmx, index, save_nmsrs++);
  720. }
  721. #endif
  722. vmx->save_nmsrs = save_nmsrs;
  723. #ifdef CONFIG_X86_64
  724. vmx->msr_offset_kernel_gs_base =
  725. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  726. #endif
  727. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  728. }
  729. /*
  730. * reads and returns guest's timestamp counter "register"
  731. * guest_tsc = host_tsc + tsc_offset -- 21.3
  732. */
  733. static u64 guest_read_tsc(void)
  734. {
  735. u64 host_tsc, tsc_offset;
  736. rdtscll(host_tsc);
  737. tsc_offset = vmcs_read64(TSC_OFFSET);
  738. return host_tsc + tsc_offset;
  739. }
  740. /*
  741. * writes 'guest_tsc' into guest's timestamp counter "register"
  742. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  743. */
  744. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  745. {
  746. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  747. }
  748. /*
  749. * Reads an msr value (of 'msr_index') into 'pdata'.
  750. * Returns 0 on success, non-0 otherwise.
  751. * Assumes vcpu_load() was already called.
  752. */
  753. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  754. {
  755. u64 data;
  756. struct kvm_msr_entry *msr;
  757. if (!pdata) {
  758. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  759. return -EINVAL;
  760. }
  761. switch (msr_index) {
  762. #ifdef CONFIG_X86_64
  763. case MSR_FS_BASE:
  764. data = vmcs_readl(GUEST_FS_BASE);
  765. break;
  766. case MSR_GS_BASE:
  767. data = vmcs_readl(GUEST_GS_BASE);
  768. break;
  769. case MSR_EFER:
  770. return kvm_get_msr_common(vcpu, msr_index, pdata);
  771. #endif
  772. case MSR_IA32_TIME_STAMP_COUNTER:
  773. data = guest_read_tsc();
  774. break;
  775. case MSR_IA32_SYSENTER_CS:
  776. data = vmcs_read32(GUEST_SYSENTER_CS);
  777. break;
  778. case MSR_IA32_SYSENTER_EIP:
  779. data = vmcs_readl(GUEST_SYSENTER_EIP);
  780. break;
  781. case MSR_IA32_SYSENTER_ESP:
  782. data = vmcs_readl(GUEST_SYSENTER_ESP);
  783. break;
  784. default:
  785. vmx_load_host_state(to_vmx(vcpu));
  786. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  787. if (msr) {
  788. data = msr->data;
  789. break;
  790. }
  791. return kvm_get_msr_common(vcpu, msr_index, pdata);
  792. }
  793. *pdata = data;
  794. return 0;
  795. }
  796. /*
  797. * Writes msr value into into the appropriate "register".
  798. * Returns 0 on success, non-0 otherwise.
  799. * Assumes vcpu_load() was already called.
  800. */
  801. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  802. {
  803. struct vcpu_vmx *vmx = to_vmx(vcpu);
  804. struct kvm_msr_entry *msr;
  805. u64 host_tsc;
  806. int ret = 0;
  807. switch (msr_index) {
  808. #ifdef CONFIG_X86_64
  809. case MSR_EFER:
  810. vmx_load_host_state(vmx);
  811. ret = kvm_set_msr_common(vcpu, msr_index, data);
  812. break;
  813. case MSR_FS_BASE:
  814. vmcs_writel(GUEST_FS_BASE, data);
  815. break;
  816. case MSR_GS_BASE:
  817. vmcs_writel(GUEST_GS_BASE, data);
  818. break;
  819. #endif
  820. case MSR_IA32_SYSENTER_CS:
  821. vmcs_write32(GUEST_SYSENTER_CS, data);
  822. break;
  823. case MSR_IA32_SYSENTER_EIP:
  824. vmcs_writel(GUEST_SYSENTER_EIP, data);
  825. break;
  826. case MSR_IA32_SYSENTER_ESP:
  827. vmcs_writel(GUEST_SYSENTER_ESP, data);
  828. break;
  829. case MSR_IA32_TIME_STAMP_COUNTER:
  830. rdtscll(host_tsc);
  831. guest_write_tsc(data, host_tsc);
  832. break;
  833. case MSR_P6_PERFCTR0:
  834. case MSR_P6_PERFCTR1:
  835. case MSR_P6_EVNTSEL0:
  836. case MSR_P6_EVNTSEL1:
  837. /*
  838. * Just discard all writes to the performance counters; this
  839. * should keep both older linux and windows 64-bit guests
  840. * happy
  841. */
  842. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  843. break;
  844. case MSR_IA32_CR_PAT:
  845. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  846. vmcs_write64(GUEST_IA32_PAT, data);
  847. vcpu->arch.pat = data;
  848. break;
  849. }
  850. /* Otherwise falls through to kvm_set_msr_common */
  851. default:
  852. vmx_load_host_state(vmx);
  853. msr = find_msr_entry(vmx, msr_index);
  854. if (msr) {
  855. msr->data = data;
  856. break;
  857. }
  858. ret = kvm_set_msr_common(vcpu, msr_index, data);
  859. }
  860. return ret;
  861. }
  862. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  863. {
  864. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  865. switch (reg) {
  866. case VCPU_REGS_RSP:
  867. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  868. break;
  869. case VCPU_REGS_RIP:
  870. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  871. break;
  872. default:
  873. break;
  874. }
  875. }
  876. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  877. {
  878. int old_debug = vcpu->guest_debug;
  879. unsigned long flags;
  880. vcpu->guest_debug = dbg->control;
  881. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  882. vcpu->guest_debug = 0;
  883. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  884. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  885. else
  886. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  887. flags = vmcs_readl(GUEST_RFLAGS);
  888. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  889. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  890. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  891. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  892. vmcs_writel(GUEST_RFLAGS, flags);
  893. update_exception_bitmap(vcpu);
  894. return 0;
  895. }
  896. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  897. {
  898. if (!vcpu->arch.interrupt.pending)
  899. return -1;
  900. return vcpu->arch.interrupt.nr;
  901. }
  902. static __init int cpu_has_kvm_support(void)
  903. {
  904. return cpu_has_vmx();
  905. }
  906. static __init int vmx_disabled_by_bios(void)
  907. {
  908. u64 msr;
  909. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  910. return (msr & (FEATURE_CONTROL_LOCKED |
  911. FEATURE_CONTROL_VMXON_ENABLED))
  912. == FEATURE_CONTROL_LOCKED;
  913. /* locked but not enabled */
  914. }
  915. static void hardware_enable(void *garbage)
  916. {
  917. int cpu = raw_smp_processor_id();
  918. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  919. u64 old;
  920. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  921. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  922. if ((old & (FEATURE_CONTROL_LOCKED |
  923. FEATURE_CONTROL_VMXON_ENABLED))
  924. != (FEATURE_CONTROL_LOCKED |
  925. FEATURE_CONTROL_VMXON_ENABLED))
  926. /* enable and lock */
  927. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  928. FEATURE_CONTROL_LOCKED |
  929. FEATURE_CONTROL_VMXON_ENABLED);
  930. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  931. asm volatile (ASM_VMX_VMXON_RAX
  932. : : "a"(&phys_addr), "m"(phys_addr)
  933. : "memory", "cc");
  934. }
  935. static void vmclear_local_vcpus(void)
  936. {
  937. int cpu = raw_smp_processor_id();
  938. struct vcpu_vmx *vmx, *n;
  939. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  940. local_vcpus_link)
  941. __vcpu_clear(vmx);
  942. }
  943. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  944. * tricks.
  945. */
  946. static void kvm_cpu_vmxoff(void)
  947. {
  948. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  949. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  950. }
  951. static void hardware_disable(void *garbage)
  952. {
  953. vmclear_local_vcpus();
  954. kvm_cpu_vmxoff();
  955. }
  956. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  957. u32 msr, u32 *result)
  958. {
  959. u32 vmx_msr_low, vmx_msr_high;
  960. u32 ctl = ctl_min | ctl_opt;
  961. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  962. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  963. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  964. /* Ensure minimum (required) set of control bits are supported. */
  965. if (ctl_min & ~ctl)
  966. return -EIO;
  967. *result = ctl;
  968. return 0;
  969. }
  970. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  971. {
  972. u32 vmx_msr_low, vmx_msr_high;
  973. u32 min, opt, min2, opt2;
  974. u32 _pin_based_exec_control = 0;
  975. u32 _cpu_based_exec_control = 0;
  976. u32 _cpu_based_2nd_exec_control = 0;
  977. u32 _vmexit_control = 0;
  978. u32 _vmentry_control = 0;
  979. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  980. opt = PIN_BASED_VIRTUAL_NMIS;
  981. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  982. &_pin_based_exec_control) < 0)
  983. return -EIO;
  984. min = CPU_BASED_HLT_EXITING |
  985. #ifdef CONFIG_X86_64
  986. CPU_BASED_CR8_LOAD_EXITING |
  987. CPU_BASED_CR8_STORE_EXITING |
  988. #endif
  989. CPU_BASED_CR3_LOAD_EXITING |
  990. CPU_BASED_CR3_STORE_EXITING |
  991. CPU_BASED_USE_IO_BITMAPS |
  992. CPU_BASED_MOV_DR_EXITING |
  993. CPU_BASED_USE_TSC_OFFSETING |
  994. CPU_BASED_INVLPG_EXITING;
  995. opt = CPU_BASED_TPR_SHADOW |
  996. CPU_BASED_USE_MSR_BITMAPS |
  997. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  998. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  999. &_cpu_based_exec_control) < 0)
  1000. return -EIO;
  1001. #ifdef CONFIG_X86_64
  1002. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1003. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1004. ~CPU_BASED_CR8_STORE_EXITING;
  1005. #endif
  1006. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1007. min2 = 0;
  1008. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1009. SECONDARY_EXEC_WBINVD_EXITING |
  1010. SECONDARY_EXEC_ENABLE_VPID |
  1011. SECONDARY_EXEC_ENABLE_EPT;
  1012. if (adjust_vmx_controls(min2, opt2,
  1013. MSR_IA32_VMX_PROCBASED_CTLS2,
  1014. &_cpu_based_2nd_exec_control) < 0)
  1015. return -EIO;
  1016. }
  1017. #ifndef CONFIG_X86_64
  1018. if (!(_cpu_based_2nd_exec_control &
  1019. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1020. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1021. #endif
  1022. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1023. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1024. enabled */
  1025. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1026. CPU_BASED_CR3_STORE_EXITING |
  1027. CPU_BASED_INVLPG_EXITING);
  1028. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1029. &_cpu_based_exec_control) < 0)
  1030. return -EIO;
  1031. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1032. vmx_capability.ept, vmx_capability.vpid);
  1033. }
  1034. min = 0;
  1035. #ifdef CONFIG_X86_64
  1036. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1037. #endif
  1038. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1039. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1040. &_vmexit_control) < 0)
  1041. return -EIO;
  1042. min = 0;
  1043. opt = VM_ENTRY_LOAD_IA32_PAT;
  1044. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1045. &_vmentry_control) < 0)
  1046. return -EIO;
  1047. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1048. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1049. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1050. return -EIO;
  1051. #ifdef CONFIG_X86_64
  1052. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1053. if (vmx_msr_high & (1u<<16))
  1054. return -EIO;
  1055. #endif
  1056. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1057. if (((vmx_msr_high >> 18) & 15) != 6)
  1058. return -EIO;
  1059. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1060. vmcs_conf->order = get_order(vmcs_config.size);
  1061. vmcs_conf->revision_id = vmx_msr_low;
  1062. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1063. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1064. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1065. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1066. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1067. return 0;
  1068. }
  1069. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1070. {
  1071. int node = cpu_to_node(cpu);
  1072. struct page *pages;
  1073. struct vmcs *vmcs;
  1074. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1075. if (!pages)
  1076. return NULL;
  1077. vmcs = page_address(pages);
  1078. memset(vmcs, 0, vmcs_config.size);
  1079. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1080. return vmcs;
  1081. }
  1082. static struct vmcs *alloc_vmcs(void)
  1083. {
  1084. return alloc_vmcs_cpu(raw_smp_processor_id());
  1085. }
  1086. static void free_vmcs(struct vmcs *vmcs)
  1087. {
  1088. free_pages((unsigned long)vmcs, vmcs_config.order);
  1089. }
  1090. static void free_kvm_area(void)
  1091. {
  1092. int cpu;
  1093. for_each_online_cpu(cpu)
  1094. free_vmcs(per_cpu(vmxarea, cpu));
  1095. }
  1096. static __init int alloc_kvm_area(void)
  1097. {
  1098. int cpu;
  1099. for_each_online_cpu(cpu) {
  1100. struct vmcs *vmcs;
  1101. vmcs = alloc_vmcs_cpu(cpu);
  1102. if (!vmcs) {
  1103. free_kvm_area();
  1104. return -ENOMEM;
  1105. }
  1106. per_cpu(vmxarea, cpu) = vmcs;
  1107. }
  1108. return 0;
  1109. }
  1110. static __init int hardware_setup(void)
  1111. {
  1112. if (setup_vmcs_config(&vmcs_config) < 0)
  1113. return -EIO;
  1114. if (boot_cpu_has(X86_FEATURE_NX))
  1115. kvm_enable_efer_bits(EFER_NX);
  1116. return alloc_kvm_area();
  1117. }
  1118. static __exit void hardware_unsetup(void)
  1119. {
  1120. free_kvm_area();
  1121. }
  1122. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1123. {
  1124. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1125. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1126. vmcs_write16(sf->selector, save->selector);
  1127. vmcs_writel(sf->base, save->base);
  1128. vmcs_write32(sf->limit, save->limit);
  1129. vmcs_write32(sf->ar_bytes, save->ar);
  1130. } else {
  1131. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1132. << AR_DPL_SHIFT;
  1133. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1134. }
  1135. }
  1136. static void enter_pmode(struct kvm_vcpu *vcpu)
  1137. {
  1138. unsigned long flags;
  1139. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1140. vmx->emulation_required = 1;
  1141. vcpu->arch.rmode.active = 0;
  1142. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1143. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1144. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1145. flags = vmcs_readl(GUEST_RFLAGS);
  1146. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1147. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1148. vmcs_writel(GUEST_RFLAGS, flags);
  1149. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1150. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1151. update_exception_bitmap(vcpu);
  1152. if (emulate_invalid_guest_state)
  1153. return;
  1154. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1155. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1156. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1157. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1158. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1159. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1160. vmcs_write16(GUEST_CS_SELECTOR,
  1161. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1162. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1163. }
  1164. static gva_t rmode_tss_base(struct kvm *kvm)
  1165. {
  1166. if (!kvm->arch.tss_addr) {
  1167. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1168. kvm->memslots[0].npages - 3;
  1169. return base_gfn << PAGE_SHIFT;
  1170. }
  1171. return kvm->arch.tss_addr;
  1172. }
  1173. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1174. {
  1175. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1176. save->selector = vmcs_read16(sf->selector);
  1177. save->base = vmcs_readl(sf->base);
  1178. save->limit = vmcs_read32(sf->limit);
  1179. save->ar = vmcs_read32(sf->ar_bytes);
  1180. vmcs_write16(sf->selector, save->base >> 4);
  1181. vmcs_write32(sf->base, save->base & 0xfffff);
  1182. vmcs_write32(sf->limit, 0xffff);
  1183. vmcs_write32(sf->ar_bytes, 0xf3);
  1184. }
  1185. static void enter_rmode(struct kvm_vcpu *vcpu)
  1186. {
  1187. unsigned long flags;
  1188. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1189. vmx->emulation_required = 1;
  1190. vcpu->arch.rmode.active = 1;
  1191. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1192. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1193. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1194. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1195. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1196. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1197. flags = vmcs_readl(GUEST_RFLAGS);
  1198. vcpu->arch.rmode.save_iopl
  1199. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1200. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1201. vmcs_writel(GUEST_RFLAGS, flags);
  1202. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1203. update_exception_bitmap(vcpu);
  1204. if (emulate_invalid_guest_state)
  1205. goto continue_rmode;
  1206. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1207. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1208. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1209. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1210. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1211. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1212. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1213. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1214. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1215. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1216. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1217. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1218. continue_rmode:
  1219. kvm_mmu_reset_context(vcpu);
  1220. init_rmode(vcpu->kvm);
  1221. }
  1222. #ifdef CONFIG_X86_64
  1223. static void enter_lmode(struct kvm_vcpu *vcpu)
  1224. {
  1225. u32 guest_tr_ar;
  1226. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1227. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1228. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1229. __func__);
  1230. vmcs_write32(GUEST_TR_AR_BYTES,
  1231. (guest_tr_ar & ~AR_TYPE_MASK)
  1232. | AR_TYPE_BUSY_64_TSS);
  1233. }
  1234. vcpu->arch.shadow_efer |= EFER_LMA;
  1235. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1236. vmcs_write32(VM_ENTRY_CONTROLS,
  1237. vmcs_read32(VM_ENTRY_CONTROLS)
  1238. | VM_ENTRY_IA32E_MODE);
  1239. }
  1240. static void exit_lmode(struct kvm_vcpu *vcpu)
  1241. {
  1242. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1243. vmcs_write32(VM_ENTRY_CONTROLS,
  1244. vmcs_read32(VM_ENTRY_CONTROLS)
  1245. & ~VM_ENTRY_IA32E_MODE);
  1246. }
  1247. #endif
  1248. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1249. {
  1250. vpid_sync_vcpu_all(to_vmx(vcpu));
  1251. if (vm_need_ept())
  1252. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1253. }
  1254. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1255. {
  1256. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1257. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1258. }
  1259. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1260. {
  1261. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1262. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1263. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1264. return;
  1265. }
  1266. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1267. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1268. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1269. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1270. }
  1271. }
  1272. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1273. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1274. unsigned long cr0,
  1275. struct kvm_vcpu *vcpu)
  1276. {
  1277. if (!(cr0 & X86_CR0_PG)) {
  1278. /* From paging/starting to nonpaging */
  1279. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1280. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1281. (CPU_BASED_CR3_LOAD_EXITING |
  1282. CPU_BASED_CR3_STORE_EXITING));
  1283. vcpu->arch.cr0 = cr0;
  1284. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1285. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1286. *hw_cr0 &= ~X86_CR0_WP;
  1287. } else if (!is_paging(vcpu)) {
  1288. /* From nonpaging to paging */
  1289. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1290. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1291. ~(CPU_BASED_CR3_LOAD_EXITING |
  1292. CPU_BASED_CR3_STORE_EXITING));
  1293. vcpu->arch.cr0 = cr0;
  1294. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1295. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1296. *hw_cr0 &= ~X86_CR0_WP;
  1297. }
  1298. }
  1299. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1300. struct kvm_vcpu *vcpu)
  1301. {
  1302. if (!is_paging(vcpu)) {
  1303. *hw_cr4 &= ~X86_CR4_PAE;
  1304. *hw_cr4 |= X86_CR4_PSE;
  1305. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1306. *hw_cr4 &= ~X86_CR4_PAE;
  1307. }
  1308. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1309. {
  1310. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1311. KVM_VM_CR0_ALWAYS_ON;
  1312. vmx_fpu_deactivate(vcpu);
  1313. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1314. enter_pmode(vcpu);
  1315. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1316. enter_rmode(vcpu);
  1317. #ifdef CONFIG_X86_64
  1318. if (vcpu->arch.shadow_efer & EFER_LME) {
  1319. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1320. enter_lmode(vcpu);
  1321. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1322. exit_lmode(vcpu);
  1323. }
  1324. #endif
  1325. if (vm_need_ept())
  1326. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1327. vmcs_writel(CR0_READ_SHADOW, cr0);
  1328. vmcs_writel(GUEST_CR0, hw_cr0);
  1329. vcpu->arch.cr0 = cr0;
  1330. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1331. vmx_fpu_activate(vcpu);
  1332. }
  1333. static u64 construct_eptp(unsigned long root_hpa)
  1334. {
  1335. u64 eptp;
  1336. /* TODO write the value reading from MSR */
  1337. eptp = VMX_EPT_DEFAULT_MT |
  1338. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1339. eptp |= (root_hpa & PAGE_MASK);
  1340. return eptp;
  1341. }
  1342. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1343. {
  1344. unsigned long guest_cr3;
  1345. u64 eptp;
  1346. guest_cr3 = cr3;
  1347. if (vm_need_ept()) {
  1348. eptp = construct_eptp(cr3);
  1349. vmcs_write64(EPT_POINTER, eptp);
  1350. ept_sync_context(eptp);
  1351. ept_load_pdptrs(vcpu);
  1352. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1353. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1354. }
  1355. vmx_flush_tlb(vcpu);
  1356. vmcs_writel(GUEST_CR3, guest_cr3);
  1357. if (vcpu->arch.cr0 & X86_CR0_PE)
  1358. vmx_fpu_deactivate(vcpu);
  1359. }
  1360. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1361. {
  1362. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1363. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1364. vcpu->arch.cr4 = cr4;
  1365. if (vm_need_ept())
  1366. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1367. vmcs_writel(CR4_READ_SHADOW, cr4);
  1368. vmcs_writel(GUEST_CR4, hw_cr4);
  1369. }
  1370. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1371. {
  1372. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1373. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1374. vcpu->arch.shadow_efer = efer;
  1375. if (!msr)
  1376. return;
  1377. if (efer & EFER_LMA) {
  1378. vmcs_write32(VM_ENTRY_CONTROLS,
  1379. vmcs_read32(VM_ENTRY_CONTROLS) |
  1380. VM_ENTRY_IA32E_MODE);
  1381. msr->data = efer;
  1382. } else {
  1383. vmcs_write32(VM_ENTRY_CONTROLS,
  1384. vmcs_read32(VM_ENTRY_CONTROLS) &
  1385. ~VM_ENTRY_IA32E_MODE);
  1386. msr->data = efer & ~EFER_LME;
  1387. }
  1388. setup_msrs(vmx);
  1389. }
  1390. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1391. {
  1392. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1393. return vmcs_readl(sf->base);
  1394. }
  1395. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1396. struct kvm_segment *var, int seg)
  1397. {
  1398. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1399. u32 ar;
  1400. var->base = vmcs_readl(sf->base);
  1401. var->limit = vmcs_read32(sf->limit);
  1402. var->selector = vmcs_read16(sf->selector);
  1403. ar = vmcs_read32(sf->ar_bytes);
  1404. if (ar & AR_UNUSABLE_MASK)
  1405. ar = 0;
  1406. var->type = ar & 15;
  1407. var->s = (ar >> 4) & 1;
  1408. var->dpl = (ar >> 5) & 3;
  1409. var->present = (ar >> 7) & 1;
  1410. var->avl = (ar >> 12) & 1;
  1411. var->l = (ar >> 13) & 1;
  1412. var->db = (ar >> 14) & 1;
  1413. var->g = (ar >> 15) & 1;
  1414. var->unusable = (ar >> 16) & 1;
  1415. }
  1416. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1417. {
  1418. struct kvm_segment kvm_seg;
  1419. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1420. return 0;
  1421. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1422. return 3;
  1423. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1424. return kvm_seg.selector & 3;
  1425. }
  1426. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1427. {
  1428. u32 ar;
  1429. if (var->unusable)
  1430. ar = 1 << 16;
  1431. else {
  1432. ar = var->type & 15;
  1433. ar |= (var->s & 1) << 4;
  1434. ar |= (var->dpl & 3) << 5;
  1435. ar |= (var->present & 1) << 7;
  1436. ar |= (var->avl & 1) << 12;
  1437. ar |= (var->l & 1) << 13;
  1438. ar |= (var->db & 1) << 14;
  1439. ar |= (var->g & 1) << 15;
  1440. }
  1441. if (ar == 0) /* a 0 value means unusable */
  1442. ar = AR_UNUSABLE_MASK;
  1443. return ar;
  1444. }
  1445. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1446. struct kvm_segment *var, int seg)
  1447. {
  1448. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1449. u32 ar;
  1450. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1451. vcpu->arch.rmode.tr.selector = var->selector;
  1452. vcpu->arch.rmode.tr.base = var->base;
  1453. vcpu->arch.rmode.tr.limit = var->limit;
  1454. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1455. return;
  1456. }
  1457. vmcs_writel(sf->base, var->base);
  1458. vmcs_write32(sf->limit, var->limit);
  1459. vmcs_write16(sf->selector, var->selector);
  1460. if (vcpu->arch.rmode.active && var->s) {
  1461. /*
  1462. * Hack real-mode segments into vm86 compatibility.
  1463. */
  1464. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1465. vmcs_writel(sf->base, 0xf0000);
  1466. ar = 0xf3;
  1467. } else
  1468. ar = vmx_segment_access_rights(var);
  1469. vmcs_write32(sf->ar_bytes, ar);
  1470. }
  1471. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1472. {
  1473. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1474. *db = (ar >> 14) & 1;
  1475. *l = (ar >> 13) & 1;
  1476. }
  1477. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1478. {
  1479. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1480. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1481. }
  1482. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1483. {
  1484. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1485. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1486. }
  1487. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1488. {
  1489. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1490. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1491. }
  1492. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1493. {
  1494. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1495. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1496. }
  1497. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1498. {
  1499. struct kvm_segment var;
  1500. u32 ar;
  1501. vmx_get_segment(vcpu, &var, seg);
  1502. ar = vmx_segment_access_rights(&var);
  1503. if (var.base != (var.selector << 4))
  1504. return false;
  1505. if (var.limit != 0xffff)
  1506. return false;
  1507. if (ar != 0xf3)
  1508. return false;
  1509. return true;
  1510. }
  1511. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1512. {
  1513. struct kvm_segment cs;
  1514. unsigned int cs_rpl;
  1515. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1516. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1517. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1518. return false;
  1519. if (!cs.s)
  1520. return false;
  1521. if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
  1522. if (cs.dpl > cs_rpl)
  1523. return false;
  1524. } else if (cs.type & AR_TYPE_CODE_MASK) {
  1525. if (cs.dpl != cs_rpl)
  1526. return false;
  1527. }
  1528. if (!cs.present)
  1529. return false;
  1530. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1531. return true;
  1532. }
  1533. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1534. {
  1535. struct kvm_segment ss;
  1536. unsigned int ss_rpl;
  1537. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1538. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1539. if ((ss.type != 3) || (ss.type != 7))
  1540. return false;
  1541. if (!ss.s)
  1542. return false;
  1543. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1544. return false;
  1545. if (!ss.present)
  1546. return false;
  1547. return true;
  1548. }
  1549. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1550. {
  1551. struct kvm_segment var;
  1552. unsigned int rpl;
  1553. vmx_get_segment(vcpu, &var, seg);
  1554. rpl = var.selector & SELECTOR_RPL_MASK;
  1555. if (!var.s)
  1556. return false;
  1557. if (!var.present)
  1558. return false;
  1559. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1560. if (var.dpl < rpl) /* DPL < RPL */
  1561. return false;
  1562. }
  1563. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1564. * rights flags
  1565. */
  1566. return true;
  1567. }
  1568. static bool tr_valid(struct kvm_vcpu *vcpu)
  1569. {
  1570. struct kvm_segment tr;
  1571. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1572. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1573. return false;
  1574. if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
  1575. return false;
  1576. if (!tr.present)
  1577. return false;
  1578. return true;
  1579. }
  1580. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1581. {
  1582. struct kvm_segment ldtr;
  1583. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1584. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1585. return false;
  1586. if (ldtr.type != 2)
  1587. return false;
  1588. if (!ldtr.present)
  1589. return false;
  1590. return true;
  1591. }
  1592. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1593. {
  1594. struct kvm_segment cs, ss;
  1595. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1596. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1597. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1598. (ss.selector & SELECTOR_RPL_MASK));
  1599. }
  1600. /*
  1601. * Check if guest state is valid. Returns true if valid, false if
  1602. * not.
  1603. * We assume that registers are always usable
  1604. */
  1605. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1606. {
  1607. /* real mode guest state checks */
  1608. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1609. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1610. return false;
  1611. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1612. return false;
  1613. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1614. return false;
  1615. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1616. return false;
  1617. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1618. return false;
  1619. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1620. return false;
  1621. } else {
  1622. /* protected mode guest state checks */
  1623. if (!cs_ss_rpl_check(vcpu))
  1624. return false;
  1625. if (!code_segment_valid(vcpu))
  1626. return false;
  1627. if (!stack_segment_valid(vcpu))
  1628. return false;
  1629. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1630. return false;
  1631. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1632. return false;
  1633. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1634. return false;
  1635. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1636. return false;
  1637. if (!tr_valid(vcpu))
  1638. return false;
  1639. if (!ldtr_valid(vcpu))
  1640. return false;
  1641. }
  1642. /* TODO:
  1643. * - Add checks on RIP
  1644. * - Add checks on RFLAGS
  1645. */
  1646. return true;
  1647. }
  1648. static int init_rmode_tss(struct kvm *kvm)
  1649. {
  1650. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1651. u16 data = 0;
  1652. int ret = 0;
  1653. int r;
  1654. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1655. if (r < 0)
  1656. goto out;
  1657. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1658. r = kvm_write_guest_page(kvm, fn++, &data,
  1659. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1660. if (r < 0)
  1661. goto out;
  1662. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1663. if (r < 0)
  1664. goto out;
  1665. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1666. if (r < 0)
  1667. goto out;
  1668. data = ~0;
  1669. r = kvm_write_guest_page(kvm, fn, &data,
  1670. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1671. sizeof(u8));
  1672. if (r < 0)
  1673. goto out;
  1674. ret = 1;
  1675. out:
  1676. return ret;
  1677. }
  1678. static int init_rmode_identity_map(struct kvm *kvm)
  1679. {
  1680. int i, r, ret;
  1681. pfn_t identity_map_pfn;
  1682. u32 tmp;
  1683. if (!vm_need_ept())
  1684. return 1;
  1685. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1686. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1687. "haven't been allocated!\n");
  1688. return 0;
  1689. }
  1690. if (likely(kvm->arch.ept_identity_pagetable_done))
  1691. return 1;
  1692. ret = 0;
  1693. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1694. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1695. if (r < 0)
  1696. goto out;
  1697. /* Set up identity-mapping pagetable for EPT in real mode */
  1698. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1699. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1700. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1701. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1702. &tmp, i * sizeof(tmp), sizeof(tmp));
  1703. if (r < 0)
  1704. goto out;
  1705. }
  1706. kvm->arch.ept_identity_pagetable_done = true;
  1707. ret = 1;
  1708. out:
  1709. return ret;
  1710. }
  1711. static void seg_setup(int seg)
  1712. {
  1713. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1714. vmcs_write16(sf->selector, 0);
  1715. vmcs_writel(sf->base, 0);
  1716. vmcs_write32(sf->limit, 0xffff);
  1717. vmcs_write32(sf->ar_bytes, 0xf3);
  1718. }
  1719. static int alloc_apic_access_page(struct kvm *kvm)
  1720. {
  1721. struct kvm_userspace_memory_region kvm_userspace_mem;
  1722. int r = 0;
  1723. down_write(&kvm->slots_lock);
  1724. if (kvm->arch.apic_access_page)
  1725. goto out;
  1726. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1727. kvm_userspace_mem.flags = 0;
  1728. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1729. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1730. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1731. if (r)
  1732. goto out;
  1733. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1734. out:
  1735. up_write(&kvm->slots_lock);
  1736. return r;
  1737. }
  1738. static int alloc_identity_pagetable(struct kvm *kvm)
  1739. {
  1740. struct kvm_userspace_memory_region kvm_userspace_mem;
  1741. int r = 0;
  1742. down_write(&kvm->slots_lock);
  1743. if (kvm->arch.ept_identity_pagetable)
  1744. goto out;
  1745. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1746. kvm_userspace_mem.flags = 0;
  1747. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1748. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1749. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1750. if (r)
  1751. goto out;
  1752. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1753. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1754. out:
  1755. up_write(&kvm->slots_lock);
  1756. return r;
  1757. }
  1758. static void allocate_vpid(struct vcpu_vmx *vmx)
  1759. {
  1760. int vpid;
  1761. vmx->vpid = 0;
  1762. if (!enable_vpid || !cpu_has_vmx_vpid())
  1763. return;
  1764. spin_lock(&vmx_vpid_lock);
  1765. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1766. if (vpid < VMX_NR_VPIDS) {
  1767. vmx->vpid = vpid;
  1768. __set_bit(vpid, vmx_vpid_bitmap);
  1769. }
  1770. spin_unlock(&vmx_vpid_lock);
  1771. }
  1772. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1773. {
  1774. void *va;
  1775. if (!cpu_has_vmx_msr_bitmap())
  1776. return;
  1777. /*
  1778. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1779. * have the write-low and read-high bitmap offsets the wrong way round.
  1780. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1781. */
  1782. va = kmap(msr_bitmap);
  1783. if (msr <= 0x1fff) {
  1784. __clear_bit(msr, va + 0x000); /* read-low */
  1785. __clear_bit(msr, va + 0x800); /* write-low */
  1786. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1787. msr &= 0x1fff;
  1788. __clear_bit(msr, va + 0x400); /* read-high */
  1789. __clear_bit(msr, va + 0xc00); /* write-high */
  1790. }
  1791. kunmap(msr_bitmap);
  1792. }
  1793. /*
  1794. * Sets up the vmcs for emulated real mode.
  1795. */
  1796. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1797. {
  1798. u32 host_sysenter_cs, msr_low, msr_high;
  1799. u32 junk;
  1800. u64 host_pat, tsc_this, tsc_base;
  1801. unsigned long a;
  1802. struct descriptor_table dt;
  1803. int i;
  1804. unsigned long kvm_vmx_return;
  1805. u32 exec_control;
  1806. /* I/O */
  1807. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1808. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1809. if (cpu_has_vmx_msr_bitmap())
  1810. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1811. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1812. /* Control */
  1813. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1814. vmcs_config.pin_based_exec_ctrl);
  1815. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1816. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1817. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1818. #ifdef CONFIG_X86_64
  1819. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1820. CPU_BASED_CR8_LOAD_EXITING;
  1821. #endif
  1822. }
  1823. if (!vm_need_ept())
  1824. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1825. CPU_BASED_CR3_LOAD_EXITING |
  1826. CPU_BASED_INVLPG_EXITING;
  1827. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1828. if (cpu_has_secondary_exec_ctrls()) {
  1829. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1830. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1831. exec_control &=
  1832. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1833. if (vmx->vpid == 0)
  1834. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1835. if (!vm_need_ept())
  1836. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1837. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1838. }
  1839. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1840. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1841. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1842. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1843. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1844. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1845. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1846. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1847. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1848. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1849. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1850. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1851. #ifdef CONFIG_X86_64
  1852. rdmsrl(MSR_FS_BASE, a);
  1853. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1854. rdmsrl(MSR_GS_BASE, a);
  1855. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1856. #else
  1857. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1858. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1859. #endif
  1860. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1861. kvm_get_idt(&dt);
  1862. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1863. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1864. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1865. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1866. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1867. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1868. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1869. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1870. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1871. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1872. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1873. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1874. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1875. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1876. host_pat = msr_low | ((u64) msr_high << 32);
  1877. vmcs_write64(HOST_IA32_PAT, host_pat);
  1878. }
  1879. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1880. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1881. host_pat = msr_low | ((u64) msr_high << 32);
  1882. /* Write the default value follow host pat */
  1883. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1884. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1885. vmx->vcpu.arch.pat = host_pat;
  1886. }
  1887. for (i = 0; i < NR_VMX_MSR; ++i) {
  1888. u32 index = vmx_msr_index[i];
  1889. u32 data_low, data_high;
  1890. u64 data;
  1891. int j = vmx->nmsrs;
  1892. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1893. continue;
  1894. if (wrmsr_safe(index, data_low, data_high) < 0)
  1895. continue;
  1896. data = data_low | ((u64)data_high << 32);
  1897. vmx->host_msrs[j].index = index;
  1898. vmx->host_msrs[j].reserved = 0;
  1899. vmx->host_msrs[j].data = data;
  1900. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1901. ++vmx->nmsrs;
  1902. }
  1903. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1904. /* 22.2.1, 20.8.1 */
  1905. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1906. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1907. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1908. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1909. rdtscll(tsc_this);
  1910. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1911. tsc_base = tsc_this;
  1912. guest_write_tsc(0, tsc_base);
  1913. return 0;
  1914. }
  1915. static int init_rmode(struct kvm *kvm)
  1916. {
  1917. if (!init_rmode_tss(kvm))
  1918. return 0;
  1919. if (!init_rmode_identity_map(kvm))
  1920. return 0;
  1921. return 1;
  1922. }
  1923. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1924. {
  1925. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1926. u64 msr;
  1927. int ret;
  1928. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1929. down_read(&vcpu->kvm->slots_lock);
  1930. if (!init_rmode(vmx->vcpu.kvm)) {
  1931. ret = -ENOMEM;
  1932. goto out;
  1933. }
  1934. vmx->vcpu.arch.rmode.active = 0;
  1935. vmx->soft_vnmi_blocked = 0;
  1936. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1937. kvm_set_cr8(&vmx->vcpu, 0);
  1938. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1939. if (vmx->vcpu.vcpu_id == 0)
  1940. msr |= MSR_IA32_APICBASE_BSP;
  1941. kvm_set_apic_base(&vmx->vcpu, msr);
  1942. fx_init(&vmx->vcpu);
  1943. seg_setup(VCPU_SREG_CS);
  1944. /*
  1945. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1946. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1947. */
  1948. if (vmx->vcpu.vcpu_id == 0) {
  1949. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1950. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1951. } else {
  1952. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1953. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1954. }
  1955. seg_setup(VCPU_SREG_DS);
  1956. seg_setup(VCPU_SREG_ES);
  1957. seg_setup(VCPU_SREG_FS);
  1958. seg_setup(VCPU_SREG_GS);
  1959. seg_setup(VCPU_SREG_SS);
  1960. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1961. vmcs_writel(GUEST_TR_BASE, 0);
  1962. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1963. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1964. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1965. vmcs_writel(GUEST_LDTR_BASE, 0);
  1966. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1967. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1968. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1969. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1970. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1971. vmcs_writel(GUEST_RFLAGS, 0x02);
  1972. if (vmx->vcpu.vcpu_id == 0)
  1973. kvm_rip_write(vcpu, 0xfff0);
  1974. else
  1975. kvm_rip_write(vcpu, 0);
  1976. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1977. vmcs_writel(GUEST_DR7, 0x400);
  1978. vmcs_writel(GUEST_GDTR_BASE, 0);
  1979. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1980. vmcs_writel(GUEST_IDTR_BASE, 0);
  1981. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1982. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1983. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1984. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1985. /* Special registers */
  1986. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1987. setup_msrs(vmx);
  1988. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1989. if (cpu_has_vmx_tpr_shadow()) {
  1990. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1991. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1992. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1993. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1994. vmcs_write32(TPR_THRESHOLD, 0);
  1995. }
  1996. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1997. vmcs_write64(APIC_ACCESS_ADDR,
  1998. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1999. if (vmx->vpid != 0)
  2000. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2001. vmx->vcpu.arch.cr0 = 0x60000010;
  2002. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2003. vmx_set_cr4(&vmx->vcpu, 0);
  2004. vmx_set_efer(&vmx->vcpu, 0);
  2005. vmx_fpu_activate(&vmx->vcpu);
  2006. update_exception_bitmap(&vmx->vcpu);
  2007. vpid_sync_vcpu_all(vmx);
  2008. ret = 0;
  2009. /* HACK: Don't enable emulation on guest boot/reset */
  2010. vmx->emulation_required = 0;
  2011. out:
  2012. up_read(&vcpu->kvm->slots_lock);
  2013. return ret;
  2014. }
  2015. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2016. {
  2017. u32 cpu_based_vm_exec_control;
  2018. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2019. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2020. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2021. }
  2022. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2023. {
  2024. u32 cpu_based_vm_exec_control;
  2025. if (!cpu_has_virtual_nmis()) {
  2026. enable_irq_window(vcpu);
  2027. return;
  2028. }
  2029. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2030. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2031. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2032. }
  2033. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2034. {
  2035. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2036. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2037. ++vcpu->stat.irq_injections;
  2038. if (vcpu->arch.rmode.active) {
  2039. vmx->rmode.irq.pending = true;
  2040. vmx->rmode.irq.vector = irq;
  2041. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2042. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2043. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2044. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2045. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2046. return;
  2047. }
  2048. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2049. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2050. }
  2051. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2052. {
  2053. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2054. if (!cpu_has_virtual_nmis()) {
  2055. /*
  2056. * Tracking the NMI-blocked state in software is built upon
  2057. * finding the next open IRQ window. This, in turn, depends on
  2058. * well-behaving guests: They have to keep IRQs disabled at
  2059. * least as long as the NMI handler runs. Otherwise we may
  2060. * cause NMI nesting, maybe breaking the guest. But as this is
  2061. * highly unlikely, we can live with the residual risk.
  2062. */
  2063. vmx->soft_vnmi_blocked = 1;
  2064. vmx->vnmi_blocked_time = 0;
  2065. }
  2066. ++vcpu->stat.nmi_injections;
  2067. if (vcpu->arch.rmode.active) {
  2068. vmx->rmode.irq.pending = true;
  2069. vmx->rmode.irq.vector = NMI_VECTOR;
  2070. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2071. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2072. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2073. INTR_INFO_VALID_MASK);
  2074. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2075. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2076. return;
  2077. }
  2078. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2079. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2080. }
  2081. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2082. {
  2083. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2084. vcpu->arch.nmi_window_open =
  2085. !(guest_intr & (GUEST_INTR_STATE_STI |
  2086. GUEST_INTR_STATE_MOV_SS |
  2087. GUEST_INTR_STATE_NMI));
  2088. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2089. vcpu->arch.nmi_window_open = 0;
  2090. vcpu->arch.interrupt_window_open =
  2091. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2092. !(guest_intr & (GUEST_INTR_STATE_STI |
  2093. GUEST_INTR_STATE_MOV_SS)));
  2094. }
  2095. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  2096. {
  2097. int word_index = __ffs(vcpu->arch.irq_summary);
  2098. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  2099. int irq = word_index * BITS_PER_LONG + bit_index;
  2100. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  2101. if (!vcpu->arch.irq_pending[word_index])
  2102. clear_bit(word_index, &vcpu->arch.irq_summary);
  2103. kvm_queue_interrupt(vcpu, irq);
  2104. }
  2105. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2106. struct kvm_run *kvm_run)
  2107. {
  2108. vmx_update_window_states(vcpu);
  2109. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2110. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2111. GUEST_INTR_STATE_STI |
  2112. GUEST_INTR_STATE_MOV_SS);
  2113. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2114. if (vcpu->arch.interrupt.pending) {
  2115. enable_nmi_window(vcpu);
  2116. } else if (vcpu->arch.nmi_window_open) {
  2117. vcpu->arch.nmi_pending = false;
  2118. vcpu->arch.nmi_injected = true;
  2119. } else {
  2120. enable_nmi_window(vcpu);
  2121. return;
  2122. }
  2123. }
  2124. if (vcpu->arch.nmi_injected) {
  2125. vmx_inject_nmi(vcpu);
  2126. if (vcpu->arch.nmi_pending)
  2127. enable_nmi_window(vcpu);
  2128. else if (vcpu->arch.irq_summary
  2129. || kvm_run->request_interrupt_window)
  2130. enable_irq_window(vcpu);
  2131. return;
  2132. }
  2133. if (vcpu->arch.interrupt_window_open) {
  2134. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2135. kvm_do_inject_irq(vcpu);
  2136. if (vcpu->arch.interrupt.pending)
  2137. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2138. }
  2139. if (!vcpu->arch.interrupt_window_open &&
  2140. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2141. enable_irq_window(vcpu);
  2142. }
  2143. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2144. {
  2145. int ret;
  2146. struct kvm_userspace_memory_region tss_mem = {
  2147. .slot = TSS_PRIVATE_MEMSLOT,
  2148. .guest_phys_addr = addr,
  2149. .memory_size = PAGE_SIZE * 3,
  2150. .flags = 0,
  2151. };
  2152. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2153. if (ret)
  2154. return ret;
  2155. kvm->arch.tss_addr = addr;
  2156. return 0;
  2157. }
  2158. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2159. int vec, u32 err_code)
  2160. {
  2161. /*
  2162. * Instruction with address size override prefix opcode 0x67
  2163. * Cause the #SS fault with 0 error code in VM86 mode.
  2164. */
  2165. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2166. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2167. return 1;
  2168. /*
  2169. * Forward all other exceptions that are valid in real mode.
  2170. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2171. * the required debugging infrastructure rework.
  2172. */
  2173. switch (vec) {
  2174. case DB_VECTOR:
  2175. if (vcpu->guest_debug &
  2176. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2177. return 0;
  2178. kvm_queue_exception(vcpu, vec);
  2179. return 1;
  2180. case BP_VECTOR:
  2181. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2182. return 0;
  2183. /* fall through */
  2184. case DE_VECTOR:
  2185. case OF_VECTOR:
  2186. case BR_VECTOR:
  2187. case UD_VECTOR:
  2188. case DF_VECTOR:
  2189. case SS_VECTOR:
  2190. case GP_VECTOR:
  2191. case MF_VECTOR:
  2192. kvm_queue_exception(vcpu, vec);
  2193. return 1;
  2194. }
  2195. return 0;
  2196. }
  2197. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2198. {
  2199. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2200. u32 intr_info, ex_no, error_code;
  2201. unsigned long cr2, rip, dr6;
  2202. u32 vect_info;
  2203. enum emulation_result er;
  2204. vect_info = vmx->idt_vectoring_info;
  2205. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2206. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2207. !is_page_fault(intr_info))
  2208. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2209. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2210. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2211. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2212. set_bit(irq, vcpu->arch.irq_pending);
  2213. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2214. }
  2215. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2216. return 1; /* already handled by vmx_vcpu_run() */
  2217. if (is_no_device(intr_info)) {
  2218. vmx_fpu_activate(vcpu);
  2219. return 1;
  2220. }
  2221. if (is_invalid_opcode(intr_info)) {
  2222. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2223. if (er != EMULATE_DONE)
  2224. kvm_queue_exception(vcpu, UD_VECTOR);
  2225. return 1;
  2226. }
  2227. error_code = 0;
  2228. rip = kvm_rip_read(vcpu);
  2229. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2230. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2231. if (is_page_fault(intr_info)) {
  2232. /* EPT won't cause page fault directly */
  2233. if (vm_need_ept())
  2234. BUG();
  2235. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2236. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2237. (u32)((u64)cr2 >> 32), handler);
  2238. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2239. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2240. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2241. }
  2242. if (vcpu->arch.rmode.active &&
  2243. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2244. error_code)) {
  2245. if (vcpu->arch.halt_request) {
  2246. vcpu->arch.halt_request = 0;
  2247. return kvm_emulate_halt(vcpu);
  2248. }
  2249. return 1;
  2250. }
  2251. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2252. switch (ex_no) {
  2253. case DB_VECTOR:
  2254. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2255. if (!(vcpu->guest_debug &
  2256. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2257. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2258. kvm_queue_exception(vcpu, DB_VECTOR);
  2259. return 1;
  2260. }
  2261. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2262. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2263. /* fall through */
  2264. case BP_VECTOR:
  2265. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2266. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2267. kvm_run->debug.arch.exception = ex_no;
  2268. break;
  2269. default:
  2270. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2271. kvm_run->ex.exception = ex_no;
  2272. kvm_run->ex.error_code = error_code;
  2273. break;
  2274. }
  2275. return 0;
  2276. }
  2277. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2278. struct kvm_run *kvm_run)
  2279. {
  2280. ++vcpu->stat.irq_exits;
  2281. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2282. return 1;
  2283. }
  2284. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2285. {
  2286. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2287. return 0;
  2288. }
  2289. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2290. {
  2291. unsigned long exit_qualification;
  2292. int size, down, in, string, rep;
  2293. unsigned port;
  2294. ++vcpu->stat.io_exits;
  2295. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2296. string = (exit_qualification & 16) != 0;
  2297. if (string) {
  2298. if (emulate_instruction(vcpu,
  2299. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2300. return 0;
  2301. return 1;
  2302. }
  2303. size = (exit_qualification & 7) + 1;
  2304. in = (exit_qualification & 8) != 0;
  2305. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2306. rep = (exit_qualification & 32) != 0;
  2307. port = exit_qualification >> 16;
  2308. skip_emulated_instruction(vcpu);
  2309. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2310. }
  2311. static void
  2312. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2313. {
  2314. /*
  2315. * Patch in the VMCALL instruction:
  2316. */
  2317. hypercall[0] = 0x0f;
  2318. hypercall[1] = 0x01;
  2319. hypercall[2] = 0xc1;
  2320. }
  2321. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2322. {
  2323. unsigned long exit_qualification;
  2324. int cr;
  2325. int reg;
  2326. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2327. cr = exit_qualification & 15;
  2328. reg = (exit_qualification >> 8) & 15;
  2329. switch ((exit_qualification >> 4) & 3) {
  2330. case 0: /* mov to cr */
  2331. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2332. (u32)kvm_register_read(vcpu, reg),
  2333. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2334. handler);
  2335. switch (cr) {
  2336. case 0:
  2337. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2338. skip_emulated_instruction(vcpu);
  2339. return 1;
  2340. case 3:
  2341. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2342. skip_emulated_instruction(vcpu);
  2343. return 1;
  2344. case 4:
  2345. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2346. skip_emulated_instruction(vcpu);
  2347. return 1;
  2348. case 8:
  2349. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2350. skip_emulated_instruction(vcpu);
  2351. if (irqchip_in_kernel(vcpu->kvm))
  2352. return 1;
  2353. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2354. return 0;
  2355. };
  2356. break;
  2357. case 2: /* clts */
  2358. vmx_fpu_deactivate(vcpu);
  2359. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2360. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2361. vmx_fpu_activate(vcpu);
  2362. KVMTRACE_0D(CLTS, vcpu, handler);
  2363. skip_emulated_instruction(vcpu);
  2364. return 1;
  2365. case 1: /*mov from cr*/
  2366. switch (cr) {
  2367. case 3:
  2368. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2369. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2370. (u32)kvm_register_read(vcpu, reg),
  2371. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2372. handler);
  2373. skip_emulated_instruction(vcpu);
  2374. return 1;
  2375. case 8:
  2376. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2377. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2378. (u32)kvm_register_read(vcpu, reg), handler);
  2379. skip_emulated_instruction(vcpu);
  2380. return 1;
  2381. }
  2382. break;
  2383. case 3: /* lmsw */
  2384. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2385. skip_emulated_instruction(vcpu);
  2386. return 1;
  2387. default:
  2388. break;
  2389. }
  2390. kvm_run->exit_reason = 0;
  2391. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2392. (int)(exit_qualification >> 4) & 3, cr);
  2393. return 0;
  2394. }
  2395. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2396. {
  2397. unsigned long exit_qualification;
  2398. unsigned long val;
  2399. int dr, reg;
  2400. dr = vmcs_readl(GUEST_DR7);
  2401. if (dr & DR7_GD) {
  2402. /*
  2403. * As the vm-exit takes precedence over the debug trap, we
  2404. * need to emulate the latter, either for the host or the
  2405. * guest debugging itself.
  2406. */
  2407. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2408. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2409. kvm_run->debug.arch.dr7 = dr;
  2410. kvm_run->debug.arch.pc =
  2411. vmcs_readl(GUEST_CS_BASE) +
  2412. vmcs_readl(GUEST_RIP);
  2413. kvm_run->debug.arch.exception = DB_VECTOR;
  2414. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2415. return 0;
  2416. } else {
  2417. vcpu->arch.dr7 &= ~DR7_GD;
  2418. vcpu->arch.dr6 |= DR6_BD;
  2419. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2420. kvm_queue_exception(vcpu, DB_VECTOR);
  2421. return 1;
  2422. }
  2423. }
  2424. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2425. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2426. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2427. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2428. switch (dr) {
  2429. case 0 ... 3:
  2430. val = vcpu->arch.db[dr];
  2431. break;
  2432. case 6:
  2433. val = vcpu->arch.dr6;
  2434. break;
  2435. case 7:
  2436. val = vcpu->arch.dr7;
  2437. break;
  2438. default:
  2439. val = 0;
  2440. }
  2441. kvm_register_write(vcpu, reg, val);
  2442. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2443. } else {
  2444. val = vcpu->arch.regs[reg];
  2445. switch (dr) {
  2446. case 0 ... 3:
  2447. vcpu->arch.db[dr] = val;
  2448. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2449. vcpu->arch.eff_db[dr] = val;
  2450. break;
  2451. case 4 ... 5:
  2452. if (vcpu->arch.cr4 & X86_CR4_DE)
  2453. kvm_queue_exception(vcpu, UD_VECTOR);
  2454. break;
  2455. case 6:
  2456. if (val & 0xffffffff00000000ULL) {
  2457. kvm_queue_exception(vcpu, GP_VECTOR);
  2458. break;
  2459. }
  2460. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2461. break;
  2462. case 7:
  2463. if (val & 0xffffffff00000000ULL) {
  2464. kvm_queue_exception(vcpu, GP_VECTOR);
  2465. break;
  2466. }
  2467. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2468. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2469. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2470. vcpu->arch.switch_db_regs =
  2471. (val & DR7_BP_EN_MASK);
  2472. }
  2473. break;
  2474. }
  2475. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2476. }
  2477. skip_emulated_instruction(vcpu);
  2478. return 1;
  2479. }
  2480. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2481. {
  2482. kvm_emulate_cpuid(vcpu);
  2483. return 1;
  2484. }
  2485. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2486. {
  2487. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2488. u64 data;
  2489. if (vmx_get_msr(vcpu, ecx, &data)) {
  2490. kvm_inject_gp(vcpu, 0);
  2491. return 1;
  2492. }
  2493. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2494. handler);
  2495. /* FIXME: handling of bits 32:63 of rax, rdx */
  2496. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2497. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2498. skip_emulated_instruction(vcpu);
  2499. return 1;
  2500. }
  2501. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2502. {
  2503. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2504. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2505. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2506. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2507. handler);
  2508. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2509. kvm_inject_gp(vcpu, 0);
  2510. return 1;
  2511. }
  2512. skip_emulated_instruction(vcpu);
  2513. return 1;
  2514. }
  2515. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2516. struct kvm_run *kvm_run)
  2517. {
  2518. return 1;
  2519. }
  2520. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2521. struct kvm_run *kvm_run)
  2522. {
  2523. u32 cpu_based_vm_exec_control;
  2524. /* clear pending irq */
  2525. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2526. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2527. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2528. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2529. ++vcpu->stat.irq_window_exits;
  2530. /*
  2531. * If the user space waits to inject interrupts, exit as soon as
  2532. * possible
  2533. */
  2534. if (kvm_run->request_interrupt_window &&
  2535. !vcpu->arch.irq_summary) {
  2536. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2537. return 0;
  2538. }
  2539. return 1;
  2540. }
  2541. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2542. {
  2543. skip_emulated_instruction(vcpu);
  2544. return kvm_emulate_halt(vcpu);
  2545. }
  2546. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2547. {
  2548. skip_emulated_instruction(vcpu);
  2549. kvm_emulate_hypercall(vcpu);
  2550. return 1;
  2551. }
  2552. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2553. {
  2554. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2555. kvm_mmu_invlpg(vcpu, exit_qualification);
  2556. skip_emulated_instruction(vcpu);
  2557. return 1;
  2558. }
  2559. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2560. {
  2561. skip_emulated_instruction(vcpu);
  2562. /* TODO: Add support for VT-d/pass-through device */
  2563. return 1;
  2564. }
  2565. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2566. {
  2567. u64 exit_qualification;
  2568. enum emulation_result er;
  2569. unsigned long offset;
  2570. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2571. offset = exit_qualification & 0xffful;
  2572. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2573. if (er != EMULATE_DONE) {
  2574. printk(KERN_ERR
  2575. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2576. offset);
  2577. return -ENOTSUPP;
  2578. }
  2579. return 1;
  2580. }
  2581. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2582. {
  2583. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2584. unsigned long exit_qualification;
  2585. u16 tss_selector;
  2586. int reason;
  2587. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2588. reason = (u32)exit_qualification >> 30;
  2589. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2590. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2591. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2592. == INTR_TYPE_NMI_INTR) {
  2593. vcpu->arch.nmi_injected = false;
  2594. if (cpu_has_virtual_nmis())
  2595. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2596. GUEST_INTR_STATE_NMI);
  2597. }
  2598. tss_selector = exit_qualification;
  2599. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2600. return 0;
  2601. /* clear all local breakpoint enable flags */
  2602. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2603. /*
  2604. * TODO: What about debug traps on tss switch?
  2605. * Are we supposed to inject them and update dr6?
  2606. */
  2607. return 1;
  2608. }
  2609. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2610. {
  2611. u64 exit_qualification;
  2612. enum emulation_result er;
  2613. gpa_t gpa;
  2614. unsigned long hva;
  2615. int gla_validity;
  2616. int r;
  2617. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2618. if (exit_qualification & (1 << 6)) {
  2619. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2620. return -ENOTSUPP;
  2621. }
  2622. gla_validity = (exit_qualification >> 7) & 0x3;
  2623. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2624. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2625. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2626. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2627. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2628. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2629. (long unsigned int)exit_qualification);
  2630. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2631. kvm_run->hw.hardware_exit_reason = 0;
  2632. return -ENOTSUPP;
  2633. }
  2634. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2635. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2636. if (!kvm_is_error_hva(hva)) {
  2637. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2638. if (r < 0) {
  2639. printk(KERN_ERR "EPT: Not enough memory!\n");
  2640. return -ENOMEM;
  2641. }
  2642. return 1;
  2643. } else {
  2644. /* must be MMIO */
  2645. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2646. if (er == EMULATE_FAIL) {
  2647. printk(KERN_ERR
  2648. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2649. er);
  2650. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2651. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2652. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2653. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2654. (long unsigned int)exit_qualification);
  2655. return -ENOTSUPP;
  2656. } else if (er == EMULATE_DO_MMIO)
  2657. return 0;
  2658. }
  2659. return 1;
  2660. }
  2661. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2662. {
  2663. u32 cpu_based_vm_exec_control;
  2664. /* clear pending NMI */
  2665. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2666. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2667. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2668. ++vcpu->stat.nmi_window_exits;
  2669. return 1;
  2670. }
  2671. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2672. struct kvm_run *kvm_run)
  2673. {
  2674. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2675. int err;
  2676. preempt_enable();
  2677. local_irq_enable();
  2678. while (!guest_state_valid(vcpu)) {
  2679. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2680. if (err == EMULATE_DO_MMIO)
  2681. break;
  2682. if (err != EMULATE_DONE) {
  2683. kvm_report_emulation_failure(vcpu, "emulation failure");
  2684. return;
  2685. }
  2686. if (signal_pending(current))
  2687. break;
  2688. if (need_resched())
  2689. schedule();
  2690. }
  2691. local_irq_disable();
  2692. preempt_disable();
  2693. /* Guest state should be valid now except if we need to
  2694. * emulate an MMIO */
  2695. if (guest_state_valid(vcpu))
  2696. vmx->emulation_required = 0;
  2697. }
  2698. /*
  2699. * The exit handlers return 1 if the exit was handled fully and guest execution
  2700. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2701. * to be done to userspace and return 0.
  2702. */
  2703. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2704. struct kvm_run *kvm_run) = {
  2705. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2706. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2707. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2708. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2709. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2710. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2711. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2712. [EXIT_REASON_CPUID] = handle_cpuid,
  2713. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2714. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2715. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2716. [EXIT_REASON_HLT] = handle_halt,
  2717. [EXIT_REASON_INVLPG] = handle_invlpg,
  2718. [EXIT_REASON_VMCALL] = handle_vmcall,
  2719. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2720. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2721. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2722. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2723. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2724. };
  2725. static const int kvm_vmx_max_exit_handlers =
  2726. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2727. /*
  2728. * The guest has exited. See if we can fix it or if we need userspace
  2729. * assistance.
  2730. */
  2731. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2732. {
  2733. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2734. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2735. u32 vectoring_info = vmx->idt_vectoring_info;
  2736. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2737. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2738. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2739. * we just return 0 */
  2740. if (vmx->emulation_required && emulate_invalid_guest_state)
  2741. return 0;
  2742. /* Access CR3 don't cause VMExit in paging mode, so we need
  2743. * to sync with guest real CR3. */
  2744. if (vm_need_ept() && is_paging(vcpu)) {
  2745. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2746. ept_load_pdptrs(vcpu);
  2747. }
  2748. if (unlikely(vmx->fail)) {
  2749. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2750. kvm_run->fail_entry.hardware_entry_failure_reason
  2751. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2752. return 0;
  2753. }
  2754. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2755. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2756. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2757. exit_reason != EXIT_REASON_TASK_SWITCH))
  2758. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2759. "(0x%x) and exit reason is 0x%x\n",
  2760. __func__, vectoring_info, exit_reason);
  2761. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2762. if (vcpu->arch.interrupt_window_open) {
  2763. vmx->soft_vnmi_blocked = 0;
  2764. vcpu->arch.nmi_window_open = 1;
  2765. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2766. vcpu->arch.nmi_pending) {
  2767. /*
  2768. * This CPU don't support us in finding the end of an
  2769. * NMI-blocked window if the guest runs with IRQs
  2770. * disabled. So we pull the trigger after 1 s of
  2771. * futile waiting, but inform the user about this.
  2772. */
  2773. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2774. "state on VCPU %d after 1 s timeout\n",
  2775. __func__, vcpu->vcpu_id);
  2776. vmx->soft_vnmi_blocked = 0;
  2777. vmx->vcpu.arch.nmi_window_open = 1;
  2778. }
  2779. }
  2780. if (exit_reason < kvm_vmx_max_exit_handlers
  2781. && kvm_vmx_exit_handlers[exit_reason])
  2782. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2783. else {
  2784. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2785. kvm_run->hw.hardware_exit_reason = exit_reason;
  2786. }
  2787. return 0;
  2788. }
  2789. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2790. {
  2791. int max_irr, tpr;
  2792. if (!vm_need_tpr_shadow(vcpu->kvm))
  2793. return;
  2794. if (!kvm_lapic_enabled(vcpu) ||
  2795. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2796. vmcs_write32(TPR_THRESHOLD, 0);
  2797. return;
  2798. }
  2799. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2800. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2801. }
  2802. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2803. {
  2804. u32 exit_intr_info;
  2805. u32 idt_vectoring_info;
  2806. bool unblock_nmi;
  2807. u8 vector;
  2808. int type;
  2809. bool idtv_info_valid;
  2810. u32 error;
  2811. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2812. if (cpu_has_virtual_nmis()) {
  2813. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2814. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2815. /*
  2816. * SDM 3: 25.7.1.2
  2817. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2818. * a guest IRET fault.
  2819. */
  2820. if (unblock_nmi && vector != DF_VECTOR)
  2821. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2822. GUEST_INTR_STATE_NMI);
  2823. } else if (unlikely(vmx->soft_vnmi_blocked))
  2824. vmx->vnmi_blocked_time +=
  2825. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2826. idt_vectoring_info = vmx->idt_vectoring_info;
  2827. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2828. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2829. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2830. if (vmx->vcpu.arch.nmi_injected) {
  2831. /*
  2832. * SDM 3: 25.7.1.2
  2833. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2834. * faulted.
  2835. */
  2836. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2837. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2838. GUEST_INTR_STATE_NMI);
  2839. else
  2840. vmx->vcpu.arch.nmi_injected = false;
  2841. }
  2842. kvm_clear_exception_queue(&vmx->vcpu);
  2843. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2844. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2845. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2846. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2847. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2848. } else
  2849. kvm_queue_exception(&vmx->vcpu, vector);
  2850. vmx->idt_vectoring_info = 0;
  2851. }
  2852. kvm_clear_interrupt_queue(&vmx->vcpu);
  2853. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2854. kvm_queue_interrupt(&vmx->vcpu, vector);
  2855. vmx->idt_vectoring_info = 0;
  2856. }
  2857. }
  2858. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2859. {
  2860. update_tpr_threshold(vcpu);
  2861. vmx_update_window_states(vcpu);
  2862. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2863. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2864. GUEST_INTR_STATE_STI |
  2865. GUEST_INTR_STATE_MOV_SS);
  2866. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2867. if (vcpu->arch.interrupt.pending) {
  2868. enable_nmi_window(vcpu);
  2869. } else if (vcpu->arch.nmi_window_open) {
  2870. vcpu->arch.nmi_pending = false;
  2871. vcpu->arch.nmi_injected = true;
  2872. } else {
  2873. enable_nmi_window(vcpu);
  2874. return;
  2875. }
  2876. }
  2877. if (vcpu->arch.nmi_injected) {
  2878. vmx_inject_nmi(vcpu);
  2879. if (vcpu->arch.nmi_pending)
  2880. enable_nmi_window(vcpu);
  2881. else if (kvm_cpu_has_interrupt(vcpu))
  2882. enable_irq_window(vcpu);
  2883. return;
  2884. }
  2885. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2886. if (vcpu->arch.interrupt_window_open)
  2887. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2888. else
  2889. enable_irq_window(vcpu);
  2890. }
  2891. if (vcpu->arch.interrupt.pending) {
  2892. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2893. if (kvm_cpu_has_interrupt(vcpu))
  2894. enable_irq_window(vcpu);
  2895. }
  2896. }
  2897. /*
  2898. * Failure to inject an interrupt should give us the information
  2899. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2900. * when fetching the interrupt redirection bitmap in the real-mode
  2901. * tss, this doesn't happen. So we do it ourselves.
  2902. */
  2903. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2904. {
  2905. vmx->rmode.irq.pending = 0;
  2906. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2907. return;
  2908. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2909. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2910. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2911. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2912. return;
  2913. }
  2914. vmx->idt_vectoring_info =
  2915. VECTORING_INFO_VALID_MASK
  2916. | INTR_TYPE_EXT_INTR
  2917. | vmx->rmode.irq.vector;
  2918. }
  2919. #ifdef CONFIG_X86_64
  2920. #define R "r"
  2921. #define Q "q"
  2922. #else
  2923. #define R "e"
  2924. #define Q "l"
  2925. #endif
  2926. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2927. {
  2928. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2929. u32 intr_info;
  2930. /* Record the guest's net vcpu time for enforced NMI injections. */
  2931. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2932. vmx->entry_time = ktime_get();
  2933. /* Handle invalid guest state instead of entering VMX */
  2934. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2935. handle_invalid_guest_state(vcpu, kvm_run);
  2936. return;
  2937. }
  2938. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2939. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2940. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2941. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2942. /*
  2943. * Loading guest fpu may have cleared host cr0.ts
  2944. */
  2945. vmcs_writel(HOST_CR0, read_cr0());
  2946. set_debugreg(vcpu->arch.dr6, 6);
  2947. asm(
  2948. /* Store host registers */
  2949. "push %%"R"dx; push %%"R"bp;"
  2950. "push %%"R"cx \n\t"
  2951. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2952. "je 1f \n\t"
  2953. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2954. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2955. "1: \n\t"
  2956. /* Check if vmlaunch of vmresume is needed */
  2957. "cmpl $0, %c[launched](%0) \n\t"
  2958. /* Load guest registers. Don't clobber flags. */
  2959. "mov %c[cr2](%0), %%"R"ax \n\t"
  2960. "mov %%"R"ax, %%cr2 \n\t"
  2961. "mov %c[rax](%0), %%"R"ax \n\t"
  2962. "mov %c[rbx](%0), %%"R"bx \n\t"
  2963. "mov %c[rdx](%0), %%"R"dx \n\t"
  2964. "mov %c[rsi](%0), %%"R"si \n\t"
  2965. "mov %c[rdi](%0), %%"R"di \n\t"
  2966. "mov %c[rbp](%0), %%"R"bp \n\t"
  2967. #ifdef CONFIG_X86_64
  2968. "mov %c[r8](%0), %%r8 \n\t"
  2969. "mov %c[r9](%0), %%r9 \n\t"
  2970. "mov %c[r10](%0), %%r10 \n\t"
  2971. "mov %c[r11](%0), %%r11 \n\t"
  2972. "mov %c[r12](%0), %%r12 \n\t"
  2973. "mov %c[r13](%0), %%r13 \n\t"
  2974. "mov %c[r14](%0), %%r14 \n\t"
  2975. "mov %c[r15](%0), %%r15 \n\t"
  2976. #endif
  2977. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2978. /* Enter guest mode */
  2979. "jne .Llaunched \n\t"
  2980. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2981. "jmp .Lkvm_vmx_return \n\t"
  2982. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2983. ".Lkvm_vmx_return: "
  2984. /* Save guest registers, load host registers, keep flags */
  2985. "xchg %0, (%%"R"sp) \n\t"
  2986. "mov %%"R"ax, %c[rax](%0) \n\t"
  2987. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2988. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2989. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2990. "mov %%"R"si, %c[rsi](%0) \n\t"
  2991. "mov %%"R"di, %c[rdi](%0) \n\t"
  2992. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2993. #ifdef CONFIG_X86_64
  2994. "mov %%r8, %c[r8](%0) \n\t"
  2995. "mov %%r9, %c[r9](%0) \n\t"
  2996. "mov %%r10, %c[r10](%0) \n\t"
  2997. "mov %%r11, %c[r11](%0) \n\t"
  2998. "mov %%r12, %c[r12](%0) \n\t"
  2999. "mov %%r13, %c[r13](%0) \n\t"
  3000. "mov %%r14, %c[r14](%0) \n\t"
  3001. "mov %%r15, %c[r15](%0) \n\t"
  3002. #endif
  3003. "mov %%cr2, %%"R"ax \n\t"
  3004. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3005. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3006. "setbe %c[fail](%0) \n\t"
  3007. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3008. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3009. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3010. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3011. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3012. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3013. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3014. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3015. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3016. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3017. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3018. #ifdef CONFIG_X86_64
  3019. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3020. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3021. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3022. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3023. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3024. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3025. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3026. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3027. #endif
  3028. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3029. : "cc", "memory"
  3030. , R"bx", R"di", R"si"
  3031. #ifdef CONFIG_X86_64
  3032. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3033. #endif
  3034. );
  3035. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3036. vcpu->arch.regs_dirty = 0;
  3037. get_debugreg(vcpu->arch.dr6, 6);
  3038. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3039. if (vmx->rmode.irq.pending)
  3040. fixup_rmode_irq(vmx);
  3041. vmx_update_window_states(vcpu);
  3042. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3043. vmx->launched = 1;
  3044. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3045. /* We need to handle NMIs before interrupts are enabled */
  3046. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3047. (intr_info & INTR_INFO_VALID_MASK)) {
  3048. KVMTRACE_0D(NMI, vcpu, handler);
  3049. asm("int $2");
  3050. }
  3051. vmx_complete_interrupts(vmx);
  3052. }
  3053. #undef R
  3054. #undef Q
  3055. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3056. {
  3057. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3058. if (vmx->vmcs) {
  3059. vcpu_clear(vmx);
  3060. free_vmcs(vmx->vmcs);
  3061. vmx->vmcs = NULL;
  3062. }
  3063. }
  3064. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3065. {
  3066. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3067. spin_lock(&vmx_vpid_lock);
  3068. if (vmx->vpid != 0)
  3069. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3070. spin_unlock(&vmx_vpid_lock);
  3071. vmx_free_vmcs(vcpu);
  3072. kfree(vmx->host_msrs);
  3073. kfree(vmx->guest_msrs);
  3074. kvm_vcpu_uninit(vcpu);
  3075. kmem_cache_free(kvm_vcpu_cache, vmx);
  3076. }
  3077. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3078. {
  3079. int err;
  3080. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3081. int cpu;
  3082. if (!vmx)
  3083. return ERR_PTR(-ENOMEM);
  3084. allocate_vpid(vmx);
  3085. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3086. if (err)
  3087. goto free_vcpu;
  3088. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3089. if (!vmx->guest_msrs) {
  3090. err = -ENOMEM;
  3091. goto uninit_vcpu;
  3092. }
  3093. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3094. if (!vmx->host_msrs)
  3095. goto free_guest_msrs;
  3096. vmx->vmcs = alloc_vmcs();
  3097. if (!vmx->vmcs)
  3098. goto free_msrs;
  3099. vmcs_clear(vmx->vmcs);
  3100. cpu = get_cpu();
  3101. vmx_vcpu_load(&vmx->vcpu, cpu);
  3102. err = vmx_vcpu_setup(vmx);
  3103. vmx_vcpu_put(&vmx->vcpu);
  3104. put_cpu();
  3105. if (err)
  3106. goto free_vmcs;
  3107. if (vm_need_virtualize_apic_accesses(kvm))
  3108. if (alloc_apic_access_page(kvm) != 0)
  3109. goto free_vmcs;
  3110. if (vm_need_ept())
  3111. if (alloc_identity_pagetable(kvm) != 0)
  3112. goto free_vmcs;
  3113. return &vmx->vcpu;
  3114. free_vmcs:
  3115. free_vmcs(vmx->vmcs);
  3116. free_msrs:
  3117. kfree(vmx->host_msrs);
  3118. free_guest_msrs:
  3119. kfree(vmx->guest_msrs);
  3120. uninit_vcpu:
  3121. kvm_vcpu_uninit(&vmx->vcpu);
  3122. free_vcpu:
  3123. kmem_cache_free(kvm_vcpu_cache, vmx);
  3124. return ERR_PTR(err);
  3125. }
  3126. static void __init vmx_check_processor_compat(void *rtn)
  3127. {
  3128. struct vmcs_config vmcs_conf;
  3129. *(int *)rtn = 0;
  3130. if (setup_vmcs_config(&vmcs_conf) < 0)
  3131. *(int *)rtn = -EIO;
  3132. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3133. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3134. smp_processor_id());
  3135. *(int *)rtn = -EIO;
  3136. }
  3137. }
  3138. static int get_ept_level(void)
  3139. {
  3140. return VMX_EPT_DEFAULT_GAW + 1;
  3141. }
  3142. static int vmx_get_mt_mask_shift(void)
  3143. {
  3144. return VMX_EPT_MT_EPTE_SHIFT;
  3145. }
  3146. static struct kvm_x86_ops vmx_x86_ops = {
  3147. .cpu_has_kvm_support = cpu_has_kvm_support,
  3148. .disabled_by_bios = vmx_disabled_by_bios,
  3149. .hardware_setup = hardware_setup,
  3150. .hardware_unsetup = hardware_unsetup,
  3151. .check_processor_compatibility = vmx_check_processor_compat,
  3152. .hardware_enable = hardware_enable,
  3153. .hardware_disable = hardware_disable,
  3154. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3155. .vcpu_create = vmx_create_vcpu,
  3156. .vcpu_free = vmx_free_vcpu,
  3157. .vcpu_reset = vmx_vcpu_reset,
  3158. .prepare_guest_switch = vmx_save_host_state,
  3159. .vcpu_load = vmx_vcpu_load,
  3160. .vcpu_put = vmx_vcpu_put,
  3161. .set_guest_debug = set_guest_debug,
  3162. .get_msr = vmx_get_msr,
  3163. .set_msr = vmx_set_msr,
  3164. .get_segment_base = vmx_get_segment_base,
  3165. .get_segment = vmx_get_segment,
  3166. .set_segment = vmx_set_segment,
  3167. .get_cpl = vmx_get_cpl,
  3168. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3169. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3170. .set_cr0 = vmx_set_cr0,
  3171. .set_cr3 = vmx_set_cr3,
  3172. .set_cr4 = vmx_set_cr4,
  3173. .set_efer = vmx_set_efer,
  3174. .get_idt = vmx_get_idt,
  3175. .set_idt = vmx_set_idt,
  3176. .get_gdt = vmx_get_gdt,
  3177. .set_gdt = vmx_set_gdt,
  3178. .cache_reg = vmx_cache_reg,
  3179. .get_rflags = vmx_get_rflags,
  3180. .set_rflags = vmx_set_rflags,
  3181. .tlb_flush = vmx_flush_tlb,
  3182. .run = vmx_vcpu_run,
  3183. .handle_exit = kvm_handle_exit,
  3184. .skip_emulated_instruction = skip_emulated_instruction,
  3185. .patch_hypercall = vmx_patch_hypercall,
  3186. .get_irq = vmx_get_irq,
  3187. .set_irq = vmx_inject_irq,
  3188. .queue_exception = vmx_queue_exception,
  3189. .exception_injected = vmx_exception_injected,
  3190. .inject_pending_irq = vmx_intr_assist,
  3191. .inject_pending_vectors = do_interrupt_requests,
  3192. .set_tss_addr = vmx_set_tss_addr,
  3193. .get_tdp_level = get_ept_level,
  3194. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3195. };
  3196. static int __init vmx_init(void)
  3197. {
  3198. void *va;
  3199. int r;
  3200. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3201. if (!vmx_io_bitmap_a)
  3202. return -ENOMEM;
  3203. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3204. if (!vmx_io_bitmap_b) {
  3205. r = -ENOMEM;
  3206. goto out;
  3207. }
  3208. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3209. if (!vmx_msr_bitmap) {
  3210. r = -ENOMEM;
  3211. goto out1;
  3212. }
  3213. /*
  3214. * Allow direct access to the PC debug port (it is often used for I/O
  3215. * delays, but the vmexits simply slow things down).
  3216. */
  3217. va = kmap(vmx_io_bitmap_a);
  3218. memset(va, 0xff, PAGE_SIZE);
  3219. clear_bit(0x80, va);
  3220. kunmap(vmx_io_bitmap_a);
  3221. va = kmap(vmx_io_bitmap_b);
  3222. memset(va, 0xff, PAGE_SIZE);
  3223. kunmap(vmx_io_bitmap_b);
  3224. va = kmap(vmx_msr_bitmap);
  3225. memset(va, 0xff, PAGE_SIZE);
  3226. kunmap(vmx_msr_bitmap);
  3227. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3228. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3229. if (r)
  3230. goto out2;
  3231. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  3232. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  3233. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  3234. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  3235. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  3236. if (vm_need_ept()) {
  3237. bypass_guest_pf = 0;
  3238. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3239. VMX_EPT_WRITABLE_MASK);
  3240. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3241. VMX_EPT_EXECUTABLE_MASK,
  3242. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3243. kvm_enable_tdp();
  3244. } else
  3245. kvm_disable_tdp();
  3246. if (bypass_guest_pf)
  3247. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3248. ept_sync_global();
  3249. return 0;
  3250. out2:
  3251. __free_page(vmx_msr_bitmap);
  3252. out1:
  3253. __free_page(vmx_io_bitmap_b);
  3254. out:
  3255. __free_page(vmx_io_bitmap_a);
  3256. return r;
  3257. }
  3258. static void __exit vmx_exit(void)
  3259. {
  3260. __free_page(vmx_msr_bitmap);
  3261. __free_page(vmx_io_bitmap_b);
  3262. __free_page(vmx_io_bitmap_a);
  3263. kvm_exit();
  3264. }
  3265. module_init(vmx_init)
  3266. module_exit(vmx_exit)