file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  28. struct vm_fault *vmf)
  29. {
  30. struct page *page = vmf->page;
  31. struct inode *inode = file_inode(vma->vm_file);
  32. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  33. block_t old_blk_addr;
  34. struct dnode_of_data dn;
  35. int err;
  36. f2fs_balance_fs(sbi);
  37. sb_start_pagefault(inode->i_sb);
  38. mutex_lock_op(sbi, DATA_NEW);
  39. /* block allocation */
  40. set_new_dnode(&dn, inode, NULL, NULL, 0);
  41. err = get_dnode_of_data(&dn, page->index, ALLOC_NODE);
  42. if (err) {
  43. mutex_unlock_op(sbi, DATA_NEW);
  44. goto out;
  45. }
  46. old_blk_addr = dn.data_blkaddr;
  47. if (old_blk_addr == NULL_ADDR) {
  48. err = reserve_new_block(&dn);
  49. if (err) {
  50. f2fs_put_dnode(&dn);
  51. mutex_unlock_op(sbi, DATA_NEW);
  52. goto out;
  53. }
  54. }
  55. f2fs_put_dnode(&dn);
  56. mutex_unlock_op(sbi, DATA_NEW);
  57. lock_page(page);
  58. if (page->mapping != inode->i_mapping ||
  59. page_offset(page) >= i_size_read(inode) ||
  60. !PageUptodate(page)) {
  61. unlock_page(page);
  62. err = -EFAULT;
  63. goto out;
  64. }
  65. /*
  66. * check to see if the page is mapped already (no holes)
  67. */
  68. if (PageMappedToDisk(page))
  69. goto out;
  70. /* fill the page */
  71. wait_on_page_writeback(page);
  72. /* page is wholly or partially inside EOF */
  73. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  74. unsigned offset;
  75. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  76. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  77. }
  78. set_page_dirty(page);
  79. SetPageUptodate(page);
  80. file_update_time(vma->vm_file);
  81. out:
  82. sb_end_pagefault(inode->i_sb);
  83. return block_page_mkwrite_return(err);
  84. }
  85. static const struct vm_operations_struct f2fs_file_vm_ops = {
  86. .fault = filemap_fault,
  87. .page_mkwrite = f2fs_vm_page_mkwrite,
  88. .remap_pages = generic_file_remap_pages,
  89. };
  90. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  91. {
  92. struct inode *inode = file->f_mapping->host;
  93. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  94. int ret = 0;
  95. bool need_cp = false;
  96. struct writeback_control wbc = {
  97. .sync_mode = WB_SYNC_ALL,
  98. .nr_to_write = LONG_MAX,
  99. .for_reclaim = 0,
  100. };
  101. if (inode->i_sb->s_flags & MS_RDONLY)
  102. return 0;
  103. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  104. if (ret)
  105. return ret;
  106. /* guarantee free sections for fsync */
  107. f2fs_balance_fs(sbi);
  108. mutex_lock(&inode->i_mutex);
  109. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  110. goto out;
  111. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  112. need_cp = true;
  113. else if (is_cp_file(inode))
  114. need_cp = true;
  115. else if (!space_for_roll_forward(sbi))
  116. need_cp = true;
  117. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  118. need_cp = true;
  119. if (need_cp) {
  120. /* all the dirty node pages should be flushed for POR */
  121. ret = f2fs_sync_fs(inode->i_sb, 1);
  122. } else {
  123. /* if there is no written node page, write its inode page */
  124. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  125. ret = f2fs_write_inode(inode, NULL);
  126. if (ret)
  127. goto out;
  128. }
  129. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  130. 0, LONG_MAX);
  131. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  132. }
  133. out:
  134. mutex_unlock(&inode->i_mutex);
  135. return ret;
  136. }
  137. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  138. {
  139. file_accessed(file);
  140. vma->vm_ops = &f2fs_file_vm_ops;
  141. return 0;
  142. }
  143. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  144. {
  145. int nr_free = 0, ofs = dn->ofs_in_node;
  146. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  147. struct f2fs_node *raw_node;
  148. __le32 *addr;
  149. raw_node = page_address(dn->node_page);
  150. addr = blkaddr_in_node(raw_node) + ofs;
  151. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  152. block_t blkaddr = le32_to_cpu(*addr);
  153. if (blkaddr == NULL_ADDR)
  154. continue;
  155. update_extent_cache(NULL_ADDR, dn);
  156. invalidate_blocks(sbi, blkaddr);
  157. dec_valid_block_count(sbi, dn->inode, 1);
  158. nr_free++;
  159. }
  160. if (nr_free) {
  161. set_page_dirty(dn->node_page);
  162. sync_inode_page(dn);
  163. }
  164. dn->ofs_in_node = ofs;
  165. return nr_free;
  166. }
  167. void truncate_data_blocks(struct dnode_of_data *dn)
  168. {
  169. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  170. }
  171. static void truncate_partial_data_page(struct inode *inode, u64 from)
  172. {
  173. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  174. struct page *page;
  175. if (!offset)
  176. return;
  177. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
  178. if (IS_ERR(page))
  179. return;
  180. lock_page(page);
  181. wait_on_page_writeback(page);
  182. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  183. set_page_dirty(page);
  184. f2fs_put_page(page, 1);
  185. }
  186. static int truncate_blocks(struct inode *inode, u64 from)
  187. {
  188. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  189. unsigned int blocksize = inode->i_sb->s_blocksize;
  190. struct dnode_of_data dn;
  191. pgoff_t free_from;
  192. int count = 0;
  193. int err;
  194. free_from = (pgoff_t)
  195. ((from + blocksize - 1) >> (sbi->log_blocksize));
  196. mutex_lock_op(sbi, DATA_TRUNC);
  197. set_new_dnode(&dn, inode, NULL, NULL, 0);
  198. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  199. if (err) {
  200. if (err == -ENOENT)
  201. goto free_next;
  202. mutex_unlock_op(sbi, DATA_TRUNC);
  203. return err;
  204. }
  205. if (IS_INODE(dn.node_page))
  206. count = ADDRS_PER_INODE;
  207. else
  208. count = ADDRS_PER_BLOCK;
  209. count -= dn.ofs_in_node;
  210. BUG_ON(count < 0);
  211. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  212. truncate_data_blocks_range(&dn, count);
  213. free_from += count;
  214. }
  215. f2fs_put_dnode(&dn);
  216. free_next:
  217. err = truncate_inode_blocks(inode, free_from);
  218. mutex_unlock_op(sbi, DATA_TRUNC);
  219. /* lastly zero out the first data page */
  220. truncate_partial_data_page(inode, from);
  221. return err;
  222. }
  223. void f2fs_truncate(struct inode *inode)
  224. {
  225. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  226. S_ISLNK(inode->i_mode)))
  227. return;
  228. if (!truncate_blocks(inode, i_size_read(inode))) {
  229. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  230. mark_inode_dirty(inode);
  231. }
  232. }
  233. static int f2fs_getattr(struct vfsmount *mnt,
  234. struct dentry *dentry, struct kstat *stat)
  235. {
  236. struct inode *inode = dentry->d_inode;
  237. generic_fillattr(inode, stat);
  238. stat->blocks <<= 3;
  239. return 0;
  240. }
  241. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  242. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  243. {
  244. struct f2fs_inode_info *fi = F2FS_I(inode);
  245. unsigned int ia_valid = attr->ia_valid;
  246. if (ia_valid & ATTR_UID)
  247. inode->i_uid = attr->ia_uid;
  248. if (ia_valid & ATTR_GID)
  249. inode->i_gid = attr->ia_gid;
  250. if (ia_valid & ATTR_ATIME)
  251. inode->i_atime = timespec_trunc(attr->ia_atime,
  252. inode->i_sb->s_time_gran);
  253. if (ia_valid & ATTR_MTIME)
  254. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  255. inode->i_sb->s_time_gran);
  256. if (ia_valid & ATTR_CTIME)
  257. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  258. inode->i_sb->s_time_gran);
  259. if (ia_valid & ATTR_MODE) {
  260. umode_t mode = attr->ia_mode;
  261. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  262. mode &= ~S_ISGID;
  263. set_acl_inode(fi, mode);
  264. }
  265. }
  266. #else
  267. #define __setattr_copy setattr_copy
  268. #endif
  269. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  270. {
  271. struct inode *inode = dentry->d_inode;
  272. struct f2fs_inode_info *fi = F2FS_I(inode);
  273. int err;
  274. err = inode_change_ok(inode, attr);
  275. if (err)
  276. return err;
  277. if ((attr->ia_valid & ATTR_SIZE) &&
  278. attr->ia_size != i_size_read(inode)) {
  279. truncate_setsize(inode, attr->ia_size);
  280. f2fs_truncate(inode);
  281. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  282. }
  283. __setattr_copy(inode, attr);
  284. if (attr->ia_valid & ATTR_MODE) {
  285. err = f2fs_acl_chmod(inode);
  286. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  287. inode->i_mode = fi->i_acl_mode;
  288. clear_inode_flag(fi, FI_ACL_MODE);
  289. }
  290. }
  291. mark_inode_dirty(inode);
  292. return err;
  293. }
  294. const struct inode_operations f2fs_file_inode_operations = {
  295. .getattr = f2fs_getattr,
  296. .setattr = f2fs_setattr,
  297. .get_acl = f2fs_get_acl,
  298. #ifdef CONFIG_F2FS_FS_XATTR
  299. .setxattr = generic_setxattr,
  300. .getxattr = generic_getxattr,
  301. .listxattr = f2fs_listxattr,
  302. .removexattr = generic_removexattr,
  303. #endif
  304. };
  305. static void fill_zero(struct inode *inode, pgoff_t index,
  306. loff_t start, loff_t len)
  307. {
  308. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  309. struct page *page;
  310. if (!len)
  311. return;
  312. f2fs_balance_fs(sbi);
  313. mutex_lock_op(sbi, DATA_NEW);
  314. page = get_new_data_page(inode, index, false);
  315. mutex_unlock_op(sbi, DATA_NEW);
  316. if (!IS_ERR(page)) {
  317. wait_on_page_writeback(page);
  318. zero_user(page, start, len);
  319. set_page_dirty(page);
  320. f2fs_put_page(page, 1);
  321. }
  322. }
  323. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  324. {
  325. pgoff_t index;
  326. int err;
  327. for (index = pg_start; index < pg_end; index++) {
  328. struct dnode_of_data dn;
  329. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  330. f2fs_balance_fs(sbi);
  331. mutex_lock_op(sbi, DATA_TRUNC);
  332. set_new_dnode(&dn, inode, NULL, NULL, 0);
  333. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  334. if (err) {
  335. mutex_unlock_op(sbi, DATA_TRUNC);
  336. if (err == -ENOENT)
  337. continue;
  338. return err;
  339. }
  340. if (dn.data_blkaddr != NULL_ADDR)
  341. truncate_data_blocks_range(&dn, 1);
  342. f2fs_put_dnode(&dn);
  343. mutex_unlock_op(sbi, DATA_TRUNC);
  344. }
  345. return 0;
  346. }
  347. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  348. {
  349. pgoff_t pg_start, pg_end;
  350. loff_t off_start, off_end;
  351. int ret = 0;
  352. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  353. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  354. off_start = offset & (PAGE_CACHE_SIZE - 1);
  355. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  356. if (pg_start == pg_end) {
  357. fill_zero(inode, pg_start, off_start,
  358. off_end - off_start);
  359. } else {
  360. if (off_start)
  361. fill_zero(inode, pg_start++, off_start,
  362. PAGE_CACHE_SIZE - off_start);
  363. if (off_end)
  364. fill_zero(inode, pg_end, 0, off_end);
  365. if (pg_start < pg_end) {
  366. struct address_space *mapping = inode->i_mapping;
  367. loff_t blk_start, blk_end;
  368. blk_start = pg_start << PAGE_CACHE_SHIFT;
  369. blk_end = pg_end << PAGE_CACHE_SHIFT;
  370. truncate_inode_pages_range(mapping, blk_start,
  371. blk_end - 1);
  372. ret = truncate_hole(inode, pg_start, pg_end);
  373. }
  374. }
  375. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  376. i_size_read(inode) <= (offset + len)) {
  377. i_size_write(inode, offset);
  378. mark_inode_dirty(inode);
  379. }
  380. return ret;
  381. }
  382. static int expand_inode_data(struct inode *inode, loff_t offset,
  383. loff_t len, int mode)
  384. {
  385. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  386. pgoff_t index, pg_start, pg_end;
  387. loff_t new_size = i_size_read(inode);
  388. loff_t off_start, off_end;
  389. int ret = 0;
  390. ret = inode_newsize_ok(inode, (len + offset));
  391. if (ret)
  392. return ret;
  393. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  394. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  395. off_start = offset & (PAGE_CACHE_SIZE - 1);
  396. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  397. for (index = pg_start; index <= pg_end; index++) {
  398. struct dnode_of_data dn;
  399. mutex_lock_op(sbi, DATA_NEW);
  400. set_new_dnode(&dn, inode, NULL, NULL, 0);
  401. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  402. if (ret) {
  403. mutex_unlock_op(sbi, DATA_NEW);
  404. break;
  405. }
  406. if (dn.data_blkaddr == NULL_ADDR) {
  407. ret = reserve_new_block(&dn);
  408. if (ret) {
  409. f2fs_put_dnode(&dn);
  410. mutex_unlock_op(sbi, DATA_NEW);
  411. break;
  412. }
  413. }
  414. f2fs_put_dnode(&dn);
  415. mutex_unlock_op(sbi, DATA_NEW);
  416. if (pg_start == pg_end)
  417. new_size = offset + len;
  418. else if (index == pg_start && off_start)
  419. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  420. else if (index == pg_end)
  421. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  422. else
  423. new_size += PAGE_CACHE_SIZE;
  424. }
  425. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  426. i_size_read(inode) < new_size) {
  427. i_size_write(inode, new_size);
  428. mark_inode_dirty(inode);
  429. }
  430. return ret;
  431. }
  432. static long f2fs_fallocate(struct file *file, int mode,
  433. loff_t offset, loff_t len)
  434. {
  435. struct inode *inode = file_inode(file);
  436. long ret;
  437. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  438. return -EOPNOTSUPP;
  439. if (mode & FALLOC_FL_PUNCH_HOLE)
  440. ret = punch_hole(inode, offset, len, mode);
  441. else
  442. ret = expand_inode_data(inode, offset, len, mode);
  443. if (!ret) {
  444. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  445. mark_inode_dirty(inode);
  446. }
  447. return ret;
  448. }
  449. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  450. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  451. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  452. {
  453. if (S_ISDIR(mode))
  454. return flags;
  455. else if (S_ISREG(mode))
  456. return flags & F2FS_REG_FLMASK;
  457. else
  458. return flags & F2FS_OTHER_FLMASK;
  459. }
  460. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  461. {
  462. struct inode *inode = file_inode(filp);
  463. struct f2fs_inode_info *fi = F2FS_I(inode);
  464. unsigned int flags;
  465. int ret;
  466. switch (cmd) {
  467. case FS_IOC_GETFLAGS:
  468. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  469. return put_user(flags, (int __user *) arg);
  470. case FS_IOC_SETFLAGS:
  471. {
  472. unsigned int oldflags;
  473. ret = mnt_want_write(filp->f_path.mnt);
  474. if (ret)
  475. return ret;
  476. if (!inode_owner_or_capable(inode)) {
  477. ret = -EACCES;
  478. goto out;
  479. }
  480. if (get_user(flags, (int __user *) arg)) {
  481. ret = -EFAULT;
  482. goto out;
  483. }
  484. flags = f2fs_mask_flags(inode->i_mode, flags);
  485. mutex_lock(&inode->i_mutex);
  486. oldflags = fi->i_flags;
  487. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  488. if (!capable(CAP_LINUX_IMMUTABLE)) {
  489. mutex_unlock(&inode->i_mutex);
  490. ret = -EPERM;
  491. goto out;
  492. }
  493. }
  494. flags = flags & FS_FL_USER_MODIFIABLE;
  495. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  496. fi->i_flags = flags;
  497. mutex_unlock(&inode->i_mutex);
  498. f2fs_set_inode_flags(inode);
  499. inode->i_ctime = CURRENT_TIME;
  500. mark_inode_dirty(inode);
  501. out:
  502. mnt_drop_write(filp->f_path.mnt);
  503. return ret;
  504. }
  505. default:
  506. return -ENOTTY;
  507. }
  508. }
  509. #ifdef CONFIG_COMPAT
  510. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  511. {
  512. switch (cmd) {
  513. case F2FS_IOC32_GETFLAGS:
  514. cmd = F2FS_IOC_GETFLAGS;
  515. break;
  516. case F2FS_IOC32_SETFLAGS:
  517. cmd = F2FS_IOC_SETFLAGS;
  518. break;
  519. default:
  520. return -ENOIOCTLCMD;
  521. }
  522. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  523. }
  524. #endif
  525. const struct file_operations f2fs_file_operations = {
  526. .llseek = generic_file_llseek,
  527. .read = do_sync_read,
  528. .write = do_sync_write,
  529. .aio_read = generic_file_aio_read,
  530. .aio_write = generic_file_aio_write,
  531. .open = generic_file_open,
  532. .mmap = f2fs_file_mmap,
  533. .fsync = f2fs_sync_file,
  534. .fallocate = f2fs_fallocate,
  535. .unlocked_ioctl = f2fs_ioctl,
  536. #ifdef CONFIG_COMPAT
  537. .compat_ioctl = f2fs_compat_ioctl,
  538. #endif
  539. .splice_read = generic_file_splice_read,
  540. .splice_write = generic_file_splice_write,
  541. };