splice.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. /*
  2. * "splice": joining two ropes together by interweaving their strands.
  3. *
  4. * This is the "extended pipe" functionality, where a pipe is used as
  5. * an arbitrary in-memory buffer. Think of a pipe as a small kernel
  6. * buffer that you can use to transfer data from one end to the other.
  7. *
  8. * The traditional unix read/write is extended with a "splice()" operation
  9. * that transfers data buffers to or from a pipe buffer.
  10. *
  11. * Named by Larry McVoy, original implementation from Linus, extended by
  12. * Jens to support splicing to files and fixing the initial implementation
  13. * bugs.
  14. *
  15. * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
  16. * Copyright (C) 2005 Linus Torvalds <torvalds@osdl.org>
  17. *
  18. */
  19. #include <linux/fs.h>
  20. #include <linux/file.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/pipe_fs_i.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/swap.h>
  25. #include <linux/module.h>
  26. /*
  27. * Passed to the actors
  28. */
  29. struct splice_desc {
  30. unsigned int len, total_len; /* current and remaining length */
  31. unsigned int flags; /* splice flags */
  32. struct file *file; /* file to read/write */
  33. loff_t pos; /* file position */
  34. };
  35. static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
  36. struct pipe_buffer *buf)
  37. {
  38. struct page *page = buf->page;
  39. WARN_ON(!PageLocked(page));
  40. WARN_ON(!PageUptodate(page));
  41. if (!remove_mapping(page_mapping(page), page))
  42. return 1;
  43. if (PageLRU(page)) {
  44. struct zone *zone = page_zone(page);
  45. spin_lock_irq(&zone->lru_lock);
  46. BUG_ON(!PageLRU(page));
  47. __ClearPageLRU(page);
  48. del_page_from_lru(zone, page);
  49. spin_unlock_irq(&zone->lru_lock);
  50. }
  51. buf->stolen = 1;
  52. return 0;
  53. }
  54. static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
  55. struct pipe_buffer *buf)
  56. {
  57. page_cache_release(buf->page);
  58. buf->page = NULL;
  59. buf->stolen = 0;
  60. }
  61. static void *page_cache_pipe_buf_map(struct file *file,
  62. struct pipe_inode_info *info,
  63. struct pipe_buffer *buf)
  64. {
  65. struct page *page = buf->page;
  66. lock_page(page);
  67. if (!PageUptodate(page)) {
  68. unlock_page(page);
  69. return ERR_PTR(-EIO);
  70. }
  71. if (!page->mapping) {
  72. unlock_page(page);
  73. return ERR_PTR(-ENODATA);
  74. }
  75. return kmap(buf->page);
  76. }
  77. static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
  78. struct pipe_buffer *buf)
  79. {
  80. if (!buf->stolen)
  81. unlock_page(buf->page);
  82. kunmap(buf->page);
  83. }
  84. static struct pipe_buf_operations page_cache_pipe_buf_ops = {
  85. .can_merge = 0,
  86. .map = page_cache_pipe_buf_map,
  87. .unmap = page_cache_pipe_buf_unmap,
  88. .release = page_cache_pipe_buf_release,
  89. .steal = page_cache_pipe_buf_steal,
  90. };
  91. static ssize_t move_to_pipe(struct inode *inode, struct page **pages,
  92. int nr_pages, unsigned long offset,
  93. unsigned long len, unsigned int flags)
  94. {
  95. struct pipe_inode_info *info;
  96. int ret, do_wakeup, i;
  97. ret = 0;
  98. do_wakeup = 0;
  99. i = 0;
  100. mutex_lock(PIPE_MUTEX(*inode));
  101. info = inode->i_pipe;
  102. for (;;) {
  103. int bufs;
  104. if (!PIPE_READERS(*inode)) {
  105. send_sig(SIGPIPE, current, 0);
  106. if (!ret)
  107. ret = -EPIPE;
  108. break;
  109. }
  110. bufs = info->nrbufs;
  111. if (bufs < PIPE_BUFFERS) {
  112. int newbuf = (info->curbuf + bufs) & (PIPE_BUFFERS - 1);
  113. struct pipe_buffer *buf = info->bufs + newbuf;
  114. struct page *page = pages[i++];
  115. unsigned long this_len;
  116. this_len = PAGE_CACHE_SIZE - offset;
  117. if (this_len > len)
  118. this_len = len;
  119. buf->page = page;
  120. buf->offset = offset;
  121. buf->len = this_len;
  122. buf->ops = &page_cache_pipe_buf_ops;
  123. info->nrbufs = ++bufs;
  124. do_wakeup = 1;
  125. ret += this_len;
  126. len -= this_len;
  127. offset = 0;
  128. if (!--nr_pages)
  129. break;
  130. if (!len)
  131. break;
  132. if (bufs < PIPE_BUFFERS)
  133. continue;
  134. break;
  135. }
  136. if (flags & SPLICE_F_NONBLOCK) {
  137. if (!ret)
  138. ret = -EAGAIN;
  139. break;
  140. }
  141. if (signal_pending(current)) {
  142. if (!ret)
  143. ret = -ERESTARTSYS;
  144. break;
  145. }
  146. if (do_wakeup) {
  147. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  148. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO,
  149. POLL_IN);
  150. do_wakeup = 0;
  151. }
  152. PIPE_WAITING_WRITERS(*inode)++;
  153. pipe_wait(inode);
  154. PIPE_WAITING_WRITERS(*inode)--;
  155. }
  156. mutex_unlock(PIPE_MUTEX(*inode));
  157. if (do_wakeup) {
  158. wake_up_interruptible(PIPE_WAIT(*inode));
  159. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO, POLL_IN);
  160. }
  161. while (i < nr_pages)
  162. page_cache_release(pages[i++]);
  163. return ret;
  164. }
  165. static int __generic_file_splice_read(struct file *in, struct inode *pipe,
  166. size_t len, unsigned int flags)
  167. {
  168. struct address_space *mapping = in->f_mapping;
  169. unsigned int offset, nr_pages;
  170. struct page *pages[PIPE_BUFFERS], *shadow[PIPE_BUFFERS];
  171. struct page *page;
  172. pgoff_t index, pidx;
  173. int i, j;
  174. index = in->f_pos >> PAGE_CACHE_SHIFT;
  175. offset = in->f_pos & ~PAGE_CACHE_MASK;
  176. nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  177. if (nr_pages > PIPE_BUFFERS)
  178. nr_pages = PIPE_BUFFERS;
  179. /*
  180. * initiate read-ahead on this page range
  181. */
  182. do_page_cache_readahead(mapping, in, index, nr_pages);
  183. /*
  184. * Get as many pages from the page cache as possible..
  185. * Start IO on the page cache entries we create (we
  186. * can assume that any pre-existing ones we find have
  187. * already had IO started on them).
  188. */
  189. i = find_get_pages(mapping, index, nr_pages, pages);
  190. /*
  191. * common case - we found all pages and they are contiguous,
  192. * kick them off
  193. */
  194. if (i && (pages[i - 1]->index == index + i - 1))
  195. goto splice_them;
  196. /*
  197. * fill shadow[] with pages at the right locations, so we only
  198. * have to fill holes
  199. */
  200. memset(shadow, 0, nr_pages * sizeof(struct page *));
  201. for (j = 0; j < i; j++)
  202. shadow[pages[j]->index - index] = pages[j];
  203. /*
  204. * now fill in the holes
  205. */
  206. for (i = 0, pidx = index; i < nr_pages; pidx++, i++) {
  207. int error;
  208. if (shadow[i])
  209. continue;
  210. /*
  211. * no page there, look one up / create it
  212. */
  213. page = find_or_create_page(mapping, pidx,
  214. mapping_gfp_mask(mapping));
  215. if (!page)
  216. break;
  217. if (PageUptodate(page))
  218. unlock_page(page);
  219. else {
  220. error = mapping->a_ops->readpage(in, page);
  221. if (unlikely(error)) {
  222. page_cache_release(page);
  223. break;
  224. }
  225. }
  226. shadow[i] = page;
  227. }
  228. if (!i) {
  229. for (i = 0; i < nr_pages; i++) {
  230. if (shadow[i])
  231. page_cache_release(shadow[i]);
  232. }
  233. return 0;
  234. }
  235. memcpy(pages, shadow, i * sizeof(struct page *));
  236. /*
  237. * Now we splice them into the pipe..
  238. */
  239. splice_them:
  240. return move_to_pipe(pipe, pages, i, offset, len, flags);
  241. }
  242. ssize_t generic_file_splice_read(struct file *in, struct inode *pipe,
  243. size_t len, unsigned int flags)
  244. {
  245. ssize_t spliced;
  246. int ret;
  247. ret = 0;
  248. spliced = 0;
  249. while (len) {
  250. ret = __generic_file_splice_read(in, pipe, len, flags);
  251. if (ret <= 0)
  252. break;
  253. in->f_pos += ret;
  254. len -= ret;
  255. spliced += ret;
  256. if (!(flags & SPLICE_F_NONBLOCK))
  257. continue;
  258. ret = -EAGAIN;
  259. break;
  260. }
  261. if (spliced)
  262. return spliced;
  263. return ret;
  264. }
  265. /*
  266. * Send 'len' bytes to socket from 'file' at position 'pos' using sendpage().
  267. */
  268. static int pipe_to_sendpage(struct pipe_inode_info *info,
  269. struct pipe_buffer *buf, struct splice_desc *sd)
  270. {
  271. struct file *file = sd->file;
  272. loff_t pos = sd->pos;
  273. unsigned int offset;
  274. ssize_t ret;
  275. void *ptr;
  276. /*
  277. * sub-optimal, but we are limited by the pipe ->map. we don't
  278. * need a kmap'ed buffer here, we just want to make sure we
  279. * have the page pinned if the pipe page originates from the
  280. * page cache
  281. */
  282. ptr = buf->ops->map(file, info, buf);
  283. if (IS_ERR(ptr))
  284. return PTR_ERR(ptr);
  285. offset = pos & ~PAGE_CACHE_MASK;
  286. ret = file->f_op->sendpage(file, buf->page, offset, sd->len, &pos,
  287. sd->len < sd->total_len);
  288. buf->ops->unmap(info, buf);
  289. if (ret == sd->len)
  290. return 0;
  291. return -EIO;
  292. }
  293. /*
  294. * This is a little more tricky than the file -> pipe splicing. There are
  295. * basically three cases:
  296. *
  297. * - Destination page already exists in the address space and there
  298. * are users of it. For that case we have no other option that
  299. * copying the data. Tough luck.
  300. * - Destination page already exists in the address space, but there
  301. * are no users of it. Make sure it's uptodate, then drop it. Fall
  302. * through to last case.
  303. * - Destination page does not exist, we can add the pipe page to
  304. * the page cache and avoid the copy.
  305. *
  306. * For now we just do the slower thing and always copy pages over, it's
  307. * easier than migrating pages from the pipe to the target file. For the
  308. * case of doing file | file splicing, the migrate approach had some LRU
  309. * nastiness...
  310. */
  311. static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
  312. struct splice_desc *sd)
  313. {
  314. struct file *file = sd->file;
  315. struct address_space *mapping = file->f_mapping;
  316. unsigned int offset;
  317. struct page *page;
  318. pgoff_t index;
  319. char *src;
  320. int ret;
  321. /*
  322. * after this, page will be locked and unmapped
  323. */
  324. src = buf->ops->map(file, info, buf);
  325. if (IS_ERR(src))
  326. return PTR_ERR(src);
  327. index = sd->pos >> PAGE_CACHE_SHIFT;
  328. offset = sd->pos & ~PAGE_CACHE_MASK;
  329. /*
  330. * reuse buf page, if SPLICE_F_MOVE is set
  331. */
  332. if (sd->flags & SPLICE_F_MOVE) {
  333. if (buf->ops->steal(info, buf))
  334. goto find_page;
  335. page = buf->page;
  336. if (add_to_page_cache_lru(page, mapping, index,
  337. mapping_gfp_mask(mapping)))
  338. goto find_page;
  339. } else {
  340. find_page:
  341. ret = -ENOMEM;
  342. page = find_or_create_page(mapping, index,
  343. mapping_gfp_mask(mapping));
  344. if (!page)
  345. goto out;
  346. /*
  347. * If the page is uptodate, it is also locked. If it isn't
  348. * uptodate, we can mark it uptodate if we are filling the
  349. * full page. Otherwise we need to read it in first...
  350. */
  351. if (!PageUptodate(page)) {
  352. if (sd->len < PAGE_CACHE_SIZE) {
  353. ret = mapping->a_ops->readpage(file, page);
  354. if (unlikely(ret))
  355. goto out;
  356. lock_page(page);
  357. if (!PageUptodate(page)) {
  358. /*
  359. * page got invalidated, repeat
  360. */
  361. if (!page->mapping) {
  362. unlock_page(page);
  363. page_cache_release(page);
  364. goto find_page;
  365. }
  366. ret = -EIO;
  367. goto out;
  368. }
  369. } else {
  370. WARN_ON(!PageLocked(page));
  371. SetPageUptodate(page);
  372. }
  373. }
  374. }
  375. ret = mapping->a_ops->prepare_write(file, page, 0, sd->len);
  376. if (ret)
  377. goto out;
  378. if (!buf->stolen) {
  379. char *dst = kmap_atomic(page, KM_USER0);
  380. memcpy(dst + offset, src + buf->offset, sd->len);
  381. flush_dcache_page(page);
  382. kunmap_atomic(dst, KM_USER0);
  383. }
  384. ret = mapping->a_ops->commit_write(file, page, 0, sd->len);
  385. if (ret < 0)
  386. goto out;
  387. set_page_dirty(page);
  388. ret = write_one_page(page, 0);
  389. out:
  390. if (ret < 0)
  391. unlock_page(page);
  392. if (!buf->stolen)
  393. page_cache_release(page);
  394. buf->ops->unmap(info, buf);
  395. return ret;
  396. }
  397. typedef int (splice_actor)(struct pipe_inode_info *, struct pipe_buffer *,
  398. struct splice_desc *);
  399. static ssize_t move_from_pipe(struct inode *inode, struct file *out,
  400. size_t len, unsigned int flags,
  401. splice_actor *actor)
  402. {
  403. struct pipe_inode_info *info;
  404. int ret, do_wakeup, err;
  405. struct splice_desc sd;
  406. ret = 0;
  407. do_wakeup = 0;
  408. sd.total_len = len;
  409. sd.flags = flags;
  410. sd.file = out;
  411. sd.pos = out->f_pos;
  412. mutex_lock(PIPE_MUTEX(*inode));
  413. info = inode->i_pipe;
  414. for (;;) {
  415. int bufs = info->nrbufs;
  416. if (bufs) {
  417. int curbuf = info->curbuf;
  418. struct pipe_buffer *buf = info->bufs + curbuf;
  419. struct pipe_buf_operations *ops = buf->ops;
  420. sd.len = buf->len;
  421. if (sd.len > sd.total_len)
  422. sd.len = sd.total_len;
  423. err = actor(info, buf, &sd);
  424. if (err) {
  425. if (!ret && err != -ENODATA)
  426. ret = err;
  427. break;
  428. }
  429. ret += sd.len;
  430. buf->offset += sd.len;
  431. buf->len -= sd.len;
  432. if (!buf->len) {
  433. buf->ops = NULL;
  434. ops->release(info, buf);
  435. curbuf = (curbuf + 1) & (PIPE_BUFFERS - 1);
  436. info->curbuf = curbuf;
  437. info->nrbufs = --bufs;
  438. do_wakeup = 1;
  439. }
  440. sd.pos += sd.len;
  441. sd.total_len -= sd.len;
  442. if (!sd.total_len)
  443. break;
  444. }
  445. if (bufs)
  446. continue;
  447. if (!PIPE_WRITERS(*inode))
  448. break;
  449. if (!PIPE_WAITING_WRITERS(*inode)) {
  450. if (ret)
  451. break;
  452. }
  453. if (flags & SPLICE_F_NONBLOCK) {
  454. if (!ret)
  455. ret = -EAGAIN;
  456. break;
  457. }
  458. if (signal_pending(current)) {
  459. if (!ret)
  460. ret = -ERESTARTSYS;
  461. break;
  462. }
  463. if (do_wakeup) {
  464. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  465. kill_fasync(PIPE_FASYNC_WRITERS(*inode),SIGIO,POLL_OUT);
  466. do_wakeup = 0;
  467. }
  468. pipe_wait(inode);
  469. }
  470. mutex_unlock(PIPE_MUTEX(*inode));
  471. if (do_wakeup) {
  472. wake_up_interruptible(PIPE_WAIT(*inode));
  473. kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
  474. }
  475. mutex_lock(&out->f_mapping->host->i_mutex);
  476. out->f_pos = sd.pos;
  477. mutex_unlock(&out->f_mapping->host->i_mutex);
  478. return ret;
  479. }
  480. ssize_t generic_file_splice_write(struct inode *inode, struct file *out,
  481. size_t len, unsigned int flags)
  482. {
  483. return move_from_pipe(inode, out, len, flags, pipe_to_file);
  484. }
  485. ssize_t generic_splice_sendpage(struct inode *inode, struct file *out,
  486. size_t len, unsigned int flags)
  487. {
  488. return move_from_pipe(inode, out, len, flags, pipe_to_sendpage);
  489. }
  490. EXPORT_SYMBOL(generic_file_splice_write);
  491. EXPORT_SYMBOL(generic_file_splice_read);
  492. static long do_splice_from(struct inode *pipe, struct file *out, size_t len,
  493. unsigned int flags)
  494. {
  495. loff_t pos;
  496. int ret;
  497. if (!out->f_op || !out->f_op->splice_write)
  498. return -EINVAL;
  499. if (!(out->f_mode & FMODE_WRITE))
  500. return -EBADF;
  501. pos = out->f_pos;
  502. ret = rw_verify_area(WRITE, out, &pos, len);
  503. if (unlikely(ret < 0))
  504. return ret;
  505. return out->f_op->splice_write(pipe, out, len, flags);
  506. }
  507. static long do_splice_to(struct file *in, struct inode *pipe, size_t len,
  508. unsigned int flags)
  509. {
  510. loff_t pos, isize, left;
  511. int ret;
  512. if (!in->f_op || !in->f_op->splice_read)
  513. return -EINVAL;
  514. if (!(in->f_mode & FMODE_READ))
  515. return -EBADF;
  516. pos = in->f_pos;
  517. ret = rw_verify_area(READ, in, &pos, len);
  518. if (unlikely(ret < 0))
  519. return ret;
  520. isize = i_size_read(in->f_mapping->host);
  521. if (unlikely(in->f_pos >= isize))
  522. return 0;
  523. left = isize - in->f_pos;
  524. if (left < len)
  525. len = left;
  526. return in->f_op->splice_read(in, pipe, len, flags);
  527. }
  528. static long do_splice(struct file *in, struct file *out, size_t len,
  529. unsigned int flags)
  530. {
  531. struct inode *pipe;
  532. pipe = in->f_dentry->d_inode;
  533. if (pipe->i_pipe)
  534. return do_splice_from(pipe, out, len, flags);
  535. pipe = out->f_dentry->d_inode;
  536. if (pipe->i_pipe)
  537. return do_splice_to(in, pipe, len, flags);
  538. return -EINVAL;
  539. }
  540. asmlinkage long sys_splice(int fdin, int fdout, size_t len, unsigned int flags)
  541. {
  542. long error;
  543. struct file *in, *out;
  544. int fput_in, fput_out;
  545. if (unlikely(!len))
  546. return 0;
  547. error = -EBADF;
  548. in = fget_light(fdin, &fput_in);
  549. if (in) {
  550. if (in->f_mode & FMODE_READ) {
  551. out = fget_light(fdout, &fput_out);
  552. if (out) {
  553. if (out->f_mode & FMODE_WRITE)
  554. error = do_splice(in, out, len, flags);
  555. fput_light(out, fput_out);
  556. }
  557. }
  558. fput_light(in, fput_in);
  559. }
  560. return error;
  561. }