cfq-iosched.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/rbtree.h>
  14. #include <linux/ioprio.h>
  15. #include <linux/blktrace_api.h>
  16. #include "blk-cgroup.h"
  17. /*
  18. * tunables
  19. */
  20. /* max queue in one round of service */
  21. static const int cfq_quantum = 4;
  22. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  23. /* maximum backwards seek, in KiB */
  24. static const int cfq_back_max = 16 * 1024;
  25. /* penalty of a backwards seek */
  26. static const int cfq_back_penalty = 2;
  27. static const int cfq_slice_sync = HZ / 10;
  28. static int cfq_slice_async = HZ / 25;
  29. static const int cfq_slice_async_rq = 2;
  30. static int cfq_slice_idle = HZ / 125;
  31. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  32. static const int cfq_hist_divisor = 4;
  33. /*
  34. * offset from end of service tree
  35. */
  36. #define CFQ_IDLE_DELAY (HZ / 5)
  37. /*
  38. * below this threshold, we consider thinktime immediate
  39. */
  40. #define CFQ_MIN_TT (2)
  41. #define CFQ_SLICE_SCALE (5)
  42. #define CFQ_HW_QUEUE_MIN (5)
  43. #define CFQ_SERVICE_SHIFT 12
  44. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  45. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  46. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  47. #define RQ_CIC(rq) \
  48. ((struct cfq_io_context *) (rq)->elevator_private)
  49. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  50. static struct kmem_cache *cfq_pool;
  51. static struct kmem_cache *cfq_ioc_pool;
  52. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  53. static struct completion *ioc_gone;
  54. static DEFINE_SPINLOCK(ioc_gone_lock);
  55. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  56. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  57. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  58. #define sample_valid(samples) ((samples) > 80)
  59. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  60. /*
  61. * Most of our rbtree usage is for sorting with min extraction, so
  62. * if we cache the leftmost node we don't have to walk down the tree
  63. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  64. * move this into the elevator for the rq sorting as well.
  65. */
  66. struct cfq_rb_root {
  67. struct rb_root rb;
  68. struct rb_node *left;
  69. unsigned count;
  70. u64 min_vdisktime;
  71. struct rb_node *active;
  72. unsigned total_weight;
  73. };
  74. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
  75. /*
  76. * Per process-grouping structure
  77. */
  78. struct cfq_queue {
  79. /* reference count */
  80. atomic_t ref;
  81. /* various state flags, see below */
  82. unsigned int flags;
  83. /* parent cfq_data */
  84. struct cfq_data *cfqd;
  85. /* service_tree member */
  86. struct rb_node rb_node;
  87. /* service_tree key */
  88. unsigned long rb_key;
  89. /* prio tree member */
  90. struct rb_node p_node;
  91. /* prio tree root we belong to, if any */
  92. struct rb_root *p_root;
  93. /* sorted list of pending requests */
  94. struct rb_root sort_list;
  95. /* if fifo isn't expired, next request to serve */
  96. struct request *next_rq;
  97. /* requests queued in sort_list */
  98. int queued[2];
  99. /* currently allocated requests */
  100. int allocated[2];
  101. /* fifo list of requests in sort_list */
  102. struct list_head fifo;
  103. /* time when queue got scheduled in to dispatch first request. */
  104. unsigned long dispatch_start;
  105. unsigned int allocated_slice;
  106. unsigned int slice_dispatch;
  107. /* time when first request from queue completed and slice started. */
  108. unsigned long slice_start;
  109. unsigned long slice_end;
  110. long slice_resid;
  111. /* pending metadata requests */
  112. int meta_pending;
  113. /* number of requests that are on the dispatch list or inside driver */
  114. int dispatched;
  115. /* io prio of this group */
  116. unsigned short ioprio, org_ioprio;
  117. unsigned short ioprio_class, org_ioprio_class;
  118. pid_t pid;
  119. u32 seek_history;
  120. sector_t last_request_pos;
  121. struct cfq_rb_root *service_tree;
  122. struct cfq_queue *new_cfqq;
  123. struct cfq_group *cfqg;
  124. struct cfq_group *orig_cfqg;
  125. /* Sectors dispatched in current dispatch round */
  126. unsigned long nr_sectors;
  127. };
  128. /*
  129. * First index in the service_trees.
  130. * IDLE is handled separately, so it has negative index
  131. */
  132. enum wl_prio_t {
  133. BE_WORKLOAD = 0,
  134. RT_WORKLOAD = 1,
  135. IDLE_WORKLOAD = 2,
  136. };
  137. /*
  138. * Second index in the service_trees.
  139. */
  140. enum wl_type_t {
  141. ASYNC_WORKLOAD = 0,
  142. SYNC_NOIDLE_WORKLOAD = 1,
  143. SYNC_WORKLOAD = 2
  144. };
  145. /* This is per cgroup per device grouping structure */
  146. struct cfq_group {
  147. /* group service_tree member */
  148. struct rb_node rb_node;
  149. /* group service_tree key */
  150. u64 vdisktime;
  151. unsigned int weight;
  152. bool on_st;
  153. /* number of cfqq currently on this group */
  154. int nr_cfqq;
  155. /* Per group busy queus average. Useful for workload slice calc. */
  156. unsigned int busy_queues_avg[2];
  157. /*
  158. * rr lists of queues with requests, onle rr for each priority class.
  159. * Counts are embedded in the cfq_rb_root
  160. */
  161. struct cfq_rb_root service_trees[2][3];
  162. struct cfq_rb_root service_tree_idle;
  163. unsigned long saved_workload_slice;
  164. enum wl_type_t saved_workload;
  165. enum wl_prio_t saved_serving_prio;
  166. struct blkio_group blkg;
  167. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  168. struct hlist_node cfqd_node;
  169. atomic_t ref;
  170. #endif
  171. };
  172. /*
  173. * Per block device queue structure
  174. */
  175. struct cfq_data {
  176. struct request_queue *queue;
  177. /* Root service tree for cfq_groups */
  178. struct cfq_rb_root grp_service_tree;
  179. struct cfq_group root_group;
  180. /*
  181. * The priority currently being served
  182. */
  183. enum wl_prio_t serving_prio;
  184. enum wl_type_t serving_type;
  185. unsigned long workload_expires;
  186. struct cfq_group *serving_group;
  187. bool noidle_tree_requires_idle;
  188. /*
  189. * Each priority tree is sorted by next_request position. These
  190. * trees are used when determining if two or more queues are
  191. * interleaving requests (see cfq_close_cooperator).
  192. */
  193. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  194. unsigned int busy_queues;
  195. int rq_in_driver;
  196. int rq_in_flight[2];
  197. /*
  198. * queue-depth detection
  199. */
  200. int rq_queued;
  201. int hw_tag;
  202. /*
  203. * hw_tag can be
  204. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  205. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  206. * 0 => no NCQ
  207. */
  208. int hw_tag_est_depth;
  209. unsigned int hw_tag_samples;
  210. /*
  211. * idle window management
  212. */
  213. struct timer_list idle_slice_timer;
  214. struct work_struct unplug_work;
  215. struct cfq_queue *active_queue;
  216. struct cfq_io_context *active_cic;
  217. /*
  218. * async queue for each priority case
  219. */
  220. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  221. struct cfq_queue *async_idle_cfqq;
  222. sector_t last_position;
  223. /*
  224. * tunables, see top of file
  225. */
  226. unsigned int cfq_quantum;
  227. unsigned int cfq_fifo_expire[2];
  228. unsigned int cfq_back_penalty;
  229. unsigned int cfq_back_max;
  230. unsigned int cfq_slice[2];
  231. unsigned int cfq_slice_async_rq;
  232. unsigned int cfq_slice_idle;
  233. unsigned int cfq_latency;
  234. unsigned int cfq_group_isolation;
  235. struct list_head cic_list;
  236. /*
  237. * Fallback dummy cfqq for extreme OOM conditions
  238. */
  239. struct cfq_queue oom_cfqq;
  240. unsigned long last_delayed_sync;
  241. /* List of cfq groups being managed on this device*/
  242. struct hlist_head cfqg_list;
  243. struct rcu_head rcu;
  244. };
  245. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  246. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  247. enum wl_prio_t prio,
  248. enum wl_type_t type)
  249. {
  250. if (!cfqg)
  251. return NULL;
  252. if (prio == IDLE_WORKLOAD)
  253. return &cfqg->service_tree_idle;
  254. return &cfqg->service_trees[prio][type];
  255. }
  256. enum cfqq_state_flags {
  257. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  258. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  259. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  260. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  261. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  262. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  263. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  264. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  265. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  266. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  267. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  268. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  269. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  270. };
  271. #define CFQ_CFQQ_FNS(name) \
  272. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  273. { \
  274. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  275. } \
  276. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  277. { \
  278. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  279. } \
  280. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  281. { \
  282. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  283. }
  284. CFQ_CFQQ_FNS(on_rr);
  285. CFQ_CFQQ_FNS(wait_request);
  286. CFQ_CFQQ_FNS(must_dispatch);
  287. CFQ_CFQQ_FNS(must_alloc_slice);
  288. CFQ_CFQQ_FNS(fifo_expire);
  289. CFQ_CFQQ_FNS(idle_window);
  290. CFQ_CFQQ_FNS(prio_changed);
  291. CFQ_CFQQ_FNS(slice_new);
  292. CFQ_CFQQ_FNS(sync);
  293. CFQ_CFQQ_FNS(coop);
  294. CFQ_CFQQ_FNS(split_coop);
  295. CFQ_CFQQ_FNS(deep);
  296. CFQ_CFQQ_FNS(wait_busy);
  297. #undef CFQ_CFQQ_FNS
  298. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  299. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  300. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  301. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  302. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  303. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  304. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  305. blkg_path(&(cfqg)->blkg), ##args); \
  306. #else
  307. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  308. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  309. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  310. #endif
  311. #define cfq_log(cfqd, fmt, args...) \
  312. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  313. /* Traverses through cfq group service trees */
  314. #define for_each_cfqg_st(cfqg, i, j, st) \
  315. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  316. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  317. : &cfqg->service_tree_idle; \
  318. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  319. (i == IDLE_WORKLOAD && j == 0); \
  320. j++, st = i < IDLE_WORKLOAD ? \
  321. &cfqg->service_trees[i][j]: NULL) \
  322. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  323. {
  324. if (cfq_class_idle(cfqq))
  325. return IDLE_WORKLOAD;
  326. if (cfq_class_rt(cfqq))
  327. return RT_WORKLOAD;
  328. return BE_WORKLOAD;
  329. }
  330. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  331. {
  332. if (!cfq_cfqq_sync(cfqq))
  333. return ASYNC_WORKLOAD;
  334. if (!cfq_cfqq_idle_window(cfqq))
  335. return SYNC_NOIDLE_WORKLOAD;
  336. return SYNC_WORKLOAD;
  337. }
  338. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  339. struct cfq_data *cfqd,
  340. struct cfq_group *cfqg)
  341. {
  342. if (wl == IDLE_WORKLOAD)
  343. return cfqg->service_tree_idle.count;
  344. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  345. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  346. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  347. }
  348. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  349. struct cfq_group *cfqg)
  350. {
  351. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  352. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  353. }
  354. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  355. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  356. struct io_context *, gfp_t);
  357. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  358. struct io_context *);
  359. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  360. bool is_sync)
  361. {
  362. return cic->cfqq[is_sync];
  363. }
  364. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  365. struct cfq_queue *cfqq, bool is_sync)
  366. {
  367. cic->cfqq[is_sync] = cfqq;
  368. }
  369. /*
  370. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  371. * set (in which case it could also be direct WRITE).
  372. */
  373. static inline bool cfq_bio_sync(struct bio *bio)
  374. {
  375. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  376. }
  377. /*
  378. * scheduler run of queue, if there are requests pending and no one in the
  379. * driver that will restart queueing
  380. */
  381. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  382. {
  383. if (cfqd->busy_queues) {
  384. cfq_log(cfqd, "schedule dispatch");
  385. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  386. }
  387. }
  388. static int cfq_queue_empty(struct request_queue *q)
  389. {
  390. struct cfq_data *cfqd = q->elevator->elevator_data;
  391. return !cfqd->rq_queued;
  392. }
  393. /*
  394. * Scale schedule slice based on io priority. Use the sync time slice only
  395. * if a queue is marked sync and has sync io queued. A sync queue with async
  396. * io only, should not get full sync slice length.
  397. */
  398. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  399. unsigned short prio)
  400. {
  401. const int base_slice = cfqd->cfq_slice[sync];
  402. WARN_ON(prio >= IOPRIO_BE_NR);
  403. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  404. }
  405. static inline int
  406. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  407. {
  408. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  409. }
  410. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  411. {
  412. u64 d = delta << CFQ_SERVICE_SHIFT;
  413. d = d * BLKIO_WEIGHT_DEFAULT;
  414. do_div(d, cfqg->weight);
  415. return d;
  416. }
  417. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  418. {
  419. s64 delta = (s64)(vdisktime - min_vdisktime);
  420. if (delta > 0)
  421. min_vdisktime = vdisktime;
  422. return min_vdisktime;
  423. }
  424. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  425. {
  426. s64 delta = (s64)(vdisktime - min_vdisktime);
  427. if (delta < 0)
  428. min_vdisktime = vdisktime;
  429. return min_vdisktime;
  430. }
  431. static void update_min_vdisktime(struct cfq_rb_root *st)
  432. {
  433. u64 vdisktime = st->min_vdisktime;
  434. struct cfq_group *cfqg;
  435. if (st->active) {
  436. cfqg = rb_entry_cfqg(st->active);
  437. vdisktime = cfqg->vdisktime;
  438. }
  439. if (st->left) {
  440. cfqg = rb_entry_cfqg(st->left);
  441. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  442. }
  443. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  444. }
  445. /*
  446. * get averaged number of queues of RT/BE priority.
  447. * average is updated, with a formula that gives more weight to higher numbers,
  448. * to quickly follows sudden increases and decrease slowly
  449. */
  450. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  451. struct cfq_group *cfqg, bool rt)
  452. {
  453. unsigned min_q, max_q;
  454. unsigned mult = cfq_hist_divisor - 1;
  455. unsigned round = cfq_hist_divisor / 2;
  456. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  457. min_q = min(cfqg->busy_queues_avg[rt], busy);
  458. max_q = max(cfqg->busy_queues_avg[rt], busy);
  459. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  460. cfq_hist_divisor;
  461. return cfqg->busy_queues_avg[rt];
  462. }
  463. static inline unsigned
  464. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  465. {
  466. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  467. return cfq_target_latency * cfqg->weight / st->total_weight;
  468. }
  469. static inline void
  470. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  471. {
  472. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  473. if (cfqd->cfq_latency) {
  474. /*
  475. * interested queues (we consider only the ones with the same
  476. * priority class in the cfq group)
  477. */
  478. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  479. cfq_class_rt(cfqq));
  480. unsigned sync_slice = cfqd->cfq_slice[1];
  481. unsigned expect_latency = sync_slice * iq;
  482. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  483. if (expect_latency > group_slice) {
  484. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  485. /* scale low_slice according to IO priority
  486. * and sync vs async */
  487. unsigned low_slice =
  488. min(slice, base_low_slice * slice / sync_slice);
  489. /* the adapted slice value is scaled to fit all iqs
  490. * into the target latency */
  491. slice = max(slice * group_slice / expect_latency,
  492. low_slice);
  493. }
  494. }
  495. cfqq->slice_start = jiffies;
  496. cfqq->slice_end = jiffies + slice;
  497. cfqq->allocated_slice = slice;
  498. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  499. }
  500. /*
  501. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  502. * isn't valid until the first request from the dispatch is activated
  503. * and the slice time set.
  504. */
  505. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  506. {
  507. if (cfq_cfqq_slice_new(cfqq))
  508. return 0;
  509. if (time_before(jiffies, cfqq->slice_end))
  510. return 0;
  511. return 1;
  512. }
  513. /*
  514. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  515. * We choose the request that is closest to the head right now. Distance
  516. * behind the head is penalized and only allowed to a certain extent.
  517. */
  518. static struct request *
  519. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  520. {
  521. sector_t s1, s2, d1 = 0, d2 = 0;
  522. unsigned long back_max;
  523. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  524. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  525. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  526. if (rq1 == NULL || rq1 == rq2)
  527. return rq2;
  528. if (rq2 == NULL)
  529. return rq1;
  530. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  531. return rq1;
  532. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  533. return rq2;
  534. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  535. return rq1;
  536. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  537. return rq2;
  538. s1 = blk_rq_pos(rq1);
  539. s2 = blk_rq_pos(rq2);
  540. /*
  541. * by definition, 1KiB is 2 sectors
  542. */
  543. back_max = cfqd->cfq_back_max * 2;
  544. /*
  545. * Strict one way elevator _except_ in the case where we allow
  546. * short backward seeks which are biased as twice the cost of a
  547. * similar forward seek.
  548. */
  549. if (s1 >= last)
  550. d1 = s1 - last;
  551. else if (s1 + back_max >= last)
  552. d1 = (last - s1) * cfqd->cfq_back_penalty;
  553. else
  554. wrap |= CFQ_RQ1_WRAP;
  555. if (s2 >= last)
  556. d2 = s2 - last;
  557. else if (s2 + back_max >= last)
  558. d2 = (last - s2) * cfqd->cfq_back_penalty;
  559. else
  560. wrap |= CFQ_RQ2_WRAP;
  561. /* Found required data */
  562. /*
  563. * By doing switch() on the bit mask "wrap" we avoid having to
  564. * check two variables for all permutations: --> faster!
  565. */
  566. switch (wrap) {
  567. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  568. if (d1 < d2)
  569. return rq1;
  570. else if (d2 < d1)
  571. return rq2;
  572. else {
  573. if (s1 >= s2)
  574. return rq1;
  575. else
  576. return rq2;
  577. }
  578. case CFQ_RQ2_WRAP:
  579. return rq1;
  580. case CFQ_RQ1_WRAP:
  581. return rq2;
  582. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  583. default:
  584. /*
  585. * Since both rqs are wrapped,
  586. * start with the one that's further behind head
  587. * (--> only *one* back seek required),
  588. * since back seek takes more time than forward.
  589. */
  590. if (s1 <= s2)
  591. return rq1;
  592. else
  593. return rq2;
  594. }
  595. }
  596. /*
  597. * The below is leftmost cache rbtree addon
  598. */
  599. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  600. {
  601. /* Service tree is empty */
  602. if (!root->count)
  603. return NULL;
  604. if (!root->left)
  605. root->left = rb_first(&root->rb);
  606. if (root->left)
  607. return rb_entry(root->left, struct cfq_queue, rb_node);
  608. return NULL;
  609. }
  610. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  611. {
  612. if (!root->left)
  613. root->left = rb_first(&root->rb);
  614. if (root->left)
  615. return rb_entry_cfqg(root->left);
  616. return NULL;
  617. }
  618. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  619. {
  620. rb_erase(n, root);
  621. RB_CLEAR_NODE(n);
  622. }
  623. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  624. {
  625. if (root->left == n)
  626. root->left = NULL;
  627. rb_erase_init(n, &root->rb);
  628. --root->count;
  629. }
  630. /*
  631. * would be nice to take fifo expire time into account as well
  632. */
  633. static struct request *
  634. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  635. struct request *last)
  636. {
  637. struct rb_node *rbnext = rb_next(&last->rb_node);
  638. struct rb_node *rbprev = rb_prev(&last->rb_node);
  639. struct request *next = NULL, *prev = NULL;
  640. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  641. if (rbprev)
  642. prev = rb_entry_rq(rbprev);
  643. if (rbnext)
  644. next = rb_entry_rq(rbnext);
  645. else {
  646. rbnext = rb_first(&cfqq->sort_list);
  647. if (rbnext && rbnext != &last->rb_node)
  648. next = rb_entry_rq(rbnext);
  649. }
  650. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  651. }
  652. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  653. struct cfq_queue *cfqq)
  654. {
  655. /*
  656. * just an approximation, should be ok.
  657. */
  658. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  659. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  660. }
  661. static inline s64
  662. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  663. {
  664. return cfqg->vdisktime - st->min_vdisktime;
  665. }
  666. static void
  667. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  668. {
  669. struct rb_node **node = &st->rb.rb_node;
  670. struct rb_node *parent = NULL;
  671. struct cfq_group *__cfqg;
  672. s64 key = cfqg_key(st, cfqg);
  673. int left = 1;
  674. while (*node != NULL) {
  675. parent = *node;
  676. __cfqg = rb_entry_cfqg(parent);
  677. if (key < cfqg_key(st, __cfqg))
  678. node = &parent->rb_left;
  679. else {
  680. node = &parent->rb_right;
  681. left = 0;
  682. }
  683. }
  684. if (left)
  685. st->left = &cfqg->rb_node;
  686. rb_link_node(&cfqg->rb_node, parent, node);
  687. rb_insert_color(&cfqg->rb_node, &st->rb);
  688. }
  689. static void
  690. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  691. {
  692. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  693. struct cfq_group *__cfqg;
  694. struct rb_node *n;
  695. cfqg->nr_cfqq++;
  696. if (cfqg->on_st)
  697. return;
  698. /*
  699. * Currently put the group at the end. Later implement something
  700. * so that groups get lesser vtime based on their weights, so that
  701. * if group does not loose all if it was not continously backlogged.
  702. */
  703. n = rb_last(&st->rb);
  704. if (n) {
  705. __cfqg = rb_entry_cfqg(n);
  706. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  707. } else
  708. cfqg->vdisktime = st->min_vdisktime;
  709. __cfq_group_service_tree_add(st, cfqg);
  710. cfqg->on_st = true;
  711. st->total_weight += cfqg->weight;
  712. }
  713. static void
  714. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  715. {
  716. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  717. if (st->active == &cfqg->rb_node)
  718. st->active = NULL;
  719. BUG_ON(cfqg->nr_cfqq < 1);
  720. cfqg->nr_cfqq--;
  721. /* If there are other cfq queues under this group, don't delete it */
  722. if (cfqg->nr_cfqq)
  723. return;
  724. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  725. cfqg->on_st = false;
  726. st->total_weight -= cfqg->weight;
  727. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  728. cfq_rb_erase(&cfqg->rb_node, st);
  729. cfqg->saved_workload_slice = 0;
  730. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  731. }
  732. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  733. {
  734. unsigned int slice_used;
  735. /*
  736. * Queue got expired before even a single request completed or
  737. * got expired immediately after first request completion.
  738. */
  739. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  740. /*
  741. * Also charge the seek time incurred to the group, otherwise
  742. * if there are mutiple queues in the group, each can dispatch
  743. * a single request on seeky media and cause lots of seek time
  744. * and group will never know it.
  745. */
  746. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  747. 1);
  748. } else {
  749. slice_used = jiffies - cfqq->slice_start;
  750. if (slice_used > cfqq->allocated_slice)
  751. slice_used = cfqq->allocated_slice;
  752. }
  753. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  754. cfqq->nr_sectors);
  755. return slice_used;
  756. }
  757. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  758. struct cfq_queue *cfqq)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. unsigned int used_sl, charge_sl;
  762. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  763. - cfqg->service_tree_idle.count;
  764. BUG_ON(nr_sync < 0);
  765. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  766. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  767. charge_sl = cfqq->allocated_slice;
  768. /* Can't update vdisktime while group is on service tree */
  769. cfq_rb_erase(&cfqg->rb_node, st);
  770. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  771. __cfq_group_service_tree_add(st, cfqg);
  772. /* This group is being expired. Save the context */
  773. if (time_after(cfqd->workload_expires, jiffies)) {
  774. cfqg->saved_workload_slice = cfqd->workload_expires
  775. - jiffies;
  776. cfqg->saved_workload = cfqd->serving_type;
  777. cfqg->saved_serving_prio = cfqd->serving_prio;
  778. } else
  779. cfqg->saved_workload_slice = 0;
  780. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  781. st->min_vdisktime);
  782. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  783. cfqq->nr_sectors);
  784. }
  785. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  786. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  787. {
  788. if (blkg)
  789. return container_of(blkg, struct cfq_group, blkg);
  790. return NULL;
  791. }
  792. void
  793. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  794. {
  795. cfqg_of_blkg(blkg)->weight = weight;
  796. }
  797. static struct cfq_group *
  798. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  799. {
  800. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  801. struct cfq_group *cfqg = NULL;
  802. void *key = cfqd;
  803. int i, j;
  804. struct cfq_rb_root *st;
  805. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  806. unsigned int major, minor;
  807. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  808. if (cfqg || !create)
  809. goto done;
  810. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  811. if (!cfqg)
  812. goto done;
  813. cfqg->weight = blkcg->weight;
  814. for_each_cfqg_st(cfqg, i, j, st)
  815. *st = CFQ_RB_ROOT;
  816. RB_CLEAR_NODE(&cfqg->rb_node);
  817. /*
  818. * Take the initial reference that will be released on destroy
  819. * This can be thought of a joint reference by cgroup and
  820. * elevator which will be dropped by either elevator exit
  821. * or cgroup deletion path depending on who is exiting first.
  822. */
  823. atomic_set(&cfqg->ref, 1);
  824. /* Add group onto cgroup list */
  825. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  826. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  827. MKDEV(major, minor));
  828. /* Add group on cfqd list */
  829. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  830. done:
  831. return cfqg;
  832. }
  833. /*
  834. * Search for the cfq group current task belongs to. If create = 1, then also
  835. * create the cfq group if it does not exist. request_queue lock must be held.
  836. */
  837. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  838. {
  839. struct cgroup *cgroup;
  840. struct cfq_group *cfqg = NULL;
  841. rcu_read_lock();
  842. cgroup = task_cgroup(current, blkio_subsys_id);
  843. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  844. if (!cfqg && create)
  845. cfqg = &cfqd->root_group;
  846. rcu_read_unlock();
  847. return cfqg;
  848. }
  849. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  850. {
  851. /* Currently, all async queues are mapped to root group */
  852. if (!cfq_cfqq_sync(cfqq))
  853. cfqg = &cfqq->cfqd->root_group;
  854. cfqq->cfqg = cfqg;
  855. /* cfqq reference on cfqg */
  856. atomic_inc(&cfqq->cfqg->ref);
  857. }
  858. static void cfq_put_cfqg(struct cfq_group *cfqg)
  859. {
  860. struct cfq_rb_root *st;
  861. int i, j;
  862. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  863. if (!atomic_dec_and_test(&cfqg->ref))
  864. return;
  865. for_each_cfqg_st(cfqg, i, j, st)
  866. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  867. kfree(cfqg);
  868. }
  869. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  870. {
  871. /* Something wrong if we are trying to remove same group twice */
  872. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  873. hlist_del_init(&cfqg->cfqd_node);
  874. /*
  875. * Put the reference taken at the time of creation so that when all
  876. * queues are gone, group can be destroyed.
  877. */
  878. cfq_put_cfqg(cfqg);
  879. }
  880. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  881. {
  882. struct hlist_node *pos, *n;
  883. struct cfq_group *cfqg;
  884. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  885. /*
  886. * If cgroup removal path got to blk_group first and removed
  887. * it from cgroup list, then it will take care of destroying
  888. * cfqg also.
  889. */
  890. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  891. cfq_destroy_cfqg(cfqd, cfqg);
  892. }
  893. }
  894. /*
  895. * Blk cgroup controller notification saying that blkio_group object is being
  896. * delinked as associated cgroup object is going away. That also means that
  897. * no new IO will come in this group. So get rid of this group as soon as
  898. * any pending IO in the group is finished.
  899. *
  900. * This function is called under rcu_read_lock(). key is the rcu protected
  901. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  902. * read lock.
  903. *
  904. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  905. * it should not be NULL as even if elevator was exiting, cgroup deltion
  906. * path got to it first.
  907. */
  908. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  909. {
  910. unsigned long flags;
  911. struct cfq_data *cfqd = key;
  912. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  913. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  914. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  915. }
  916. #else /* GROUP_IOSCHED */
  917. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  918. {
  919. return &cfqd->root_group;
  920. }
  921. static inline void
  922. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  923. cfqq->cfqg = cfqg;
  924. }
  925. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  926. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  927. #endif /* GROUP_IOSCHED */
  928. /*
  929. * The cfqd->service_trees holds all pending cfq_queue's that have
  930. * requests waiting to be processed. It is sorted in the order that
  931. * we will service the queues.
  932. */
  933. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  934. bool add_front)
  935. {
  936. struct rb_node **p, *parent;
  937. struct cfq_queue *__cfqq;
  938. unsigned long rb_key;
  939. struct cfq_rb_root *service_tree;
  940. int left;
  941. int new_cfqq = 1;
  942. int group_changed = 0;
  943. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  944. if (!cfqd->cfq_group_isolation
  945. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  946. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  947. /* Move this cfq to root group */
  948. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  949. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  950. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  951. cfqq->orig_cfqg = cfqq->cfqg;
  952. cfqq->cfqg = &cfqd->root_group;
  953. atomic_inc(&cfqd->root_group.ref);
  954. group_changed = 1;
  955. } else if (!cfqd->cfq_group_isolation
  956. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  957. /* cfqq is sequential now needs to go to its original group */
  958. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  959. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  960. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  961. cfq_put_cfqg(cfqq->cfqg);
  962. cfqq->cfqg = cfqq->orig_cfqg;
  963. cfqq->orig_cfqg = NULL;
  964. group_changed = 1;
  965. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  966. }
  967. #endif
  968. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  969. cfqq_type(cfqq));
  970. if (cfq_class_idle(cfqq)) {
  971. rb_key = CFQ_IDLE_DELAY;
  972. parent = rb_last(&service_tree->rb);
  973. if (parent && parent != &cfqq->rb_node) {
  974. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  975. rb_key += __cfqq->rb_key;
  976. } else
  977. rb_key += jiffies;
  978. } else if (!add_front) {
  979. /*
  980. * Get our rb key offset. Subtract any residual slice
  981. * value carried from last service. A negative resid
  982. * count indicates slice overrun, and this should position
  983. * the next service time further away in the tree.
  984. */
  985. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  986. rb_key -= cfqq->slice_resid;
  987. cfqq->slice_resid = 0;
  988. } else {
  989. rb_key = -HZ;
  990. __cfqq = cfq_rb_first(service_tree);
  991. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  992. }
  993. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  994. new_cfqq = 0;
  995. /*
  996. * same position, nothing more to do
  997. */
  998. if (rb_key == cfqq->rb_key &&
  999. cfqq->service_tree == service_tree)
  1000. return;
  1001. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1002. cfqq->service_tree = NULL;
  1003. }
  1004. left = 1;
  1005. parent = NULL;
  1006. cfqq->service_tree = service_tree;
  1007. p = &service_tree->rb.rb_node;
  1008. while (*p) {
  1009. struct rb_node **n;
  1010. parent = *p;
  1011. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1012. /*
  1013. * sort by key, that represents service time.
  1014. */
  1015. if (time_before(rb_key, __cfqq->rb_key))
  1016. n = &(*p)->rb_left;
  1017. else {
  1018. n = &(*p)->rb_right;
  1019. left = 0;
  1020. }
  1021. p = n;
  1022. }
  1023. if (left)
  1024. service_tree->left = &cfqq->rb_node;
  1025. cfqq->rb_key = rb_key;
  1026. rb_link_node(&cfqq->rb_node, parent, p);
  1027. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1028. service_tree->count++;
  1029. if ((add_front || !new_cfqq) && !group_changed)
  1030. return;
  1031. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1032. }
  1033. static struct cfq_queue *
  1034. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1035. sector_t sector, struct rb_node **ret_parent,
  1036. struct rb_node ***rb_link)
  1037. {
  1038. struct rb_node **p, *parent;
  1039. struct cfq_queue *cfqq = NULL;
  1040. parent = NULL;
  1041. p = &root->rb_node;
  1042. while (*p) {
  1043. struct rb_node **n;
  1044. parent = *p;
  1045. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1046. /*
  1047. * Sort strictly based on sector. Smallest to the left,
  1048. * largest to the right.
  1049. */
  1050. if (sector > blk_rq_pos(cfqq->next_rq))
  1051. n = &(*p)->rb_right;
  1052. else if (sector < blk_rq_pos(cfqq->next_rq))
  1053. n = &(*p)->rb_left;
  1054. else
  1055. break;
  1056. p = n;
  1057. cfqq = NULL;
  1058. }
  1059. *ret_parent = parent;
  1060. if (rb_link)
  1061. *rb_link = p;
  1062. return cfqq;
  1063. }
  1064. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1065. {
  1066. struct rb_node **p, *parent;
  1067. struct cfq_queue *__cfqq;
  1068. if (cfqq->p_root) {
  1069. rb_erase(&cfqq->p_node, cfqq->p_root);
  1070. cfqq->p_root = NULL;
  1071. }
  1072. if (cfq_class_idle(cfqq))
  1073. return;
  1074. if (!cfqq->next_rq)
  1075. return;
  1076. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1077. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1078. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1079. if (!__cfqq) {
  1080. rb_link_node(&cfqq->p_node, parent, p);
  1081. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1082. } else
  1083. cfqq->p_root = NULL;
  1084. }
  1085. /*
  1086. * Update cfqq's position in the service tree.
  1087. */
  1088. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1089. {
  1090. /*
  1091. * Resorting requires the cfqq to be on the RR list already.
  1092. */
  1093. if (cfq_cfqq_on_rr(cfqq)) {
  1094. cfq_service_tree_add(cfqd, cfqq, 0);
  1095. cfq_prio_tree_add(cfqd, cfqq);
  1096. }
  1097. }
  1098. /*
  1099. * add to busy list of queues for service, trying to be fair in ordering
  1100. * the pending list according to last request service
  1101. */
  1102. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1103. {
  1104. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1105. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1106. cfq_mark_cfqq_on_rr(cfqq);
  1107. cfqd->busy_queues++;
  1108. cfq_resort_rr_list(cfqd, cfqq);
  1109. }
  1110. /*
  1111. * Called when the cfqq no longer has requests pending, remove it from
  1112. * the service tree.
  1113. */
  1114. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1115. {
  1116. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1117. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1118. cfq_clear_cfqq_on_rr(cfqq);
  1119. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1120. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1121. cfqq->service_tree = NULL;
  1122. }
  1123. if (cfqq->p_root) {
  1124. rb_erase(&cfqq->p_node, cfqq->p_root);
  1125. cfqq->p_root = NULL;
  1126. }
  1127. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1128. BUG_ON(!cfqd->busy_queues);
  1129. cfqd->busy_queues--;
  1130. }
  1131. /*
  1132. * rb tree support functions
  1133. */
  1134. static void cfq_del_rq_rb(struct request *rq)
  1135. {
  1136. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1137. const int sync = rq_is_sync(rq);
  1138. BUG_ON(!cfqq->queued[sync]);
  1139. cfqq->queued[sync]--;
  1140. elv_rb_del(&cfqq->sort_list, rq);
  1141. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1142. /*
  1143. * Queue will be deleted from service tree when we actually
  1144. * expire it later. Right now just remove it from prio tree
  1145. * as it is empty.
  1146. */
  1147. if (cfqq->p_root) {
  1148. rb_erase(&cfqq->p_node, cfqq->p_root);
  1149. cfqq->p_root = NULL;
  1150. }
  1151. }
  1152. }
  1153. static void cfq_add_rq_rb(struct request *rq)
  1154. {
  1155. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1156. struct cfq_data *cfqd = cfqq->cfqd;
  1157. struct request *__alias, *prev;
  1158. cfqq->queued[rq_is_sync(rq)]++;
  1159. /*
  1160. * looks a little odd, but the first insert might return an alias.
  1161. * if that happens, put the alias on the dispatch list
  1162. */
  1163. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1164. cfq_dispatch_insert(cfqd->queue, __alias);
  1165. if (!cfq_cfqq_on_rr(cfqq))
  1166. cfq_add_cfqq_rr(cfqd, cfqq);
  1167. /*
  1168. * check if this request is a better next-serve candidate
  1169. */
  1170. prev = cfqq->next_rq;
  1171. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1172. /*
  1173. * adjust priority tree position, if ->next_rq changes
  1174. */
  1175. if (prev != cfqq->next_rq)
  1176. cfq_prio_tree_add(cfqd, cfqq);
  1177. BUG_ON(!cfqq->next_rq);
  1178. }
  1179. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1180. {
  1181. elv_rb_del(&cfqq->sort_list, rq);
  1182. cfqq->queued[rq_is_sync(rq)]--;
  1183. cfq_add_rq_rb(rq);
  1184. }
  1185. static struct request *
  1186. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1187. {
  1188. struct task_struct *tsk = current;
  1189. struct cfq_io_context *cic;
  1190. struct cfq_queue *cfqq;
  1191. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1192. if (!cic)
  1193. return NULL;
  1194. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1195. if (cfqq) {
  1196. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1197. return elv_rb_find(&cfqq->sort_list, sector);
  1198. }
  1199. return NULL;
  1200. }
  1201. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1202. {
  1203. struct cfq_data *cfqd = q->elevator->elevator_data;
  1204. cfqd->rq_in_driver++;
  1205. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1206. cfqd->rq_in_driver);
  1207. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1208. }
  1209. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1210. {
  1211. struct cfq_data *cfqd = q->elevator->elevator_data;
  1212. WARN_ON(!cfqd->rq_in_driver);
  1213. cfqd->rq_in_driver--;
  1214. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1215. cfqd->rq_in_driver);
  1216. }
  1217. static void cfq_remove_request(struct request *rq)
  1218. {
  1219. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1220. if (cfqq->next_rq == rq)
  1221. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1222. list_del_init(&rq->queuelist);
  1223. cfq_del_rq_rb(rq);
  1224. cfqq->cfqd->rq_queued--;
  1225. if (rq_is_meta(rq)) {
  1226. WARN_ON(!cfqq->meta_pending);
  1227. cfqq->meta_pending--;
  1228. }
  1229. }
  1230. static int cfq_merge(struct request_queue *q, struct request **req,
  1231. struct bio *bio)
  1232. {
  1233. struct cfq_data *cfqd = q->elevator->elevator_data;
  1234. struct request *__rq;
  1235. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1236. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1237. *req = __rq;
  1238. return ELEVATOR_FRONT_MERGE;
  1239. }
  1240. return ELEVATOR_NO_MERGE;
  1241. }
  1242. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1243. int type)
  1244. {
  1245. if (type == ELEVATOR_FRONT_MERGE) {
  1246. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1247. cfq_reposition_rq_rb(cfqq, req);
  1248. }
  1249. }
  1250. static void
  1251. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1252. struct request *next)
  1253. {
  1254. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1255. /*
  1256. * reposition in fifo if next is older than rq
  1257. */
  1258. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1259. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1260. list_move(&rq->queuelist, &next->queuelist);
  1261. rq_set_fifo_time(rq, rq_fifo_time(next));
  1262. }
  1263. if (cfqq->next_rq == next)
  1264. cfqq->next_rq = rq;
  1265. cfq_remove_request(next);
  1266. }
  1267. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1268. struct bio *bio)
  1269. {
  1270. struct cfq_data *cfqd = q->elevator->elevator_data;
  1271. struct cfq_io_context *cic;
  1272. struct cfq_queue *cfqq;
  1273. /*
  1274. * Disallow merge of a sync bio into an async request.
  1275. */
  1276. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1277. return false;
  1278. /*
  1279. * Lookup the cfqq that this bio will be queued with. Allow
  1280. * merge only if rq is queued there.
  1281. */
  1282. cic = cfq_cic_lookup(cfqd, current->io_context);
  1283. if (!cic)
  1284. return false;
  1285. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1286. return cfqq == RQ_CFQQ(rq);
  1287. }
  1288. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1289. struct cfq_queue *cfqq)
  1290. {
  1291. if (cfqq) {
  1292. cfq_log_cfqq(cfqd, cfqq, "set_active");
  1293. cfqq->slice_start = 0;
  1294. cfqq->dispatch_start = jiffies;
  1295. cfqq->allocated_slice = 0;
  1296. cfqq->slice_end = 0;
  1297. cfqq->slice_dispatch = 0;
  1298. cfqq->nr_sectors = 0;
  1299. cfq_clear_cfqq_wait_request(cfqq);
  1300. cfq_clear_cfqq_must_dispatch(cfqq);
  1301. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1302. cfq_clear_cfqq_fifo_expire(cfqq);
  1303. cfq_mark_cfqq_slice_new(cfqq);
  1304. del_timer(&cfqd->idle_slice_timer);
  1305. }
  1306. cfqd->active_queue = cfqq;
  1307. }
  1308. /*
  1309. * current cfqq expired its slice (or was too idle), select new one
  1310. */
  1311. static void
  1312. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1313. bool timed_out)
  1314. {
  1315. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1316. if (cfq_cfqq_wait_request(cfqq))
  1317. del_timer(&cfqd->idle_slice_timer);
  1318. cfq_clear_cfqq_wait_request(cfqq);
  1319. cfq_clear_cfqq_wait_busy(cfqq);
  1320. /*
  1321. * If this cfqq is shared between multiple processes, check to
  1322. * make sure that those processes are still issuing I/Os within
  1323. * the mean seek distance. If not, it may be time to break the
  1324. * queues apart again.
  1325. */
  1326. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1327. cfq_mark_cfqq_split_coop(cfqq);
  1328. /*
  1329. * store what was left of this slice, if the queue idled/timed out
  1330. */
  1331. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1332. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1333. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1334. }
  1335. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1336. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1337. cfq_del_cfqq_rr(cfqd, cfqq);
  1338. cfq_resort_rr_list(cfqd, cfqq);
  1339. if (cfqq == cfqd->active_queue)
  1340. cfqd->active_queue = NULL;
  1341. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1342. cfqd->grp_service_tree.active = NULL;
  1343. if (cfqd->active_cic) {
  1344. put_io_context(cfqd->active_cic->ioc);
  1345. cfqd->active_cic = NULL;
  1346. }
  1347. }
  1348. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1349. {
  1350. struct cfq_queue *cfqq = cfqd->active_queue;
  1351. if (cfqq)
  1352. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1353. }
  1354. /*
  1355. * Get next queue for service. Unless we have a queue preemption,
  1356. * we'll simply select the first cfqq in the service tree.
  1357. */
  1358. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1359. {
  1360. struct cfq_rb_root *service_tree =
  1361. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1362. cfqd->serving_type);
  1363. if (!cfqd->rq_queued)
  1364. return NULL;
  1365. /* There is nothing to dispatch */
  1366. if (!service_tree)
  1367. return NULL;
  1368. if (RB_EMPTY_ROOT(&service_tree->rb))
  1369. return NULL;
  1370. return cfq_rb_first(service_tree);
  1371. }
  1372. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1373. {
  1374. struct cfq_group *cfqg;
  1375. struct cfq_queue *cfqq;
  1376. int i, j;
  1377. struct cfq_rb_root *st;
  1378. if (!cfqd->rq_queued)
  1379. return NULL;
  1380. cfqg = cfq_get_next_cfqg(cfqd);
  1381. if (!cfqg)
  1382. return NULL;
  1383. for_each_cfqg_st(cfqg, i, j, st)
  1384. if ((cfqq = cfq_rb_first(st)) != NULL)
  1385. return cfqq;
  1386. return NULL;
  1387. }
  1388. /*
  1389. * Get and set a new active queue for service.
  1390. */
  1391. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1392. struct cfq_queue *cfqq)
  1393. {
  1394. if (!cfqq)
  1395. cfqq = cfq_get_next_queue(cfqd);
  1396. __cfq_set_active_queue(cfqd, cfqq);
  1397. return cfqq;
  1398. }
  1399. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1400. struct request *rq)
  1401. {
  1402. if (blk_rq_pos(rq) >= cfqd->last_position)
  1403. return blk_rq_pos(rq) - cfqd->last_position;
  1404. else
  1405. return cfqd->last_position - blk_rq_pos(rq);
  1406. }
  1407. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1408. struct request *rq, bool for_preempt)
  1409. {
  1410. return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
  1411. }
  1412. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1413. struct cfq_queue *cur_cfqq)
  1414. {
  1415. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1416. struct rb_node *parent, *node;
  1417. struct cfq_queue *__cfqq;
  1418. sector_t sector = cfqd->last_position;
  1419. if (RB_EMPTY_ROOT(root))
  1420. return NULL;
  1421. /*
  1422. * First, if we find a request starting at the end of the last
  1423. * request, choose it.
  1424. */
  1425. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1426. if (__cfqq)
  1427. return __cfqq;
  1428. /*
  1429. * If the exact sector wasn't found, the parent of the NULL leaf
  1430. * will contain the closest sector.
  1431. */
  1432. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1433. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
  1434. return __cfqq;
  1435. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1436. node = rb_next(&__cfqq->p_node);
  1437. else
  1438. node = rb_prev(&__cfqq->p_node);
  1439. if (!node)
  1440. return NULL;
  1441. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1442. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
  1443. return __cfqq;
  1444. return NULL;
  1445. }
  1446. /*
  1447. * cfqd - obvious
  1448. * cur_cfqq - passed in so that we don't decide that the current queue is
  1449. * closely cooperating with itself.
  1450. *
  1451. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1452. * one request, and that cfqd->last_position reflects a position on the disk
  1453. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1454. * assumption.
  1455. */
  1456. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1457. struct cfq_queue *cur_cfqq)
  1458. {
  1459. struct cfq_queue *cfqq;
  1460. if (!cfq_cfqq_sync(cur_cfqq))
  1461. return NULL;
  1462. if (CFQQ_SEEKY(cur_cfqq))
  1463. return NULL;
  1464. /*
  1465. * Don't search priority tree if it's the only queue in the group.
  1466. */
  1467. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1468. return NULL;
  1469. /*
  1470. * We should notice if some of the queues are cooperating, eg
  1471. * working closely on the same area of the disk. In that case,
  1472. * we can group them together and don't waste time idling.
  1473. */
  1474. cfqq = cfqq_close(cfqd, cur_cfqq);
  1475. if (!cfqq)
  1476. return NULL;
  1477. /* If new queue belongs to different cfq_group, don't choose it */
  1478. if (cur_cfqq->cfqg != cfqq->cfqg)
  1479. return NULL;
  1480. /*
  1481. * It only makes sense to merge sync queues.
  1482. */
  1483. if (!cfq_cfqq_sync(cfqq))
  1484. return NULL;
  1485. if (CFQQ_SEEKY(cfqq))
  1486. return NULL;
  1487. /*
  1488. * Do not merge queues of different priority classes
  1489. */
  1490. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1491. return NULL;
  1492. return cfqq;
  1493. }
  1494. /*
  1495. * Determine whether we should enforce idle window for this queue.
  1496. */
  1497. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1498. {
  1499. enum wl_prio_t prio = cfqq_prio(cfqq);
  1500. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1501. BUG_ON(!service_tree);
  1502. BUG_ON(!service_tree->count);
  1503. /* We never do for idle class queues. */
  1504. if (prio == IDLE_WORKLOAD)
  1505. return false;
  1506. /* We do for queues that were marked with idle window flag. */
  1507. if (cfq_cfqq_idle_window(cfqq) &&
  1508. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1509. return true;
  1510. /*
  1511. * Otherwise, we do only if they are the last ones
  1512. * in their service tree.
  1513. */
  1514. return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
  1515. }
  1516. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1517. {
  1518. struct cfq_queue *cfqq = cfqd->active_queue;
  1519. struct cfq_io_context *cic;
  1520. unsigned long sl;
  1521. /*
  1522. * SSD device without seek penalty, disable idling. But only do so
  1523. * for devices that support queuing, otherwise we still have a problem
  1524. * with sync vs async workloads.
  1525. */
  1526. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1527. return;
  1528. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1529. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1530. /*
  1531. * idle is disabled, either manually or by past process history
  1532. */
  1533. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1534. return;
  1535. /*
  1536. * still active requests from this queue, don't idle
  1537. */
  1538. if (cfqq->dispatched)
  1539. return;
  1540. /*
  1541. * task has exited, don't wait
  1542. */
  1543. cic = cfqd->active_cic;
  1544. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1545. return;
  1546. /*
  1547. * If our average think time is larger than the remaining time
  1548. * slice, then don't idle. This avoids overrunning the allotted
  1549. * time slice.
  1550. */
  1551. if (sample_valid(cic->ttime_samples) &&
  1552. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1553. return;
  1554. cfq_mark_cfqq_wait_request(cfqq);
  1555. sl = cfqd->cfq_slice_idle;
  1556. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1557. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1558. }
  1559. /*
  1560. * Move request from internal lists to the request queue dispatch list.
  1561. */
  1562. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1563. {
  1564. struct cfq_data *cfqd = q->elevator->elevator_data;
  1565. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1566. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1567. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1568. cfq_remove_request(rq);
  1569. cfqq->dispatched++;
  1570. elv_dispatch_sort(q, rq);
  1571. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1572. cfqq->nr_sectors += blk_rq_sectors(rq);
  1573. }
  1574. /*
  1575. * return expired entry, or NULL to just start from scratch in rbtree
  1576. */
  1577. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1578. {
  1579. struct request *rq = NULL;
  1580. if (cfq_cfqq_fifo_expire(cfqq))
  1581. return NULL;
  1582. cfq_mark_cfqq_fifo_expire(cfqq);
  1583. if (list_empty(&cfqq->fifo))
  1584. return NULL;
  1585. rq = rq_entry_fifo(cfqq->fifo.next);
  1586. if (time_before(jiffies, rq_fifo_time(rq)))
  1587. rq = NULL;
  1588. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1589. return rq;
  1590. }
  1591. static inline int
  1592. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1593. {
  1594. const int base_rq = cfqd->cfq_slice_async_rq;
  1595. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1596. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1597. }
  1598. /*
  1599. * Must be called with the queue_lock held.
  1600. */
  1601. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1602. {
  1603. int process_refs, io_refs;
  1604. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1605. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1606. BUG_ON(process_refs < 0);
  1607. return process_refs;
  1608. }
  1609. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1610. {
  1611. int process_refs, new_process_refs;
  1612. struct cfq_queue *__cfqq;
  1613. /* Avoid a circular list and skip interim queue merges */
  1614. while ((__cfqq = new_cfqq->new_cfqq)) {
  1615. if (__cfqq == cfqq)
  1616. return;
  1617. new_cfqq = __cfqq;
  1618. }
  1619. process_refs = cfqq_process_refs(cfqq);
  1620. /*
  1621. * If the process for the cfqq has gone away, there is no
  1622. * sense in merging the queues.
  1623. */
  1624. if (process_refs == 0)
  1625. return;
  1626. /*
  1627. * Merge in the direction of the lesser amount of work.
  1628. */
  1629. new_process_refs = cfqq_process_refs(new_cfqq);
  1630. if (new_process_refs >= process_refs) {
  1631. cfqq->new_cfqq = new_cfqq;
  1632. atomic_add(process_refs, &new_cfqq->ref);
  1633. } else {
  1634. new_cfqq->new_cfqq = cfqq;
  1635. atomic_add(new_process_refs, &cfqq->ref);
  1636. }
  1637. }
  1638. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1639. struct cfq_group *cfqg, enum wl_prio_t prio)
  1640. {
  1641. struct cfq_queue *queue;
  1642. int i;
  1643. bool key_valid = false;
  1644. unsigned long lowest_key = 0;
  1645. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1646. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1647. /* select the one with lowest rb_key */
  1648. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1649. if (queue &&
  1650. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1651. lowest_key = queue->rb_key;
  1652. cur_best = i;
  1653. key_valid = true;
  1654. }
  1655. }
  1656. return cur_best;
  1657. }
  1658. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1659. {
  1660. unsigned slice;
  1661. unsigned count;
  1662. struct cfq_rb_root *st;
  1663. unsigned group_slice;
  1664. if (!cfqg) {
  1665. cfqd->serving_prio = IDLE_WORKLOAD;
  1666. cfqd->workload_expires = jiffies + 1;
  1667. return;
  1668. }
  1669. /* Choose next priority. RT > BE > IDLE */
  1670. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1671. cfqd->serving_prio = RT_WORKLOAD;
  1672. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1673. cfqd->serving_prio = BE_WORKLOAD;
  1674. else {
  1675. cfqd->serving_prio = IDLE_WORKLOAD;
  1676. cfqd->workload_expires = jiffies + 1;
  1677. return;
  1678. }
  1679. /*
  1680. * For RT and BE, we have to choose also the type
  1681. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1682. * expiration time
  1683. */
  1684. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1685. count = st->count;
  1686. /*
  1687. * check workload expiration, and that we still have other queues ready
  1688. */
  1689. if (count && !time_after(jiffies, cfqd->workload_expires))
  1690. return;
  1691. /* otherwise select new workload type */
  1692. cfqd->serving_type =
  1693. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1694. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1695. count = st->count;
  1696. /*
  1697. * the workload slice is computed as a fraction of target latency
  1698. * proportional to the number of queues in that workload, over
  1699. * all the queues in the same priority class
  1700. */
  1701. group_slice = cfq_group_slice(cfqd, cfqg);
  1702. slice = group_slice * count /
  1703. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1704. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1705. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1706. unsigned int tmp;
  1707. /*
  1708. * Async queues are currently system wide. Just taking
  1709. * proportion of queues with-in same group will lead to higher
  1710. * async ratio system wide as generally root group is going
  1711. * to have higher weight. A more accurate thing would be to
  1712. * calculate system wide asnc/sync ratio.
  1713. */
  1714. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1715. tmp = tmp/cfqd->busy_queues;
  1716. slice = min_t(unsigned, slice, tmp);
  1717. /* async workload slice is scaled down according to
  1718. * the sync/async slice ratio. */
  1719. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1720. } else
  1721. /* sync workload slice is at least 2 * cfq_slice_idle */
  1722. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1723. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1724. cfqd->workload_expires = jiffies + slice;
  1725. cfqd->noidle_tree_requires_idle = false;
  1726. }
  1727. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1728. {
  1729. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1730. struct cfq_group *cfqg;
  1731. if (RB_EMPTY_ROOT(&st->rb))
  1732. return NULL;
  1733. cfqg = cfq_rb_first_group(st);
  1734. st->active = &cfqg->rb_node;
  1735. update_min_vdisktime(st);
  1736. return cfqg;
  1737. }
  1738. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1739. {
  1740. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1741. cfqd->serving_group = cfqg;
  1742. /* Restore the workload type data */
  1743. if (cfqg->saved_workload_slice) {
  1744. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1745. cfqd->serving_type = cfqg->saved_workload;
  1746. cfqd->serving_prio = cfqg->saved_serving_prio;
  1747. } else
  1748. cfqd->workload_expires = jiffies - 1;
  1749. choose_service_tree(cfqd, cfqg);
  1750. }
  1751. /*
  1752. * Select a queue for service. If we have a current active queue,
  1753. * check whether to continue servicing it, or retrieve and set a new one.
  1754. */
  1755. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1756. {
  1757. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1758. cfqq = cfqd->active_queue;
  1759. if (!cfqq)
  1760. goto new_queue;
  1761. if (!cfqd->rq_queued)
  1762. return NULL;
  1763. /*
  1764. * We were waiting for group to get backlogged. Expire the queue
  1765. */
  1766. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1767. goto expire;
  1768. /*
  1769. * The active queue has run out of time, expire it and select new.
  1770. */
  1771. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1772. /*
  1773. * If slice had not expired at the completion of last request
  1774. * we might not have turned on wait_busy flag. Don't expire
  1775. * the queue yet. Allow the group to get backlogged.
  1776. *
  1777. * The very fact that we have used the slice, that means we
  1778. * have been idling all along on this queue and it should be
  1779. * ok to wait for this request to complete.
  1780. */
  1781. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1782. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1783. cfqq = NULL;
  1784. goto keep_queue;
  1785. } else
  1786. goto expire;
  1787. }
  1788. /*
  1789. * The active queue has requests and isn't expired, allow it to
  1790. * dispatch.
  1791. */
  1792. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1793. goto keep_queue;
  1794. /*
  1795. * If another queue has a request waiting within our mean seek
  1796. * distance, let it run. The expire code will check for close
  1797. * cooperators and put the close queue at the front of the service
  1798. * tree. If possible, merge the expiring queue with the new cfqq.
  1799. */
  1800. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1801. if (new_cfqq) {
  1802. if (!cfqq->new_cfqq)
  1803. cfq_setup_merge(cfqq, new_cfqq);
  1804. goto expire;
  1805. }
  1806. /*
  1807. * No requests pending. If the active queue still has requests in
  1808. * flight or is idling for a new request, allow either of these
  1809. * conditions to happen (or time out) before selecting a new queue.
  1810. */
  1811. if (timer_pending(&cfqd->idle_slice_timer) ||
  1812. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1813. cfqq = NULL;
  1814. goto keep_queue;
  1815. }
  1816. expire:
  1817. cfq_slice_expired(cfqd, 0);
  1818. new_queue:
  1819. /*
  1820. * Current queue expired. Check if we have to switch to a new
  1821. * service tree
  1822. */
  1823. if (!new_cfqq)
  1824. cfq_choose_cfqg(cfqd);
  1825. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1826. keep_queue:
  1827. return cfqq;
  1828. }
  1829. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1830. {
  1831. int dispatched = 0;
  1832. while (cfqq->next_rq) {
  1833. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1834. dispatched++;
  1835. }
  1836. BUG_ON(!list_empty(&cfqq->fifo));
  1837. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1838. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1839. return dispatched;
  1840. }
  1841. /*
  1842. * Drain our current requests. Used for barriers and when switching
  1843. * io schedulers on-the-fly.
  1844. */
  1845. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1846. {
  1847. struct cfq_queue *cfqq;
  1848. int dispatched = 0;
  1849. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
  1850. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1851. cfq_slice_expired(cfqd, 0);
  1852. BUG_ON(cfqd->busy_queues);
  1853. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1854. return dispatched;
  1855. }
  1856. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1857. {
  1858. unsigned int max_dispatch;
  1859. /*
  1860. * Drain async requests before we start sync IO
  1861. */
  1862. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1863. return false;
  1864. /*
  1865. * If this is an async queue and we have sync IO in flight, let it wait
  1866. */
  1867. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1868. return false;
  1869. max_dispatch = cfqd->cfq_quantum;
  1870. if (cfq_class_idle(cfqq))
  1871. max_dispatch = 1;
  1872. /*
  1873. * Does this cfqq already have too much IO in flight?
  1874. */
  1875. if (cfqq->dispatched >= max_dispatch) {
  1876. /*
  1877. * idle queue must always only have a single IO in flight
  1878. */
  1879. if (cfq_class_idle(cfqq))
  1880. return false;
  1881. /*
  1882. * We have other queues, don't allow more IO from this one
  1883. */
  1884. if (cfqd->busy_queues > 1)
  1885. return false;
  1886. /*
  1887. * Sole queue user, no limit
  1888. */
  1889. max_dispatch = -1;
  1890. }
  1891. /*
  1892. * Async queues must wait a bit before being allowed dispatch.
  1893. * We also ramp up the dispatch depth gradually for async IO,
  1894. * based on the last sync IO we serviced
  1895. */
  1896. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1897. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  1898. unsigned int depth;
  1899. depth = last_sync / cfqd->cfq_slice[1];
  1900. if (!depth && !cfqq->dispatched)
  1901. depth = 1;
  1902. if (depth < max_dispatch)
  1903. max_dispatch = depth;
  1904. }
  1905. /*
  1906. * If we're below the current max, allow a dispatch
  1907. */
  1908. return cfqq->dispatched < max_dispatch;
  1909. }
  1910. /*
  1911. * Dispatch a request from cfqq, moving them to the request queue
  1912. * dispatch list.
  1913. */
  1914. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1915. {
  1916. struct request *rq;
  1917. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1918. if (!cfq_may_dispatch(cfqd, cfqq))
  1919. return false;
  1920. /*
  1921. * follow expired path, else get first next available
  1922. */
  1923. rq = cfq_check_fifo(cfqq);
  1924. if (!rq)
  1925. rq = cfqq->next_rq;
  1926. /*
  1927. * insert request into driver dispatch list
  1928. */
  1929. cfq_dispatch_insert(cfqd->queue, rq);
  1930. if (!cfqd->active_cic) {
  1931. struct cfq_io_context *cic = RQ_CIC(rq);
  1932. atomic_long_inc(&cic->ioc->refcount);
  1933. cfqd->active_cic = cic;
  1934. }
  1935. return true;
  1936. }
  1937. /*
  1938. * Find the cfqq that we need to service and move a request from that to the
  1939. * dispatch list
  1940. */
  1941. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1942. {
  1943. struct cfq_data *cfqd = q->elevator->elevator_data;
  1944. struct cfq_queue *cfqq;
  1945. if (!cfqd->busy_queues)
  1946. return 0;
  1947. if (unlikely(force))
  1948. return cfq_forced_dispatch(cfqd);
  1949. cfqq = cfq_select_queue(cfqd);
  1950. if (!cfqq)
  1951. return 0;
  1952. /*
  1953. * Dispatch a request from this cfqq, if it is allowed
  1954. */
  1955. if (!cfq_dispatch_request(cfqd, cfqq))
  1956. return 0;
  1957. cfqq->slice_dispatch++;
  1958. cfq_clear_cfqq_must_dispatch(cfqq);
  1959. /*
  1960. * expire an async queue immediately if it has used up its slice. idle
  1961. * queue always expire after 1 dispatch round.
  1962. */
  1963. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1964. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1965. cfq_class_idle(cfqq))) {
  1966. cfqq->slice_end = jiffies + 1;
  1967. cfq_slice_expired(cfqd, 0);
  1968. }
  1969. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1970. return 1;
  1971. }
  1972. /*
  1973. * task holds one reference to the queue, dropped when task exits. each rq
  1974. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1975. *
  1976. * Each cfq queue took a reference on the parent group. Drop it now.
  1977. * queue lock must be held here.
  1978. */
  1979. static void cfq_put_queue(struct cfq_queue *cfqq)
  1980. {
  1981. struct cfq_data *cfqd = cfqq->cfqd;
  1982. struct cfq_group *cfqg, *orig_cfqg;
  1983. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  1984. if (!atomic_dec_and_test(&cfqq->ref))
  1985. return;
  1986. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  1987. BUG_ON(rb_first(&cfqq->sort_list));
  1988. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  1989. cfqg = cfqq->cfqg;
  1990. orig_cfqg = cfqq->orig_cfqg;
  1991. if (unlikely(cfqd->active_queue == cfqq)) {
  1992. __cfq_slice_expired(cfqd, cfqq, 0);
  1993. cfq_schedule_dispatch(cfqd);
  1994. }
  1995. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1996. kmem_cache_free(cfq_pool, cfqq);
  1997. cfq_put_cfqg(cfqg);
  1998. if (orig_cfqg)
  1999. cfq_put_cfqg(orig_cfqg);
  2000. }
  2001. /*
  2002. * Must always be called with the rcu_read_lock() held
  2003. */
  2004. static void
  2005. __call_for_each_cic(struct io_context *ioc,
  2006. void (*func)(struct io_context *, struct cfq_io_context *))
  2007. {
  2008. struct cfq_io_context *cic;
  2009. struct hlist_node *n;
  2010. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2011. func(ioc, cic);
  2012. }
  2013. /*
  2014. * Call func for each cic attached to this ioc.
  2015. */
  2016. static void
  2017. call_for_each_cic(struct io_context *ioc,
  2018. void (*func)(struct io_context *, struct cfq_io_context *))
  2019. {
  2020. rcu_read_lock();
  2021. __call_for_each_cic(ioc, func);
  2022. rcu_read_unlock();
  2023. }
  2024. static void cfq_cic_free_rcu(struct rcu_head *head)
  2025. {
  2026. struct cfq_io_context *cic;
  2027. cic = container_of(head, struct cfq_io_context, rcu_head);
  2028. kmem_cache_free(cfq_ioc_pool, cic);
  2029. elv_ioc_count_dec(cfq_ioc_count);
  2030. if (ioc_gone) {
  2031. /*
  2032. * CFQ scheduler is exiting, grab exit lock and check
  2033. * the pending io context count. If it hits zero,
  2034. * complete ioc_gone and set it back to NULL
  2035. */
  2036. spin_lock(&ioc_gone_lock);
  2037. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2038. complete(ioc_gone);
  2039. ioc_gone = NULL;
  2040. }
  2041. spin_unlock(&ioc_gone_lock);
  2042. }
  2043. }
  2044. static void cfq_cic_free(struct cfq_io_context *cic)
  2045. {
  2046. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2047. }
  2048. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2049. {
  2050. unsigned long flags;
  2051. BUG_ON(!cic->dead_key);
  2052. spin_lock_irqsave(&ioc->lock, flags);
  2053. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2054. hlist_del_rcu(&cic->cic_list);
  2055. spin_unlock_irqrestore(&ioc->lock, flags);
  2056. cfq_cic_free(cic);
  2057. }
  2058. /*
  2059. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2060. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2061. * and ->trim() which is called with the task lock held
  2062. */
  2063. static void cfq_free_io_context(struct io_context *ioc)
  2064. {
  2065. /*
  2066. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2067. * so no more cic's are allowed to be linked into this ioc. So it
  2068. * should be ok to iterate over the known list, we will see all cic's
  2069. * since no new ones are added.
  2070. */
  2071. __call_for_each_cic(ioc, cic_free_func);
  2072. }
  2073. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2074. {
  2075. struct cfq_queue *__cfqq, *next;
  2076. if (unlikely(cfqq == cfqd->active_queue)) {
  2077. __cfq_slice_expired(cfqd, cfqq, 0);
  2078. cfq_schedule_dispatch(cfqd);
  2079. }
  2080. /*
  2081. * If this queue was scheduled to merge with another queue, be
  2082. * sure to drop the reference taken on that queue (and others in
  2083. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2084. */
  2085. __cfqq = cfqq->new_cfqq;
  2086. while (__cfqq) {
  2087. if (__cfqq == cfqq) {
  2088. WARN(1, "cfqq->new_cfqq loop detected\n");
  2089. break;
  2090. }
  2091. next = __cfqq->new_cfqq;
  2092. cfq_put_queue(__cfqq);
  2093. __cfqq = next;
  2094. }
  2095. cfq_put_queue(cfqq);
  2096. }
  2097. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2098. struct cfq_io_context *cic)
  2099. {
  2100. struct io_context *ioc = cic->ioc;
  2101. list_del_init(&cic->queue_list);
  2102. /*
  2103. * Make sure key == NULL is seen for dead queues
  2104. */
  2105. smp_wmb();
  2106. cic->dead_key = (unsigned long) cic->key;
  2107. cic->key = NULL;
  2108. if (ioc->ioc_data == cic)
  2109. rcu_assign_pointer(ioc->ioc_data, NULL);
  2110. if (cic->cfqq[BLK_RW_ASYNC]) {
  2111. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2112. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2113. }
  2114. if (cic->cfqq[BLK_RW_SYNC]) {
  2115. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2116. cic->cfqq[BLK_RW_SYNC] = NULL;
  2117. }
  2118. }
  2119. static void cfq_exit_single_io_context(struct io_context *ioc,
  2120. struct cfq_io_context *cic)
  2121. {
  2122. struct cfq_data *cfqd = cic->key;
  2123. if (cfqd) {
  2124. struct request_queue *q = cfqd->queue;
  2125. unsigned long flags;
  2126. spin_lock_irqsave(q->queue_lock, flags);
  2127. /*
  2128. * Ensure we get a fresh copy of the ->key to prevent
  2129. * race between exiting task and queue
  2130. */
  2131. smp_read_barrier_depends();
  2132. if (cic->key)
  2133. __cfq_exit_single_io_context(cfqd, cic);
  2134. spin_unlock_irqrestore(q->queue_lock, flags);
  2135. }
  2136. }
  2137. /*
  2138. * The process that ioc belongs to has exited, we need to clean up
  2139. * and put the internal structures we have that belongs to that process.
  2140. */
  2141. static void cfq_exit_io_context(struct io_context *ioc)
  2142. {
  2143. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2144. }
  2145. static struct cfq_io_context *
  2146. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2147. {
  2148. struct cfq_io_context *cic;
  2149. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2150. cfqd->queue->node);
  2151. if (cic) {
  2152. cic->last_end_request = jiffies;
  2153. INIT_LIST_HEAD(&cic->queue_list);
  2154. INIT_HLIST_NODE(&cic->cic_list);
  2155. cic->dtor = cfq_free_io_context;
  2156. cic->exit = cfq_exit_io_context;
  2157. elv_ioc_count_inc(cfq_ioc_count);
  2158. }
  2159. return cic;
  2160. }
  2161. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2162. {
  2163. struct task_struct *tsk = current;
  2164. int ioprio_class;
  2165. if (!cfq_cfqq_prio_changed(cfqq))
  2166. return;
  2167. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2168. switch (ioprio_class) {
  2169. default:
  2170. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2171. case IOPRIO_CLASS_NONE:
  2172. /*
  2173. * no prio set, inherit CPU scheduling settings
  2174. */
  2175. cfqq->ioprio = task_nice_ioprio(tsk);
  2176. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2177. break;
  2178. case IOPRIO_CLASS_RT:
  2179. cfqq->ioprio = task_ioprio(ioc);
  2180. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2181. break;
  2182. case IOPRIO_CLASS_BE:
  2183. cfqq->ioprio = task_ioprio(ioc);
  2184. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2185. break;
  2186. case IOPRIO_CLASS_IDLE:
  2187. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2188. cfqq->ioprio = 7;
  2189. cfq_clear_cfqq_idle_window(cfqq);
  2190. break;
  2191. }
  2192. /*
  2193. * keep track of original prio settings in case we have to temporarily
  2194. * elevate the priority of this queue
  2195. */
  2196. cfqq->org_ioprio = cfqq->ioprio;
  2197. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2198. cfq_clear_cfqq_prio_changed(cfqq);
  2199. }
  2200. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2201. {
  2202. struct cfq_data *cfqd = cic->key;
  2203. struct cfq_queue *cfqq;
  2204. unsigned long flags;
  2205. if (unlikely(!cfqd))
  2206. return;
  2207. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2208. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2209. if (cfqq) {
  2210. struct cfq_queue *new_cfqq;
  2211. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2212. GFP_ATOMIC);
  2213. if (new_cfqq) {
  2214. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2215. cfq_put_queue(cfqq);
  2216. }
  2217. }
  2218. cfqq = cic->cfqq[BLK_RW_SYNC];
  2219. if (cfqq)
  2220. cfq_mark_cfqq_prio_changed(cfqq);
  2221. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2222. }
  2223. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2224. {
  2225. call_for_each_cic(ioc, changed_ioprio);
  2226. ioc->ioprio_changed = 0;
  2227. }
  2228. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2229. pid_t pid, bool is_sync)
  2230. {
  2231. RB_CLEAR_NODE(&cfqq->rb_node);
  2232. RB_CLEAR_NODE(&cfqq->p_node);
  2233. INIT_LIST_HEAD(&cfqq->fifo);
  2234. atomic_set(&cfqq->ref, 0);
  2235. cfqq->cfqd = cfqd;
  2236. cfq_mark_cfqq_prio_changed(cfqq);
  2237. if (is_sync) {
  2238. if (!cfq_class_idle(cfqq))
  2239. cfq_mark_cfqq_idle_window(cfqq);
  2240. cfq_mark_cfqq_sync(cfqq);
  2241. }
  2242. cfqq->pid = pid;
  2243. }
  2244. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2245. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2246. {
  2247. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2248. struct cfq_data *cfqd = cic->key;
  2249. unsigned long flags;
  2250. struct request_queue *q;
  2251. if (unlikely(!cfqd))
  2252. return;
  2253. q = cfqd->queue;
  2254. spin_lock_irqsave(q->queue_lock, flags);
  2255. if (sync_cfqq) {
  2256. /*
  2257. * Drop reference to sync queue. A new sync queue will be
  2258. * assigned in new group upon arrival of a fresh request.
  2259. */
  2260. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2261. cic_set_cfqq(cic, NULL, 1);
  2262. cfq_put_queue(sync_cfqq);
  2263. }
  2264. spin_unlock_irqrestore(q->queue_lock, flags);
  2265. }
  2266. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2267. {
  2268. call_for_each_cic(ioc, changed_cgroup);
  2269. ioc->cgroup_changed = 0;
  2270. }
  2271. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2272. static struct cfq_queue *
  2273. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2274. struct io_context *ioc, gfp_t gfp_mask)
  2275. {
  2276. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2277. struct cfq_io_context *cic;
  2278. struct cfq_group *cfqg;
  2279. retry:
  2280. cfqg = cfq_get_cfqg(cfqd, 1);
  2281. cic = cfq_cic_lookup(cfqd, ioc);
  2282. /* cic always exists here */
  2283. cfqq = cic_to_cfqq(cic, is_sync);
  2284. /*
  2285. * Always try a new alloc if we fell back to the OOM cfqq
  2286. * originally, since it should just be a temporary situation.
  2287. */
  2288. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2289. cfqq = NULL;
  2290. if (new_cfqq) {
  2291. cfqq = new_cfqq;
  2292. new_cfqq = NULL;
  2293. } else if (gfp_mask & __GFP_WAIT) {
  2294. spin_unlock_irq(cfqd->queue->queue_lock);
  2295. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2296. gfp_mask | __GFP_ZERO,
  2297. cfqd->queue->node);
  2298. spin_lock_irq(cfqd->queue->queue_lock);
  2299. if (new_cfqq)
  2300. goto retry;
  2301. } else {
  2302. cfqq = kmem_cache_alloc_node(cfq_pool,
  2303. gfp_mask | __GFP_ZERO,
  2304. cfqd->queue->node);
  2305. }
  2306. if (cfqq) {
  2307. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2308. cfq_init_prio_data(cfqq, ioc);
  2309. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2310. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2311. } else
  2312. cfqq = &cfqd->oom_cfqq;
  2313. }
  2314. if (new_cfqq)
  2315. kmem_cache_free(cfq_pool, new_cfqq);
  2316. return cfqq;
  2317. }
  2318. static struct cfq_queue **
  2319. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2320. {
  2321. switch (ioprio_class) {
  2322. case IOPRIO_CLASS_RT:
  2323. return &cfqd->async_cfqq[0][ioprio];
  2324. case IOPRIO_CLASS_BE:
  2325. return &cfqd->async_cfqq[1][ioprio];
  2326. case IOPRIO_CLASS_IDLE:
  2327. return &cfqd->async_idle_cfqq;
  2328. default:
  2329. BUG();
  2330. }
  2331. }
  2332. static struct cfq_queue *
  2333. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2334. gfp_t gfp_mask)
  2335. {
  2336. const int ioprio = task_ioprio(ioc);
  2337. const int ioprio_class = task_ioprio_class(ioc);
  2338. struct cfq_queue **async_cfqq = NULL;
  2339. struct cfq_queue *cfqq = NULL;
  2340. if (!is_sync) {
  2341. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2342. cfqq = *async_cfqq;
  2343. }
  2344. if (!cfqq)
  2345. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2346. /*
  2347. * pin the queue now that it's allocated, scheduler exit will prune it
  2348. */
  2349. if (!is_sync && !(*async_cfqq)) {
  2350. atomic_inc(&cfqq->ref);
  2351. *async_cfqq = cfqq;
  2352. }
  2353. atomic_inc(&cfqq->ref);
  2354. return cfqq;
  2355. }
  2356. /*
  2357. * We drop cfq io contexts lazily, so we may find a dead one.
  2358. */
  2359. static void
  2360. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2361. struct cfq_io_context *cic)
  2362. {
  2363. unsigned long flags;
  2364. WARN_ON(!list_empty(&cic->queue_list));
  2365. spin_lock_irqsave(&ioc->lock, flags);
  2366. BUG_ON(ioc->ioc_data == cic);
  2367. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2368. hlist_del_rcu(&cic->cic_list);
  2369. spin_unlock_irqrestore(&ioc->lock, flags);
  2370. cfq_cic_free(cic);
  2371. }
  2372. static struct cfq_io_context *
  2373. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2374. {
  2375. struct cfq_io_context *cic;
  2376. unsigned long flags;
  2377. void *k;
  2378. if (unlikely(!ioc))
  2379. return NULL;
  2380. rcu_read_lock();
  2381. /*
  2382. * we maintain a last-hit cache, to avoid browsing over the tree
  2383. */
  2384. cic = rcu_dereference(ioc->ioc_data);
  2385. if (cic && cic->key == cfqd) {
  2386. rcu_read_unlock();
  2387. return cic;
  2388. }
  2389. do {
  2390. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2391. rcu_read_unlock();
  2392. if (!cic)
  2393. break;
  2394. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2395. k = cic->key;
  2396. if (unlikely(!k)) {
  2397. cfq_drop_dead_cic(cfqd, ioc, cic);
  2398. rcu_read_lock();
  2399. continue;
  2400. }
  2401. spin_lock_irqsave(&ioc->lock, flags);
  2402. rcu_assign_pointer(ioc->ioc_data, cic);
  2403. spin_unlock_irqrestore(&ioc->lock, flags);
  2404. break;
  2405. } while (1);
  2406. return cic;
  2407. }
  2408. /*
  2409. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2410. * the process specific cfq io context when entered from the block layer.
  2411. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2412. */
  2413. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2414. struct cfq_io_context *cic, gfp_t gfp_mask)
  2415. {
  2416. unsigned long flags;
  2417. int ret;
  2418. ret = radix_tree_preload(gfp_mask);
  2419. if (!ret) {
  2420. cic->ioc = ioc;
  2421. cic->key = cfqd;
  2422. spin_lock_irqsave(&ioc->lock, flags);
  2423. ret = radix_tree_insert(&ioc->radix_root,
  2424. (unsigned long) cfqd, cic);
  2425. if (!ret)
  2426. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2427. spin_unlock_irqrestore(&ioc->lock, flags);
  2428. radix_tree_preload_end();
  2429. if (!ret) {
  2430. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2431. list_add(&cic->queue_list, &cfqd->cic_list);
  2432. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2433. }
  2434. }
  2435. if (ret)
  2436. printk(KERN_ERR "cfq: cic link failed!\n");
  2437. return ret;
  2438. }
  2439. /*
  2440. * Setup general io context and cfq io context. There can be several cfq
  2441. * io contexts per general io context, if this process is doing io to more
  2442. * than one device managed by cfq.
  2443. */
  2444. static struct cfq_io_context *
  2445. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2446. {
  2447. struct io_context *ioc = NULL;
  2448. struct cfq_io_context *cic;
  2449. might_sleep_if(gfp_mask & __GFP_WAIT);
  2450. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2451. if (!ioc)
  2452. return NULL;
  2453. cic = cfq_cic_lookup(cfqd, ioc);
  2454. if (cic)
  2455. goto out;
  2456. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2457. if (cic == NULL)
  2458. goto err;
  2459. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2460. goto err_free;
  2461. out:
  2462. smp_read_barrier_depends();
  2463. if (unlikely(ioc->ioprio_changed))
  2464. cfq_ioc_set_ioprio(ioc);
  2465. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2466. if (unlikely(ioc->cgroup_changed))
  2467. cfq_ioc_set_cgroup(ioc);
  2468. #endif
  2469. return cic;
  2470. err_free:
  2471. cfq_cic_free(cic);
  2472. err:
  2473. put_io_context(ioc);
  2474. return NULL;
  2475. }
  2476. static void
  2477. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2478. {
  2479. unsigned long elapsed = jiffies - cic->last_end_request;
  2480. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2481. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2482. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2483. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2484. }
  2485. static void
  2486. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2487. struct request *rq)
  2488. {
  2489. sector_t sdist = 0;
  2490. sector_t n_sec = blk_rq_sectors(rq);
  2491. if (cfqq->last_request_pos) {
  2492. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2493. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2494. else
  2495. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2496. }
  2497. cfqq->seek_history <<= 1;
  2498. if (blk_queue_nonrot(cfqd->queue))
  2499. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2500. else
  2501. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2502. }
  2503. /*
  2504. * Disable idle window if the process thinks too long or seeks so much that
  2505. * it doesn't matter
  2506. */
  2507. static void
  2508. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2509. struct cfq_io_context *cic)
  2510. {
  2511. int old_idle, enable_idle;
  2512. /*
  2513. * Don't idle for async or idle io prio class
  2514. */
  2515. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2516. return;
  2517. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2518. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2519. cfq_mark_cfqq_deep(cfqq);
  2520. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2521. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2522. enable_idle = 0;
  2523. else if (sample_valid(cic->ttime_samples)) {
  2524. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2525. enable_idle = 0;
  2526. else
  2527. enable_idle = 1;
  2528. }
  2529. if (old_idle != enable_idle) {
  2530. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2531. if (enable_idle)
  2532. cfq_mark_cfqq_idle_window(cfqq);
  2533. else
  2534. cfq_clear_cfqq_idle_window(cfqq);
  2535. }
  2536. }
  2537. /*
  2538. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2539. * no or if we aren't sure, a 1 will cause a preempt.
  2540. */
  2541. static bool
  2542. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2543. struct request *rq)
  2544. {
  2545. struct cfq_queue *cfqq;
  2546. cfqq = cfqd->active_queue;
  2547. if (!cfqq)
  2548. return false;
  2549. if (cfq_class_idle(new_cfqq))
  2550. return false;
  2551. if (cfq_class_idle(cfqq))
  2552. return true;
  2553. /*
  2554. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2555. */
  2556. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2557. return false;
  2558. /*
  2559. * if the new request is sync, but the currently running queue is
  2560. * not, let the sync request have priority.
  2561. */
  2562. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2563. return true;
  2564. if (new_cfqq->cfqg != cfqq->cfqg)
  2565. return false;
  2566. if (cfq_slice_used(cfqq))
  2567. return true;
  2568. /* Allow preemption only if we are idling on sync-noidle tree */
  2569. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2570. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2571. new_cfqq->service_tree->count == 2 &&
  2572. RB_EMPTY_ROOT(&cfqq->sort_list))
  2573. return true;
  2574. /*
  2575. * So both queues are sync. Let the new request get disk time if
  2576. * it's a metadata request and the current queue is doing regular IO.
  2577. */
  2578. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2579. return true;
  2580. /*
  2581. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2582. */
  2583. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2584. return true;
  2585. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2586. return false;
  2587. /*
  2588. * if this request is as-good as one we would expect from the
  2589. * current cfqq, let it preempt
  2590. */
  2591. if (cfq_rq_close(cfqd, cfqq, rq, true))
  2592. return true;
  2593. return false;
  2594. }
  2595. /*
  2596. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2597. * let it have half of its nominal slice.
  2598. */
  2599. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2600. {
  2601. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2602. cfq_slice_expired(cfqd, 1);
  2603. /*
  2604. * Put the new queue at the front of the of the current list,
  2605. * so we know that it will be selected next.
  2606. */
  2607. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2608. cfq_service_tree_add(cfqd, cfqq, 1);
  2609. cfqq->slice_end = 0;
  2610. cfq_mark_cfqq_slice_new(cfqq);
  2611. }
  2612. /*
  2613. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2614. * something we should do about it
  2615. */
  2616. static void
  2617. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2618. struct request *rq)
  2619. {
  2620. struct cfq_io_context *cic = RQ_CIC(rq);
  2621. cfqd->rq_queued++;
  2622. if (rq_is_meta(rq))
  2623. cfqq->meta_pending++;
  2624. cfq_update_io_thinktime(cfqd, cic);
  2625. cfq_update_io_seektime(cfqd, cfqq, rq);
  2626. cfq_update_idle_window(cfqd, cfqq, cic);
  2627. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2628. if (cfqq == cfqd->active_queue) {
  2629. /*
  2630. * Remember that we saw a request from this process, but
  2631. * don't start queuing just yet. Otherwise we risk seeing lots
  2632. * of tiny requests, because we disrupt the normal plugging
  2633. * and merging. If the request is already larger than a single
  2634. * page, let it rip immediately. For that case we assume that
  2635. * merging is already done. Ditto for a busy system that
  2636. * has other work pending, don't risk delaying until the
  2637. * idle timer unplug to continue working.
  2638. */
  2639. if (cfq_cfqq_wait_request(cfqq)) {
  2640. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2641. cfqd->busy_queues > 1) {
  2642. del_timer(&cfqd->idle_slice_timer);
  2643. cfq_clear_cfqq_wait_request(cfqq);
  2644. __blk_run_queue(cfqd->queue);
  2645. } else
  2646. cfq_mark_cfqq_must_dispatch(cfqq);
  2647. }
  2648. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2649. /*
  2650. * not the active queue - expire current slice if it is
  2651. * idle and has expired it's mean thinktime or this new queue
  2652. * has some old slice time left and is of higher priority or
  2653. * this new queue is RT and the current one is BE
  2654. */
  2655. cfq_preempt_queue(cfqd, cfqq);
  2656. __blk_run_queue(cfqd->queue);
  2657. }
  2658. }
  2659. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2660. {
  2661. struct cfq_data *cfqd = q->elevator->elevator_data;
  2662. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2663. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2664. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2665. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2666. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2667. cfq_add_rq_rb(rq);
  2668. cfq_rq_enqueued(cfqd, cfqq, rq);
  2669. }
  2670. /*
  2671. * Update hw_tag based on peak queue depth over 50 samples under
  2672. * sufficient load.
  2673. */
  2674. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2675. {
  2676. struct cfq_queue *cfqq = cfqd->active_queue;
  2677. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2678. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2679. if (cfqd->hw_tag == 1)
  2680. return;
  2681. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2682. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2683. return;
  2684. /*
  2685. * If active queue hasn't enough requests and can idle, cfq might not
  2686. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2687. * case
  2688. */
  2689. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2690. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2691. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2692. return;
  2693. if (cfqd->hw_tag_samples++ < 50)
  2694. return;
  2695. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2696. cfqd->hw_tag = 1;
  2697. else
  2698. cfqd->hw_tag = 0;
  2699. }
  2700. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2701. {
  2702. struct cfq_io_context *cic = cfqd->active_cic;
  2703. /* If there are other queues in the group, don't wait */
  2704. if (cfqq->cfqg->nr_cfqq > 1)
  2705. return false;
  2706. if (cfq_slice_used(cfqq))
  2707. return true;
  2708. /* if slice left is less than think time, wait busy */
  2709. if (cic && sample_valid(cic->ttime_samples)
  2710. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2711. return true;
  2712. /*
  2713. * If think times is less than a jiffy than ttime_mean=0 and above
  2714. * will not be true. It might happen that slice has not expired yet
  2715. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2716. * case where think time is less than a jiffy, mark the queue wait
  2717. * busy if only 1 jiffy is left in the slice.
  2718. */
  2719. if (cfqq->slice_end - jiffies == 1)
  2720. return true;
  2721. return false;
  2722. }
  2723. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2724. {
  2725. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2726. struct cfq_data *cfqd = cfqq->cfqd;
  2727. const int sync = rq_is_sync(rq);
  2728. unsigned long now;
  2729. now = jiffies;
  2730. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2731. cfq_update_hw_tag(cfqd);
  2732. WARN_ON(!cfqd->rq_in_driver);
  2733. WARN_ON(!cfqq->dispatched);
  2734. cfqd->rq_in_driver--;
  2735. cfqq->dispatched--;
  2736. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2737. if (sync) {
  2738. RQ_CIC(rq)->last_end_request = now;
  2739. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2740. cfqd->last_delayed_sync = now;
  2741. }
  2742. /*
  2743. * If this is the active queue, check if it needs to be expired,
  2744. * or if we want to idle in case it has no pending requests.
  2745. */
  2746. if (cfqd->active_queue == cfqq) {
  2747. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2748. if (cfq_cfqq_slice_new(cfqq)) {
  2749. cfq_set_prio_slice(cfqd, cfqq);
  2750. cfq_clear_cfqq_slice_new(cfqq);
  2751. }
  2752. /*
  2753. * Should we wait for next request to come in before we expire
  2754. * the queue.
  2755. */
  2756. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2757. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2758. cfq_mark_cfqq_wait_busy(cfqq);
  2759. }
  2760. /*
  2761. * Idling is not enabled on:
  2762. * - expired queues
  2763. * - idle-priority queues
  2764. * - async queues
  2765. * - queues with still some requests queued
  2766. * - when there is a close cooperator
  2767. */
  2768. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2769. cfq_slice_expired(cfqd, 1);
  2770. else if (sync && cfqq_empty &&
  2771. !cfq_close_cooperator(cfqd, cfqq)) {
  2772. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2773. /*
  2774. * Idling is enabled for SYNC_WORKLOAD.
  2775. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2776. * only if we processed at least one !rq_noidle request
  2777. */
  2778. if (cfqd->serving_type == SYNC_WORKLOAD
  2779. || cfqd->noidle_tree_requires_idle
  2780. || cfqq->cfqg->nr_cfqq == 1)
  2781. cfq_arm_slice_timer(cfqd);
  2782. }
  2783. }
  2784. if (!cfqd->rq_in_driver)
  2785. cfq_schedule_dispatch(cfqd);
  2786. }
  2787. /*
  2788. * we temporarily boost lower priority queues if they are holding fs exclusive
  2789. * resources. they are boosted to normal prio (CLASS_BE/4)
  2790. */
  2791. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2792. {
  2793. if (has_fs_excl()) {
  2794. /*
  2795. * boost idle prio on transactions that would lock out other
  2796. * users of the filesystem
  2797. */
  2798. if (cfq_class_idle(cfqq))
  2799. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2800. if (cfqq->ioprio > IOPRIO_NORM)
  2801. cfqq->ioprio = IOPRIO_NORM;
  2802. } else {
  2803. /*
  2804. * unboost the queue (if needed)
  2805. */
  2806. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2807. cfqq->ioprio = cfqq->org_ioprio;
  2808. }
  2809. }
  2810. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2811. {
  2812. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2813. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2814. return ELV_MQUEUE_MUST;
  2815. }
  2816. return ELV_MQUEUE_MAY;
  2817. }
  2818. static int cfq_may_queue(struct request_queue *q, int rw)
  2819. {
  2820. struct cfq_data *cfqd = q->elevator->elevator_data;
  2821. struct task_struct *tsk = current;
  2822. struct cfq_io_context *cic;
  2823. struct cfq_queue *cfqq;
  2824. /*
  2825. * don't force setup of a queue from here, as a call to may_queue
  2826. * does not necessarily imply that a request actually will be queued.
  2827. * so just lookup a possibly existing queue, or return 'may queue'
  2828. * if that fails
  2829. */
  2830. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2831. if (!cic)
  2832. return ELV_MQUEUE_MAY;
  2833. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2834. if (cfqq) {
  2835. cfq_init_prio_data(cfqq, cic->ioc);
  2836. cfq_prio_boost(cfqq);
  2837. return __cfq_may_queue(cfqq);
  2838. }
  2839. return ELV_MQUEUE_MAY;
  2840. }
  2841. /*
  2842. * queue lock held here
  2843. */
  2844. static void cfq_put_request(struct request *rq)
  2845. {
  2846. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2847. if (cfqq) {
  2848. const int rw = rq_data_dir(rq);
  2849. BUG_ON(!cfqq->allocated[rw]);
  2850. cfqq->allocated[rw]--;
  2851. put_io_context(RQ_CIC(rq)->ioc);
  2852. rq->elevator_private = NULL;
  2853. rq->elevator_private2 = NULL;
  2854. cfq_put_queue(cfqq);
  2855. }
  2856. }
  2857. static struct cfq_queue *
  2858. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2859. struct cfq_queue *cfqq)
  2860. {
  2861. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2862. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2863. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2864. cfq_put_queue(cfqq);
  2865. return cic_to_cfqq(cic, 1);
  2866. }
  2867. /*
  2868. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2869. * was the last process referring to said cfqq.
  2870. */
  2871. static struct cfq_queue *
  2872. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2873. {
  2874. if (cfqq_process_refs(cfqq) == 1) {
  2875. cfqq->pid = current->pid;
  2876. cfq_clear_cfqq_coop(cfqq);
  2877. cfq_clear_cfqq_split_coop(cfqq);
  2878. return cfqq;
  2879. }
  2880. cic_set_cfqq(cic, NULL, 1);
  2881. cfq_put_queue(cfqq);
  2882. return NULL;
  2883. }
  2884. /*
  2885. * Allocate cfq data structures associated with this request.
  2886. */
  2887. static int
  2888. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2889. {
  2890. struct cfq_data *cfqd = q->elevator->elevator_data;
  2891. struct cfq_io_context *cic;
  2892. const int rw = rq_data_dir(rq);
  2893. const bool is_sync = rq_is_sync(rq);
  2894. struct cfq_queue *cfqq;
  2895. unsigned long flags;
  2896. might_sleep_if(gfp_mask & __GFP_WAIT);
  2897. cic = cfq_get_io_context(cfqd, gfp_mask);
  2898. spin_lock_irqsave(q->queue_lock, flags);
  2899. if (!cic)
  2900. goto queue_fail;
  2901. new_queue:
  2902. cfqq = cic_to_cfqq(cic, is_sync);
  2903. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2904. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2905. cic_set_cfqq(cic, cfqq, is_sync);
  2906. } else {
  2907. /*
  2908. * If the queue was seeky for too long, break it apart.
  2909. */
  2910. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2911. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2912. cfqq = split_cfqq(cic, cfqq);
  2913. if (!cfqq)
  2914. goto new_queue;
  2915. }
  2916. /*
  2917. * Check to see if this queue is scheduled to merge with
  2918. * another, closely cooperating queue. The merging of
  2919. * queues happens here as it must be done in process context.
  2920. * The reference on new_cfqq was taken in merge_cfqqs.
  2921. */
  2922. if (cfqq->new_cfqq)
  2923. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2924. }
  2925. cfqq->allocated[rw]++;
  2926. atomic_inc(&cfqq->ref);
  2927. spin_unlock_irqrestore(q->queue_lock, flags);
  2928. rq->elevator_private = cic;
  2929. rq->elevator_private2 = cfqq;
  2930. return 0;
  2931. queue_fail:
  2932. if (cic)
  2933. put_io_context(cic->ioc);
  2934. cfq_schedule_dispatch(cfqd);
  2935. spin_unlock_irqrestore(q->queue_lock, flags);
  2936. cfq_log(cfqd, "set_request fail");
  2937. return 1;
  2938. }
  2939. static void cfq_kick_queue(struct work_struct *work)
  2940. {
  2941. struct cfq_data *cfqd =
  2942. container_of(work, struct cfq_data, unplug_work);
  2943. struct request_queue *q = cfqd->queue;
  2944. spin_lock_irq(q->queue_lock);
  2945. __blk_run_queue(cfqd->queue);
  2946. spin_unlock_irq(q->queue_lock);
  2947. }
  2948. /*
  2949. * Timer running if the active_queue is currently idling inside its time slice
  2950. */
  2951. static void cfq_idle_slice_timer(unsigned long data)
  2952. {
  2953. struct cfq_data *cfqd = (struct cfq_data *) data;
  2954. struct cfq_queue *cfqq;
  2955. unsigned long flags;
  2956. int timed_out = 1;
  2957. cfq_log(cfqd, "idle timer fired");
  2958. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2959. cfqq = cfqd->active_queue;
  2960. if (cfqq) {
  2961. timed_out = 0;
  2962. /*
  2963. * We saw a request before the queue expired, let it through
  2964. */
  2965. if (cfq_cfqq_must_dispatch(cfqq))
  2966. goto out_kick;
  2967. /*
  2968. * expired
  2969. */
  2970. if (cfq_slice_used(cfqq))
  2971. goto expire;
  2972. /*
  2973. * only expire and reinvoke request handler, if there are
  2974. * other queues with pending requests
  2975. */
  2976. if (!cfqd->busy_queues)
  2977. goto out_cont;
  2978. /*
  2979. * not expired and it has a request pending, let it dispatch
  2980. */
  2981. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2982. goto out_kick;
  2983. /*
  2984. * Queue depth flag is reset only when the idle didn't succeed
  2985. */
  2986. cfq_clear_cfqq_deep(cfqq);
  2987. }
  2988. expire:
  2989. cfq_slice_expired(cfqd, timed_out);
  2990. out_kick:
  2991. cfq_schedule_dispatch(cfqd);
  2992. out_cont:
  2993. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2994. }
  2995. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2996. {
  2997. del_timer_sync(&cfqd->idle_slice_timer);
  2998. cancel_work_sync(&cfqd->unplug_work);
  2999. }
  3000. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3001. {
  3002. int i;
  3003. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3004. if (cfqd->async_cfqq[0][i])
  3005. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3006. if (cfqd->async_cfqq[1][i])
  3007. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3008. }
  3009. if (cfqd->async_idle_cfqq)
  3010. cfq_put_queue(cfqd->async_idle_cfqq);
  3011. }
  3012. static void cfq_cfqd_free(struct rcu_head *head)
  3013. {
  3014. kfree(container_of(head, struct cfq_data, rcu));
  3015. }
  3016. static void cfq_exit_queue(struct elevator_queue *e)
  3017. {
  3018. struct cfq_data *cfqd = e->elevator_data;
  3019. struct request_queue *q = cfqd->queue;
  3020. cfq_shutdown_timer_wq(cfqd);
  3021. spin_lock_irq(q->queue_lock);
  3022. if (cfqd->active_queue)
  3023. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3024. while (!list_empty(&cfqd->cic_list)) {
  3025. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3026. struct cfq_io_context,
  3027. queue_list);
  3028. __cfq_exit_single_io_context(cfqd, cic);
  3029. }
  3030. cfq_put_async_queues(cfqd);
  3031. cfq_release_cfq_groups(cfqd);
  3032. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3033. spin_unlock_irq(q->queue_lock);
  3034. cfq_shutdown_timer_wq(cfqd);
  3035. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3036. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3037. }
  3038. static void *cfq_init_queue(struct request_queue *q)
  3039. {
  3040. struct cfq_data *cfqd;
  3041. int i, j;
  3042. struct cfq_group *cfqg;
  3043. struct cfq_rb_root *st;
  3044. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3045. if (!cfqd)
  3046. return NULL;
  3047. /* Init root service tree */
  3048. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3049. /* Init root group */
  3050. cfqg = &cfqd->root_group;
  3051. for_each_cfqg_st(cfqg, i, j, st)
  3052. *st = CFQ_RB_ROOT;
  3053. RB_CLEAR_NODE(&cfqg->rb_node);
  3054. /* Give preference to root group over other groups */
  3055. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3056. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3057. /*
  3058. * Take a reference to root group which we never drop. This is just
  3059. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3060. */
  3061. atomic_set(&cfqg->ref, 1);
  3062. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3063. 0);
  3064. #endif
  3065. /*
  3066. * Not strictly needed (since RB_ROOT just clears the node and we
  3067. * zeroed cfqd on alloc), but better be safe in case someone decides
  3068. * to add magic to the rb code
  3069. */
  3070. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3071. cfqd->prio_trees[i] = RB_ROOT;
  3072. /*
  3073. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3074. * Grab a permanent reference to it, so that the normal code flow
  3075. * will not attempt to free it.
  3076. */
  3077. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3078. atomic_inc(&cfqd->oom_cfqq.ref);
  3079. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3080. INIT_LIST_HEAD(&cfqd->cic_list);
  3081. cfqd->queue = q;
  3082. init_timer(&cfqd->idle_slice_timer);
  3083. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3084. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3085. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3086. cfqd->cfq_quantum = cfq_quantum;
  3087. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3088. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3089. cfqd->cfq_back_max = cfq_back_max;
  3090. cfqd->cfq_back_penalty = cfq_back_penalty;
  3091. cfqd->cfq_slice[0] = cfq_slice_async;
  3092. cfqd->cfq_slice[1] = cfq_slice_sync;
  3093. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3094. cfqd->cfq_slice_idle = cfq_slice_idle;
  3095. cfqd->cfq_latency = 1;
  3096. cfqd->cfq_group_isolation = 0;
  3097. cfqd->hw_tag = -1;
  3098. /*
  3099. * we optimistically start assuming sync ops weren't delayed in last
  3100. * second, in order to have larger depth for async operations.
  3101. */
  3102. cfqd->last_delayed_sync = jiffies - HZ;
  3103. INIT_RCU_HEAD(&cfqd->rcu);
  3104. return cfqd;
  3105. }
  3106. static void cfq_slab_kill(void)
  3107. {
  3108. /*
  3109. * Caller already ensured that pending RCU callbacks are completed,
  3110. * so we should have no busy allocations at this point.
  3111. */
  3112. if (cfq_pool)
  3113. kmem_cache_destroy(cfq_pool);
  3114. if (cfq_ioc_pool)
  3115. kmem_cache_destroy(cfq_ioc_pool);
  3116. }
  3117. static int __init cfq_slab_setup(void)
  3118. {
  3119. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3120. if (!cfq_pool)
  3121. goto fail;
  3122. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3123. if (!cfq_ioc_pool)
  3124. goto fail;
  3125. return 0;
  3126. fail:
  3127. cfq_slab_kill();
  3128. return -ENOMEM;
  3129. }
  3130. /*
  3131. * sysfs parts below -->
  3132. */
  3133. static ssize_t
  3134. cfq_var_show(unsigned int var, char *page)
  3135. {
  3136. return sprintf(page, "%d\n", var);
  3137. }
  3138. static ssize_t
  3139. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3140. {
  3141. char *p = (char *) page;
  3142. *var = simple_strtoul(p, &p, 10);
  3143. return count;
  3144. }
  3145. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3146. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3147. { \
  3148. struct cfq_data *cfqd = e->elevator_data; \
  3149. unsigned int __data = __VAR; \
  3150. if (__CONV) \
  3151. __data = jiffies_to_msecs(__data); \
  3152. return cfq_var_show(__data, (page)); \
  3153. }
  3154. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3155. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3156. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3157. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3158. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3159. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3160. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3161. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3162. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3163. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3164. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3165. #undef SHOW_FUNCTION
  3166. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3167. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3168. { \
  3169. struct cfq_data *cfqd = e->elevator_data; \
  3170. unsigned int __data; \
  3171. int ret = cfq_var_store(&__data, (page), count); \
  3172. if (__data < (MIN)) \
  3173. __data = (MIN); \
  3174. else if (__data > (MAX)) \
  3175. __data = (MAX); \
  3176. if (__CONV) \
  3177. *(__PTR) = msecs_to_jiffies(__data); \
  3178. else \
  3179. *(__PTR) = __data; \
  3180. return ret; \
  3181. }
  3182. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3183. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3184. UINT_MAX, 1);
  3185. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3186. UINT_MAX, 1);
  3187. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3188. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3189. UINT_MAX, 0);
  3190. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3191. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3192. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3193. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3194. UINT_MAX, 0);
  3195. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3196. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3197. #undef STORE_FUNCTION
  3198. #define CFQ_ATTR(name) \
  3199. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3200. static struct elv_fs_entry cfq_attrs[] = {
  3201. CFQ_ATTR(quantum),
  3202. CFQ_ATTR(fifo_expire_sync),
  3203. CFQ_ATTR(fifo_expire_async),
  3204. CFQ_ATTR(back_seek_max),
  3205. CFQ_ATTR(back_seek_penalty),
  3206. CFQ_ATTR(slice_sync),
  3207. CFQ_ATTR(slice_async),
  3208. CFQ_ATTR(slice_async_rq),
  3209. CFQ_ATTR(slice_idle),
  3210. CFQ_ATTR(low_latency),
  3211. CFQ_ATTR(group_isolation),
  3212. __ATTR_NULL
  3213. };
  3214. static struct elevator_type iosched_cfq = {
  3215. .ops = {
  3216. .elevator_merge_fn = cfq_merge,
  3217. .elevator_merged_fn = cfq_merged_request,
  3218. .elevator_merge_req_fn = cfq_merged_requests,
  3219. .elevator_allow_merge_fn = cfq_allow_merge,
  3220. .elevator_dispatch_fn = cfq_dispatch_requests,
  3221. .elevator_add_req_fn = cfq_insert_request,
  3222. .elevator_activate_req_fn = cfq_activate_request,
  3223. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3224. .elevator_queue_empty_fn = cfq_queue_empty,
  3225. .elevator_completed_req_fn = cfq_completed_request,
  3226. .elevator_former_req_fn = elv_rb_former_request,
  3227. .elevator_latter_req_fn = elv_rb_latter_request,
  3228. .elevator_set_req_fn = cfq_set_request,
  3229. .elevator_put_req_fn = cfq_put_request,
  3230. .elevator_may_queue_fn = cfq_may_queue,
  3231. .elevator_init_fn = cfq_init_queue,
  3232. .elevator_exit_fn = cfq_exit_queue,
  3233. .trim = cfq_free_io_context,
  3234. },
  3235. .elevator_attrs = cfq_attrs,
  3236. .elevator_name = "cfq",
  3237. .elevator_owner = THIS_MODULE,
  3238. };
  3239. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3240. static struct blkio_policy_type blkio_policy_cfq = {
  3241. .ops = {
  3242. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3243. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3244. },
  3245. };
  3246. #else
  3247. static struct blkio_policy_type blkio_policy_cfq;
  3248. #endif
  3249. static int __init cfq_init(void)
  3250. {
  3251. /*
  3252. * could be 0 on HZ < 1000 setups
  3253. */
  3254. if (!cfq_slice_async)
  3255. cfq_slice_async = 1;
  3256. if (!cfq_slice_idle)
  3257. cfq_slice_idle = 1;
  3258. if (cfq_slab_setup())
  3259. return -ENOMEM;
  3260. elv_register(&iosched_cfq);
  3261. blkio_policy_register(&blkio_policy_cfq);
  3262. return 0;
  3263. }
  3264. static void __exit cfq_exit(void)
  3265. {
  3266. DECLARE_COMPLETION_ONSTACK(all_gone);
  3267. blkio_policy_unregister(&blkio_policy_cfq);
  3268. elv_unregister(&iosched_cfq);
  3269. ioc_gone = &all_gone;
  3270. /* ioc_gone's update must be visible before reading ioc_count */
  3271. smp_wmb();
  3272. /*
  3273. * this also protects us from entering cfq_slab_kill() with
  3274. * pending RCU callbacks
  3275. */
  3276. if (elv_ioc_count_read(cfq_ioc_count))
  3277. wait_for_completion(&all_gone);
  3278. cfq_slab_kill();
  3279. }
  3280. module_init(cfq_init);
  3281. module_exit(cfq_exit);
  3282. MODULE_AUTHOR("Jens Axboe");
  3283. MODULE_LICENSE("GPL");
  3284. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");