memory.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. unsigned long highest_memmap_pfn __read_mostly;
  99. /*
  100. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  101. */
  102. static int __init init_zero_pfn(void)
  103. {
  104. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  105. return 0;
  106. }
  107. core_initcall(init_zero_pfn);
  108. #if defined(SPLIT_RSS_COUNTING)
  109. void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  110. {
  111. int i;
  112. for (i = 0; i < NR_MM_COUNTERS; i++) {
  113. if (task->rss_stat.count[i]) {
  114. add_mm_counter(mm, i, task->rss_stat.count[i]);
  115. task->rss_stat.count[i] = 0;
  116. }
  117. }
  118. task->rss_stat.events = 0;
  119. }
  120. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  121. {
  122. struct task_struct *task = current;
  123. if (likely(task->mm == mm))
  124. task->rss_stat.count[member] += val;
  125. else
  126. add_mm_counter(mm, member, val);
  127. }
  128. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  129. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  130. /* sync counter once per 64 page faults */
  131. #define TASK_RSS_EVENTS_THRESH (64)
  132. static void check_sync_rss_stat(struct task_struct *task)
  133. {
  134. if (unlikely(task != current))
  135. return;
  136. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  137. __sync_task_rss_stat(task, task->mm);
  138. }
  139. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  140. {
  141. long val = 0;
  142. /*
  143. * Don't use task->mm here...for avoiding to use task_get_mm()..
  144. * The caller must guarantee task->mm is not invalid.
  145. */
  146. val = atomic_long_read(&mm->rss_stat.count[member]);
  147. /*
  148. * counter is updated in asynchronous manner and may go to minus.
  149. * But it's never be expected number for users.
  150. */
  151. if (val < 0)
  152. return 0;
  153. return (unsigned long)val;
  154. }
  155. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  156. {
  157. __sync_task_rss_stat(task, mm);
  158. }
  159. #else
  160. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  161. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  162. static void check_sync_rss_stat(struct task_struct *task)
  163. {
  164. }
  165. #endif
  166. /*
  167. * If a p?d_bad entry is found while walking page tables, report
  168. * the error, before resetting entry to p?d_none. Usually (but
  169. * very seldom) called out from the p?d_none_or_clear_bad macros.
  170. */
  171. void pgd_clear_bad(pgd_t *pgd)
  172. {
  173. pgd_ERROR(*pgd);
  174. pgd_clear(pgd);
  175. }
  176. void pud_clear_bad(pud_t *pud)
  177. {
  178. pud_ERROR(*pud);
  179. pud_clear(pud);
  180. }
  181. void pmd_clear_bad(pmd_t *pmd)
  182. {
  183. pmd_ERROR(*pmd);
  184. pmd_clear(pmd);
  185. }
  186. /*
  187. * Note: this doesn't free the actual pages themselves. That
  188. * has been handled earlier when unmapping all the memory regions.
  189. */
  190. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  191. unsigned long addr)
  192. {
  193. pgtable_t token = pmd_pgtable(*pmd);
  194. pmd_clear(pmd);
  195. pte_free_tlb(tlb, token, addr);
  196. tlb->mm->nr_ptes--;
  197. }
  198. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  199. unsigned long addr, unsigned long end,
  200. unsigned long floor, unsigned long ceiling)
  201. {
  202. pmd_t *pmd;
  203. unsigned long next;
  204. unsigned long start;
  205. start = addr;
  206. pmd = pmd_offset(pud, addr);
  207. do {
  208. next = pmd_addr_end(addr, end);
  209. if (pmd_none_or_clear_bad(pmd))
  210. continue;
  211. free_pte_range(tlb, pmd, addr);
  212. } while (pmd++, addr = next, addr != end);
  213. start &= PUD_MASK;
  214. if (start < floor)
  215. return;
  216. if (ceiling) {
  217. ceiling &= PUD_MASK;
  218. if (!ceiling)
  219. return;
  220. }
  221. if (end - 1 > ceiling - 1)
  222. return;
  223. pmd = pmd_offset(pud, start);
  224. pud_clear(pud);
  225. pmd_free_tlb(tlb, pmd, start);
  226. }
  227. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  228. unsigned long addr, unsigned long end,
  229. unsigned long floor, unsigned long ceiling)
  230. {
  231. pud_t *pud;
  232. unsigned long next;
  233. unsigned long start;
  234. start = addr;
  235. pud = pud_offset(pgd, addr);
  236. do {
  237. next = pud_addr_end(addr, end);
  238. if (pud_none_or_clear_bad(pud))
  239. continue;
  240. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  241. } while (pud++, addr = next, addr != end);
  242. start &= PGDIR_MASK;
  243. if (start < floor)
  244. return;
  245. if (ceiling) {
  246. ceiling &= PGDIR_MASK;
  247. if (!ceiling)
  248. return;
  249. }
  250. if (end - 1 > ceiling - 1)
  251. return;
  252. pud = pud_offset(pgd, start);
  253. pgd_clear(pgd);
  254. pud_free_tlb(tlb, pud, start);
  255. }
  256. /*
  257. * This function frees user-level page tables of a process.
  258. *
  259. * Must be called with pagetable lock held.
  260. */
  261. void free_pgd_range(struct mmu_gather *tlb,
  262. unsigned long addr, unsigned long end,
  263. unsigned long floor, unsigned long ceiling)
  264. {
  265. pgd_t *pgd;
  266. unsigned long next;
  267. unsigned long start;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. start = addr;
  309. pgd = pgd_offset(tlb->mm, addr);
  310. do {
  311. next = pgd_addr_end(addr, end);
  312. if (pgd_none_or_clear_bad(pgd))
  313. continue;
  314. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  315. } while (pgd++, addr = next, addr != end);
  316. }
  317. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  318. unsigned long floor, unsigned long ceiling)
  319. {
  320. while (vma) {
  321. struct vm_area_struct *next = vma->vm_next;
  322. unsigned long addr = vma->vm_start;
  323. /*
  324. * Hide vma from rmap and truncate_pagecache before freeing
  325. * pgtables
  326. */
  327. unlink_anon_vmas(vma);
  328. unlink_file_vma(vma);
  329. if (is_vm_hugetlb_page(vma)) {
  330. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  331. floor, next? next->vm_start: ceiling);
  332. } else {
  333. /*
  334. * Optimization: gather nearby vmas into one call down
  335. */
  336. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  337. && !is_vm_hugetlb_page(next)) {
  338. vma = next;
  339. next = vma->vm_next;
  340. unlink_anon_vmas(vma);
  341. unlink_file_vma(vma);
  342. }
  343. free_pgd_range(tlb, addr, vma->vm_end,
  344. floor, next? next->vm_start: ceiling);
  345. }
  346. vma = next;
  347. }
  348. }
  349. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  350. {
  351. pgtable_t new = pte_alloc_one(mm, address);
  352. if (!new)
  353. return -ENOMEM;
  354. /*
  355. * Ensure all pte setup (eg. pte page lock and page clearing) are
  356. * visible before the pte is made visible to other CPUs by being
  357. * put into page tables.
  358. *
  359. * The other side of the story is the pointer chasing in the page
  360. * table walking code (when walking the page table without locking;
  361. * ie. most of the time). Fortunately, these data accesses consist
  362. * of a chain of data-dependent loads, meaning most CPUs (alpha
  363. * being the notable exception) will already guarantee loads are
  364. * seen in-order. See the alpha page table accessors for the
  365. * smp_read_barrier_depends() barriers in page table walking code.
  366. */
  367. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  368. spin_lock(&mm->page_table_lock);
  369. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  370. mm->nr_ptes++;
  371. pmd_populate(mm, pmd, new);
  372. new = NULL;
  373. }
  374. spin_unlock(&mm->page_table_lock);
  375. if (new)
  376. pte_free(mm, new);
  377. return 0;
  378. }
  379. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  380. {
  381. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  382. if (!new)
  383. return -ENOMEM;
  384. smp_wmb(); /* See comment in __pte_alloc */
  385. spin_lock(&init_mm.page_table_lock);
  386. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  387. pmd_populate_kernel(&init_mm, pmd, new);
  388. new = NULL;
  389. }
  390. spin_unlock(&init_mm.page_table_lock);
  391. if (new)
  392. pte_free_kernel(&init_mm, new);
  393. return 0;
  394. }
  395. static inline void init_rss_vec(int *rss)
  396. {
  397. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  398. }
  399. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  400. {
  401. int i;
  402. if (current->mm == mm)
  403. sync_mm_rss(current, mm);
  404. for (i = 0; i < NR_MM_COUNTERS; i++)
  405. if (rss[i])
  406. add_mm_counter(mm, i, rss[i]);
  407. }
  408. /*
  409. * This function is called to print an error when a bad pte
  410. * is found. For example, we might have a PFN-mapped pte in
  411. * a region that doesn't allow it.
  412. *
  413. * The calling function must still handle the error.
  414. */
  415. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  416. pte_t pte, struct page *page)
  417. {
  418. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  419. pud_t *pud = pud_offset(pgd, addr);
  420. pmd_t *pmd = pmd_offset(pud, addr);
  421. struct address_space *mapping;
  422. pgoff_t index;
  423. static unsigned long resume;
  424. static unsigned long nr_shown;
  425. static unsigned long nr_unshown;
  426. /*
  427. * Allow a burst of 60 reports, then keep quiet for that minute;
  428. * or allow a steady drip of one report per second.
  429. */
  430. if (nr_shown == 60) {
  431. if (time_before(jiffies, resume)) {
  432. nr_unshown++;
  433. return;
  434. }
  435. if (nr_unshown) {
  436. printk(KERN_ALERT
  437. "BUG: Bad page map: %lu messages suppressed\n",
  438. nr_unshown);
  439. nr_unshown = 0;
  440. }
  441. nr_shown = 0;
  442. }
  443. if (nr_shown++ == 0)
  444. resume = jiffies + 60 * HZ;
  445. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  446. index = linear_page_index(vma, addr);
  447. printk(KERN_ALERT
  448. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  449. current->comm,
  450. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  451. if (page) {
  452. printk(KERN_ALERT
  453. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  454. page, (void *)page->flags, page_count(page),
  455. page_mapcount(page), page->mapping, page->index);
  456. }
  457. printk(KERN_ALERT
  458. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  459. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  460. /*
  461. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  462. */
  463. if (vma->vm_ops)
  464. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  465. (unsigned long)vma->vm_ops->fault);
  466. if (vma->vm_file && vma->vm_file->f_op)
  467. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  468. (unsigned long)vma->vm_file->f_op->mmap);
  469. dump_stack();
  470. add_taint(TAINT_BAD_PAGE);
  471. }
  472. static inline int is_cow_mapping(unsigned int flags)
  473. {
  474. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  475. }
  476. #ifndef is_zero_pfn
  477. static inline int is_zero_pfn(unsigned long pfn)
  478. {
  479. return pfn == zero_pfn;
  480. }
  481. #endif
  482. #ifndef my_zero_pfn
  483. static inline unsigned long my_zero_pfn(unsigned long addr)
  484. {
  485. return zero_pfn;
  486. }
  487. #endif
  488. /*
  489. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  490. *
  491. * "Special" mappings do not wish to be associated with a "struct page" (either
  492. * it doesn't exist, or it exists but they don't want to touch it). In this
  493. * case, NULL is returned here. "Normal" mappings do have a struct page.
  494. *
  495. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  496. * pte bit, in which case this function is trivial. Secondly, an architecture
  497. * may not have a spare pte bit, which requires a more complicated scheme,
  498. * described below.
  499. *
  500. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  501. * special mapping (even if there are underlying and valid "struct pages").
  502. * COWed pages of a VM_PFNMAP are always normal.
  503. *
  504. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  505. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  506. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  507. * mapping will always honor the rule
  508. *
  509. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  510. *
  511. * And for normal mappings this is false.
  512. *
  513. * This restricts such mappings to be a linear translation from virtual address
  514. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  515. * as the vma is not a COW mapping; in that case, we know that all ptes are
  516. * special (because none can have been COWed).
  517. *
  518. *
  519. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  520. *
  521. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  522. * page" backing, however the difference is that _all_ pages with a struct
  523. * page (that is, those where pfn_valid is true) are refcounted and considered
  524. * normal pages by the VM. The disadvantage is that pages are refcounted
  525. * (which can be slower and simply not an option for some PFNMAP users). The
  526. * advantage is that we don't have to follow the strict linearity rule of
  527. * PFNMAP mappings in order to support COWable mappings.
  528. *
  529. */
  530. #ifdef __HAVE_ARCH_PTE_SPECIAL
  531. # define HAVE_PTE_SPECIAL 1
  532. #else
  533. # define HAVE_PTE_SPECIAL 0
  534. #endif
  535. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  536. pte_t pte)
  537. {
  538. unsigned long pfn = pte_pfn(pte);
  539. if (HAVE_PTE_SPECIAL) {
  540. if (likely(!pte_special(pte)))
  541. goto check_pfn;
  542. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  543. return NULL;
  544. if (!is_zero_pfn(pfn))
  545. print_bad_pte(vma, addr, pte, NULL);
  546. return NULL;
  547. }
  548. /* !HAVE_PTE_SPECIAL case follows: */
  549. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  550. if (vma->vm_flags & VM_MIXEDMAP) {
  551. if (!pfn_valid(pfn))
  552. return NULL;
  553. goto out;
  554. } else {
  555. unsigned long off;
  556. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  557. if (pfn == vma->vm_pgoff + off)
  558. return NULL;
  559. if (!is_cow_mapping(vma->vm_flags))
  560. return NULL;
  561. }
  562. }
  563. if (is_zero_pfn(pfn))
  564. return NULL;
  565. check_pfn:
  566. if (unlikely(pfn > highest_memmap_pfn)) {
  567. print_bad_pte(vma, addr, pte, NULL);
  568. return NULL;
  569. }
  570. /*
  571. * NOTE! We still have PageReserved() pages in the page tables.
  572. * eg. VDSO mappings can cause them to exist.
  573. */
  574. out:
  575. return pfn_to_page(pfn);
  576. }
  577. /*
  578. * copy one vm_area from one task to the other. Assumes the page tables
  579. * already present in the new task to be cleared in the whole range
  580. * covered by this vma.
  581. */
  582. static inline unsigned long
  583. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  584. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  585. unsigned long addr, int *rss)
  586. {
  587. unsigned long vm_flags = vma->vm_flags;
  588. pte_t pte = *src_pte;
  589. struct page *page;
  590. /* pte contains position in swap or file, so copy. */
  591. if (unlikely(!pte_present(pte))) {
  592. if (!pte_file(pte)) {
  593. swp_entry_t entry = pte_to_swp_entry(pte);
  594. if (swap_duplicate(entry) < 0)
  595. return entry.val;
  596. /* make sure dst_mm is on swapoff's mmlist. */
  597. if (unlikely(list_empty(&dst_mm->mmlist))) {
  598. spin_lock(&mmlist_lock);
  599. if (list_empty(&dst_mm->mmlist))
  600. list_add(&dst_mm->mmlist,
  601. &src_mm->mmlist);
  602. spin_unlock(&mmlist_lock);
  603. }
  604. if (likely(!non_swap_entry(entry)))
  605. rss[MM_SWAPENTS]++;
  606. else if (is_write_migration_entry(entry) &&
  607. is_cow_mapping(vm_flags)) {
  608. /*
  609. * COW mappings require pages in both parent
  610. * and child to be set to read.
  611. */
  612. make_migration_entry_read(&entry);
  613. pte = swp_entry_to_pte(entry);
  614. set_pte_at(src_mm, addr, src_pte, pte);
  615. }
  616. }
  617. goto out_set_pte;
  618. }
  619. /*
  620. * If it's a COW mapping, write protect it both
  621. * in the parent and the child
  622. */
  623. if (is_cow_mapping(vm_flags)) {
  624. ptep_set_wrprotect(src_mm, addr, src_pte);
  625. pte = pte_wrprotect(pte);
  626. }
  627. /*
  628. * If it's a shared mapping, mark it clean in
  629. * the child
  630. */
  631. if (vm_flags & VM_SHARED)
  632. pte = pte_mkclean(pte);
  633. pte = pte_mkold(pte);
  634. page = vm_normal_page(vma, addr, pte);
  635. if (page) {
  636. get_page(page);
  637. page_dup_rmap(page);
  638. if (PageAnon(page))
  639. rss[MM_ANONPAGES]++;
  640. else
  641. rss[MM_FILEPAGES]++;
  642. }
  643. out_set_pte:
  644. set_pte_at(dst_mm, addr, dst_pte, pte);
  645. return 0;
  646. }
  647. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  648. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  649. unsigned long addr, unsigned long end)
  650. {
  651. pte_t *orig_src_pte, *orig_dst_pte;
  652. pte_t *src_pte, *dst_pte;
  653. spinlock_t *src_ptl, *dst_ptl;
  654. int progress = 0;
  655. int rss[NR_MM_COUNTERS];
  656. swp_entry_t entry = (swp_entry_t){0};
  657. again:
  658. init_rss_vec(rss);
  659. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  660. if (!dst_pte)
  661. return -ENOMEM;
  662. src_pte = pte_offset_map_nested(src_pmd, addr);
  663. src_ptl = pte_lockptr(src_mm, src_pmd);
  664. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  665. orig_src_pte = src_pte;
  666. orig_dst_pte = dst_pte;
  667. arch_enter_lazy_mmu_mode();
  668. do {
  669. /*
  670. * We are holding two locks at this point - either of them
  671. * could generate latencies in another task on another CPU.
  672. */
  673. if (progress >= 32) {
  674. progress = 0;
  675. if (need_resched() ||
  676. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  677. break;
  678. }
  679. if (pte_none(*src_pte)) {
  680. progress++;
  681. continue;
  682. }
  683. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  684. vma, addr, rss);
  685. if (entry.val)
  686. break;
  687. progress += 8;
  688. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  689. arch_leave_lazy_mmu_mode();
  690. spin_unlock(src_ptl);
  691. pte_unmap_nested(orig_src_pte);
  692. add_mm_rss_vec(dst_mm, rss);
  693. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  694. cond_resched();
  695. if (entry.val) {
  696. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  697. return -ENOMEM;
  698. progress = 0;
  699. }
  700. if (addr != end)
  701. goto again;
  702. return 0;
  703. }
  704. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  705. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  706. unsigned long addr, unsigned long end)
  707. {
  708. pmd_t *src_pmd, *dst_pmd;
  709. unsigned long next;
  710. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  711. if (!dst_pmd)
  712. return -ENOMEM;
  713. src_pmd = pmd_offset(src_pud, addr);
  714. do {
  715. next = pmd_addr_end(addr, end);
  716. if (pmd_none_or_clear_bad(src_pmd))
  717. continue;
  718. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  719. vma, addr, next))
  720. return -ENOMEM;
  721. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  722. return 0;
  723. }
  724. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  725. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  726. unsigned long addr, unsigned long end)
  727. {
  728. pud_t *src_pud, *dst_pud;
  729. unsigned long next;
  730. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  731. if (!dst_pud)
  732. return -ENOMEM;
  733. src_pud = pud_offset(src_pgd, addr);
  734. do {
  735. next = pud_addr_end(addr, end);
  736. if (pud_none_or_clear_bad(src_pud))
  737. continue;
  738. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  739. vma, addr, next))
  740. return -ENOMEM;
  741. } while (dst_pud++, src_pud++, addr = next, addr != end);
  742. return 0;
  743. }
  744. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  745. struct vm_area_struct *vma)
  746. {
  747. pgd_t *src_pgd, *dst_pgd;
  748. unsigned long next;
  749. unsigned long addr = vma->vm_start;
  750. unsigned long end = vma->vm_end;
  751. int ret;
  752. /*
  753. * Don't copy ptes where a page fault will fill them correctly.
  754. * Fork becomes much lighter when there are big shared or private
  755. * readonly mappings. The tradeoff is that copy_page_range is more
  756. * efficient than faulting.
  757. */
  758. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  759. if (!vma->anon_vma)
  760. return 0;
  761. }
  762. if (is_vm_hugetlb_page(vma))
  763. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  764. if (unlikely(is_pfn_mapping(vma))) {
  765. /*
  766. * We do not free on error cases below as remove_vma
  767. * gets called on error from higher level routine
  768. */
  769. ret = track_pfn_vma_copy(vma);
  770. if (ret)
  771. return ret;
  772. }
  773. /*
  774. * We need to invalidate the secondary MMU mappings only when
  775. * there could be a permission downgrade on the ptes of the
  776. * parent mm. And a permission downgrade will only happen if
  777. * is_cow_mapping() returns true.
  778. */
  779. if (is_cow_mapping(vma->vm_flags))
  780. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  781. ret = 0;
  782. dst_pgd = pgd_offset(dst_mm, addr);
  783. src_pgd = pgd_offset(src_mm, addr);
  784. do {
  785. next = pgd_addr_end(addr, end);
  786. if (pgd_none_or_clear_bad(src_pgd))
  787. continue;
  788. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  789. vma, addr, next))) {
  790. ret = -ENOMEM;
  791. break;
  792. }
  793. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  794. if (is_cow_mapping(vma->vm_flags))
  795. mmu_notifier_invalidate_range_end(src_mm,
  796. vma->vm_start, end);
  797. return ret;
  798. }
  799. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  800. struct vm_area_struct *vma, pmd_t *pmd,
  801. unsigned long addr, unsigned long end,
  802. long *zap_work, struct zap_details *details)
  803. {
  804. struct mm_struct *mm = tlb->mm;
  805. pte_t *pte;
  806. spinlock_t *ptl;
  807. int rss[NR_MM_COUNTERS];
  808. init_rss_vec(rss);
  809. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  810. arch_enter_lazy_mmu_mode();
  811. do {
  812. pte_t ptent = *pte;
  813. if (pte_none(ptent)) {
  814. (*zap_work)--;
  815. continue;
  816. }
  817. (*zap_work) -= PAGE_SIZE;
  818. if (pte_present(ptent)) {
  819. struct page *page;
  820. page = vm_normal_page(vma, addr, ptent);
  821. if (unlikely(details) && page) {
  822. /*
  823. * unmap_shared_mapping_pages() wants to
  824. * invalidate cache without truncating:
  825. * unmap shared but keep private pages.
  826. */
  827. if (details->check_mapping &&
  828. details->check_mapping != page->mapping)
  829. continue;
  830. /*
  831. * Each page->index must be checked when
  832. * invalidating or truncating nonlinear.
  833. */
  834. if (details->nonlinear_vma &&
  835. (page->index < details->first_index ||
  836. page->index > details->last_index))
  837. continue;
  838. }
  839. ptent = ptep_get_and_clear_full(mm, addr, pte,
  840. tlb->fullmm);
  841. tlb_remove_tlb_entry(tlb, pte, addr);
  842. if (unlikely(!page))
  843. continue;
  844. if (unlikely(details) && details->nonlinear_vma
  845. && linear_page_index(details->nonlinear_vma,
  846. addr) != page->index)
  847. set_pte_at(mm, addr, pte,
  848. pgoff_to_pte(page->index));
  849. if (PageAnon(page))
  850. rss[MM_ANONPAGES]--;
  851. else {
  852. if (pte_dirty(ptent))
  853. set_page_dirty(page);
  854. if (pte_young(ptent) &&
  855. likely(!VM_SequentialReadHint(vma)))
  856. mark_page_accessed(page);
  857. rss[MM_FILEPAGES]--;
  858. }
  859. page_remove_rmap(page);
  860. if (unlikely(page_mapcount(page) < 0))
  861. print_bad_pte(vma, addr, ptent, page);
  862. tlb_remove_page(tlb, page);
  863. continue;
  864. }
  865. /*
  866. * If details->check_mapping, we leave swap entries;
  867. * if details->nonlinear_vma, we leave file entries.
  868. */
  869. if (unlikely(details))
  870. continue;
  871. if (pte_file(ptent)) {
  872. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  873. print_bad_pte(vma, addr, ptent, NULL);
  874. } else {
  875. swp_entry_t entry = pte_to_swp_entry(ptent);
  876. if (!non_swap_entry(entry))
  877. rss[MM_SWAPENTS]--;
  878. if (unlikely(!free_swap_and_cache(entry)))
  879. print_bad_pte(vma, addr, ptent, NULL);
  880. }
  881. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  882. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  883. add_mm_rss_vec(mm, rss);
  884. arch_leave_lazy_mmu_mode();
  885. pte_unmap_unlock(pte - 1, ptl);
  886. return addr;
  887. }
  888. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  889. struct vm_area_struct *vma, pud_t *pud,
  890. unsigned long addr, unsigned long end,
  891. long *zap_work, struct zap_details *details)
  892. {
  893. pmd_t *pmd;
  894. unsigned long next;
  895. pmd = pmd_offset(pud, addr);
  896. do {
  897. next = pmd_addr_end(addr, end);
  898. if (pmd_none_or_clear_bad(pmd)) {
  899. (*zap_work)--;
  900. continue;
  901. }
  902. next = zap_pte_range(tlb, vma, pmd, addr, next,
  903. zap_work, details);
  904. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  905. return addr;
  906. }
  907. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  908. struct vm_area_struct *vma, pgd_t *pgd,
  909. unsigned long addr, unsigned long end,
  910. long *zap_work, struct zap_details *details)
  911. {
  912. pud_t *pud;
  913. unsigned long next;
  914. pud = pud_offset(pgd, addr);
  915. do {
  916. next = pud_addr_end(addr, end);
  917. if (pud_none_or_clear_bad(pud)) {
  918. (*zap_work)--;
  919. continue;
  920. }
  921. next = zap_pmd_range(tlb, vma, pud, addr, next,
  922. zap_work, details);
  923. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  924. return addr;
  925. }
  926. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  927. struct vm_area_struct *vma,
  928. unsigned long addr, unsigned long end,
  929. long *zap_work, struct zap_details *details)
  930. {
  931. pgd_t *pgd;
  932. unsigned long next;
  933. if (details && !details->check_mapping && !details->nonlinear_vma)
  934. details = NULL;
  935. BUG_ON(addr >= end);
  936. mem_cgroup_uncharge_start();
  937. tlb_start_vma(tlb, vma);
  938. pgd = pgd_offset(vma->vm_mm, addr);
  939. do {
  940. next = pgd_addr_end(addr, end);
  941. if (pgd_none_or_clear_bad(pgd)) {
  942. (*zap_work)--;
  943. continue;
  944. }
  945. next = zap_pud_range(tlb, vma, pgd, addr, next,
  946. zap_work, details);
  947. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  948. tlb_end_vma(tlb, vma);
  949. mem_cgroup_uncharge_end();
  950. return addr;
  951. }
  952. #ifdef CONFIG_PREEMPT
  953. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  954. #else
  955. /* No preempt: go for improved straight-line efficiency */
  956. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  957. #endif
  958. /**
  959. * unmap_vmas - unmap a range of memory covered by a list of vma's
  960. * @tlbp: address of the caller's struct mmu_gather
  961. * @vma: the starting vma
  962. * @start_addr: virtual address at which to start unmapping
  963. * @end_addr: virtual address at which to end unmapping
  964. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  965. * @details: details of nonlinear truncation or shared cache invalidation
  966. *
  967. * Returns the end address of the unmapping (restart addr if interrupted).
  968. *
  969. * Unmap all pages in the vma list.
  970. *
  971. * We aim to not hold locks for too long (for scheduling latency reasons).
  972. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  973. * return the ending mmu_gather to the caller.
  974. *
  975. * Only addresses between `start' and `end' will be unmapped.
  976. *
  977. * The VMA list must be sorted in ascending virtual address order.
  978. *
  979. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  980. * range after unmap_vmas() returns. So the only responsibility here is to
  981. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  982. * drops the lock and schedules.
  983. */
  984. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  985. struct vm_area_struct *vma, unsigned long start_addr,
  986. unsigned long end_addr, unsigned long *nr_accounted,
  987. struct zap_details *details)
  988. {
  989. long zap_work = ZAP_BLOCK_SIZE;
  990. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  991. int tlb_start_valid = 0;
  992. unsigned long start = start_addr;
  993. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  994. int fullmm = (*tlbp)->fullmm;
  995. struct mm_struct *mm = vma->vm_mm;
  996. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  997. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  998. unsigned long end;
  999. start = max(vma->vm_start, start_addr);
  1000. if (start >= vma->vm_end)
  1001. continue;
  1002. end = min(vma->vm_end, end_addr);
  1003. if (end <= vma->vm_start)
  1004. continue;
  1005. if (vma->vm_flags & VM_ACCOUNT)
  1006. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1007. if (unlikely(is_pfn_mapping(vma)))
  1008. untrack_pfn_vma(vma, 0, 0);
  1009. while (start != end) {
  1010. if (!tlb_start_valid) {
  1011. tlb_start = start;
  1012. tlb_start_valid = 1;
  1013. }
  1014. if (unlikely(is_vm_hugetlb_page(vma))) {
  1015. /*
  1016. * It is undesirable to test vma->vm_file as it
  1017. * should be non-null for valid hugetlb area.
  1018. * However, vm_file will be NULL in the error
  1019. * cleanup path of do_mmap_pgoff. When
  1020. * hugetlbfs ->mmap method fails,
  1021. * do_mmap_pgoff() nullifies vma->vm_file
  1022. * before calling this function to clean up.
  1023. * Since no pte has actually been setup, it is
  1024. * safe to do nothing in this case.
  1025. */
  1026. if (vma->vm_file) {
  1027. unmap_hugepage_range(vma, start, end, NULL);
  1028. zap_work -= (end - start) /
  1029. pages_per_huge_page(hstate_vma(vma));
  1030. }
  1031. start = end;
  1032. } else
  1033. start = unmap_page_range(*tlbp, vma,
  1034. start, end, &zap_work, details);
  1035. if (zap_work > 0) {
  1036. BUG_ON(start != end);
  1037. break;
  1038. }
  1039. tlb_finish_mmu(*tlbp, tlb_start, start);
  1040. if (need_resched() ||
  1041. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1042. if (i_mmap_lock) {
  1043. *tlbp = NULL;
  1044. goto out;
  1045. }
  1046. cond_resched();
  1047. }
  1048. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1049. tlb_start_valid = 0;
  1050. zap_work = ZAP_BLOCK_SIZE;
  1051. }
  1052. }
  1053. out:
  1054. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1055. return start; /* which is now the end (or restart) address */
  1056. }
  1057. /**
  1058. * zap_page_range - remove user pages in a given range
  1059. * @vma: vm_area_struct holding the applicable pages
  1060. * @address: starting address of pages to zap
  1061. * @size: number of bytes to zap
  1062. * @details: details of nonlinear truncation or shared cache invalidation
  1063. */
  1064. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1065. unsigned long size, struct zap_details *details)
  1066. {
  1067. struct mm_struct *mm = vma->vm_mm;
  1068. struct mmu_gather *tlb;
  1069. unsigned long end = address + size;
  1070. unsigned long nr_accounted = 0;
  1071. lru_add_drain();
  1072. tlb = tlb_gather_mmu(mm, 0);
  1073. update_hiwater_rss(mm);
  1074. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1075. if (tlb)
  1076. tlb_finish_mmu(tlb, address, end);
  1077. return end;
  1078. }
  1079. /**
  1080. * zap_vma_ptes - remove ptes mapping the vma
  1081. * @vma: vm_area_struct holding ptes to be zapped
  1082. * @address: starting address of pages to zap
  1083. * @size: number of bytes to zap
  1084. *
  1085. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1086. *
  1087. * The entire address range must be fully contained within the vma.
  1088. *
  1089. * Returns 0 if successful.
  1090. */
  1091. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1092. unsigned long size)
  1093. {
  1094. if (address < vma->vm_start || address + size > vma->vm_end ||
  1095. !(vma->vm_flags & VM_PFNMAP))
  1096. return -1;
  1097. zap_page_range(vma, address, size, NULL);
  1098. return 0;
  1099. }
  1100. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1101. /*
  1102. * Do a quick page-table lookup for a single page.
  1103. */
  1104. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1105. unsigned int flags)
  1106. {
  1107. pgd_t *pgd;
  1108. pud_t *pud;
  1109. pmd_t *pmd;
  1110. pte_t *ptep, pte;
  1111. spinlock_t *ptl;
  1112. struct page *page;
  1113. struct mm_struct *mm = vma->vm_mm;
  1114. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1115. if (!IS_ERR(page)) {
  1116. BUG_ON(flags & FOLL_GET);
  1117. goto out;
  1118. }
  1119. page = NULL;
  1120. pgd = pgd_offset(mm, address);
  1121. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1122. goto no_page_table;
  1123. pud = pud_offset(pgd, address);
  1124. if (pud_none(*pud))
  1125. goto no_page_table;
  1126. if (pud_huge(*pud)) {
  1127. BUG_ON(flags & FOLL_GET);
  1128. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1129. goto out;
  1130. }
  1131. if (unlikely(pud_bad(*pud)))
  1132. goto no_page_table;
  1133. pmd = pmd_offset(pud, address);
  1134. if (pmd_none(*pmd))
  1135. goto no_page_table;
  1136. if (pmd_huge(*pmd)) {
  1137. BUG_ON(flags & FOLL_GET);
  1138. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1139. goto out;
  1140. }
  1141. if (unlikely(pmd_bad(*pmd)))
  1142. goto no_page_table;
  1143. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1144. pte = *ptep;
  1145. if (!pte_present(pte))
  1146. goto no_page;
  1147. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1148. goto unlock;
  1149. page = vm_normal_page(vma, address, pte);
  1150. if (unlikely(!page)) {
  1151. if ((flags & FOLL_DUMP) ||
  1152. !is_zero_pfn(pte_pfn(pte)))
  1153. goto bad_page;
  1154. page = pte_page(pte);
  1155. }
  1156. if (flags & FOLL_GET)
  1157. get_page(page);
  1158. if (flags & FOLL_TOUCH) {
  1159. if ((flags & FOLL_WRITE) &&
  1160. !pte_dirty(pte) && !PageDirty(page))
  1161. set_page_dirty(page);
  1162. /*
  1163. * pte_mkyoung() would be more correct here, but atomic care
  1164. * is needed to avoid losing the dirty bit: it is easier to use
  1165. * mark_page_accessed().
  1166. */
  1167. mark_page_accessed(page);
  1168. }
  1169. unlock:
  1170. pte_unmap_unlock(ptep, ptl);
  1171. out:
  1172. return page;
  1173. bad_page:
  1174. pte_unmap_unlock(ptep, ptl);
  1175. return ERR_PTR(-EFAULT);
  1176. no_page:
  1177. pte_unmap_unlock(ptep, ptl);
  1178. if (!pte_none(pte))
  1179. return page;
  1180. no_page_table:
  1181. /*
  1182. * When core dumping an enormous anonymous area that nobody
  1183. * has touched so far, we don't want to allocate unnecessary pages or
  1184. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1185. * then get_dump_page() will return NULL to leave a hole in the dump.
  1186. * But we can only make this optimization where a hole would surely
  1187. * be zero-filled if handle_mm_fault() actually did handle it.
  1188. */
  1189. if ((flags & FOLL_DUMP) &&
  1190. (!vma->vm_ops || !vma->vm_ops->fault))
  1191. return ERR_PTR(-EFAULT);
  1192. return page;
  1193. }
  1194. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1195. unsigned long start, int nr_pages, unsigned int gup_flags,
  1196. struct page **pages, struct vm_area_struct **vmas)
  1197. {
  1198. int i;
  1199. unsigned long vm_flags;
  1200. if (nr_pages <= 0)
  1201. return 0;
  1202. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1203. /*
  1204. * Require read or write permissions.
  1205. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1206. */
  1207. vm_flags = (gup_flags & FOLL_WRITE) ?
  1208. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1209. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1210. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1211. i = 0;
  1212. do {
  1213. struct vm_area_struct *vma;
  1214. vma = find_extend_vma(mm, start);
  1215. if (!vma && in_gate_area(tsk, start)) {
  1216. unsigned long pg = start & PAGE_MASK;
  1217. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1218. pgd_t *pgd;
  1219. pud_t *pud;
  1220. pmd_t *pmd;
  1221. pte_t *pte;
  1222. /* user gate pages are read-only */
  1223. if (gup_flags & FOLL_WRITE)
  1224. return i ? : -EFAULT;
  1225. if (pg > TASK_SIZE)
  1226. pgd = pgd_offset_k(pg);
  1227. else
  1228. pgd = pgd_offset_gate(mm, pg);
  1229. BUG_ON(pgd_none(*pgd));
  1230. pud = pud_offset(pgd, pg);
  1231. BUG_ON(pud_none(*pud));
  1232. pmd = pmd_offset(pud, pg);
  1233. if (pmd_none(*pmd))
  1234. return i ? : -EFAULT;
  1235. pte = pte_offset_map(pmd, pg);
  1236. if (pte_none(*pte)) {
  1237. pte_unmap(pte);
  1238. return i ? : -EFAULT;
  1239. }
  1240. if (pages) {
  1241. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1242. pages[i] = page;
  1243. if (page)
  1244. get_page(page);
  1245. }
  1246. pte_unmap(pte);
  1247. if (vmas)
  1248. vmas[i] = gate_vma;
  1249. i++;
  1250. start += PAGE_SIZE;
  1251. nr_pages--;
  1252. continue;
  1253. }
  1254. if (!vma ||
  1255. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1256. !(vm_flags & vma->vm_flags))
  1257. return i ? : -EFAULT;
  1258. if (is_vm_hugetlb_page(vma)) {
  1259. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1260. &start, &nr_pages, i, gup_flags);
  1261. continue;
  1262. }
  1263. do {
  1264. struct page *page;
  1265. unsigned int foll_flags = gup_flags;
  1266. /*
  1267. * If we have a pending SIGKILL, don't keep faulting
  1268. * pages and potentially allocating memory.
  1269. */
  1270. if (unlikely(fatal_signal_pending(current)))
  1271. return i ? i : -ERESTARTSYS;
  1272. cond_resched();
  1273. while (!(page = follow_page(vma, start, foll_flags))) {
  1274. int ret;
  1275. ret = handle_mm_fault(mm, vma, start,
  1276. (foll_flags & FOLL_WRITE) ?
  1277. FAULT_FLAG_WRITE : 0);
  1278. if (ret & VM_FAULT_ERROR) {
  1279. if (ret & VM_FAULT_OOM)
  1280. return i ? i : -ENOMEM;
  1281. if (ret &
  1282. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1283. return i ? i : -EFAULT;
  1284. BUG();
  1285. }
  1286. if (ret & VM_FAULT_MAJOR)
  1287. tsk->maj_flt++;
  1288. else
  1289. tsk->min_flt++;
  1290. /*
  1291. * The VM_FAULT_WRITE bit tells us that
  1292. * do_wp_page has broken COW when necessary,
  1293. * even if maybe_mkwrite decided not to set
  1294. * pte_write. We can thus safely do subsequent
  1295. * page lookups as if they were reads. But only
  1296. * do so when looping for pte_write is futile:
  1297. * in some cases userspace may also be wanting
  1298. * to write to the gotten user page, which a
  1299. * read fault here might prevent (a readonly
  1300. * page might get reCOWed by userspace write).
  1301. */
  1302. if ((ret & VM_FAULT_WRITE) &&
  1303. !(vma->vm_flags & VM_WRITE))
  1304. foll_flags &= ~FOLL_WRITE;
  1305. cond_resched();
  1306. }
  1307. if (IS_ERR(page))
  1308. return i ? i : PTR_ERR(page);
  1309. if (pages) {
  1310. pages[i] = page;
  1311. flush_anon_page(vma, page, start);
  1312. flush_dcache_page(page);
  1313. }
  1314. if (vmas)
  1315. vmas[i] = vma;
  1316. i++;
  1317. start += PAGE_SIZE;
  1318. nr_pages--;
  1319. } while (nr_pages && start < vma->vm_end);
  1320. } while (nr_pages);
  1321. return i;
  1322. }
  1323. /**
  1324. * get_user_pages() - pin user pages in memory
  1325. * @tsk: task_struct of target task
  1326. * @mm: mm_struct of target mm
  1327. * @start: starting user address
  1328. * @nr_pages: number of pages from start to pin
  1329. * @write: whether pages will be written to by the caller
  1330. * @force: whether to force write access even if user mapping is
  1331. * readonly. This will result in the page being COWed even
  1332. * in MAP_SHARED mappings. You do not want this.
  1333. * @pages: array that receives pointers to the pages pinned.
  1334. * Should be at least nr_pages long. Or NULL, if caller
  1335. * only intends to ensure the pages are faulted in.
  1336. * @vmas: array of pointers to vmas corresponding to each page.
  1337. * Or NULL if the caller does not require them.
  1338. *
  1339. * Returns number of pages pinned. This may be fewer than the number
  1340. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1341. * were pinned, returns -errno. Each page returned must be released
  1342. * with a put_page() call when it is finished with. vmas will only
  1343. * remain valid while mmap_sem is held.
  1344. *
  1345. * Must be called with mmap_sem held for read or write.
  1346. *
  1347. * get_user_pages walks a process's page tables and takes a reference to
  1348. * each struct page that each user address corresponds to at a given
  1349. * instant. That is, it takes the page that would be accessed if a user
  1350. * thread accesses the given user virtual address at that instant.
  1351. *
  1352. * This does not guarantee that the page exists in the user mappings when
  1353. * get_user_pages returns, and there may even be a completely different
  1354. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1355. * and subsequently re faulted). However it does guarantee that the page
  1356. * won't be freed completely. And mostly callers simply care that the page
  1357. * contains data that was valid *at some point in time*. Typically, an IO
  1358. * or similar operation cannot guarantee anything stronger anyway because
  1359. * locks can't be held over the syscall boundary.
  1360. *
  1361. * If write=0, the page must not be written to. If the page is written to,
  1362. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1363. * after the page is finished with, and before put_page is called.
  1364. *
  1365. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1366. * handle on the memory by some means other than accesses via the user virtual
  1367. * addresses. The pages may be submitted for DMA to devices or accessed via
  1368. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1369. * use the correct cache flushing APIs.
  1370. *
  1371. * See also get_user_pages_fast, for performance critical applications.
  1372. */
  1373. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1374. unsigned long start, int nr_pages, int write, int force,
  1375. struct page **pages, struct vm_area_struct **vmas)
  1376. {
  1377. int flags = FOLL_TOUCH;
  1378. if (pages)
  1379. flags |= FOLL_GET;
  1380. if (write)
  1381. flags |= FOLL_WRITE;
  1382. if (force)
  1383. flags |= FOLL_FORCE;
  1384. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1385. }
  1386. EXPORT_SYMBOL(get_user_pages);
  1387. /**
  1388. * get_dump_page() - pin user page in memory while writing it to core dump
  1389. * @addr: user address
  1390. *
  1391. * Returns struct page pointer of user page pinned for dump,
  1392. * to be freed afterwards by page_cache_release() or put_page().
  1393. *
  1394. * Returns NULL on any kind of failure - a hole must then be inserted into
  1395. * the corefile, to preserve alignment with its headers; and also returns
  1396. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1397. * allowing a hole to be left in the corefile to save diskspace.
  1398. *
  1399. * Called without mmap_sem, but after all other threads have been killed.
  1400. */
  1401. #ifdef CONFIG_ELF_CORE
  1402. struct page *get_dump_page(unsigned long addr)
  1403. {
  1404. struct vm_area_struct *vma;
  1405. struct page *page;
  1406. if (__get_user_pages(current, current->mm, addr, 1,
  1407. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1408. return NULL;
  1409. flush_cache_page(vma, addr, page_to_pfn(page));
  1410. return page;
  1411. }
  1412. #endif /* CONFIG_ELF_CORE */
  1413. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1414. spinlock_t **ptl)
  1415. {
  1416. pgd_t * pgd = pgd_offset(mm, addr);
  1417. pud_t * pud = pud_alloc(mm, pgd, addr);
  1418. if (pud) {
  1419. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1420. if (pmd)
  1421. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1422. }
  1423. return NULL;
  1424. }
  1425. /*
  1426. * This is the old fallback for page remapping.
  1427. *
  1428. * For historical reasons, it only allows reserved pages. Only
  1429. * old drivers should use this, and they needed to mark their
  1430. * pages reserved for the old functions anyway.
  1431. */
  1432. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1433. struct page *page, pgprot_t prot)
  1434. {
  1435. struct mm_struct *mm = vma->vm_mm;
  1436. int retval;
  1437. pte_t *pte;
  1438. spinlock_t *ptl;
  1439. retval = -EINVAL;
  1440. if (PageAnon(page))
  1441. goto out;
  1442. retval = -ENOMEM;
  1443. flush_dcache_page(page);
  1444. pte = get_locked_pte(mm, addr, &ptl);
  1445. if (!pte)
  1446. goto out;
  1447. retval = -EBUSY;
  1448. if (!pte_none(*pte))
  1449. goto out_unlock;
  1450. /* Ok, finally just insert the thing.. */
  1451. get_page(page);
  1452. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1453. page_add_file_rmap(page);
  1454. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1455. retval = 0;
  1456. pte_unmap_unlock(pte, ptl);
  1457. return retval;
  1458. out_unlock:
  1459. pte_unmap_unlock(pte, ptl);
  1460. out:
  1461. return retval;
  1462. }
  1463. /**
  1464. * vm_insert_page - insert single page into user vma
  1465. * @vma: user vma to map to
  1466. * @addr: target user address of this page
  1467. * @page: source kernel page
  1468. *
  1469. * This allows drivers to insert individual pages they've allocated
  1470. * into a user vma.
  1471. *
  1472. * The page has to be a nice clean _individual_ kernel allocation.
  1473. * If you allocate a compound page, you need to have marked it as
  1474. * such (__GFP_COMP), or manually just split the page up yourself
  1475. * (see split_page()).
  1476. *
  1477. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1478. * took an arbitrary page protection parameter. This doesn't allow
  1479. * that. Your vma protection will have to be set up correctly, which
  1480. * means that if you want a shared writable mapping, you'd better
  1481. * ask for a shared writable mapping!
  1482. *
  1483. * The page does not need to be reserved.
  1484. */
  1485. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1486. struct page *page)
  1487. {
  1488. if (addr < vma->vm_start || addr >= vma->vm_end)
  1489. return -EFAULT;
  1490. if (!page_count(page))
  1491. return -EINVAL;
  1492. vma->vm_flags |= VM_INSERTPAGE;
  1493. return insert_page(vma, addr, page, vma->vm_page_prot);
  1494. }
  1495. EXPORT_SYMBOL(vm_insert_page);
  1496. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1497. unsigned long pfn, pgprot_t prot)
  1498. {
  1499. struct mm_struct *mm = vma->vm_mm;
  1500. int retval;
  1501. pte_t *pte, entry;
  1502. spinlock_t *ptl;
  1503. retval = -ENOMEM;
  1504. pte = get_locked_pte(mm, addr, &ptl);
  1505. if (!pte)
  1506. goto out;
  1507. retval = -EBUSY;
  1508. if (!pte_none(*pte))
  1509. goto out_unlock;
  1510. /* Ok, finally just insert the thing.. */
  1511. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1512. set_pte_at(mm, addr, pte, entry);
  1513. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1514. retval = 0;
  1515. out_unlock:
  1516. pte_unmap_unlock(pte, ptl);
  1517. out:
  1518. return retval;
  1519. }
  1520. /**
  1521. * vm_insert_pfn - insert single pfn into user vma
  1522. * @vma: user vma to map to
  1523. * @addr: target user address of this page
  1524. * @pfn: source kernel pfn
  1525. *
  1526. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1527. * they've allocated into a user vma. Same comments apply.
  1528. *
  1529. * This function should only be called from a vm_ops->fault handler, and
  1530. * in that case the handler should return NULL.
  1531. *
  1532. * vma cannot be a COW mapping.
  1533. *
  1534. * As this is called only for pages that do not currently exist, we
  1535. * do not need to flush old virtual caches or the TLB.
  1536. */
  1537. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1538. unsigned long pfn)
  1539. {
  1540. int ret;
  1541. pgprot_t pgprot = vma->vm_page_prot;
  1542. /*
  1543. * Technically, architectures with pte_special can avoid all these
  1544. * restrictions (same for remap_pfn_range). However we would like
  1545. * consistency in testing and feature parity among all, so we should
  1546. * try to keep these invariants in place for everybody.
  1547. */
  1548. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1549. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1550. (VM_PFNMAP|VM_MIXEDMAP));
  1551. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1552. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1553. if (addr < vma->vm_start || addr >= vma->vm_end)
  1554. return -EFAULT;
  1555. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1556. return -EINVAL;
  1557. ret = insert_pfn(vma, addr, pfn, pgprot);
  1558. if (ret)
  1559. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1560. return ret;
  1561. }
  1562. EXPORT_SYMBOL(vm_insert_pfn);
  1563. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1564. unsigned long pfn)
  1565. {
  1566. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1567. if (addr < vma->vm_start || addr >= vma->vm_end)
  1568. return -EFAULT;
  1569. /*
  1570. * If we don't have pte special, then we have to use the pfn_valid()
  1571. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1572. * refcount the page if pfn_valid is true (hence insert_page rather
  1573. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1574. * without pte special, it would there be refcounted as a normal page.
  1575. */
  1576. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1577. struct page *page;
  1578. page = pfn_to_page(pfn);
  1579. return insert_page(vma, addr, page, vma->vm_page_prot);
  1580. }
  1581. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1582. }
  1583. EXPORT_SYMBOL(vm_insert_mixed);
  1584. /*
  1585. * maps a range of physical memory into the requested pages. the old
  1586. * mappings are removed. any references to nonexistent pages results
  1587. * in null mappings (currently treated as "copy-on-access")
  1588. */
  1589. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1590. unsigned long addr, unsigned long end,
  1591. unsigned long pfn, pgprot_t prot)
  1592. {
  1593. pte_t *pte;
  1594. spinlock_t *ptl;
  1595. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1596. if (!pte)
  1597. return -ENOMEM;
  1598. arch_enter_lazy_mmu_mode();
  1599. do {
  1600. BUG_ON(!pte_none(*pte));
  1601. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1602. pfn++;
  1603. } while (pte++, addr += PAGE_SIZE, addr != end);
  1604. arch_leave_lazy_mmu_mode();
  1605. pte_unmap_unlock(pte - 1, ptl);
  1606. return 0;
  1607. }
  1608. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1609. unsigned long addr, unsigned long end,
  1610. unsigned long pfn, pgprot_t prot)
  1611. {
  1612. pmd_t *pmd;
  1613. unsigned long next;
  1614. pfn -= addr >> PAGE_SHIFT;
  1615. pmd = pmd_alloc(mm, pud, addr);
  1616. if (!pmd)
  1617. return -ENOMEM;
  1618. do {
  1619. next = pmd_addr_end(addr, end);
  1620. if (remap_pte_range(mm, pmd, addr, next,
  1621. pfn + (addr >> PAGE_SHIFT), prot))
  1622. return -ENOMEM;
  1623. } while (pmd++, addr = next, addr != end);
  1624. return 0;
  1625. }
  1626. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1627. unsigned long addr, unsigned long end,
  1628. unsigned long pfn, pgprot_t prot)
  1629. {
  1630. pud_t *pud;
  1631. unsigned long next;
  1632. pfn -= addr >> PAGE_SHIFT;
  1633. pud = pud_alloc(mm, pgd, addr);
  1634. if (!pud)
  1635. return -ENOMEM;
  1636. do {
  1637. next = pud_addr_end(addr, end);
  1638. if (remap_pmd_range(mm, pud, addr, next,
  1639. pfn + (addr >> PAGE_SHIFT), prot))
  1640. return -ENOMEM;
  1641. } while (pud++, addr = next, addr != end);
  1642. return 0;
  1643. }
  1644. /**
  1645. * remap_pfn_range - remap kernel memory to userspace
  1646. * @vma: user vma to map to
  1647. * @addr: target user address to start at
  1648. * @pfn: physical address of kernel memory
  1649. * @size: size of map area
  1650. * @prot: page protection flags for this mapping
  1651. *
  1652. * Note: this is only safe if the mm semaphore is held when called.
  1653. */
  1654. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1655. unsigned long pfn, unsigned long size, pgprot_t prot)
  1656. {
  1657. pgd_t *pgd;
  1658. unsigned long next;
  1659. unsigned long end = addr + PAGE_ALIGN(size);
  1660. struct mm_struct *mm = vma->vm_mm;
  1661. int err;
  1662. /*
  1663. * Physically remapped pages are special. Tell the
  1664. * rest of the world about it:
  1665. * VM_IO tells people not to look at these pages
  1666. * (accesses can have side effects).
  1667. * VM_RESERVED is specified all over the place, because
  1668. * in 2.4 it kept swapout's vma scan off this vma; but
  1669. * in 2.6 the LRU scan won't even find its pages, so this
  1670. * flag means no more than count its pages in reserved_vm,
  1671. * and omit it from core dump, even when VM_IO turned off.
  1672. * VM_PFNMAP tells the core MM that the base pages are just
  1673. * raw PFN mappings, and do not have a "struct page" associated
  1674. * with them.
  1675. *
  1676. * There's a horrible special case to handle copy-on-write
  1677. * behaviour that some programs depend on. We mark the "original"
  1678. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1679. */
  1680. if (addr == vma->vm_start && end == vma->vm_end) {
  1681. vma->vm_pgoff = pfn;
  1682. vma->vm_flags |= VM_PFN_AT_MMAP;
  1683. } else if (is_cow_mapping(vma->vm_flags))
  1684. return -EINVAL;
  1685. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1686. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1687. if (err) {
  1688. /*
  1689. * To indicate that track_pfn related cleanup is not
  1690. * needed from higher level routine calling unmap_vmas
  1691. */
  1692. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1693. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1694. return -EINVAL;
  1695. }
  1696. BUG_ON(addr >= end);
  1697. pfn -= addr >> PAGE_SHIFT;
  1698. pgd = pgd_offset(mm, addr);
  1699. flush_cache_range(vma, addr, end);
  1700. do {
  1701. next = pgd_addr_end(addr, end);
  1702. err = remap_pud_range(mm, pgd, addr, next,
  1703. pfn + (addr >> PAGE_SHIFT), prot);
  1704. if (err)
  1705. break;
  1706. } while (pgd++, addr = next, addr != end);
  1707. if (err)
  1708. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1709. return err;
  1710. }
  1711. EXPORT_SYMBOL(remap_pfn_range);
  1712. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1713. unsigned long addr, unsigned long end,
  1714. pte_fn_t fn, void *data)
  1715. {
  1716. pte_t *pte;
  1717. int err;
  1718. pgtable_t token;
  1719. spinlock_t *uninitialized_var(ptl);
  1720. pte = (mm == &init_mm) ?
  1721. pte_alloc_kernel(pmd, addr) :
  1722. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1723. if (!pte)
  1724. return -ENOMEM;
  1725. BUG_ON(pmd_huge(*pmd));
  1726. arch_enter_lazy_mmu_mode();
  1727. token = pmd_pgtable(*pmd);
  1728. do {
  1729. err = fn(pte++, token, addr, data);
  1730. if (err)
  1731. break;
  1732. } while (addr += PAGE_SIZE, addr != end);
  1733. arch_leave_lazy_mmu_mode();
  1734. if (mm != &init_mm)
  1735. pte_unmap_unlock(pte-1, ptl);
  1736. return err;
  1737. }
  1738. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1739. unsigned long addr, unsigned long end,
  1740. pte_fn_t fn, void *data)
  1741. {
  1742. pmd_t *pmd;
  1743. unsigned long next;
  1744. int err;
  1745. BUG_ON(pud_huge(*pud));
  1746. pmd = pmd_alloc(mm, pud, addr);
  1747. if (!pmd)
  1748. return -ENOMEM;
  1749. do {
  1750. next = pmd_addr_end(addr, end);
  1751. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1752. if (err)
  1753. break;
  1754. } while (pmd++, addr = next, addr != end);
  1755. return err;
  1756. }
  1757. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1758. unsigned long addr, unsigned long end,
  1759. pte_fn_t fn, void *data)
  1760. {
  1761. pud_t *pud;
  1762. unsigned long next;
  1763. int err;
  1764. pud = pud_alloc(mm, pgd, addr);
  1765. if (!pud)
  1766. return -ENOMEM;
  1767. do {
  1768. next = pud_addr_end(addr, end);
  1769. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1770. if (err)
  1771. break;
  1772. } while (pud++, addr = next, addr != end);
  1773. return err;
  1774. }
  1775. /*
  1776. * Scan a region of virtual memory, filling in page tables as necessary
  1777. * and calling a provided function on each leaf page table.
  1778. */
  1779. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1780. unsigned long size, pte_fn_t fn, void *data)
  1781. {
  1782. pgd_t *pgd;
  1783. unsigned long next;
  1784. unsigned long start = addr, end = addr + size;
  1785. int err;
  1786. BUG_ON(addr >= end);
  1787. mmu_notifier_invalidate_range_start(mm, start, end);
  1788. pgd = pgd_offset(mm, addr);
  1789. do {
  1790. next = pgd_addr_end(addr, end);
  1791. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1792. if (err)
  1793. break;
  1794. } while (pgd++, addr = next, addr != end);
  1795. mmu_notifier_invalidate_range_end(mm, start, end);
  1796. return err;
  1797. }
  1798. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1799. /*
  1800. * handle_pte_fault chooses page fault handler according to an entry
  1801. * which was read non-atomically. Before making any commitment, on
  1802. * those architectures or configurations (e.g. i386 with PAE) which
  1803. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1804. * must check under lock before unmapping the pte and proceeding
  1805. * (but do_wp_page is only called after already making such a check;
  1806. * and do_anonymous_page and do_no_page can safely check later on).
  1807. */
  1808. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1809. pte_t *page_table, pte_t orig_pte)
  1810. {
  1811. int same = 1;
  1812. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1813. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1814. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1815. spin_lock(ptl);
  1816. same = pte_same(*page_table, orig_pte);
  1817. spin_unlock(ptl);
  1818. }
  1819. #endif
  1820. pte_unmap(page_table);
  1821. return same;
  1822. }
  1823. /*
  1824. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1825. * servicing faults for write access. In the normal case, do always want
  1826. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1827. * that do not have writing enabled, when used by access_process_vm.
  1828. */
  1829. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1830. {
  1831. if (likely(vma->vm_flags & VM_WRITE))
  1832. pte = pte_mkwrite(pte);
  1833. return pte;
  1834. }
  1835. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1836. {
  1837. /*
  1838. * If the source page was a PFN mapping, we don't have
  1839. * a "struct page" for it. We do a best-effort copy by
  1840. * just copying from the original user address. If that
  1841. * fails, we just zero-fill it. Live with it.
  1842. */
  1843. if (unlikely(!src)) {
  1844. void *kaddr = kmap_atomic(dst, KM_USER0);
  1845. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1846. /*
  1847. * This really shouldn't fail, because the page is there
  1848. * in the page tables. But it might just be unreadable,
  1849. * in which case we just give up and fill the result with
  1850. * zeroes.
  1851. */
  1852. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1853. memset(kaddr, 0, PAGE_SIZE);
  1854. kunmap_atomic(kaddr, KM_USER0);
  1855. flush_dcache_page(dst);
  1856. } else
  1857. copy_user_highpage(dst, src, va, vma);
  1858. }
  1859. /*
  1860. * This routine handles present pages, when users try to write
  1861. * to a shared page. It is done by copying the page to a new address
  1862. * and decrementing the shared-page counter for the old page.
  1863. *
  1864. * Note that this routine assumes that the protection checks have been
  1865. * done by the caller (the low-level page fault routine in most cases).
  1866. * Thus we can safely just mark it writable once we've done any necessary
  1867. * COW.
  1868. *
  1869. * We also mark the page dirty at this point even though the page will
  1870. * change only once the write actually happens. This avoids a few races,
  1871. * and potentially makes it more efficient.
  1872. *
  1873. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1874. * but allow concurrent faults), with pte both mapped and locked.
  1875. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1876. */
  1877. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1878. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1879. spinlock_t *ptl, pte_t orig_pte)
  1880. {
  1881. struct page *old_page, *new_page;
  1882. pte_t entry;
  1883. int reuse = 0, ret = 0;
  1884. int page_mkwrite = 0;
  1885. struct page *dirty_page = NULL;
  1886. old_page = vm_normal_page(vma, address, orig_pte);
  1887. if (!old_page) {
  1888. /*
  1889. * VM_MIXEDMAP !pfn_valid() case
  1890. *
  1891. * We should not cow pages in a shared writeable mapping.
  1892. * Just mark the pages writable as we can't do any dirty
  1893. * accounting on raw pfn maps.
  1894. */
  1895. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1896. (VM_WRITE|VM_SHARED))
  1897. goto reuse;
  1898. goto gotten;
  1899. }
  1900. /*
  1901. * Take out anonymous pages first, anonymous shared vmas are
  1902. * not dirty accountable.
  1903. */
  1904. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1905. if (!trylock_page(old_page)) {
  1906. page_cache_get(old_page);
  1907. pte_unmap_unlock(page_table, ptl);
  1908. lock_page(old_page);
  1909. page_table = pte_offset_map_lock(mm, pmd, address,
  1910. &ptl);
  1911. if (!pte_same(*page_table, orig_pte)) {
  1912. unlock_page(old_page);
  1913. page_cache_release(old_page);
  1914. goto unlock;
  1915. }
  1916. page_cache_release(old_page);
  1917. }
  1918. reuse = reuse_swap_page(old_page);
  1919. if (reuse)
  1920. /*
  1921. * The page is all ours. Move it to our anon_vma so
  1922. * the rmap code will not search our parent or siblings.
  1923. * Protected against the rmap code by the page lock.
  1924. */
  1925. page_move_anon_rmap(old_page, vma, address);
  1926. unlock_page(old_page);
  1927. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1928. (VM_WRITE|VM_SHARED))) {
  1929. /*
  1930. * Only catch write-faults on shared writable pages,
  1931. * read-only shared pages can get COWed by
  1932. * get_user_pages(.write=1, .force=1).
  1933. */
  1934. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1935. struct vm_fault vmf;
  1936. int tmp;
  1937. vmf.virtual_address = (void __user *)(address &
  1938. PAGE_MASK);
  1939. vmf.pgoff = old_page->index;
  1940. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1941. vmf.page = old_page;
  1942. /*
  1943. * Notify the address space that the page is about to
  1944. * become writable so that it can prohibit this or wait
  1945. * for the page to get into an appropriate state.
  1946. *
  1947. * We do this without the lock held, so that it can
  1948. * sleep if it needs to.
  1949. */
  1950. page_cache_get(old_page);
  1951. pte_unmap_unlock(page_table, ptl);
  1952. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1953. if (unlikely(tmp &
  1954. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1955. ret = tmp;
  1956. goto unwritable_page;
  1957. }
  1958. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1959. lock_page(old_page);
  1960. if (!old_page->mapping) {
  1961. ret = 0; /* retry the fault */
  1962. unlock_page(old_page);
  1963. goto unwritable_page;
  1964. }
  1965. } else
  1966. VM_BUG_ON(!PageLocked(old_page));
  1967. /*
  1968. * Since we dropped the lock we need to revalidate
  1969. * the PTE as someone else may have changed it. If
  1970. * they did, we just return, as we can count on the
  1971. * MMU to tell us if they didn't also make it writable.
  1972. */
  1973. page_table = pte_offset_map_lock(mm, pmd, address,
  1974. &ptl);
  1975. if (!pte_same(*page_table, orig_pte)) {
  1976. unlock_page(old_page);
  1977. page_cache_release(old_page);
  1978. goto unlock;
  1979. }
  1980. page_mkwrite = 1;
  1981. }
  1982. dirty_page = old_page;
  1983. get_page(dirty_page);
  1984. reuse = 1;
  1985. }
  1986. if (reuse) {
  1987. reuse:
  1988. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1989. entry = pte_mkyoung(orig_pte);
  1990. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1991. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1992. update_mmu_cache(vma, address, page_table);
  1993. ret |= VM_FAULT_WRITE;
  1994. goto unlock;
  1995. }
  1996. /*
  1997. * Ok, we need to copy. Oh, well..
  1998. */
  1999. page_cache_get(old_page);
  2000. gotten:
  2001. pte_unmap_unlock(page_table, ptl);
  2002. if (unlikely(anon_vma_prepare(vma)))
  2003. goto oom;
  2004. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2005. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2006. if (!new_page)
  2007. goto oom;
  2008. } else {
  2009. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2010. if (!new_page)
  2011. goto oom;
  2012. cow_user_page(new_page, old_page, address, vma);
  2013. }
  2014. __SetPageUptodate(new_page);
  2015. /*
  2016. * Don't let another task, with possibly unlocked vma,
  2017. * keep the mlocked page.
  2018. */
  2019. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  2020. lock_page(old_page); /* for LRU manipulation */
  2021. clear_page_mlock(old_page);
  2022. unlock_page(old_page);
  2023. }
  2024. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2025. goto oom_free_new;
  2026. /*
  2027. * Re-check the pte - we dropped the lock
  2028. */
  2029. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2030. if (likely(pte_same(*page_table, orig_pte))) {
  2031. if (old_page) {
  2032. if (!PageAnon(old_page)) {
  2033. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2034. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2035. }
  2036. } else
  2037. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2038. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2039. entry = mk_pte(new_page, vma->vm_page_prot);
  2040. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2041. /*
  2042. * Clear the pte entry and flush it first, before updating the
  2043. * pte with the new entry. This will avoid a race condition
  2044. * seen in the presence of one thread doing SMC and another
  2045. * thread doing COW.
  2046. */
  2047. ptep_clear_flush(vma, address, page_table);
  2048. page_add_new_anon_rmap(new_page, vma, address);
  2049. /*
  2050. * We call the notify macro here because, when using secondary
  2051. * mmu page tables (such as kvm shadow page tables), we want the
  2052. * new page to be mapped directly into the secondary page table.
  2053. */
  2054. set_pte_at_notify(mm, address, page_table, entry);
  2055. update_mmu_cache(vma, address, page_table);
  2056. if (old_page) {
  2057. /*
  2058. * Only after switching the pte to the new page may
  2059. * we remove the mapcount here. Otherwise another
  2060. * process may come and find the rmap count decremented
  2061. * before the pte is switched to the new page, and
  2062. * "reuse" the old page writing into it while our pte
  2063. * here still points into it and can be read by other
  2064. * threads.
  2065. *
  2066. * The critical issue is to order this
  2067. * page_remove_rmap with the ptp_clear_flush above.
  2068. * Those stores are ordered by (if nothing else,)
  2069. * the barrier present in the atomic_add_negative
  2070. * in page_remove_rmap.
  2071. *
  2072. * Then the TLB flush in ptep_clear_flush ensures that
  2073. * no process can access the old page before the
  2074. * decremented mapcount is visible. And the old page
  2075. * cannot be reused until after the decremented
  2076. * mapcount is visible. So transitively, TLBs to
  2077. * old page will be flushed before it can be reused.
  2078. */
  2079. page_remove_rmap(old_page);
  2080. }
  2081. /* Free the old page.. */
  2082. new_page = old_page;
  2083. ret |= VM_FAULT_WRITE;
  2084. } else
  2085. mem_cgroup_uncharge_page(new_page);
  2086. if (new_page)
  2087. page_cache_release(new_page);
  2088. if (old_page)
  2089. page_cache_release(old_page);
  2090. unlock:
  2091. pte_unmap_unlock(page_table, ptl);
  2092. if (dirty_page) {
  2093. /*
  2094. * Yes, Virginia, this is actually required to prevent a race
  2095. * with clear_page_dirty_for_io() from clearing the page dirty
  2096. * bit after it clear all dirty ptes, but before a racing
  2097. * do_wp_page installs a dirty pte.
  2098. *
  2099. * do_no_page is protected similarly.
  2100. */
  2101. if (!page_mkwrite) {
  2102. wait_on_page_locked(dirty_page);
  2103. set_page_dirty_balance(dirty_page, page_mkwrite);
  2104. }
  2105. put_page(dirty_page);
  2106. if (page_mkwrite) {
  2107. struct address_space *mapping = dirty_page->mapping;
  2108. set_page_dirty(dirty_page);
  2109. unlock_page(dirty_page);
  2110. page_cache_release(dirty_page);
  2111. if (mapping) {
  2112. /*
  2113. * Some device drivers do not set page.mapping
  2114. * but still dirty their pages
  2115. */
  2116. balance_dirty_pages_ratelimited(mapping);
  2117. }
  2118. }
  2119. /* file_update_time outside page_lock */
  2120. if (vma->vm_file)
  2121. file_update_time(vma->vm_file);
  2122. }
  2123. return ret;
  2124. oom_free_new:
  2125. page_cache_release(new_page);
  2126. oom:
  2127. if (old_page) {
  2128. if (page_mkwrite) {
  2129. unlock_page(old_page);
  2130. page_cache_release(old_page);
  2131. }
  2132. page_cache_release(old_page);
  2133. }
  2134. return VM_FAULT_OOM;
  2135. unwritable_page:
  2136. page_cache_release(old_page);
  2137. return ret;
  2138. }
  2139. /*
  2140. * Helper functions for unmap_mapping_range().
  2141. *
  2142. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2143. *
  2144. * We have to restart searching the prio_tree whenever we drop the lock,
  2145. * since the iterator is only valid while the lock is held, and anyway
  2146. * a later vma might be split and reinserted earlier while lock dropped.
  2147. *
  2148. * The list of nonlinear vmas could be handled more efficiently, using
  2149. * a placeholder, but handle it in the same way until a need is shown.
  2150. * It is important to search the prio_tree before nonlinear list: a vma
  2151. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2152. * while the lock is dropped; but never shifted from list to prio_tree.
  2153. *
  2154. * In order to make forward progress despite restarting the search,
  2155. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2156. * quickly skip it next time around. Since the prio_tree search only
  2157. * shows us those vmas affected by unmapping the range in question, we
  2158. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2159. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2160. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2161. * i_mmap_lock.
  2162. *
  2163. * In order to make forward progress despite repeatedly restarting some
  2164. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2165. * and restart from that address when we reach that vma again. It might
  2166. * have been split or merged, shrunk or extended, but never shifted: so
  2167. * restart_addr remains valid so long as it remains in the vma's range.
  2168. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2169. * values so we can save vma's restart_addr in its truncate_count field.
  2170. */
  2171. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2172. static void reset_vma_truncate_counts(struct address_space *mapping)
  2173. {
  2174. struct vm_area_struct *vma;
  2175. struct prio_tree_iter iter;
  2176. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2177. vma->vm_truncate_count = 0;
  2178. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2179. vma->vm_truncate_count = 0;
  2180. }
  2181. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2182. unsigned long start_addr, unsigned long end_addr,
  2183. struct zap_details *details)
  2184. {
  2185. unsigned long restart_addr;
  2186. int need_break;
  2187. /*
  2188. * files that support invalidating or truncating portions of the
  2189. * file from under mmaped areas must have their ->fault function
  2190. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2191. * This provides synchronisation against concurrent unmapping here.
  2192. */
  2193. again:
  2194. restart_addr = vma->vm_truncate_count;
  2195. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2196. start_addr = restart_addr;
  2197. if (start_addr >= end_addr) {
  2198. /* Top of vma has been split off since last time */
  2199. vma->vm_truncate_count = details->truncate_count;
  2200. return 0;
  2201. }
  2202. }
  2203. restart_addr = zap_page_range(vma, start_addr,
  2204. end_addr - start_addr, details);
  2205. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2206. if (restart_addr >= end_addr) {
  2207. /* We have now completed this vma: mark it so */
  2208. vma->vm_truncate_count = details->truncate_count;
  2209. if (!need_break)
  2210. return 0;
  2211. } else {
  2212. /* Note restart_addr in vma's truncate_count field */
  2213. vma->vm_truncate_count = restart_addr;
  2214. if (!need_break)
  2215. goto again;
  2216. }
  2217. spin_unlock(details->i_mmap_lock);
  2218. cond_resched();
  2219. spin_lock(details->i_mmap_lock);
  2220. return -EINTR;
  2221. }
  2222. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2223. struct zap_details *details)
  2224. {
  2225. struct vm_area_struct *vma;
  2226. struct prio_tree_iter iter;
  2227. pgoff_t vba, vea, zba, zea;
  2228. restart:
  2229. vma_prio_tree_foreach(vma, &iter, root,
  2230. details->first_index, details->last_index) {
  2231. /* Skip quickly over those we have already dealt with */
  2232. if (vma->vm_truncate_count == details->truncate_count)
  2233. continue;
  2234. vba = vma->vm_pgoff;
  2235. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2236. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2237. zba = details->first_index;
  2238. if (zba < vba)
  2239. zba = vba;
  2240. zea = details->last_index;
  2241. if (zea > vea)
  2242. zea = vea;
  2243. if (unmap_mapping_range_vma(vma,
  2244. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2245. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2246. details) < 0)
  2247. goto restart;
  2248. }
  2249. }
  2250. static inline void unmap_mapping_range_list(struct list_head *head,
  2251. struct zap_details *details)
  2252. {
  2253. struct vm_area_struct *vma;
  2254. /*
  2255. * In nonlinear VMAs there is no correspondence between virtual address
  2256. * offset and file offset. So we must perform an exhaustive search
  2257. * across *all* the pages in each nonlinear VMA, not just the pages
  2258. * whose virtual address lies outside the file truncation point.
  2259. */
  2260. restart:
  2261. list_for_each_entry(vma, head, shared.vm_set.list) {
  2262. /* Skip quickly over those we have already dealt with */
  2263. if (vma->vm_truncate_count == details->truncate_count)
  2264. continue;
  2265. details->nonlinear_vma = vma;
  2266. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2267. vma->vm_end, details) < 0)
  2268. goto restart;
  2269. }
  2270. }
  2271. /**
  2272. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2273. * @mapping: the address space containing mmaps to be unmapped.
  2274. * @holebegin: byte in first page to unmap, relative to the start of
  2275. * the underlying file. This will be rounded down to a PAGE_SIZE
  2276. * boundary. Note that this is different from truncate_pagecache(), which
  2277. * must keep the partial page. In contrast, we must get rid of
  2278. * partial pages.
  2279. * @holelen: size of prospective hole in bytes. This will be rounded
  2280. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2281. * end of the file.
  2282. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2283. * but 0 when invalidating pagecache, don't throw away private data.
  2284. */
  2285. void unmap_mapping_range(struct address_space *mapping,
  2286. loff_t const holebegin, loff_t const holelen, int even_cows)
  2287. {
  2288. struct zap_details details;
  2289. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2290. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2291. /* Check for overflow. */
  2292. if (sizeof(holelen) > sizeof(hlen)) {
  2293. long long holeend =
  2294. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2295. if (holeend & ~(long long)ULONG_MAX)
  2296. hlen = ULONG_MAX - hba + 1;
  2297. }
  2298. details.check_mapping = even_cows? NULL: mapping;
  2299. details.nonlinear_vma = NULL;
  2300. details.first_index = hba;
  2301. details.last_index = hba + hlen - 1;
  2302. if (details.last_index < details.first_index)
  2303. details.last_index = ULONG_MAX;
  2304. details.i_mmap_lock = &mapping->i_mmap_lock;
  2305. spin_lock(&mapping->i_mmap_lock);
  2306. /* Protect against endless unmapping loops */
  2307. mapping->truncate_count++;
  2308. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2309. if (mapping->truncate_count == 0)
  2310. reset_vma_truncate_counts(mapping);
  2311. mapping->truncate_count++;
  2312. }
  2313. details.truncate_count = mapping->truncate_count;
  2314. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2315. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2316. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2317. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2318. spin_unlock(&mapping->i_mmap_lock);
  2319. }
  2320. EXPORT_SYMBOL(unmap_mapping_range);
  2321. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2322. {
  2323. struct address_space *mapping = inode->i_mapping;
  2324. /*
  2325. * If the underlying filesystem is not going to provide
  2326. * a way to truncate a range of blocks (punch a hole) -
  2327. * we should return failure right now.
  2328. */
  2329. if (!inode->i_op->truncate_range)
  2330. return -ENOSYS;
  2331. mutex_lock(&inode->i_mutex);
  2332. down_write(&inode->i_alloc_sem);
  2333. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2334. truncate_inode_pages_range(mapping, offset, end);
  2335. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2336. inode->i_op->truncate_range(inode, offset, end);
  2337. up_write(&inode->i_alloc_sem);
  2338. mutex_unlock(&inode->i_mutex);
  2339. return 0;
  2340. }
  2341. /*
  2342. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2343. * but allow concurrent faults), and pte mapped but not yet locked.
  2344. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2345. */
  2346. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2347. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2348. unsigned int flags, pte_t orig_pte)
  2349. {
  2350. spinlock_t *ptl;
  2351. struct page *page;
  2352. swp_entry_t entry;
  2353. pte_t pte;
  2354. struct mem_cgroup *ptr = NULL;
  2355. int ret = 0;
  2356. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2357. goto out;
  2358. entry = pte_to_swp_entry(orig_pte);
  2359. if (unlikely(non_swap_entry(entry))) {
  2360. if (is_migration_entry(entry)) {
  2361. migration_entry_wait(mm, pmd, address);
  2362. } else if (is_hwpoison_entry(entry)) {
  2363. ret = VM_FAULT_HWPOISON;
  2364. } else {
  2365. print_bad_pte(vma, address, orig_pte, NULL);
  2366. ret = VM_FAULT_SIGBUS;
  2367. }
  2368. goto out;
  2369. }
  2370. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2371. page = lookup_swap_cache(entry);
  2372. if (!page) {
  2373. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2374. page = swapin_readahead(entry,
  2375. GFP_HIGHUSER_MOVABLE, vma, address);
  2376. if (!page) {
  2377. /*
  2378. * Back out if somebody else faulted in this pte
  2379. * while we released the pte lock.
  2380. */
  2381. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2382. if (likely(pte_same(*page_table, orig_pte)))
  2383. ret = VM_FAULT_OOM;
  2384. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2385. goto unlock;
  2386. }
  2387. /* Had to read the page from swap area: Major fault */
  2388. ret = VM_FAULT_MAJOR;
  2389. count_vm_event(PGMAJFAULT);
  2390. } else if (PageHWPoison(page)) {
  2391. /*
  2392. * hwpoisoned dirty swapcache pages are kept for killing
  2393. * owner processes (which may be unknown at hwpoison time)
  2394. */
  2395. ret = VM_FAULT_HWPOISON;
  2396. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2397. goto out_release;
  2398. }
  2399. lock_page(page);
  2400. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2401. page = ksm_might_need_to_copy(page, vma, address);
  2402. if (!page) {
  2403. ret = VM_FAULT_OOM;
  2404. goto out;
  2405. }
  2406. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2407. ret = VM_FAULT_OOM;
  2408. goto out_page;
  2409. }
  2410. /*
  2411. * Back out if somebody else already faulted in this pte.
  2412. */
  2413. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2414. if (unlikely(!pte_same(*page_table, orig_pte)))
  2415. goto out_nomap;
  2416. if (unlikely(!PageUptodate(page))) {
  2417. ret = VM_FAULT_SIGBUS;
  2418. goto out_nomap;
  2419. }
  2420. /*
  2421. * The page isn't present yet, go ahead with the fault.
  2422. *
  2423. * Be careful about the sequence of operations here.
  2424. * To get its accounting right, reuse_swap_page() must be called
  2425. * while the page is counted on swap but not yet in mapcount i.e.
  2426. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2427. * must be called after the swap_free(), or it will never succeed.
  2428. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2429. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2430. * in page->private. In this case, a record in swap_cgroup is silently
  2431. * discarded at swap_free().
  2432. */
  2433. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2434. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2435. pte = mk_pte(page, vma->vm_page_prot);
  2436. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2437. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2438. flags &= ~FAULT_FLAG_WRITE;
  2439. }
  2440. flush_icache_page(vma, page);
  2441. set_pte_at(mm, address, page_table, pte);
  2442. page_add_anon_rmap(page, vma, address);
  2443. /* It's better to call commit-charge after rmap is established */
  2444. mem_cgroup_commit_charge_swapin(page, ptr);
  2445. swap_free(entry);
  2446. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2447. try_to_free_swap(page);
  2448. unlock_page(page);
  2449. if (flags & FAULT_FLAG_WRITE) {
  2450. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2451. if (ret & VM_FAULT_ERROR)
  2452. ret &= VM_FAULT_ERROR;
  2453. goto out;
  2454. }
  2455. /* No need to invalidate - it was non-present before */
  2456. update_mmu_cache(vma, address, page_table);
  2457. unlock:
  2458. pte_unmap_unlock(page_table, ptl);
  2459. out:
  2460. return ret;
  2461. out_nomap:
  2462. mem_cgroup_cancel_charge_swapin(ptr);
  2463. pte_unmap_unlock(page_table, ptl);
  2464. out_page:
  2465. unlock_page(page);
  2466. out_release:
  2467. page_cache_release(page);
  2468. return ret;
  2469. }
  2470. /*
  2471. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2472. * but allow concurrent faults), and pte mapped but not yet locked.
  2473. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2474. */
  2475. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2476. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2477. unsigned int flags)
  2478. {
  2479. struct page *page;
  2480. spinlock_t *ptl;
  2481. pte_t entry;
  2482. if (!(flags & FAULT_FLAG_WRITE)) {
  2483. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2484. vma->vm_page_prot));
  2485. ptl = pte_lockptr(mm, pmd);
  2486. spin_lock(ptl);
  2487. if (!pte_none(*page_table))
  2488. goto unlock;
  2489. goto setpte;
  2490. }
  2491. /* Allocate our own private page. */
  2492. pte_unmap(page_table);
  2493. if (unlikely(anon_vma_prepare(vma)))
  2494. goto oom;
  2495. page = alloc_zeroed_user_highpage_movable(vma, address);
  2496. if (!page)
  2497. goto oom;
  2498. __SetPageUptodate(page);
  2499. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2500. goto oom_free_page;
  2501. entry = mk_pte(page, vma->vm_page_prot);
  2502. if (vma->vm_flags & VM_WRITE)
  2503. entry = pte_mkwrite(pte_mkdirty(entry));
  2504. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2505. if (!pte_none(*page_table))
  2506. goto release;
  2507. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2508. page_add_new_anon_rmap(page, vma, address);
  2509. setpte:
  2510. set_pte_at(mm, address, page_table, entry);
  2511. /* No need to invalidate - it was non-present before */
  2512. update_mmu_cache(vma, address, page_table);
  2513. unlock:
  2514. pte_unmap_unlock(page_table, ptl);
  2515. return 0;
  2516. release:
  2517. mem_cgroup_uncharge_page(page);
  2518. page_cache_release(page);
  2519. goto unlock;
  2520. oom_free_page:
  2521. page_cache_release(page);
  2522. oom:
  2523. return VM_FAULT_OOM;
  2524. }
  2525. /*
  2526. * __do_fault() tries to create a new page mapping. It aggressively
  2527. * tries to share with existing pages, but makes a separate copy if
  2528. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2529. * the next page fault.
  2530. *
  2531. * As this is called only for pages that do not currently exist, we
  2532. * do not need to flush old virtual caches or the TLB.
  2533. *
  2534. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2535. * but allow concurrent faults), and pte neither mapped nor locked.
  2536. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2537. */
  2538. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2539. unsigned long address, pmd_t *pmd,
  2540. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2541. {
  2542. pte_t *page_table;
  2543. spinlock_t *ptl;
  2544. struct page *page;
  2545. pte_t entry;
  2546. int anon = 0;
  2547. int charged = 0;
  2548. struct page *dirty_page = NULL;
  2549. struct vm_fault vmf;
  2550. int ret;
  2551. int page_mkwrite = 0;
  2552. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2553. vmf.pgoff = pgoff;
  2554. vmf.flags = flags;
  2555. vmf.page = NULL;
  2556. ret = vma->vm_ops->fault(vma, &vmf);
  2557. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2558. return ret;
  2559. if (unlikely(PageHWPoison(vmf.page))) {
  2560. if (ret & VM_FAULT_LOCKED)
  2561. unlock_page(vmf.page);
  2562. return VM_FAULT_HWPOISON;
  2563. }
  2564. /*
  2565. * For consistency in subsequent calls, make the faulted page always
  2566. * locked.
  2567. */
  2568. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2569. lock_page(vmf.page);
  2570. else
  2571. VM_BUG_ON(!PageLocked(vmf.page));
  2572. /*
  2573. * Should we do an early C-O-W break?
  2574. */
  2575. page = vmf.page;
  2576. if (flags & FAULT_FLAG_WRITE) {
  2577. if (!(vma->vm_flags & VM_SHARED)) {
  2578. anon = 1;
  2579. if (unlikely(anon_vma_prepare(vma))) {
  2580. ret = VM_FAULT_OOM;
  2581. goto out;
  2582. }
  2583. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2584. vma, address);
  2585. if (!page) {
  2586. ret = VM_FAULT_OOM;
  2587. goto out;
  2588. }
  2589. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2590. ret = VM_FAULT_OOM;
  2591. page_cache_release(page);
  2592. goto out;
  2593. }
  2594. charged = 1;
  2595. /*
  2596. * Don't let another task, with possibly unlocked vma,
  2597. * keep the mlocked page.
  2598. */
  2599. if (vma->vm_flags & VM_LOCKED)
  2600. clear_page_mlock(vmf.page);
  2601. copy_user_highpage(page, vmf.page, address, vma);
  2602. __SetPageUptodate(page);
  2603. } else {
  2604. /*
  2605. * If the page will be shareable, see if the backing
  2606. * address space wants to know that the page is about
  2607. * to become writable
  2608. */
  2609. if (vma->vm_ops->page_mkwrite) {
  2610. int tmp;
  2611. unlock_page(page);
  2612. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2613. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2614. if (unlikely(tmp &
  2615. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2616. ret = tmp;
  2617. goto unwritable_page;
  2618. }
  2619. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2620. lock_page(page);
  2621. if (!page->mapping) {
  2622. ret = 0; /* retry the fault */
  2623. unlock_page(page);
  2624. goto unwritable_page;
  2625. }
  2626. } else
  2627. VM_BUG_ON(!PageLocked(page));
  2628. page_mkwrite = 1;
  2629. }
  2630. }
  2631. }
  2632. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2633. /*
  2634. * This silly early PAGE_DIRTY setting removes a race
  2635. * due to the bad i386 page protection. But it's valid
  2636. * for other architectures too.
  2637. *
  2638. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2639. * an exclusive copy of the page, or this is a shared mapping,
  2640. * so we can make it writable and dirty to avoid having to
  2641. * handle that later.
  2642. */
  2643. /* Only go through if we didn't race with anybody else... */
  2644. if (likely(pte_same(*page_table, orig_pte))) {
  2645. flush_icache_page(vma, page);
  2646. entry = mk_pte(page, vma->vm_page_prot);
  2647. if (flags & FAULT_FLAG_WRITE)
  2648. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2649. if (anon) {
  2650. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2651. page_add_new_anon_rmap(page, vma, address);
  2652. } else {
  2653. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2654. page_add_file_rmap(page);
  2655. if (flags & FAULT_FLAG_WRITE) {
  2656. dirty_page = page;
  2657. get_page(dirty_page);
  2658. }
  2659. }
  2660. set_pte_at(mm, address, page_table, entry);
  2661. /* no need to invalidate: a not-present page won't be cached */
  2662. update_mmu_cache(vma, address, page_table);
  2663. } else {
  2664. if (charged)
  2665. mem_cgroup_uncharge_page(page);
  2666. if (anon)
  2667. page_cache_release(page);
  2668. else
  2669. anon = 1; /* no anon but release faulted_page */
  2670. }
  2671. pte_unmap_unlock(page_table, ptl);
  2672. out:
  2673. if (dirty_page) {
  2674. struct address_space *mapping = page->mapping;
  2675. if (set_page_dirty(dirty_page))
  2676. page_mkwrite = 1;
  2677. unlock_page(dirty_page);
  2678. put_page(dirty_page);
  2679. if (page_mkwrite && mapping) {
  2680. /*
  2681. * Some device drivers do not set page.mapping but still
  2682. * dirty their pages
  2683. */
  2684. balance_dirty_pages_ratelimited(mapping);
  2685. }
  2686. /* file_update_time outside page_lock */
  2687. if (vma->vm_file)
  2688. file_update_time(vma->vm_file);
  2689. } else {
  2690. unlock_page(vmf.page);
  2691. if (anon)
  2692. page_cache_release(vmf.page);
  2693. }
  2694. return ret;
  2695. unwritable_page:
  2696. page_cache_release(page);
  2697. return ret;
  2698. }
  2699. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2700. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2701. unsigned int flags, pte_t orig_pte)
  2702. {
  2703. pgoff_t pgoff = (((address & PAGE_MASK)
  2704. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2705. pte_unmap(page_table);
  2706. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2707. }
  2708. /*
  2709. * Fault of a previously existing named mapping. Repopulate the pte
  2710. * from the encoded file_pte if possible. This enables swappable
  2711. * nonlinear vmas.
  2712. *
  2713. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2714. * but allow concurrent faults), and pte mapped but not yet locked.
  2715. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2716. */
  2717. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2718. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2719. unsigned int flags, pte_t orig_pte)
  2720. {
  2721. pgoff_t pgoff;
  2722. flags |= FAULT_FLAG_NONLINEAR;
  2723. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2724. return 0;
  2725. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2726. /*
  2727. * Page table corrupted: show pte and kill process.
  2728. */
  2729. print_bad_pte(vma, address, orig_pte, NULL);
  2730. return VM_FAULT_SIGBUS;
  2731. }
  2732. pgoff = pte_to_pgoff(orig_pte);
  2733. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2734. }
  2735. /*
  2736. * These routines also need to handle stuff like marking pages dirty
  2737. * and/or accessed for architectures that don't do it in hardware (most
  2738. * RISC architectures). The early dirtying is also good on the i386.
  2739. *
  2740. * There is also a hook called "update_mmu_cache()" that architectures
  2741. * with external mmu caches can use to update those (ie the Sparc or
  2742. * PowerPC hashed page tables that act as extended TLBs).
  2743. *
  2744. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2745. * but allow concurrent faults), and pte mapped but not yet locked.
  2746. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2747. */
  2748. static inline int handle_pte_fault(struct mm_struct *mm,
  2749. struct vm_area_struct *vma, unsigned long address,
  2750. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2751. {
  2752. pte_t entry;
  2753. spinlock_t *ptl;
  2754. entry = *pte;
  2755. if (!pte_present(entry)) {
  2756. if (pte_none(entry)) {
  2757. if (vma->vm_ops) {
  2758. if (likely(vma->vm_ops->fault))
  2759. return do_linear_fault(mm, vma, address,
  2760. pte, pmd, flags, entry);
  2761. }
  2762. return do_anonymous_page(mm, vma, address,
  2763. pte, pmd, flags);
  2764. }
  2765. if (pte_file(entry))
  2766. return do_nonlinear_fault(mm, vma, address,
  2767. pte, pmd, flags, entry);
  2768. return do_swap_page(mm, vma, address,
  2769. pte, pmd, flags, entry);
  2770. }
  2771. ptl = pte_lockptr(mm, pmd);
  2772. spin_lock(ptl);
  2773. if (unlikely(!pte_same(*pte, entry)))
  2774. goto unlock;
  2775. if (flags & FAULT_FLAG_WRITE) {
  2776. if (!pte_write(entry))
  2777. return do_wp_page(mm, vma, address,
  2778. pte, pmd, ptl, entry);
  2779. entry = pte_mkdirty(entry);
  2780. }
  2781. entry = pte_mkyoung(entry);
  2782. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2783. update_mmu_cache(vma, address, pte);
  2784. } else {
  2785. /*
  2786. * This is needed only for protection faults but the arch code
  2787. * is not yet telling us if this is a protection fault or not.
  2788. * This still avoids useless tlb flushes for .text page faults
  2789. * with threads.
  2790. */
  2791. if (flags & FAULT_FLAG_WRITE)
  2792. flush_tlb_page(vma, address);
  2793. }
  2794. unlock:
  2795. pte_unmap_unlock(pte, ptl);
  2796. return 0;
  2797. }
  2798. /*
  2799. * By the time we get here, we already hold the mm semaphore
  2800. */
  2801. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2802. unsigned long address, unsigned int flags)
  2803. {
  2804. pgd_t *pgd;
  2805. pud_t *pud;
  2806. pmd_t *pmd;
  2807. pte_t *pte;
  2808. __set_current_state(TASK_RUNNING);
  2809. count_vm_event(PGFAULT);
  2810. /* do counter updates before entering really critical section. */
  2811. check_sync_rss_stat(current);
  2812. if (unlikely(is_vm_hugetlb_page(vma)))
  2813. return hugetlb_fault(mm, vma, address, flags);
  2814. pgd = pgd_offset(mm, address);
  2815. pud = pud_alloc(mm, pgd, address);
  2816. if (!pud)
  2817. return VM_FAULT_OOM;
  2818. pmd = pmd_alloc(mm, pud, address);
  2819. if (!pmd)
  2820. return VM_FAULT_OOM;
  2821. pte = pte_alloc_map(mm, pmd, address);
  2822. if (!pte)
  2823. return VM_FAULT_OOM;
  2824. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2825. }
  2826. #ifndef __PAGETABLE_PUD_FOLDED
  2827. /*
  2828. * Allocate page upper directory.
  2829. * We've already handled the fast-path in-line.
  2830. */
  2831. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2832. {
  2833. pud_t *new = pud_alloc_one(mm, address);
  2834. if (!new)
  2835. return -ENOMEM;
  2836. smp_wmb(); /* See comment in __pte_alloc */
  2837. spin_lock(&mm->page_table_lock);
  2838. if (pgd_present(*pgd)) /* Another has populated it */
  2839. pud_free(mm, new);
  2840. else
  2841. pgd_populate(mm, pgd, new);
  2842. spin_unlock(&mm->page_table_lock);
  2843. return 0;
  2844. }
  2845. #endif /* __PAGETABLE_PUD_FOLDED */
  2846. #ifndef __PAGETABLE_PMD_FOLDED
  2847. /*
  2848. * Allocate page middle directory.
  2849. * We've already handled the fast-path in-line.
  2850. */
  2851. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2852. {
  2853. pmd_t *new = pmd_alloc_one(mm, address);
  2854. if (!new)
  2855. return -ENOMEM;
  2856. smp_wmb(); /* See comment in __pte_alloc */
  2857. spin_lock(&mm->page_table_lock);
  2858. #ifndef __ARCH_HAS_4LEVEL_HACK
  2859. if (pud_present(*pud)) /* Another has populated it */
  2860. pmd_free(mm, new);
  2861. else
  2862. pud_populate(mm, pud, new);
  2863. #else
  2864. if (pgd_present(*pud)) /* Another has populated it */
  2865. pmd_free(mm, new);
  2866. else
  2867. pgd_populate(mm, pud, new);
  2868. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2869. spin_unlock(&mm->page_table_lock);
  2870. return 0;
  2871. }
  2872. #endif /* __PAGETABLE_PMD_FOLDED */
  2873. int make_pages_present(unsigned long addr, unsigned long end)
  2874. {
  2875. int ret, len, write;
  2876. struct vm_area_struct * vma;
  2877. vma = find_vma(current->mm, addr);
  2878. if (!vma)
  2879. return -ENOMEM;
  2880. write = (vma->vm_flags & VM_WRITE) != 0;
  2881. BUG_ON(addr >= end);
  2882. BUG_ON(end > vma->vm_end);
  2883. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2884. ret = get_user_pages(current, current->mm, addr,
  2885. len, write, 0, NULL, NULL);
  2886. if (ret < 0)
  2887. return ret;
  2888. return ret == len ? 0 : -EFAULT;
  2889. }
  2890. #if !defined(__HAVE_ARCH_GATE_AREA)
  2891. #if defined(AT_SYSINFO_EHDR)
  2892. static struct vm_area_struct gate_vma;
  2893. static int __init gate_vma_init(void)
  2894. {
  2895. gate_vma.vm_mm = NULL;
  2896. gate_vma.vm_start = FIXADDR_USER_START;
  2897. gate_vma.vm_end = FIXADDR_USER_END;
  2898. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2899. gate_vma.vm_page_prot = __P101;
  2900. /*
  2901. * Make sure the vDSO gets into every core dump.
  2902. * Dumping its contents makes post-mortem fully interpretable later
  2903. * without matching up the same kernel and hardware config to see
  2904. * what PC values meant.
  2905. */
  2906. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2907. return 0;
  2908. }
  2909. __initcall(gate_vma_init);
  2910. #endif
  2911. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2912. {
  2913. #ifdef AT_SYSINFO_EHDR
  2914. return &gate_vma;
  2915. #else
  2916. return NULL;
  2917. #endif
  2918. }
  2919. int in_gate_area_no_task(unsigned long addr)
  2920. {
  2921. #ifdef AT_SYSINFO_EHDR
  2922. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2923. return 1;
  2924. #endif
  2925. return 0;
  2926. }
  2927. #endif /* __HAVE_ARCH_GATE_AREA */
  2928. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2929. pte_t **ptepp, spinlock_t **ptlp)
  2930. {
  2931. pgd_t *pgd;
  2932. pud_t *pud;
  2933. pmd_t *pmd;
  2934. pte_t *ptep;
  2935. pgd = pgd_offset(mm, address);
  2936. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2937. goto out;
  2938. pud = pud_offset(pgd, address);
  2939. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2940. goto out;
  2941. pmd = pmd_offset(pud, address);
  2942. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2943. goto out;
  2944. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2945. if (pmd_huge(*pmd))
  2946. goto out;
  2947. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2948. if (!ptep)
  2949. goto out;
  2950. if (!pte_present(*ptep))
  2951. goto unlock;
  2952. *ptepp = ptep;
  2953. return 0;
  2954. unlock:
  2955. pte_unmap_unlock(ptep, *ptlp);
  2956. out:
  2957. return -EINVAL;
  2958. }
  2959. /**
  2960. * follow_pfn - look up PFN at a user virtual address
  2961. * @vma: memory mapping
  2962. * @address: user virtual address
  2963. * @pfn: location to store found PFN
  2964. *
  2965. * Only IO mappings and raw PFN mappings are allowed.
  2966. *
  2967. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2968. */
  2969. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2970. unsigned long *pfn)
  2971. {
  2972. int ret = -EINVAL;
  2973. spinlock_t *ptl;
  2974. pte_t *ptep;
  2975. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2976. return ret;
  2977. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2978. if (ret)
  2979. return ret;
  2980. *pfn = pte_pfn(*ptep);
  2981. pte_unmap_unlock(ptep, ptl);
  2982. return 0;
  2983. }
  2984. EXPORT_SYMBOL(follow_pfn);
  2985. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2986. int follow_phys(struct vm_area_struct *vma,
  2987. unsigned long address, unsigned int flags,
  2988. unsigned long *prot, resource_size_t *phys)
  2989. {
  2990. int ret = -EINVAL;
  2991. pte_t *ptep, pte;
  2992. spinlock_t *ptl;
  2993. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2994. goto out;
  2995. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2996. goto out;
  2997. pte = *ptep;
  2998. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2999. goto unlock;
  3000. *prot = pgprot_val(pte_pgprot(pte));
  3001. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3002. ret = 0;
  3003. unlock:
  3004. pte_unmap_unlock(ptep, ptl);
  3005. out:
  3006. return ret;
  3007. }
  3008. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3009. void *buf, int len, int write)
  3010. {
  3011. resource_size_t phys_addr;
  3012. unsigned long prot = 0;
  3013. void __iomem *maddr;
  3014. int offset = addr & (PAGE_SIZE-1);
  3015. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3016. return -EINVAL;
  3017. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3018. if (write)
  3019. memcpy_toio(maddr + offset, buf, len);
  3020. else
  3021. memcpy_fromio(buf, maddr + offset, len);
  3022. iounmap(maddr);
  3023. return len;
  3024. }
  3025. #endif
  3026. /*
  3027. * Access another process' address space.
  3028. * Source/target buffer must be kernel space,
  3029. * Do not walk the page table directly, use get_user_pages
  3030. */
  3031. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3032. {
  3033. struct mm_struct *mm;
  3034. struct vm_area_struct *vma;
  3035. void *old_buf = buf;
  3036. mm = get_task_mm(tsk);
  3037. if (!mm)
  3038. return 0;
  3039. down_read(&mm->mmap_sem);
  3040. /* ignore errors, just check how much was successfully transferred */
  3041. while (len) {
  3042. int bytes, ret, offset;
  3043. void *maddr;
  3044. struct page *page = NULL;
  3045. ret = get_user_pages(tsk, mm, addr, 1,
  3046. write, 1, &page, &vma);
  3047. if (ret <= 0) {
  3048. /*
  3049. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3050. * we can access using slightly different code.
  3051. */
  3052. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3053. vma = find_vma(mm, addr);
  3054. if (!vma)
  3055. break;
  3056. if (vma->vm_ops && vma->vm_ops->access)
  3057. ret = vma->vm_ops->access(vma, addr, buf,
  3058. len, write);
  3059. if (ret <= 0)
  3060. #endif
  3061. break;
  3062. bytes = ret;
  3063. } else {
  3064. bytes = len;
  3065. offset = addr & (PAGE_SIZE-1);
  3066. if (bytes > PAGE_SIZE-offset)
  3067. bytes = PAGE_SIZE-offset;
  3068. maddr = kmap(page);
  3069. if (write) {
  3070. copy_to_user_page(vma, page, addr,
  3071. maddr + offset, buf, bytes);
  3072. set_page_dirty_lock(page);
  3073. } else {
  3074. copy_from_user_page(vma, page, addr,
  3075. buf, maddr + offset, bytes);
  3076. }
  3077. kunmap(page);
  3078. page_cache_release(page);
  3079. }
  3080. len -= bytes;
  3081. buf += bytes;
  3082. addr += bytes;
  3083. }
  3084. up_read(&mm->mmap_sem);
  3085. mmput(mm);
  3086. return buf - old_buf;
  3087. }
  3088. /*
  3089. * Print the name of a VMA.
  3090. */
  3091. void print_vma_addr(char *prefix, unsigned long ip)
  3092. {
  3093. struct mm_struct *mm = current->mm;
  3094. struct vm_area_struct *vma;
  3095. /*
  3096. * Do not print if we are in atomic
  3097. * contexts (in exception stacks, etc.):
  3098. */
  3099. if (preempt_count())
  3100. return;
  3101. down_read(&mm->mmap_sem);
  3102. vma = find_vma(mm, ip);
  3103. if (vma && vma->vm_file) {
  3104. struct file *f = vma->vm_file;
  3105. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3106. if (buf) {
  3107. char *p, *s;
  3108. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3109. if (IS_ERR(p))
  3110. p = "?";
  3111. s = strrchr(p, '/');
  3112. if (s)
  3113. p = s+1;
  3114. printk("%s%s[%lx+%lx]", prefix, p,
  3115. vma->vm_start,
  3116. vma->vm_end - vma->vm_start);
  3117. free_page((unsigned long)buf);
  3118. }
  3119. }
  3120. up_read(&current->mm->mmap_sem);
  3121. }
  3122. #ifdef CONFIG_PROVE_LOCKING
  3123. void might_fault(void)
  3124. {
  3125. /*
  3126. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3127. * holding the mmap_sem, this is safe because kernel memory doesn't
  3128. * get paged out, therefore we'll never actually fault, and the
  3129. * below annotations will generate false positives.
  3130. */
  3131. if (segment_eq(get_fs(), KERNEL_DS))
  3132. return;
  3133. might_sleep();
  3134. /*
  3135. * it would be nicer only to annotate paths which are not under
  3136. * pagefault_disable, however that requires a larger audit and
  3137. * providing helpers like get_user_atomic.
  3138. */
  3139. if (!in_atomic() && current->mm)
  3140. might_lock_read(&current->mm->mmap_sem);
  3141. }
  3142. EXPORT_SYMBOL(might_fault);
  3143. #endif