elevator.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <linux/uaccess.h>
  38. #include "blk.h"
  39. static DEFINE_SPINLOCK(elv_list_lock);
  40. static LIST_HEAD(elv_list);
  41. /*
  42. * Merge hash stuff.
  43. */
  44. static const int elv_hash_shift = 6;
  45. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  46. #define ELV_HASH_FN(sec) \
  47. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  48. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  49. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  50. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  51. /*
  52. * Query io scheduler to see if the current process issuing bio may be
  53. * merged with rq.
  54. */
  55. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  56. {
  57. struct request_queue *q = rq->q;
  58. elevator_t *e = q->elevator;
  59. if (e->ops->elevator_allow_merge_fn)
  60. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  61. return 1;
  62. }
  63. /*
  64. * can we safely merge with this request?
  65. */
  66. int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  67. {
  68. if (!rq_mergeable(rq))
  69. return 0;
  70. /*
  71. * Don't merge file system requests and discard requests
  72. */
  73. if (bio_discard(bio) != bio_discard(rq->bio))
  74. return 0;
  75. /*
  76. * different data direction or already started, don't merge
  77. */
  78. if (bio_data_dir(bio) != rq_data_dir(rq))
  79. return 0;
  80. /*
  81. * must be same device and not a special request
  82. */
  83. if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  84. return 0;
  85. /*
  86. * only merge integrity protected bio into ditto rq
  87. */
  88. if (bio_integrity(bio) != blk_integrity_rq(rq))
  89. return 0;
  90. if (!elv_iosched_allow_merge(rq, bio))
  91. return 0;
  92. return 1;
  93. }
  94. EXPORT_SYMBOL(elv_rq_merge_ok);
  95. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  96. {
  97. int ret = ELEVATOR_NO_MERGE;
  98. /*
  99. * we can merge and sequence is ok, check if it's possible
  100. */
  101. if (elv_rq_merge_ok(__rq, bio)) {
  102. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  103. ret = ELEVATOR_BACK_MERGE;
  104. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  105. ret = ELEVATOR_FRONT_MERGE;
  106. }
  107. return ret;
  108. }
  109. static struct elevator_type *elevator_find(const char *name)
  110. {
  111. struct elevator_type *e;
  112. list_for_each_entry(e, &elv_list, list) {
  113. if (!strcmp(e->elevator_name, name))
  114. return e;
  115. }
  116. return NULL;
  117. }
  118. static void elevator_put(struct elevator_type *e)
  119. {
  120. module_put(e->elevator_owner);
  121. }
  122. static struct elevator_type *elevator_get(const char *name)
  123. {
  124. struct elevator_type *e;
  125. spin_lock(&elv_list_lock);
  126. e = elevator_find(name);
  127. if (!e) {
  128. char elv[ELV_NAME_MAX + strlen("-iosched")];
  129. spin_unlock(&elv_list_lock);
  130. if (!strcmp(name, "anticipatory"))
  131. sprintf(elv, "as-iosched");
  132. else
  133. sprintf(elv, "%s-iosched", name);
  134. request_module("%s", elv);
  135. spin_lock(&elv_list_lock);
  136. e = elevator_find(name);
  137. }
  138. if (e && !try_module_get(e->elevator_owner))
  139. e = NULL;
  140. spin_unlock(&elv_list_lock);
  141. return e;
  142. }
  143. static void *elevator_init_queue(struct request_queue *q,
  144. struct elevator_queue *eq)
  145. {
  146. return eq->ops->elevator_init_fn(q);
  147. }
  148. static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
  149. void *data)
  150. {
  151. q->elevator = eq;
  152. eq->elevator_data = data;
  153. }
  154. static char chosen_elevator[16];
  155. static int __init elevator_setup(char *str)
  156. {
  157. /*
  158. * Be backwards-compatible with previous kernels, so users
  159. * won't get the wrong elevator.
  160. */
  161. if (!strcmp(str, "as"))
  162. strcpy(chosen_elevator, "anticipatory");
  163. else
  164. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  165. return 1;
  166. }
  167. __setup("elevator=", elevator_setup);
  168. static struct kobj_type elv_ktype;
  169. static elevator_t *elevator_alloc(struct request_queue *q,
  170. struct elevator_type *e)
  171. {
  172. elevator_t *eq;
  173. int i;
  174. eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
  175. if (unlikely(!eq))
  176. goto err;
  177. eq->ops = &e->ops;
  178. eq->elevator_type = e;
  179. kobject_init(&eq->kobj, &elv_ktype);
  180. mutex_init(&eq->sysfs_lock);
  181. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  182. GFP_KERNEL, q->node);
  183. if (!eq->hash)
  184. goto err;
  185. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  186. INIT_HLIST_HEAD(&eq->hash[i]);
  187. return eq;
  188. err:
  189. kfree(eq);
  190. elevator_put(e);
  191. return NULL;
  192. }
  193. static void elevator_release(struct kobject *kobj)
  194. {
  195. elevator_t *e = container_of(kobj, elevator_t, kobj);
  196. elevator_put(e->elevator_type);
  197. kfree(e->hash);
  198. kfree(e);
  199. }
  200. int elevator_init(struct request_queue *q, char *name)
  201. {
  202. struct elevator_type *e = NULL;
  203. struct elevator_queue *eq;
  204. int ret = 0;
  205. void *data;
  206. INIT_LIST_HEAD(&q->queue_head);
  207. q->last_merge = NULL;
  208. q->end_sector = 0;
  209. q->boundary_rq = NULL;
  210. if (name) {
  211. e = elevator_get(name);
  212. if (!e)
  213. return -EINVAL;
  214. }
  215. if (!e && *chosen_elevator) {
  216. e = elevator_get(chosen_elevator);
  217. if (!e)
  218. printk(KERN_ERR "I/O scheduler %s not found\n",
  219. chosen_elevator);
  220. }
  221. if (!e) {
  222. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  223. if (!e) {
  224. printk(KERN_ERR
  225. "Default I/O scheduler not found. " \
  226. "Using noop.\n");
  227. e = elevator_get("noop");
  228. }
  229. }
  230. eq = elevator_alloc(q, e);
  231. if (!eq)
  232. return -ENOMEM;
  233. data = elevator_init_queue(q, eq);
  234. if (!data) {
  235. kobject_put(&eq->kobj);
  236. return -ENOMEM;
  237. }
  238. elevator_attach(q, eq, data);
  239. return ret;
  240. }
  241. EXPORT_SYMBOL(elevator_init);
  242. void elevator_exit(elevator_t *e)
  243. {
  244. mutex_lock(&e->sysfs_lock);
  245. if (e->ops->elevator_exit_fn)
  246. e->ops->elevator_exit_fn(e);
  247. e->ops = NULL;
  248. mutex_unlock(&e->sysfs_lock);
  249. kobject_put(&e->kobj);
  250. }
  251. EXPORT_SYMBOL(elevator_exit);
  252. static void elv_activate_rq(struct request_queue *q, struct request *rq)
  253. {
  254. elevator_t *e = q->elevator;
  255. if (e->ops->elevator_activate_req_fn)
  256. e->ops->elevator_activate_req_fn(q, rq);
  257. }
  258. static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  259. {
  260. elevator_t *e = q->elevator;
  261. if (e->ops->elevator_deactivate_req_fn)
  262. e->ops->elevator_deactivate_req_fn(q, rq);
  263. }
  264. static inline void __elv_rqhash_del(struct request *rq)
  265. {
  266. hlist_del_init(&rq->hash);
  267. }
  268. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  269. {
  270. if (ELV_ON_HASH(rq))
  271. __elv_rqhash_del(rq);
  272. }
  273. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  274. {
  275. elevator_t *e = q->elevator;
  276. BUG_ON(ELV_ON_HASH(rq));
  277. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  278. }
  279. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  280. {
  281. __elv_rqhash_del(rq);
  282. elv_rqhash_add(q, rq);
  283. }
  284. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  285. {
  286. elevator_t *e = q->elevator;
  287. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  288. struct hlist_node *entry, *next;
  289. struct request *rq;
  290. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  291. BUG_ON(!ELV_ON_HASH(rq));
  292. if (unlikely(!rq_mergeable(rq))) {
  293. __elv_rqhash_del(rq);
  294. continue;
  295. }
  296. if (rq_hash_key(rq) == offset)
  297. return rq;
  298. }
  299. return NULL;
  300. }
  301. /*
  302. * RB-tree support functions for inserting/lookup/removal of requests
  303. * in a sorted RB tree.
  304. */
  305. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  306. {
  307. struct rb_node **p = &root->rb_node;
  308. struct rb_node *parent = NULL;
  309. struct request *__rq;
  310. while (*p) {
  311. parent = *p;
  312. __rq = rb_entry(parent, struct request, rb_node);
  313. if (rq->sector < __rq->sector)
  314. p = &(*p)->rb_left;
  315. else if (rq->sector > __rq->sector)
  316. p = &(*p)->rb_right;
  317. else
  318. return __rq;
  319. }
  320. rb_link_node(&rq->rb_node, parent, p);
  321. rb_insert_color(&rq->rb_node, root);
  322. return NULL;
  323. }
  324. EXPORT_SYMBOL(elv_rb_add);
  325. void elv_rb_del(struct rb_root *root, struct request *rq)
  326. {
  327. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  328. rb_erase(&rq->rb_node, root);
  329. RB_CLEAR_NODE(&rq->rb_node);
  330. }
  331. EXPORT_SYMBOL(elv_rb_del);
  332. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  333. {
  334. struct rb_node *n = root->rb_node;
  335. struct request *rq;
  336. while (n) {
  337. rq = rb_entry(n, struct request, rb_node);
  338. if (sector < rq->sector)
  339. n = n->rb_left;
  340. else if (sector > rq->sector)
  341. n = n->rb_right;
  342. else
  343. return rq;
  344. }
  345. return NULL;
  346. }
  347. EXPORT_SYMBOL(elv_rb_find);
  348. /*
  349. * Insert rq into dispatch queue of q. Queue lock must be held on
  350. * entry. rq is sort instead into the dispatch queue. To be used by
  351. * specific elevators.
  352. */
  353. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  354. {
  355. sector_t boundary;
  356. struct list_head *entry;
  357. int stop_flags;
  358. if (q->last_merge == rq)
  359. q->last_merge = NULL;
  360. elv_rqhash_del(q, rq);
  361. q->nr_sorted--;
  362. boundary = q->end_sector;
  363. stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
  364. list_for_each_prev(entry, &q->queue_head) {
  365. struct request *pos = list_entry_rq(entry);
  366. if (blk_discard_rq(rq) != blk_discard_rq(pos))
  367. break;
  368. if (rq_data_dir(rq) != rq_data_dir(pos))
  369. break;
  370. if (pos->cmd_flags & stop_flags)
  371. break;
  372. if (rq->sector >= boundary) {
  373. if (pos->sector < boundary)
  374. continue;
  375. } else {
  376. if (pos->sector >= boundary)
  377. break;
  378. }
  379. if (rq->sector >= pos->sector)
  380. break;
  381. }
  382. list_add(&rq->queuelist, entry);
  383. }
  384. EXPORT_SYMBOL(elv_dispatch_sort);
  385. /*
  386. * Insert rq into dispatch queue of q. Queue lock must be held on
  387. * entry. rq is added to the back of the dispatch queue. To be used by
  388. * specific elevators.
  389. */
  390. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  391. {
  392. if (q->last_merge == rq)
  393. q->last_merge = NULL;
  394. elv_rqhash_del(q, rq);
  395. q->nr_sorted--;
  396. q->end_sector = rq_end_sector(rq);
  397. q->boundary_rq = rq;
  398. list_add_tail(&rq->queuelist, &q->queue_head);
  399. }
  400. EXPORT_SYMBOL(elv_dispatch_add_tail);
  401. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  402. {
  403. elevator_t *e = q->elevator;
  404. struct request *__rq;
  405. int ret;
  406. /*
  407. * First try one-hit cache.
  408. */
  409. if (q->last_merge) {
  410. ret = elv_try_merge(q->last_merge, bio);
  411. if (ret != ELEVATOR_NO_MERGE) {
  412. *req = q->last_merge;
  413. return ret;
  414. }
  415. }
  416. if (blk_queue_nomerges(q))
  417. return ELEVATOR_NO_MERGE;
  418. /*
  419. * See if our hash lookup can find a potential backmerge.
  420. */
  421. __rq = elv_rqhash_find(q, bio->bi_sector);
  422. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  423. *req = __rq;
  424. return ELEVATOR_BACK_MERGE;
  425. }
  426. if (e->ops->elevator_merge_fn)
  427. return e->ops->elevator_merge_fn(q, req, bio);
  428. return ELEVATOR_NO_MERGE;
  429. }
  430. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  431. {
  432. elevator_t *e = q->elevator;
  433. if (e->ops->elevator_merged_fn)
  434. e->ops->elevator_merged_fn(q, rq, type);
  435. if (type == ELEVATOR_BACK_MERGE)
  436. elv_rqhash_reposition(q, rq);
  437. q->last_merge = rq;
  438. }
  439. void elv_merge_requests(struct request_queue *q, struct request *rq,
  440. struct request *next)
  441. {
  442. elevator_t *e = q->elevator;
  443. if (e->ops->elevator_merge_req_fn)
  444. e->ops->elevator_merge_req_fn(q, rq, next);
  445. elv_rqhash_reposition(q, rq);
  446. elv_rqhash_del(q, next);
  447. q->nr_sorted--;
  448. q->last_merge = rq;
  449. }
  450. void elv_requeue_request(struct request_queue *q, struct request *rq)
  451. {
  452. /*
  453. * it already went through dequeue, we need to decrement the
  454. * in_flight count again
  455. */
  456. if (blk_account_rq(rq)) {
  457. q->in_flight--;
  458. if (blk_sorted_rq(rq))
  459. elv_deactivate_rq(q, rq);
  460. }
  461. rq->cmd_flags &= ~REQ_STARTED;
  462. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  463. }
  464. static void elv_drain_elevator(struct request_queue *q)
  465. {
  466. static int printed;
  467. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  468. ;
  469. if (q->nr_sorted == 0)
  470. return;
  471. if (printed++ < 10) {
  472. printk(KERN_ERR "%s: forced dispatching is broken "
  473. "(nr_sorted=%u), please report this\n",
  474. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  475. }
  476. }
  477. void elv_insert(struct request_queue *q, struct request *rq, int where)
  478. {
  479. struct list_head *pos;
  480. unsigned ordseq;
  481. int unplug_it = 1;
  482. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  483. rq->q = q;
  484. switch (where) {
  485. case ELEVATOR_INSERT_FRONT:
  486. rq->cmd_flags |= REQ_SOFTBARRIER;
  487. list_add(&rq->queuelist, &q->queue_head);
  488. break;
  489. case ELEVATOR_INSERT_BACK:
  490. rq->cmd_flags |= REQ_SOFTBARRIER;
  491. elv_drain_elevator(q);
  492. list_add_tail(&rq->queuelist, &q->queue_head);
  493. /*
  494. * We kick the queue here for the following reasons.
  495. * - The elevator might have returned NULL previously
  496. * to delay requests and returned them now. As the
  497. * queue wasn't empty before this request, ll_rw_blk
  498. * won't run the queue on return, resulting in hang.
  499. * - Usually, back inserted requests won't be merged
  500. * with anything. There's no point in delaying queue
  501. * processing.
  502. */
  503. blk_remove_plug(q);
  504. blk_start_queueing(q);
  505. break;
  506. case ELEVATOR_INSERT_SORT:
  507. BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
  508. rq->cmd_flags |= REQ_SORTED;
  509. q->nr_sorted++;
  510. if (rq_mergeable(rq)) {
  511. elv_rqhash_add(q, rq);
  512. if (!q->last_merge)
  513. q->last_merge = rq;
  514. }
  515. /*
  516. * Some ioscheds (cfq) run q->request_fn directly, so
  517. * rq cannot be accessed after calling
  518. * elevator_add_req_fn.
  519. */
  520. q->elevator->ops->elevator_add_req_fn(q, rq);
  521. break;
  522. case ELEVATOR_INSERT_REQUEUE:
  523. /*
  524. * If ordered flush isn't in progress, we do front
  525. * insertion; otherwise, requests should be requeued
  526. * in ordseq order.
  527. */
  528. rq->cmd_flags |= REQ_SOFTBARRIER;
  529. /*
  530. * Most requeues happen because of a busy condition,
  531. * don't force unplug of the queue for that case.
  532. */
  533. unplug_it = 0;
  534. if (q->ordseq == 0) {
  535. list_add(&rq->queuelist, &q->queue_head);
  536. break;
  537. }
  538. ordseq = blk_ordered_req_seq(rq);
  539. list_for_each(pos, &q->queue_head) {
  540. struct request *pos_rq = list_entry_rq(pos);
  541. if (ordseq <= blk_ordered_req_seq(pos_rq))
  542. break;
  543. }
  544. list_add_tail(&rq->queuelist, pos);
  545. break;
  546. default:
  547. printk(KERN_ERR "%s: bad insertion point %d\n",
  548. __func__, where);
  549. BUG();
  550. }
  551. if (unplug_it && blk_queue_plugged(q)) {
  552. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  553. - q->in_flight;
  554. if (nrq >= q->unplug_thresh)
  555. __generic_unplug_device(q);
  556. }
  557. }
  558. void __elv_add_request(struct request_queue *q, struct request *rq, int where,
  559. int plug)
  560. {
  561. if (q->ordcolor)
  562. rq->cmd_flags |= REQ_ORDERED_COLOR;
  563. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  564. /*
  565. * toggle ordered color
  566. */
  567. if (blk_barrier_rq(rq))
  568. q->ordcolor ^= 1;
  569. /*
  570. * barriers implicitly indicate back insertion
  571. */
  572. if (where == ELEVATOR_INSERT_SORT)
  573. where = ELEVATOR_INSERT_BACK;
  574. /*
  575. * this request is scheduling boundary, update
  576. * end_sector
  577. */
  578. if (blk_fs_request(rq) || blk_discard_rq(rq)) {
  579. q->end_sector = rq_end_sector(rq);
  580. q->boundary_rq = rq;
  581. }
  582. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  583. where == ELEVATOR_INSERT_SORT)
  584. where = ELEVATOR_INSERT_BACK;
  585. if (plug)
  586. blk_plug_device(q);
  587. elv_insert(q, rq, where);
  588. }
  589. EXPORT_SYMBOL(__elv_add_request);
  590. void elv_add_request(struct request_queue *q, struct request *rq, int where,
  591. int plug)
  592. {
  593. unsigned long flags;
  594. spin_lock_irqsave(q->queue_lock, flags);
  595. __elv_add_request(q, rq, where, plug);
  596. spin_unlock_irqrestore(q->queue_lock, flags);
  597. }
  598. EXPORT_SYMBOL(elv_add_request);
  599. static inline struct request *__elv_next_request(struct request_queue *q)
  600. {
  601. struct request *rq;
  602. while (1) {
  603. while (!list_empty(&q->queue_head)) {
  604. rq = list_entry_rq(q->queue_head.next);
  605. if (blk_do_ordered(q, &rq))
  606. return rq;
  607. }
  608. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  609. return NULL;
  610. }
  611. }
  612. struct request *elv_next_request(struct request_queue *q)
  613. {
  614. struct request *rq;
  615. int ret;
  616. while ((rq = __elv_next_request(q)) != NULL) {
  617. /*
  618. * Kill the empty barrier place holder, the driver must
  619. * not ever see it.
  620. */
  621. if (blk_empty_barrier(rq)) {
  622. __blk_end_request(rq, 0, blk_rq_bytes(rq));
  623. continue;
  624. }
  625. if (!(rq->cmd_flags & REQ_STARTED)) {
  626. /*
  627. * This is the first time the device driver
  628. * sees this request (possibly after
  629. * requeueing). Notify IO scheduler.
  630. */
  631. if (blk_sorted_rq(rq))
  632. elv_activate_rq(q, rq);
  633. /*
  634. * just mark as started even if we don't start
  635. * it, a request that has been delayed should
  636. * not be passed by new incoming requests
  637. */
  638. rq->cmd_flags |= REQ_STARTED;
  639. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  640. }
  641. if (!q->boundary_rq || q->boundary_rq == rq) {
  642. q->end_sector = rq_end_sector(rq);
  643. q->boundary_rq = NULL;
  644. }
  645. if (rq->cmd_flags & REQ_DONTPREP)
  646. break;
  647. if (q->dma_drain_size && rq->data_len) {
  648. /*
  649. * make sure space for the drain appears we
  650. * know we can do this because max_hw_segments
  651. * has been adjusted to be one fewer than the
  652. * device can handle
  653. */
  654. rq->nr_phys_segments++;
  655. }
  656. if (!q->prep_rq_fn)
  657. break;
  658. ret = q->prep_rq_fn(q, rq);
  659. if (ret == BLKPREP_OK) {
  660. break;
  661. } else if (ret == BLKPREP_DEFER) {
  662. /*
  663. * the request may have been (partially) prepped.
  664. * we need to keep this request in the front to
  665. * avoid resource deadlock. REQ_STARTED will
  666. * prevent other fs requests from passing this one.
  667. */
  668. if (q->dma_drain_size && rq->data_len &&
  669. !(rq->cmd_flags & REQ_DONTPREP)) {
  670. /*
  671. * remove the space for the drain we added
  672. * so that we don't add it again
  673. */
  674. --rq->nr_phys_segments;
  675. }
  676. rq = NULL;
  677. break;
  678. } else if (ret == BLKPREP_KILL) {
  679. rq->cmd_flags |= REQ_QUIET;
  680. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  681. } else {
  682. printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
  683. break;
  684. }
  685. }
  686. return rq;
  687. }
  688. EXPORT_SYMBOL(elv_next_request);
  689. void elv_dequeue_request(struct request_queue *q, struct request *rq)
  690. {
  691. BUG_ON(list_empty(&rq->queuelist));
  692. BUG_ON(ELV_ON_HASH(rq));
  693. list_del_init(&rq->queuelist);
  694. /*
  695. * the time frame between a request being removed from the lists
  696. * and to it is freed is accounted as io that is in progress at
  697. * the driver side.
  698. */
  699. if (blk_account_rq(rq))
  700. q->in_flight++;
  701. }
  702. int elv_queue_empty(struct request_queue *q)
  703. {
  704. elevator_t *e = q->elevator;
  705. if (!list_empty(&q->queue_head))
  706. return 0;
  707. if (e->ops->elevator_queue_empty_fn)
  708. return e->ops->elevator_queue_empty_fn(q);
  709. return 1;
  710. }
  711. EXPORT_SYMBOL(elv_queue_empty);
  712. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  713. {
  714. elevator_t *e = q->elevator;
  715. if (e->ops->elevator_latter_req_fn)
  716. return e->ops->elevator_latter_req_fn(q, rq);
  717. return NULL;
  718. }
  719. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  720. {
  721. elevator_t *e = q->elevator;
  722. if (e->ops->elevator_former_req_fn)
  723. return e->ops->elevator_former_req_fn(q, rq);
  724. return NULL;
  725. }
  726. int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  727. {
  728. elevator_t *e = q->elevator;
  729. if (e->ops->elevator_set_req_fn)
  730. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  731. rq->elevator_private = NULL;
  732. return 0;
  733. }
  734. void elv_put_request(struct request_queue *q, struct request *rq)
  735. {
  736. elevator_t *e = q->elevator;
  737. if (e->ops->elevator_put_req_fn)
  738. e->ops->elevator_put_req_fn(rq);
  739. }
  740. int elv_may_queue(struct request_queue *q, int rw)
  741. {
  742. elevator_t *e = q->elevator;
  743. if (e->ops->elevator_may_queue_fn)
  744. return e->ops->elevator_may_queue_fn(q, rw);
  745. return ELV_MQUEUE_MAY;
  746. }
  747. void elv_abort_queue(struct request_queue *q)
  748. {
  749. struct request *rq;
  750. while (!list_empty(&q->queue_head)) {
  751. rq = list_entry_rq(q->queue_head.next);
  752. rq->cmd_flags |= REQ_QUIET;
  753. blk_add_trace_rq(q, rq, BLK_TA_ABORT);
  754. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  755. }
  756. }
  757. EXPORT_SYMBOL(elv_abort_queue);
  758. void elv_completed_request(struct request_queue *q, struct request *rq)
  759. {
  760. elevator_t *e = q->elevator;
  761. /*
  762. * request is released from the driver, io must be done
  763. */
  764. if (blk_account_rq(rq)) {
  765. q->in_flight--;
  766. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  767. e->ops->elevator_completed_req_fn(q, rq);
  768. }
  769. /*
  770. * Check if the queue is waiting for fs requests to be
  771. * drained for flush sequence.
  772. */
  773. if (unlikely(q->ordseq)) {
  774. struct request *first_rq = list_entry_rq(q->queue_head.next);
  775. if (q->in_flight == 0 &&
  776. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  777. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  778. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  779. blk_start_queueing(q);
  780. }
  781. }
  782. }
  783. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  784. static ssize_t
  785. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  786. {
  787. elevator_t *e = container_of(kobj, elevator_t, kobj);
  788. struct elv_fs_entry *entry = to_elv(attr);
  789. ssize_t error;
  790. if (!entry->show)
  791. return -EIO;
  792. mutex_lock(&e->sysfs_lock);
  793. error = e->ops ? entry->show(e, page) : -ENOENT;
  794. mutex_unlock(&e->sysfs_lock);
  795. return error;
  796. }
  797. static ssize_t
  798. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  799. const char *page, size_t length)
  800. {
  801. elevator_t *e = container_of(kobj, elevator_t, kobj);
  802. struct elv_fs_entry *entry = to_elv(attr);
  803. ssize_t error;
  804. if (!entry->store)
  805. return -EIO;
  806. mutex_lock(&e->sysfs_lock);
  807. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  808. mutex_unlock(&e->sysfs_lock);
  809. return error;
  810. }
  811. static struct sysfs_ops elv_sysfs_ops = {
  812. .show = elv_attr_show,
  813. .store = elv_attr_store,
  814. };
  815. static struct kobj_type elv_ktype = {
  816. .sysfs_ops = &elv_sysfs_ops,
  817. .release = elevator_release,
  818. };
  819. int elv_register_queue(struct request_queue *q)
  820. {
  821. elevator_t *e = q->elevator;
  822. int error;
  823. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  824. if (!error) {
  825. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  826. if (attr) {
  827. while (attr->attr.name) {
  828. if (sysfs_create_file(&e->kobj, &attr->attr))
  829. break;
  830. attr++;
  831. }
  832. }
  833. kobject_uevent(&e->kobj, KOBJ_ADD);
  834. }
  835. return error;
  836. }
  837. static void __elv_unregister_queue(elevator_t *e)
  838. {
  839. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  840. kobject_del(&e->kobj);
  841. }
  842. void elv_unregister_queue(struct request_queue *q)
  843. {
  844. if (q)
  845. __elv_unregister_queue(q->elevator);
  846. }
  847. void elv_register(struct elevator_type *e)
  848. {
  849. char *def = "";
  850. spin_lock(&elv_list_lock);
  851. BUG_ON(elevator_find(e->elevator_name));
  852. list_add_tail(&e->list, &elv_list);
  853. spin_unlock(&elv_list_lock);
  854. if (!strcmp(e->elevator_name, chosen_elevator) ||
  855. (!*chosen_elevator &&
  856. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  857. def = " (default)";
  858. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  859. def);
  860. }
  861. EXPORT_SYMBOL_GPL(elv_register);
  862. void elv_unregister(struct elevator_type *e)
  863. {
  864. struct task_struct *g, *p;
  865. /*
  866. * Iterate every thread in the process to remove the io contexts.
  867. */
  868. if (e->ops.trim) {
  869. read_lock(&tasklist_lock);
  870. do_each_thread(g, p) {
  871. task_lock(p);
  872. if (p->io_context)
  873. e->ops.trim(p->io_context);
  874. task_unlock(p);
  875. } while_each_thread(g, p);
  876. read_unlock(&tasklist_lock);
  877. }
  878. spin_lock(&elv_list_lock);
  879. list_del_init(&e->list);
  880. spin_unlock(&elv_list_lock);
  881. }
  882. EXPORT_SYMBOL_GPL(elv_unregister);
  883. /*
  884. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  885. * we don't free the old io scheduler, before we have allocated what we
  886. * need for the new one. this way we have a chance of going back to the old
  887. * one, if the new one fails init for some reason.
  888. */
  889. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  890. {
  891. elevator_t *old_elevator, *e;
  892. void *data;
  893. /*
  894. * Allocate new elevator
  895. */
  896. e = elevator_alloc(q, new_e);
  897. if (!e)
  898. return 0;
  899. data = elevator_init_queue(q, e);
  900. if (!data) {
  901. kobject_put(&e->kobj);
  902. return 0;
  903. }
  904. /*
  905. * Turn on BYPASS and drain all requests w/ elevator private data
  906. */
  907. spin_lock_irq(q->queue_lock);
  908. queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
  909. elv_drain_elevator(q);
  910. while (q->rq.elvpriv) {
  911. blk_start_queueing(q);
  912. spin_unlock_irq(q->queue_lock);
  913. msleep(10);
  914. spin_lock_irq(q->queue_lock);
  915. elv_drain_elevator(q);
  916. }
  917. /*
  918. * Remember old elevator.
  919. */
  920. old_elevator = q->elevator;
  921. /*
  922. * attach and start new elevator
  923. */
  924. elevator_attach(q, e, data);
  925. spin_unlock_irq(q->queue_lock);
  926. __elv_unregister_queue(old_elevator);
  927. if (elv_register_queue(q))
  928. goto fail_register;
  929. /*
  930. * finally exit old elevator and turn off BYPASS.
  931. */
  932. elevator_exit(old_elevator);
  933. spin_lock_irq(q->queue_lock);
  934. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  935. spin_unlock_irq(q->queue_lock);
  936. blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
  937. return 1;
  938. fail_register:
  939. /*
  940. * switch failed, exit the new io scheduler and reattach the old
  941. * one again (along with re-adding the sysfs dir)
  942. */
  943. elevator_exit(e);
  944. q->elevator = old_elevator;
  945. elv_register_queue(q);
  946. spin_lock_irq(q->queue_lock);
  947. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  948. spin_unlock_irq(q->queue_lock);
  949. return 0;
  950. }
  951. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  952. size_t count)
  953. {
  954. char elevator_name[ELV_NAME_MAX];
  955. struct elevator_type *e;
  956. strlcpy(elevator_name, name, sizeof(elevator_name));
  957. strstrip(elevator_name);
  958. e = elevator_get(elevator_name);
  959. if (!e) {
  960. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  961. return -EINVAL;
  962. }
  963. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  964. elevator_put(e);
  965. return count;
  966. }
  967. if (!elevator_switch(q, e))
  968. printk(KERN_ERR "elevator: switch to %s failed\n",
  969. elevator_name);
  970. return count;
  971. }
  972. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  973. {
  974. elevator_t *e = q->elevator;
  975. struct elevator_type *elv = e->elevator_type;
  976. struct elevator_type *__e;
  977. int len = 0;
  978. spin_lock(&elv_list_lock);
  979. list_for_each_entry(__e, &elv_list, list) {
  980. if (!strcmp(elv->elevator_name, __e->elevator_name))
  981. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  982. else
  983. len += sprintf(name+len, "%s ", __e->elevator_name);
  984. }
  985. spin_unlock(&elv_list_lock);
  986. len += sprintf(len+name, "\n");
  987. return len;
  988. }
  989. struct request *elv_rb_former_request(struct request_queue *q,
  990. struct request *rq)
  991. {
  992. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  993. if (rbprev)
  994. return rb_entry_rq(rbprev);
  995. return NULL;
  996. }
  997. EXPORT_SYMBOL(elv_rb_former_request);
  998. struct request *elv_rb_latter_request(struct request_queue *q,
  999. struct request *rq)
  1000. {
  1001. struct rb_node *rbnext = rb_next(&rq->rb_node);
  1002. if (rbnext)
  1003. return rb_entry_rq(rbnext);
  1004. return NULL;
  1005. }
  1006. EXPORT_SYMBOL(elv_rb_latter_request);