mm.h 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/atomic.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/mm_types.h>
  13. #include <linux/range.h>
  14. #include <linux/pfn.h>
  15. #include <linux/bit_spinlock.h>
  16. #include <linux/shrinker.h>
  17. struct mempolicy;
  18. struct anon_vma;
  19. struct anon_vma_chain;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. static inline void set_max_mapnr(unsigned long limit)
  26. {
  27. max_mapnr = limit;
  28. }
  29. #else
  30. static inline void set_max_mapnr(unsigned long limit) { }
  31. #endif
  32. extern unsigned long totalram_pages;
  33. extern void * high_memory;
  34. extern int page_cluster;
  35. #ifdef CONFIG_SYSCTL
  36. extern int sysctl_legacy_va_layout;
  37. #else
  38. #define sysctl_legacy_va_layout 0
  39. #endif
  40. #include <asm/page.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/processor.h>
  43. #ifndef __pa_symbol
  44. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  45. #endif
  46. extern unsigned long sysctl_user_reserve_kbytes;
  47. extern unsigned long sysctl_admin_reserve_kbytes;
  48. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  49. /* to align the pointer to the (next) page boundary */
  50. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  51. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  52. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  53. /*
  54. * Linux kernel virtual memory manager primitives.
  55. * The idea being to have a "virtual" mm in the same way
  56. * we have a virtual fs - giving a cleaner interface to the
  57. * mm details, and allowing different kinds of memory mappings
  58. * (from shared memory to executable loading to arbitrary
  59. * mmap() functions).
  60. */
  61. extern struct kmem_cache *vm_area_cachep;
  62. #ifndef CONFIG_MMU
  63. extern struct rb_root nommu_region_tree;
  64. extern struct rw_semaphore nommu_region_sem;
  65. extern unsigned int kobjsize(const void *objp);
  66. #endif
  67. /*
  68. * vm_flags in vm_area_struct, see mm_types.h.
  69. */
  70. #define VM_NONE 0x00000000
  71. #define VM_READ 0x00000001 /* currently active flags */
  72. #define VM_WRITE 0x00000002
  73. #define VM_EXEC 0x00000004
  74. #define VM_SHARED 0x00000008
  75. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  76. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  77. #define VM_MAYWRITE 0x00000020
  78. #define VM_MAYEXEC 0x00000040
  79. #define VM_MAYSHARE 0x00000080
  80. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  81. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  82. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  83. #define VM_LOCKED 0x00002000
  84. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  85. /* Used by sys_madvise() */
  86. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  87. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  88. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  89. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  90. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  91. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  92. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  93. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  94. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  95. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  96. #ifdef CONFIG_MEM_SOFT_DIRTY
  97. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  98. #else
  99. # define VM_SOFTDIRTY 0
  100. #endif
  101. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  102. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  103. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  104. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  105. #if defined(CONFIG_X86)
  106. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  107. #elif defined(CONFIG_PPC)
  108. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  109. #elif defined(CONFIG_PARISC)
  110. # define VM_GROWSUP VM_ARCH_1
  111. #elif defined(CONFIG_METAG)
  112. # define VM_GROWSUP VM_ARCH_1
  113. #elif defined(CONFIG_IA64)
  114. # define VM_GROWSUP VM_ARCH_1
  115. #elif !defined(CONFIG_MMU)
  116. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  117. #endif
  118. #ifndef VM_GROWSUP
  119. # define VM_GROWSUP VM_NONE
  120. #endif
  121. /* Bits set in the VMA until the stack is in its final location */
  122. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  123. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  124. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  125. #endif
  126. #ifdef CONFIG_STACK_GROWSUP
  127. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  128. #else
  129. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  130. #endif
  131. /*
  132. * Special vmas that are non-mergable, non-mlock()able.
  133. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  134. */
  135. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
  136. /*
  137. * mapping from the currently active vm_flags protection bits (the
  138. * low four bits) to a page protection mask..
  139. */
  140. extern pgprot_t protection_map[16];
  141. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  142. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  143. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  144. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  145. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  146. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  147. #define FAULT_FLAG_TRIED 0x40 /* second try */
  148. #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
  149. /*
  150. * vm_fault is filled by the the pagefault handler and passed to the vma's
  151. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  152. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  153. *
  154. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  155. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  156. */
  157. struct vm_fault {
  158. unsigned int flags; /* FAULT_FLAG_xxx flags */
  159. pgoff_t pgoff; /* Logical page offset based on vma */
  160. void __user *virtual_address; /* Faulting virtual address */
  161. struct page *page; /* ->fault handlers should return a
  162. * page here, unless VM_FAULT_NOPAGE
  163. * is set (which is also implied by
  164. * VM_FAULT_ERROR).
  165. */
  166. };
  167. /*
  168. * These are the virtual MM functions - opening of an area, closing and
  169. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  170. * to the functions called when a no-page or a wp-page exception occurs.
  171. */
  172. struct vm_operations_struct {
  173. void (*open)(struct vm_area_struct * area);
  174. void (*close)(struct vm_area_struct * area);
  175. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  176. /* notification that a previously read-only page is about to become
  177. * writable, if an error is returned it will cause a SIGBUS */
  178. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  179. /* called by access_process_vm when get_user_pages() fails, typically
  180. * for use by special VMAs that can switch between memory and hardware
  181. */
  182. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  183. void *buf, int len, int write);
  184. #ifdef CONFIG_NUMA
  185. /*
  186. * set_policy() op must add a reference to any non-NULL @new mempolicy
  187. * to hold the policy upon return. Caller should pass NULL @new to
  188. * remove a policy and fall back to surrounding context--i.e. do not
  189. * install a MPOL_DEFAULT policy, nor the task or system default
  190. * mempolicy.
  191. */
  192. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  193. /*
  194. * get_policy() op must add reference [mpol_get()] to any policy at
  195. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  196. * in mm/mempolicy.c will do this automatically.
  197. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  198. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  199. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  200. * must return NULL--i.e., do not "fallback" to task or system default
  201. * policy.
  202. */
  203. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  204. unsigned long addr);
  205. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  206. const nodemask_t *to, unsigned long flags);
  207. #endif
  208. /* called by sys_remap_file_pages() to populate non-linear mapping */
  209. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  210. unsigned long size, pgoff_t pgoff);
  211. };
  212. struct mmu_gather;
  213. struct inode;
  214. #define page_private(page) ((page)->private)
  215. #define set_page_private(page, v) ((page)->private = (v))
  216. /* It's valid only if the page is free path or free_list */
  217. static inline void set_freepage_migratetype(struct page *page, int migratetype)
  218. {
  219. page->index = migratetype;
  220. }
  221. /* It's valid only if the page is free path or free_list */
  222. static inline int get_freepage_migratetype(struct page *page)
  223. {
  224. return page->index;
  225. }
  226. /*
  227. * FIXME: take this include out, include page-flags.h in
  228. * files which need it (119 of them)
  229. */
  230. #include <linux/page-flags.h>
  231. #include <linux/huge_mm.h>
  232. /*
  233. * Methods to modify the page usage count.
  234. *
  235. * What counts for a page usage:
  236. * - cache mapping (page->mapping)
  237. * - private data (page->private)
  238. * - page mapped in a task's page tables, each mapping
  239. * is counted separately
  240. *
  241. * Also, many kernel routines increase the page count before a critical
  242. * routine so they can be sure the page doesn't go away from under them.
  243. */
  244. /*
  245. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  246. */
  247. static inline int put_page_testzero(struct page *page)
  248. {
  249. VM_BUG_ON(atomic_read(&page->_count) == 0);
  250. return atomic_dec_and_test(&page->_count);
  251. }
  252. /*
  253. * Try to grab a ref unless the page has a refcount of zero, return false if
  254. * that is the case.
  255. * This can be called when MMU is off so it must not access
  256. * any of the virtual mappings.
  257. */
  258. static inline int get_page_unless_zero(struct page *page)
  259. {
  260. return atomic_inc_not_zero(&page->_count);
  261. }
  262. /*
  263. * Try to drop a ref unless the page has a refcount of one, return false if
  264. * that is the case.
  265. * This is to make sure that the refcount won't become zero after this drop.
  266. * This can be called when MMU is off so it must not access
  267. * any of the virtual mappings.
  268. */
  269. static inline int put_page_unless_one(struct page *page)
  270. {
  271. return atomic_add_unless(&page->_count, -1, 1);
  272. }
  273. extern int page_is_ram(unsigned long pfn);
  274. /* Support for virtually mapped pages */
  275. struct page *vmalloc_to_page(const void *addr);
  276. unsigned long vmalloc_to_pfn(const void *addr);
  277. /*
  278. * Determine if an address is within the vmalloc range
  279. *
  280. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  281. * is no special casing required.
  282. */
  283. static inline int is_vmalloc_addr(const void *x)
  284. {
  285. #ifdef CONFIG_MMU
  286. unsigned long addr = (unsigned long)x;
  287. return addr >= VMALLOC_START && addr < VMALLOC_END;
  288. #else
  289. return 0;
  290. #endif
  291. }
  292. #ifdef CONFIG_MMU
  293. extern int is_vmalloc_or_module_addr(const void *x);
  294. #else
  295. static inline int is_vmalloc_or_module_addr(const void *x)
  296. {
  297. return 0;
  298. }
  299. #endif
  300. static inline void compound_lock(struct page *page)
  301. {
  302. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  303. VM_BUG_ON(PageSlab(page));
  304. bit_spin_lock(PG_compound_lock, &page->flags);
  305. #endif
  306. }
  307. static inline void compound_unlock(struct page *page)
  308. {
  309. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  310. VM_BUG_ON(PageSlab(page));
  311. bit_spin_unlock(PG_compound_lock, &page->flags);
  312. #endif
  313. }
  314. static inline unsigned long compound_lock_irqsave(struct page *page)
  315. {
  316. unsigned long uninitialized_var(flags);
  317. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  318. local_irq_save(flags);
  319. compound_lock(page);
  320. #endif
  321. return flags;
  322. }
  323. static inline void compound_unlock_irqrestore(struct page *page,
  324. unsigned long flags)
  325. {
  326. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  327. compound_unlock(page);
  328. local_irq_restore(flags);
  329. #endif
  330. }
  331. static inline struct page *compound_head(struct page *page)
  332. {
  333. if (unlikely(PageTail(page)))
  334. return page->first_page;
  335. return page;
  336. }
  337. /*
  338. * The atomic page->_mapcount, starts from -1: so that transitions
  339. * both from it and to it can be tracked, using atomic_inc_and_test
  340. * and atomic_add_negative(-1).
  341. */
  342. static inline void page_mapcount_reset(struct page *page)
  343. {
  344. atomic_set(&(page)->_mapcount, -1);
  345. }
  346. static inline int page_mapcount(struct page *page)
  347. {
  348. return atomic_read(&(page)->_mapcount) + 1;
  349. }
  350. static inline int page_count(struct page *page)
  351. {
  352. return atomic_read(&compound_head(page)->_count);
  353. }
  354. static inline void get_huge_page_tail(struct page *page)
  355. {
  356. /*
  357. * __split_huge_page_refcount() cannot run
  358. * from under us.
  359. */
  360. VM_BUG_ON(page_mapcount(page) < 0);
  361. VM_BUG_ON(atomic_read(&page->_count) != 0);
  362. atomic_inc(&page->_mapcount);
  363. }
  364. extern bool __get_page_tail(struct page *page);
  365. static inline void get_page(struct page *page)
  366. {
  367. if (unlikely(PageTail(page)))
  368. if (likely(__get_page_tail(page)))
  369. return;
  370. /*
  371. * Getting a normal page or the head of a compound page
  372. * requires to already have an elevated page->_count.
  373. */
  374. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  375. atomic_inc(&page->_count);
  376. }
  377. static inline struct page *virt_to_head_page(const void *x)
  378. {
  379. struct page *page = virt_to_page(x);
  380. return compound_head(page);
  381. }
  382. /*
  383. * Setup the page count before being freed into the page allocator for
  384. * the first time (boot or memory hotplug)
  385. */
  386. static inline void init_page_count(struct page *page)
  387. {
  388. atomic_set(&page->_count, 1);
  389. }
  390. /*
  391. * PageBuddy() indicate that the page is free and in the buddy system
  392. * (see mm/page_alloc.c).
  393. *
  394. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  395. * -2 so that an underflow of the page_mapcount() won't be mistaken
  396. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  397. * efficiently by most CPU architectures.
  398. */
  399. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  400. static inline int PageBuddy(struct page *page)
  401. {
  402. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  403. }
  404. static inline void __SetPageBuddy(struct page *page)
  405. {
  406. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  407. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  408. }
  409. static inline void __ClearPageBuddy(struct page *page)
  410. {
  411. VM_BUG_ON(!PageBuddy(page));
  412. atomic_set(&page->_mapcount, -1);
  413. }
  414. void put_page(struct page *page);
  415. void put_pages_list(struct list_head *pages);
  416. void split_page(struct page *page, unsigned int order);
  417. int split_free_page(struct page *page);
  418. /*
  419. * Compound pages have a destructor function. Provide a
  420. * prototype for that function and accessor functions.
  421. * These are _only_ valid on the head of a PG_compound page.
  422. */
  423. typedef void compound_page_dtor(struct page *);
  424. static inline void set_compound_page_dtor(struct page *page,
  425. compound_page_dtor *dtor)
  426. {
  427. page[1].lru.next = (void *)dtor;
  428. }
  429. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  430. {
  431. return (compound_page_dtor *)page[1].lru.next;
  432. }
  433. static inline int compound_order(struct page *page)
  434. {
  435. if (!PageHead(page))
  436. return 0;
  437. return (unsigned long)page[1].lru.prev;
  438. }
  439. static inline void set_compound_order(struct page *page, unsigned long order)
  440. {
  441. page[1].lru.prev = (void *)order;
  442. }
  443. #ifdef CONFIG_MMU
  444. /*
  445. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  446. * servicing faults for write access. In the normal case, do always want
  447. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  448. * that do not have writing enabled, when used by access_process_vm.
  449. */
  450. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  451. {
  452. if (likely(vma->vm_flags & VM_WRITE))
  453. pte = pte_mkwrite(pte);
  454. return pte;
  455. }
  456. #endif
  457. /*
  458. * Multiple processes may "see" the same page. E.g. for untouched
  459. * mappings of /dev/null, all processes see the same page full of
  460. * zeroes, and text pages of executables and shared libraries have
  461. * only one copy in memory, at most, normally.
  462. *
  463. * For the non-reserved pages, page_count(page) denotes a reference count.
  464. * page_count() == 0 means the page is free. page->lru is then used for
  465. * freelist management in the buddy allocator.
  466. * page_count() > 0 means the page has been allocated.
  467. *
  468. * Pages are allocated by the slab allocator in order to provide memory
  469. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  470. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  471. * unless a particular usage is carefully commented. (the responsibility of
  472. * freeing the kmalloc memory is the caller's, of course).
  473. *
  474. * A page may be used by anyone else who does a __get_free_page().
  475. * In this case, page_count still tracks the references, and should only
  476. * be used through the normal accessor functions. The top bits of page->flags
  477. * and page->virtual store page management information, but all other fields
  478. * are unused and could be used privately, carefully. The management of this
  479. * page is the responsibility of the one who allocated it, and those who have
  480. * subsequently been given references to it.
  481. *
  482. * The other pages (we may call them "pagecache pages") are completely
  483. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  484. * The following discussion applies only to them.
  485. *
  486. * A pagecache page contains an opaque `private' member, which belongs to the
  487. * page's address_space. Usually, this is the address of a circular list of
  488. * the page's disk buffers. PG_private must be set to tell the VM to call
  489. * into the filesystem to release these pages.
  490. *
  491. * A page may belong to an inode's memory mapping. In this case, page->mapping
  492. * is the pointer to the inode, and page->index is the file offset of the page,
  493. * in units of PAGE_CACHE_SIZE.
  494. *
  495. * If pagecache pages are not associated with an inode, they are said to be
  496. * anonymous pages. These may become associated with the swapcache, and in that
  497. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  498. *
  499. * In either case (swapcache or inode backed), the pagecache itself holds one
  500. * reference to the page. Setting PG_private should also increment the
  501. * refcount. The each user mapping also has a reference to the page.
  502. *
  503. * The pagecache pages are stored in a per-mapping radix tree, which is
  504. * rooted at mapping->page_tree, and indexed by offset.
  505. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  506. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  507. *
  508. * All pagecache pages may be subject to I/O:
  509. * - inode pages may need to be read from disk,
  510. * - inode pages which have been modified and are MAP_SHARED may need
  511. * to be written back to the inode on disk,
  512. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  513. * modified may need to be swapped out to swap space and (later) to be read
  514. * back into memory.
  515. */
  516. /*
  517. * The zone field is never updated after free_area_init_core()
  518. * sets it, so none of the operations on it need to be atomic.
  519. */
  520. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  521. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  522. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  523. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  524. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  525. /*
  526. * Define the bit shifts to access each section. For non-existent
  527. * sections we define the shift as 0; that plus a 0 mask ensures
  528. * the compiler will optimise away reference to them.
  529. */
  530. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  531. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  532. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  533. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  534. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  535. #ifdef NODE_NOT_IN_PAGE_FLAGS
  536. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  537. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  538. SECTIONS_PGOFF : ZONES_PGOFF)
  539. #else
  540. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  541. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  542. NODES_PGOFF : ZONES_PGOFF)
  543. #endif
  544. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  545. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  546. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  547. #endif
  548. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  549. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  550. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  551. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
  552. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  553. static inline enum zone_type page_zonenum(const struct page *page)
  554. {
  555. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  556. }
  557. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  558. #define SECTION_IN_PAGE_FLAGS
  559. #endif
  560. /*
  561. * The identification function is mainly used by the buddy allocator for
  562. * determining if two pages could be buddies. We are not really identifying
  563. * the zone since we could be using the section number id if we do not have
  564. * node id available in page flags.
  565. * We only guarantee that it will return the same value for two combinable
  566. * pages in a zone.
  567. */
  568. static inline int page_zone_id(struct page *page)
  569. {
  570. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  571. }
  572. static inline int zone_to_nid(struct zone *zone)
  573. {
  574. #ifdef CONFIG_NUMA
  575. return zone->node;
  576. #else
  577. return 0;
  578. #endif
  579. }
  580. #ifdef NODE_NOT_IN_PAGE_FLAGS
  581. extern int page_to_nid(const struct page *page);
  582. #else
  583. static inline int page_to_nid(const struct page *page)
  584. {
  585. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  586. }
  587. #endif
  588. #ifdef CONFIG_NUMA_BALANCING
  589. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  590. {
  591. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  592. }
  593. static inline int cpupid_to_pid(int cpupid)
  594. {
  595. return cpupid & LAST__PID_MASK;
  596. }
  597. static inline int cpupid_to_cpu(int cpupid)
  598. {
  599. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  600. }
  601. static inline int cpupid_to_nid(int cpupid)
  602. {
  603. return cpu_to_node(cpupid_to_cpu(cpupid));
  604. }
  605. static inline bool cpupid_pid_unset(int cpupid)
  606. {
  607. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  608. }
  609. static inline bool cpupid_cpu_unset(int cpupid)
  610. {
  611. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  612. }
  613. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  614. {
  615. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  616. }
  617. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  618. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  619. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  620. {
  621. return xchg(&page->_last_cpupid, cpupid);
  622. }
  623. static inline int page_cpupid_last(struct page *page)
  624. {
  625. return page->_last_cpupid;
  626. }
  627. static inline void page_cpupid_reset_last(struct page *page)
  628. {
  629. page->_last_cpupid = -1;
  630. }
  631. #else
  632. static inline int page_cpupid_last(struct page *page)
  633. {
  634. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  635. }
  636. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  637. static inline void page_cpupid_reset_last(struct page *page)
  638. {
  639. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  640. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  641. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  642. }
  643. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  644. #else /* !CONFIG_NUMA_BALANCING */
  645. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  646. {
  647. return page_to_nid(page); /* XXX */
  648. }
  649. static inline int page_cpupid_last(struct page *page)
  650. {
  651. return page_to_nid(page); /* XXX */
  652. }
  653. static inline int cpupid_to_nid(int cpupid)
  654. {
  655. return -1;
  656. }
  657. static inline int cpupid_to_pid(int cpupid)
  658. {
  659. return -1;
  660. }
  661. static inline int cpupid_to_cpu(int cpupid)
  662. {
  663. return -1;
  664. }
  665. static inline int cpu_pid_to_cpupid(int nid, int pid)
  666. {
  667. return -1;
  668. }
  669. static inline bool cpupid_pid_unset(int cpupid)
  670. {
  671. return 1;
  672. }
  673. static inline void page_cpupid_reset_last(struct page *page)
  674. {
  675. }
  676. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  677. {
  678. return false;
  679. }
  680. #endif /* CONFIG_NUMA_BALANCING */
  681. static inline struct zone *page_zone(const struct page *page)
  682. {
  683. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  684. }
  685. #ifdef SECTION_IN_PAGE_FLAGS
  686. static inline void set_page_section(struct page *page, unsigned long section)
  687. {
  688. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  689. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  690. }
  691. static inline unsigned long page_to_section(const struct page *page)
  692. {
  693. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  694. }
  695. #endif
  696. static inline void set_page_zone(struct page *page, enum zone_type zone)
  697. {
  698. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  699. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  700. }
  701. static inline void set_page_node(struct page *page, unsigned long node)
  702. {
  703. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  704. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  705. }
  706. static inline void set_page_links(struct page *page, enum zone_type zone,
  707. unsigned long node, unsigned long pfn)
  708. {
  709. set_page_zone(page, zone);
  710. set_page_node(page, node);
  711. #ifdef SECTION_IN_PAGE_FLAGS
  712. set_page_section(page, pfn_to_section_nr(pfn));
  713. #endif
  714. }
  715. /*
  716. * Some inline functions in vmstat.h depend on page_zone()
  717. */
  718. #include <linux/vmstat.h>
  719. static __always_inline void *lowmem_page_address(const struct page *page)
  720. {
  721. return __va(PFN_PHYS(page_to_pfn(page)));
  722. }
  723. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  724. #define HASHED_PAGE_VIRTUAL
  725. #endif
  726. #if defined(WANT_PAGE_VIRTUAL)
  727. #define page_address(page) ((page)->virtual)
  728. #define set_page_address(page, address) \
  729. do { \
  730. (page)->virtual = (address); \
  731. } while(0)
  732. #define page_address_init() do { } while(0)
  733. #endif
  734. #if defined(HASHED_PAGE_VIRTUAL)
  735. void *page_address(const struct page *page);
  736. void set_page_address(struct page *page, void *virtual);
  737. void page_address_init(void);
  738. #endif
  739. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  740. #define page_address(page) lowmem_page_address(page)
  741. #define set_page_address(page, address) do { } while(0)
  742. #define page_address_init() do { } while(0)
  743. #endif
  744. /*
  745. * On an anonymous page mapped into a user virtual memory area,
  746. * page->mapping points to its anon_vma, not to a struct address_space;
  747. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  748. *
  749. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  750. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  751. * and then page->mapping points, not to an anon_vma, but to a private
  752. * structure which KSM associates with that merged page. See ksm.h.
  753. *
  754. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  755. *
  756. * Please note that, confusingly, "page_mapping" refers to the inode
  757. * address_space which maps the page from disk; whereas "page_mapped"
  758. * refers to user virtual address space into which the page is mapped.
  759. */
  760. #define PAGE_MAPPING_ANON 1
  761. #define PAGE_MAPPING_KSM 2
  762. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  763. extern struct address_space *page_mapping(struct page *page);
  764. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  765. static inline void *page_rmapping(struct page *page)
  766. {
  767. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  768. }
  769. extern struct address_space *__page_file_mapping(struct page *);
  770. static inline
  771. struct address_space *page_file_mapping(struct page *page)
  772. {
  773. if (unlikely(PageSwapCache(page)))
  774. return __page_file_mapping(page);
  775. return page->mapping;
  776. }
  777. static inline int PageAnon(struct page *page)
  778. {
  779. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  780. }
  781. /*
  782. * Return the pagecache index of the passed page. Regular pagecache pages
  783. * use ->index whereas swapcache pages use ->private
  784. */
  785. static inline pgoff_t page_index(struct page *page)
  786. {
  787. if (unlikely(PageSwapCache(page)))
  788. return page_private(page);
  789. return page->index;
  790. }
  791. extern pgoff_t __page_file_index(struct page *page);
  792. /*
  793. * Return the file index of the page. Regular pagecache pages use ->index
  794. * whereas swapcache pages use swp_offset(->private)
  795. */
  796. static inline pgoff_t page_file_index(struct page *page)
  797. {
  798. if (unlikely(PageSwapCache(page)))
  799. return __page_file_index(page);
  800. return page->index;
  801. }
  802. /*
  803. * Return true if this page is mapped into pagetables.
  804. */
  805. static inline int page_mapped(struct page *page)
  806. {
  807. return atomic_read(&(page)->_mapcount) >= 0;
  808. }
  809. /*
  810. * Different kinds of faults, as returned by handle_mm_fault().
  811. * Used to decide whether a process gets delivered SIGBUS or
  812. * just gets major/minor fault counters bumped up.
  813. */
  814. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  815. #define VM_FAULT_OOM 0x0001
  816. #define VM_FAULT_SIGBUS 0x0002
  817. #define VM_FAULT_MAJOR 0x0004
  818. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  819. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  820. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  821. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  822. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  823. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  824. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  825. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  826. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  827. VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
  828. /* Encode hstate index for a hwpoisoned large page */
  829. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  830. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  831. /*
  832. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  833. */
  834. extern void pagefault_out_of_memory(void);
  835. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  836. /*
  837. * Flags passed to show_mem() and show_free_areas() to suppress output in
  838. * various contexts.
  839. */
  840. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  841. #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
  842. extern void show_free_areas(unsigned int flags);
  843. extern bool skip_free_areas_node(unsigned int flags, int nid);
  844. int shmem_zero_setup(struct vm_area_struct *);
  845. extern int can_do_mlock(void);
  846. extern int user_shm_lock(size_t, struct user_struct *);
  847. extern void user_shm_unlock(size_t, struct user_struct *);
  848. /*
  849. * Parameter block passed down to zap_pte_range in exceptional cases.
  850. */
  851. struct zap_details {
  852. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  853. struct address_space *check_mapping; /* Check page->mapping if set */
  854. pgoff_t first_index; /* Lowest page->index to unmap */
  855. pgoff_t last_index; /* Highest page->index to unmap */
  856. };
  857. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  858. pte_t pte);
  859. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  860. unsigned long size);
  861. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  862. unsigned long size, struct zap_details *);
  863. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  864. unsigned long start, unsigned long end);
  865. /**
  866. * mm_walk - callbacks for walk_page_range
  867. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  868. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  869. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  870. * this handler is required to be able to handle
  871. * pmd_trans_huge() pmds. They may simply choose to
  872. * split_huge_page() instead of handling it explicitly.
  873. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  874. * @pte_hole: if set, called for each hole at all levels
  875. * @hugetlb_entry: if set, called for each hugetlb entry
  876. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  877. * is used.
  878. *
  879. * (see walk_page_range for more details)
  880. */
  881. struct mm_walk {
  882. int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
  883. unsigned long next, struct mm_walk *walk);
  884. int (*pud_entry)(pud_t *pud, unsigned long addr,
  885. unsigned long next, struct mm_walk *walk);
  886. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  887. unsigned long next, struct mm_walk *walk);
  888. int (*pte_entry)(pte_t *pte, unsigned long addr,
  889. unsigned long next, struct mm_walk *walk);
  890. int (*pte_hole)(unsigned long addr, unsigned long next,
  891. struct mm_walk *walk);
  892. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  893. unsigned long addr, unsigned long next,
  894. struct mm_walk *walk);
  895. struct mm_struct *mm;
  896. void *private;
  897. };
  898. int walk_page_range(unsigned long addr, unsigned long end,
  899. struct mm_walk *walk);
  900. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  901. unsigned long end, unsigned long floor, unsigned long ceiling);
  902. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  903. struct vm_area_struct *vma);
  904. void unmap_mapping_range(struct address_space *mapping,
  905. loff_t const holebegin, loff_t const holelen, int even_cows);
  906. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  907. unsigned long *pfn);
  908. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  909. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  910. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  911. void *buf, int len, int write);
  912. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  913. loff_t const holebegin, loff_t const holelen)
  914. {
  915. unmap_mapping_range(mapping, holebegin, holelen, 0);
  916. }
  917. extern void truncate_pagecache(struct inode *inode, loff_t new);
  918. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  919. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  920. int truncate_inode_page(struct address_space *mapping, struct page *page);
  921. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  922. int invalidate_inode_page(struct page *page);
  923. #ifdef CONFIG_MMU
  924. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  925. unsigned long address, unsigned int flags);
  926. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  927. unsigned long address, unsigned int fault_flags);
  928. #else
  929. static inline int handle_mm_fault(struct mm_struct *mm,
  930. struct vm_area_struct *vma, unsigned long address,
  931. unsigned int flags)
  932. {
  933. /* should never happen if there's no MMU */
  934. BUG();
  935. return VM_FAULT_SIGBUS;
  936. }
  937. static inline int fixup_user_fault(struct task_struct *tsk,
  938. struct mm_struct *mm, unsigned long address,
  939. unsigned int fault_flags)
  940. {
  941. /* should never happen if there's no MMU */
  942. BUG();
  943. return -EFAULT;
  944. }
  945. #endif
  946. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  947. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  948. void *buf, int len, int write);
  949. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  950. unsigned long start, unsigned long nr_pages,
  951. unsigned int foll_flags, struct page **pages,
  952. struct vm_area_struct **vmas, int *nonblocking);
  953. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  954. unsigned long start, unsigned long nr_pages,
  955. int write, int force, struct page **pages,
  956. struct vm_area_struct **vmas);
  957. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  958. struct page **pages);
  959. struct kvec;
  960. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  961. struct page **pages);
  962. int get_kernel_page(unsigned long start, int write, struct page **pages);
  963. struct page *get_dump_page(unsigned long addr);
  964. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  965. extern void do_invalidatepage(struct page *page, unsigned int offset,
  966. unsigned int length);
  967. int __set_page_dirty_nobuffers(struct page *page);
  968. int __set_page_dirty_no_writeback(struct page *page);
  969. int redirty_page_for_writepage(struct writeback_control *wbc,
  970. struct page *page);
  971. void account_page_dirtied(struct page *page, struct address_space *mapping);
  972. void account_page_writeback(struct page *page);
  973. int set_page_dirty(struct page *page);
  974. int set_page_dirty_lock(struct page *page);
  975. int clear_page_dirty_for_io(struct page *page);
  976. /* Is the vma a continuation of the stack vma above it? */
  977. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  978. {
  979. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  980. }
  981. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  982. unsigned long addr)
  983. {
  984. return (vma->vm_flags & VM_GROWSDOWN) &&
  985. (vma->vm_start == addr) &&
  986. !vma_growsdown(vma->vm_prev, addr);
  987. }
  988. /* Is the vma a continuation of the stack vma below it? */
  989. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  990. {
  991. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  992. }
  993. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  994. unsigned long addr)
  995. {
  996. return (vma->vm_flags & VM_GROWSUP) &&
  997. (vma->vm_end == addr) &&
  998. !vma_growsup(vma->vm_next, addr);
  999. }
  1000. extern pid_t
  1001. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  1002. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1003. unsigned long old_addr, struct vm_area_struct *new_vma,
  1004. unsigned long new_addr, unsigned long len,
  1005. bool need_rmap_locks);
  1006. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1007. unsigned long end, pgprot_t newprot,
  1008. int dirty_accountable, int prot_numa);
  1009. extern int mprotect_fixup(struct vm_area_struct *vma,
  1010. struct vm_area_struct **pprev, unsigned long start,
  1011. unsigned long end, unsigned long newflags);
  1012. /*
  1013. * doesn't attempt to fault and will return short.
  1014. */
  1015. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1016. struct page **pages);
  1017. /*
  1018. * per-process(per-mm_struct) statistics.
  1019. */
  1020. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1021. {
  1022. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1023. #ifdef SPLIT_RSS_COUNTING
  1024. /*
  1025. * counter is updated in asynchronous manner and may go to minus.
  1026. * But it's never be expected number for users.
  1027. */
  1028. if (val < 0)
  1029. val = 0;
  1030. #endif
  1031. return (unsigned long)val;
  1032. }
  1033. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1034. {
  1035. atomic_long_add(value, &mm->rss_stat.count[member]);
  1036. }
  1037. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1038. {
  1039. atomic_long_inc(&mm->rss_stat.count[member]);
  1040. }
  1041. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1042. {
  1043. atomic_long_dec(&mm->rss_stat.count[member]);
  1044. }
  1045. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1046. {
  1047. return get_mm_counter(mm, MM_FILEPAGES) +
  1048. get_mm_counter(mm, MM_ANONPAGES);
  1049. }
  1050. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1051. {
  1052. return max(mm->hiwater_rss, get_mm_rss(mm));
  1053. }
  1054. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1055. {
  1056. return max(mm->hiwater_vm, mm->total_vm);
  1057. }
  1058. static inline void update_hiwater_rss(struct mm_struct *mm)
  1059. {
  1060. unsigned long _rss = get_mm_rss(mm);
  1061. if ((mm)->hiwater_rss < _rss)
  1062. (mm)->hiwater_rss = _rss;
  1063. }
  1064. static inline void update_hiwater_vm(struct mm_struct *mm)
  1065. {
  1066. if (mm->hiwater_vm < mm->total_vm)
  1067. mm->hiwater_vm = mm->total_vm;
  1068. }
  1069. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1070. struct mm_struct *mm)
  1071. {
  1072. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1073. if (*maxrss < hiwater_rss)
  1074. *maxrss = hiwater_rss;
  1075. }
  1076. #if defined(SPLIT_RSS_COUNTING)
  1077. void sync_mm_rss(struct mm_struct *mm);
  1078. #else
  1079. static inline void sync_mm_rss(struct mm_struct *mm)
  1080. {
  1081. }
  1082. #endif
  1083. int vma_wants_writenotify(struct vm_area_struct *vma);
  1084. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1085. spinlock_t **ptl);
  1086. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1087. spinlock_t **ptl)
  1088. {
  1089. pte_t *ptep;
  1090. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1091. return ptep;
  1092. }
  1093. #ifdef __PAGETABLE_PUD_FOLDED
  1094. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1095. unsigned long address)
  1096. {
  1097. return 0;
  1098. }
  1099. #else
  1100. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1101. #endif
  1102. #ifdef __PAGETABLE_PMD_FOLDED
  1103. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1104. unsigned long address)
  1105. {
  1106. return 0;
  1107. }
  1108. #else
  1109. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1110. #endif
  1111. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1112. pmd_t *pmd, unsigned long address);
  1113. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1114. /*
  1115. * The following ifdef needed to get the 4level-fixup.h header to work.
  1116. * Remove it when 4level-fixup.h has been removed.
  1117. */
  1118. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1119. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1120. {
  1121. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1122. NULL: pud_offset(pgd, address);
  1123. }
  1124. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1125. {
  1126. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1127. NULL: pmd_offset(pud, address);
  1128. }
  1129. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1130. #if USE_SPLIT_PTE_PTLOCKS
  1131. #if BLOATED_SPINLOCKS
  1132. extern bool ptlock_alloc(struct page *page);
  1133. extern void ptlock_free(struct page *page);
  1134. static inline spinlock_t *ptlock_ptr(struct page *page)
  1135. {
  1136. return page->ptl;
  1137. }
  1138. #else /* BLOATED_SPINLOCKS */
  1139. static inline bool ptlock_alloc(struct page *page)
  1140. {
  1141. return true;
  1142. }
  1143. static inline void ptlock_free(struct page *page)
  1144. {
  1145. }
  1146. static inline spinlock_t *ptlock_ptr(struct page *page)
  1147. {
  1148. return &page->ptl;
  1149. }
  1150. #endif /* BLOATED_SPINLOCKS */
  1151. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1152. {
  1153. return ptlock_ptr(pmd_page(*pmd));
  1154. }
  1155. static inline bool ptlock_init(struct page *page)
  1156. {
  1157. /*
  1158. * prep_new_page() initialize page->private (and therefore page->ptl)
  1159. * with 0. Make sure nobody took it in use in between.
  1160. *
  1161. * It can happen if arch try to use slab for page table allocation:
  1162. * slab code uses page->slab_cache and page->first_page (for tail
  1163. * pages), which share storage with page->ptl.
  1164. */
  1165. VM_BUG_ON(*(unsigned long *)&page->ptl);
  1166. if (!ptlock_alloc(page))
  1167. return false;
  1168. spin_lock_init(ptlock_ptr(page));
  1169. return true;
  1170. }
  1171. /* Reset page->mapping so free_pages_check won't complain. */
  1172. static inline void pte_lock_deinit(struct page *page)
  1173. {
  1174. page->mapping = NULL;
  1175. ptlock_free(page);
  1176. }
  1177. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1178. /*
  1179. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1180. */
  1181. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1182. {
  1183. return &mm->page_table_lock;
  1184. }
  1185. static inline bool ptlock_init(struct page *page) { return true; }
  1186. static inline void pte_lock_deinit(struct page *page) {}
  1187. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1188. static inline bool pgtable_page_ctor(struct page *page)
  1189. {
  1190. inc_zone_page_state(page, NR_PAGETABLE);
  1191. return ptlock_init(page);
  1192. }
  1193. static inline void pgtable_page_dtor(struct page *page)
  1194. {
  1195. pte_lock_deinit(page);
  1196. dec_zone_page_state(page, NR_PAGETABLE);
  1197. }
  1198. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1199. ({ \
  1200. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1201. pte_t *__pte = pte_offset_map(pmd, address); \
  1202. *(ptlp) = __ptl; \
  1203. spin_lock(__ptl); \
  1204. __pte; \
  1205. })
  1206. #define pte_unmap_unlock(pte, ptl) do { \
  1207. spin_unlock(ptl); \
  1208. pte_unmap(pte); \
  1209. } while (0)
  1210. #define pte_alloc_map(mm, vma, pmd, address) \
  1211. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1212. pmd, address))? \
  1213. NULL: pte_offset_map(pmd, address))
  1214. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1215. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1216. pmd, address))? \
  1217. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1218. #define pte_alloc_kernel(pmd, address) \
  1219. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1220. NULL: pte_offset_kernel(pmd, address))
  1221. #if USE_SPLIT_PMD_PTLOCKS
  1222. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1223. {
  1224. return ptlock_ptr(virt_to_page(pmd));
  1225. }
  1226. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1227. {
  1228. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1229. page->pmd_huge_pte = NULL;
  1230. #endif
  1231. return ptlock_init(page);
  1232. }
  1233. static inline void pgtable_pmd_page_dtor(struct page *page)
  1234. {
  1235. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1236. VM_BUG_ON(page->pmd_huge_pte);
  1237. #endif
  1238. ptlock_free(page);
  1239. }
  1240. #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
  1241. #else
  1242. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1243. {
  1244. return &mm->page_table_lock;
  1245. }
  1246. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1247. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1248. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1249. #endif
  1250. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1251. {
  1252. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1253. spin_lock(ptl);
  1254. return ptl;
  1255. }
  1256. extern void free_area_init(unsigned long * zones_size);
  1257. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1258. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1259. extern void free_initmem(void);
  1260. /*
  1261. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1262. * into the buddy system. The freed pages will be poisoned with pattern
  1263. * "poison" if it's within range [0, UCHAR_MAX].
  1264. * Return pages freed into the buddy system.
  1265. */
  1266. extern unsigned long free_reserved_area(void *start, void *end,
  1267. int poison, char *s);
  1268. #ifdef CONFIG_HIGHMEM
  1269. /*
  1270. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1271. * and totalram_pages.
  1272. */
  1273. extern void free_highmem_page(struct page *page);
  1274. #endif
  1275. extern void adjust_managed_page_count(struct page *page, long count);
  1276. extern void mem_init_print_info(const char *str);
  1277. /* Free the reserved page into the buddy system, so it gets managed. */
  1278. static inline void __free_reserved_page(struct page *page)
  1279. {
  1280. ClearPageReserved(page);
  1281. init_page_count(page);
  1282. __free_page(page);
  1283. }
  1284. static inline void free_reserved_page(struct page *page)
  1285. {
  1286. __free_reserved_page(page);
  1287. adjust_managed_page_count(page, 1);
  1288. }
  1289. static inline void mark_page_reserved(struct page *page)
  1290. {
  1291. SetPageReserved(page);
  1292. adjust_managed_page_count(page, -1);
  1293. }
  1294. /*
  1295. * Default method to free all the __init memory into the buddy system.
  1296. * The freed pages will be poisoned with pattern "poison" if it's within
  1297. * range [0, UCHAR_MAX].
  1298. * Return pages freed into the buddy system.
  1299. */
  1300. static inline unsigned long free_initmem_default(int poison)
  1301. {
  1302. extern char __init_begin[], __init_end[];
  1303. return free_reserved_area(&__init_begin, &__init_end,
  1304. poison, "unused kernel");
  1305. }
  1306. static inline unsigned long get_num_physpages(void)
  1307. {
  1308. int nid;
  1309. unsigned long phys_pages = 0;
  1310. for_each_online_node(nid)
  1311. phys_pages += node_present_pages(nid);
  1312. return phys_pages;
  1313. }
  1314. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1315. /*
  1316. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1317. * zones, allocate the backing mem_map and account for memory holes in a more
  1318. * architecture independent manner. This is a substitute for creating the
  1319. * zone_sizes[] and zholes_size[] arrays and passing them to
  1320. * free_area_init_node()
  1321. *
  1322. * An architecture is expected to register range of page frames backed by
  1323. * physical memory with memblock_add[_node]() before calling
  1324. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1325. * usage, an architecture is expected to do something like
  1326. *
  1327. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1328. * max_highmem_pfn};
  1329. * for_each_valid_physical_page_range()
  1330. * memblock_add_node(base, size, nid)
  1331. * free_area_init_nodes(max_zone_pfns);
  1332. *
  1333. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1334. * registered physical page range. Similarly
  1335. * sparse_memory_present_with_active_regions() calls memory_present() for
  1336. * each range when SPARSEMEM is enabled.
  1337. *
  1338. * See mm/page_alloc.c for more information on each function exposed by
  1339. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1340. */
  1341. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1342. unsigned long node_map_pfn_alignment(void);
  1343. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1344. unsigned long end_pfn);
  1345. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1346. unsigned long end_pfn);
  1347. extern void get_pfn_range_for_nid(unsigned int nid,
  1348. unsigned long *start_pfn, unsigned long *end_pfn);
  1349. extern unsigned long find_min_pfn_with_active_regions(void);
  1350. extern void free_bootmem_with_active_regions(int nid,
  1351. unsigned long max_low_pfn);
  1352. extern void sparse_memory_present_with_active_regions(int nid);
  1353. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1354. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1355. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1356. static inline int __early_pfn_to_nid(unsigned long pfn)
  1357. {
  1358. return 0;
  1359. }
  1360. #else
  1361. /* please see mm/page_alloc.c */
  1362. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1363. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1364. /* there is a per-arch backend function. */
  1365. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1366. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1367. #endif
  1368. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1369. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1370. unsigned long, enum memmap_context);
  1371. extern void setup_per_zone_wmarks(void);
  1372. extern int __meminit init_per_zone_wmark_min(void);
  1373. extern void mem_init(void);
  1374. extern void __init mmap_init(void);
  1375. extern void show_mem(unsigned int flags);
  1376. extern void si_meminfo(struct sysinfo * val);
  1377. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1378. extern __printf(3, 4)
  1379. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1380. extern void setup_per_cpu_pageset(void);
  1381. extern void zone_pcp_update(struct zone *zone);
  1382. extern void zone_pcp_reset(struct zone *zone);
  1383. /* page_alloc.c */
  1384. extern int min_free_kbytes;
  1385. /* nommu.c */
  1386. extern atomic_long_t mmap_pages_allocated;
  1387. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1388. /* interval_tree.c */
  1389. void vma_interval_tree_insert(struct vm_area_struct *node,
  1390. struct rb_root *root);
  1391. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1392. struct vm_area_struct *prev,
  1393. struct rb_root *root);
  1394. void vma_interval_tree_remove(struct vm_area_struct *node,
  1395. struct rb_root *root);
  1396. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1397. unsigned long start, unsigned long last);
  1398. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1399. unsigned long start, unsigned long last);
  1400. #define vma_interval_tree_foreach(vma, root, start, last) \
  1401. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1402. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1403. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1404. struct list_head *list)
  1405. {
  1406. list_add_tail(&vma->shared.nonlinear, list);
  1407. }
  1408. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1409. struct rb_root *root);
  1410. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1411. struct rb_root *root);
  1412. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1413. struct rb_root *root, unsigned long start, unsigned long last);
  1414. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1415. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1416. #ifdef CONFIG_DEBUG_VM_RB
  1417. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1418. #endif
  1419. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1420. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1421. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1422. /* mmap.c */
  1423. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1424. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1425. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1426. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1427. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1428. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1429. struct mempolicy *);
  1430. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1431. extern int split_vma(struct mm_struct *,
  1432. struct vm_area_struct *, unsigned long addr, int new_below);
  1433. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1434. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1435. struct rb_node **, struct rb_node *);
  1436. extern void unlink_file_vma(struct vm_area_struct *);
  1437. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1438. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1439. bool *need_rmap_locks);
  1440. extern void exit_mmap(struct mm_struct *);
  1441. extern int mm_take_all_locks(struct mm_struct *mm);
  1442. extern void mm_drop_all_locks(struct mm_struct *mm);
  1443. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1444. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1445. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1446. extern int install_special_mapping(struct mm_struct *mm,
  1447. unsigned long addr, unsigned long len,
  1448. unsigned long flags, struct page **pages);
  1449. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1450. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1451. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1452. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1453. unsigned long len, unsigned long prot, unsigned long flags,
  1454. unsigned long pgoff, unsigned long *populate);
  1455. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1456. #ifdef CONFIG_MMU
  1457. extern int __mm_populate(unsigned long addr, unsigned long len,
  1458. int ignore_errors);
  1459. static inline void mm_populate(unsigned long addr, unsigned long len)
  1460. {
  1461. /* Ignore errors */
  1462. (void) __mm_populate(addr, len, 1);
  1463. }
  1464. #else
  1465. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1466. #endif
  1467. /* These take the mm semaphore themselves */
  1468. extern unsigned long vm_brk(unsigned long, unsigned long);
  1469. extern int vm_munmap(unsigned long, size_t);
  1470. extern unsigned long vm_mmap(struct file *, unsigned long,
  1471. unsigned long, unsigned long,
  1472. unsigned long, unsigned long);
  1473. struct vm_unmapped_area_info {
  1474. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1475. unsigned long flags;
  1476. unsigned long length;
  1477. unsigned long low_limit;
  1478. unsigned long high_limit;
  1479. unsigned long align_mask;
  1480. unsigned long align_offset;
  1481. };
  1482. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1483. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1484. /*
  1485. * Search for an unmapped address range.
  1486. *
  1487. * We are looking for a range that:
  1488. * - does not intersect with any VMA;
  1489. * - is contained within the [low_limit, high_limit) interval;
  1490. * - is at least the desired size.
  1491. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1492. */
  1493. static inline unsigned long
  1494. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1495. {
  1496. if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
  1497. return unmapped_area(info);
  1498. else
  1499. return unmapped_area_topdown(info);
  1500. }
  1501. /* truncate.c */
  1502. extern void truncate_inode_pages(struct address_space *, loff_t);
  1503. extern void truncate_inode_pages_range(struct address_space *,
  1504. loff_t lstart, loff_t lend);
  1505. /* generic vm_area_ops exported for stackable file systems */
  1506. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1507. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1508. /* mm/page-writeback.c */
  1509. int write_one_page(struct page *page, int wait);
  1510. void task_dirty_inc(struct task_struct *tsk);
  1511. /* readahead.c */
  1512. #define VM_MAX_READAHEAD 128 /* kbytes */
  1513. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1514. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1515. pgoff_t offset, unsigned long nr_to_read);
  1516. void page_cache_sync_readahead(struct address_space *mapping,
  1517. struct file_ra_state *ra,
  1518. struct file *filp,
  1519. pgoff_t offset,
  1520. unsigned long size);
  1521. void page_cache_async_readahead(struct address_space *mapping,
  1522. struct file_ra_state *ra,
  1523. struct file *filp,
  1524. struct page *pg,
  1525. pgoff_t offset,
  1526. unsigned long size);
  1527. unsigned long max_sane_readahead(unsigned long nr);
  1528. unsigned long ra_submit(struct file_ra_state *ra,
  1529. struct address_space *mapping,
  1530. struct file *filp);
  1531. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1532. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1533. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1534. extern int expand_downwards(struct vm_area_struct *vma,
  1535. unsigned long address);
  1536. #if VM_GROWSUP
  1537. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1538. #else
  1539. #define expand_upwards(vma, address) do { } while (0)
  1540. #endif
  1541. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1542. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1543. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1544. struct vm_area_struct **pprev);
  1545. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1546. NULL if none. Assume start_addr < end_addr. */
  1547. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1548. {
  1549. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1550. if (vma && end_addr <= vma->vm_start)
  1551. vma = NULL;
  1552. return vma;
  1553. }
  1554. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1555. {
  1556. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1557. }
  1558. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1559. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1560. unsigned long vm_start, unsigned long vm_end)
  1561. {
  1562. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1563. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1564. vma = NULL;
  1565. return vma;
  1566. }
  1567. #ifdef CONFIG_MMU
  1568. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1569. #else
  1570. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1571. {
  1572. return __pgprot(0);
  1573. }
  1574. #endif
  1575. #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
  1576. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1577. unsigned long start, unsigned long end);
  1578. #endif
  1579. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1580. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1581. unsigned long pfn, unsigned long size, pgprot_t);
  1582. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1583. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1584. unsigned long pfn);
  1585. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1586. unsigned long pfn);
  1587. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1588. struct page *follow_page_mask(struct vm_area_struct *vma,
  1589. unsigned long address, unsigned int foll_flags,
  1590. unsigned int *page_mask);
  1591. static inline struct page *follow_page(struct vm_area_struct *vma,
  1592. unsigned long address, unsigned int foll_flags)
  1593. {
  1594. unsigned int unused_page_mask;
  1595. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1596. }
  1597. #define FOLL_WRITE 0x01 /* check pte is writable */
  1598. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1599. #define FOLL_GET 0x04 /* do get_page on page */
  1600. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1601. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1602. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1603. * and return without waiting upon it */
  1604. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1605. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1606. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1607. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1608. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1609. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1610. void *data);
  1611. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1612. unsigned long size, pte_fn_t fn, void *data);
  1613. #ifdef CONFIG_PROC_FS
  1614. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1615. #else
  1616. static inline void vm_stat_account(struct mm_struct *mm,
  1617. unsigned long flags, struct file *file, long pages)
  1618. {
  1619. mm->total_vm += pages;
  1620. }
  1621. #endif /* CONFIG_PROC_FS */
  1622. #ifdef CONFIG_DEBUG_PAGEALLOC
  1623. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1624. #ifdef CONFIG_HIBERNATION
  1625. extern bool kernel_page_present(struct page *page);
  1626. #endif /* CONFIG_HIBERNATION */
  1627. #else
  1628. static inline void
  1629. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1630. #ifdef CONFIG_HIBERNATION
  1631. static inline bool kernel_page_present(struct page *page) { return true; }
  1632. #endif /* CONFIG_HIBERNATION */
  1633. #endif
  1634. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1635. #ifdef __HAVE_ARCH_GATE_AREA
  1636. int in_gate_area_no_mm(unsigned long addr);
  1637. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1638. #else
  1639. int in_gate_area_no_mm(unsigned long addr);
  1640. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1641. #endif /* __HAVE_ARCH_GATE_AREA */
  1642. #ifdef CONFIG_SYSCTL
  1643. extern int sysctl_drop_caches;
  1644. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1645. void __user *, size_t *, loff_t *);
  1646. #endif
  1647. unsigned long shrink_slab(struct shrink_control *shrink,
  1648. unsigned long nr_pages_scanned,
  1649. unsigned long lru_pages);
  1650. #ifndef CONFIG_MMU
  1651. #define randomize_va_space 0
  1652. #else
  1653. extern int randomize_va_space;
  1654. #endif
  1655. const char * arch_vma_name(struct vm_area_struct *vma);
  1656. void print_vma_addr(char *prefix, unsigned long rip);
  1657. void sparse_mem_maps_populate_node(struct page **map_map,
  1658. unsigned long pnum_begin,
  1659. unsigned long pnum_end,
  1660. unsigned long map_count,
  1661. int nodeid);
  1662. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1663. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1664. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1665. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1666. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1667. void *vmemmap_alloc_block(unsigned long size, int node);
  1668. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1669. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1670. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1671. int node);
  1672. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1673. void vmemmap_populate_print_last(void);
  1674. #ifdef CONFIG_MEMORY_HOTPLUG
  1675. void vmemmap_free(unsigned long start, unsigned long end);
  1676. #endif
  1677. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1678. unsigned long size);
  1679. enum mf_flags {
  1680. MF_COUNT_INCREASED = 1 << 0,
  1681. MF_ACTION_REQUIRED = 1 << 1,
  1682. MF_MUST_KILL = 1 << 2,
  1683. MF_SOFT_OFFLINE = 1 << 3,
  1684. };
  1685. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1686. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1687. extern int unpoison_memory(unsigned long pfn);
  1688. extern int sysctl_memory_failure_early_kill;
  1689. extern int sysctl_memory_failure_recovery;
  1690. extern void shake_page(struct page *p, int access);
  1691. extern atomic_long_t num_poisoned_pages;
  1692. extern int soft_offline_page(struct page *page, int flags);
  1693. extern void dump_page(struct page *page);
  1694. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1695. extern void clear_huge_page(struct page *page,
  1696. unsigned long addr,
  1697. unsigned int pages_per_huge_page);
  1698. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1699. unsigned long addr, struct vm_area_struct *vma,
  1700. unsigned int pages_per_huge_page);
  1701. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1702. #ifdef CONFIG_DEBUG_PAGEALLOC
  1703. extern unsigned int _debug_guardpage_minorder;
  1704. static inline unsigned int debug_guardpage_minorder(void)
  1705. {
  1706. return _debug_guardpage_minorder;
  1707. }
  1708. static inline bool page_is_guard(struct page *page)
  1709. {
  1710. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1711. }
  1712. #else
  1713. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1714. static inline bool page_is_guard(struct page *page) { return false; }
  1715. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1716. #if MAX_NUMNODES > 1
  1717. void __init setup_nr_node_ids(void);
  1718. #else
  1719. static inline void setup_nr_node_ids(void) {}
  1720. #endif
  1721. #endif /* __KERNEL__ */
  1722. #endif /* _LINUX_MM_H */