disk-io.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/version.h>
  19. #include <linux/fs.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include <linux/workqueue.h>
  27. #include <linux/kthread.h>
  28. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
  29. # include <linux/freezer.h>
  30. #else
  31. # include <linux/sched.h>
  32. #endif
  33. #include "crc32c.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "ref-cache.h"
  43. #if 0
  44. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  45. {
  46. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  47. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  48. (unsigned long long)extent_buffer_blocknr(buf),
  49. (unsigned long long)btrfs_header_blocknr(buf));
  50. return 1;
  51. }
  52. return 0;
  53. }
  54. #endif
  55. static struct extent_io_ops btree_extent_io_ops;
  56. static void end_workqueue_fn(struct btrfs_work *work);
  57. struct end_io_wq {
  58. struct bio *bio;
  59. bio_end_io_t *end_io;
  60. void *private;
  61. struct btrfs_fs_info *info;
  62. int error;
  63. int metadata;
  64. struct list_head list;
  65. struct btrfs_work work;
  66. };
  67. struct async_submit_bio {
  68. struct inode *inode;
  69. struct bio *bio;
  70. struct list_head list;
  71. extent_submit_bio_hook_t *submit_bio_hook;
  72. int rw;
  73. int mirror_num;
  74. struct btrfs_work work;
  75. };
  76. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  77. size_t page_offset, u64 start, u64 len,
  78. int create)
  79. {
  80. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  81. struct extent_map *em;
  82. int ret;
  83. spin_lock(&em_tree->lock);
  84. em = lookup_extent_mapping(em_tree, start, len);
  85. if (em) {
  86. em->bdev =
  87. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  88. spin_unlock(&em_tree->lock);
  89. goto out;
  90. }
  91. spin_unlock(&em_tree->lock);
  92. em = alloc_extent_map(GFP_NOFS);
  93. if (!em) {
  94. em = ERR_PTR(-ENOMEM);
  95. goto out;
  96. }
  97. em->start = 0;
  98. em->len = (u64)-1;
  99. em->block_start = 0;
  100. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  101. spin_lock(&em_tree->lock);
  102. ret = add_extent_mapping(em_tree, em);
  103. if (ret == -EEXIST) {
  104. u64 failed_start = em->start;
  105. u64 failed_len = em->len;
  106. printk("failed to insert %Lu %Lu -> %Lu into tree\n",
  107. em->start, em->len, em->block_start);
  108. free_extent_map(em);
  109. em = lookup_extent_mapping(em_tree, start, len);
  110. if (em) {
  111. printk("after failing, found %Lu %Lu %Lu\n",
  112. em->start, em->len, em->block_start);
  113. ret = 0;
  114. } else {
  115. em = lookup_extent_mapping(em_tree, failed_start,
  116. failed_len);
  117. if (em) {
  118. printk("double failure lookup gives us "
  119. "%Lu %Lu -> %Lu\n", em->start,
  120. em->len, em->block_start);
  121. free_extent_map(em);
  122. }
  123. ret = -EIO;
  124. }
  125. } else if (ret) {
  126. free_extent_map(em);
  127. em = NULL;
  128. }
  129. spin_unlock(&em_tree->lock);
  130. if (ret)
  131. em = ERR_PTR(ret);
  132. out:
  133. return em;
  134. }
  135. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  136. {
  137. return btrfs_crc32c(seed, data, len);
  138. }
  139. void btrfs_csum_final(u32 crc, char *result)
  140. {
  141. *(__le32 *)result = ~cpu_to_le32(crc);
  142. }
  143. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  144. int verify)
  145. {
  146. char result[BTRFS_CRC32_SIZE];
  147. unsigned long len;
  148. unsigned long cur_len;
  149. unsigned long offset = BTRFS_CSUM_SIZE;
  150. char *map_token = NULL;
  151. char *kaddr;
  152. unsigned long map_start;
  153. unsigned long map_len;
  154. int err;
  155. u32 crc = ~(u32)0;
  156. len = buf->len - offset;
  157. while(len > 0) {
  158. err = map_private_extent_buffer(buf, offset, 32,
  159. &map_token, &kaddr,
  160. &map_start, &map_len, KM_USER0);
  161. if (err) {
  162. printk("failed to map extent buffer! %lu\n",
  163. offset);
  164. return 1;
  165. }
  166. cur_len = min(len, map_len - (offset - map_start));
  167. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  168. crc, cur_len);
  169. len -= cur_len;
  170. offset += cur_len;
  171. unmap_extent_buffer(buf, map_token, KM_USER0);
  172. }
  173. btrfs_csum_final(crc, result);
  174. if (verify) {
  175. /* FIXME, this is not good */
  176. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  177. u32 val;
  178. u32 found = 0;
  179. memcpy(&found, result, BTRFS_CRC32_SIZE);
  180. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  181. printk("btrfs: %s checksum verify failed on %llu "
  182. "wanted %X found %X level %d\n",
  183. root->fs_info->sb->s_id,
  184. buf->start, val, found, btrfs_header_level(buf));
  185. return 1;
  186. }
  187. } else {
  188. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  189. }
  190. return 0;
  191. }
  192. static int verify_parent_transid(struct extent_io_tree *io_tree,
  193. struct extent_buffer *eb, u64 parent_transid)
  194. {
  195. int ret;
  196. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  197. return 0;
  198. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  199. if (extent_buffer_uptodate(io_tree, eb) &&
  200. btrfs_header_generation(eb) == parent_transid) {
  201. ret = 0;
  202. goto out;
  203. }
  204. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  205. (unsigned long long)eb->start,
  206. (unsigned long long)parent_transid,
  207. (unsigned long long)btrfs_header_generation(eb));
  208. ret = 1;
  209. clear_extent_buffer_uptodate(io_tree, eb);
  210. out:
  211. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  212. GFP_NOFS);
  213. return ret;
  214. }
  215. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  216. struct extent_buffer *eb,
  217. u64 start, u64 parent_transid)
  218. {
  219. struct extent_io_tree *io_tree;
  220. int ret;
  221. int num_copies = 0;
  222. int mirror_num = 0;
  223. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  224. while (1) {
  225. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  226. btree_get_extent, mirror_num);
  227. if (!ret &&
  228. !verify_parent_transid(io_tree, eb, parent_transid))
  229. return ret;
  230. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  231. eb->start, eb->len);
  232. if (num_copies == 1)
  233. return ret;
  234. mirror_num++;
  235. if (mirror_num > num_copies)
  236. return ret;
  237. }
  238. return -EIO;
  239. }
  240. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  241. {
  242. struct extent_io_tree *tree;
  243. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  244. u64 found_start;
  245. int found_level;
  246. unsigned long len;
  247. struct extent_buffer *eb;
  248. int ret;
  249. tree = &BTRFS_I(page->mapping->host)->io_tree;
  250. if (page->private == EXTENT_PAGE_PRIVATE)
  251. goto out;
  252. if (!page->private)
  253. goto out;
  254. len = page->private >> 2;
  255. if (len == 0) {
  256. WARN_ON(1);
  257. }
  258. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  259. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  260. btrfs_header_generation(eb));
  261. BUG_ON(ret);
  262. found_start = btrfs_header_bytenr(eb);
  263. if (found_start != start) {
  264. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  265. start, found_start, len);
  266. WARN_ON(1);
  267. goto err;
  268. }
  269. if (eb->first_page != page) {
  270. printk("bad first page %lu %lu\n", eb->first_page->index,
  271. page->index);
  272. WARN_ON(1);
  273. goto err;
  274. }
  275. if (!PageUptodate(page)) {
  276. printk("csum not up to date page %lu\n", page->index);
  277. WARN_ON(1);
  278. goto err;
  279. }
  280. found_level = btrfs_header_level(eb);
  281. spin_lock(&root->fs_info->hash_lock);
  282. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  283. spin_unlock(&root->fs_info->hash_lock);
  284. csum_tree_block(root, eb, 0);
  285. err:
  286. free_extent_buffer(eb);
  287. out:
  288. return 0;
  289. }
  290. static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
  291. {
  292. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  293. csum_dirty_buffer(root, page);
  294. return 0;
  295. }
  296. int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  297. struct extent_state *state)
  298. {
  299. struct extent_io_tree *tree;
  300. u64 found_start;
  301. int found_level;
  302. unsigned long len;
  303. struct extent_buffer *eb;
  304. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  305. int ret = 0;
  306. tree = &BTRFS_I(page->mapping->host)->io_tree;
  307. if (page->private == EXTENT_PAGE_PRIVATE)
  308. goto out;
  309. if (!page->private)
  310. goto out;
  311. len = page->private >> 2;
  312. if (len == 0) {
  313. WARN_ON(1);
  314. }
  315. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  316. found_start = btrfs_header_bytenr(eb);
  317. if (found_start != start) {
  318. ret = -EIO;
  319. goto err;
  320. }
  321. if (eb->first_page != page) {
  322. printk("bad first page %lu %lu\n", eb->first_page->index,
  323. page->index);
  324. WARN_ON(1);
  325. ret = -EIO;
  326. goto err;
  327. }
  328. if (memcmp_extent_buffer(eb, root->fs_info->fsid,
  329. (unsigned long)btrfs_header_fsid(eb),
  330. BTRFS_FSID_SIZE)) {
  331. printk("bad fsid on block %Lu\n", eb->start);
  332. ret = -EIO;
  333. goto err;
  334. }
  335. found_level = btrfs_header_level(eb);
  336. ret = csum_tree_block(root, eb, 1);
  337. if (ret)
  338. ret = -EIO;
  339. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  340. end = eb->start + end - 1;
  341. err:
  342. free_extent_buffer(eb);
  343. out:
  344. return ret;
  345. }
  346. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  347. static void end_workqueue_bio(struct bio *bio, int err)
  348. #else
  349. static int end_workqueue_bio(struct bio *bio,
  350. unsigned int bytes_done, int err)
  351. #endif
  352. {
  353. struct end_io_wq *end_io_wq = bio->bi_private;
  354. struct btrfs_fs_info *fs_info;
  355. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  356. if (bio->bi_size)
  357. return 1;
  358. #endif
  359. fs_info = end_io_wq->info;
  360. end_io_wq->error = err;
  361. end_io_wq->work.func = end_workqueue_fn;
  362. end_io_wq->work.flags = 0;
  363. if (bio->bi_rw & (1 << BIO_RW))
  364. btrfs_queue_worker(&fs_info->endio_write_workers,
  365. &end_io_wq->work);
  366. else
  367. btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
  368. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  369. return 0;
  370. #endif
  371. }
  372. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  373. int metadata)
  374. {
  375. struct end_io_wq *end_io_wq;
  376. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  377. if (!end_io_wq)
  378. return -ENOMEM;
  379. end_io_wq->private = bio->bi_private;
  380. end_io_wq->end_io = bio->bi_end_io;
  381. end_io_wq->info = info;
  382. end_io_wq->error = 0;
  383. end_io_wq->bio = bio;
  384. end_io_wq->metadata = metadata;
  385. bio->bi_private = end_io_wq;
  386. bio->bi_end_io = end_workqueue_bio;
  387. return 0;
  388. }
  389. static unsigned long async_submit_limit(struct btrfs_fs_info *info)
  390. {
  391. unsigned long limit = min_t(unsigned long,
  392. info->workers.max_workers,
  393. info->fs_devices->open_devices);
  394. return 256 * limit;
  395. }
  396. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  397. {
  398. return atomic_read(&info->nr_async_bios) > async_submit_limit(info);
  399. }
  400. static void run_one_async_submit(struct btrfs_work *work)
  401. {
  402. struct btrfs_fs_info *fs_info;
  403. struct async_submit_bio *async;
  404. int limit;
  405. async = container_of(work, struct async_submit_bio, work);
  406. fs_info = BTRFS_I(async->inode)->root->fs_info;
  407. limit = async_submit_limit(fs_info);
  408. limit = limit * 2 / 3;
  409. atomic_dec(&fs_info->nr_async_submits);
  410. if (atomic_read(&fs_info->nr_async_submits) < limit)
  411. wake_up(&fs_info->async_submit_wait);
  412. async->submit_bio_hook(async->inode, async->rw, async->bio,
  413. async->mirror_num);
  414. kfree(async);
  415. }
  416. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  417. int rw, struct bio *bio, int mirror_num,
  418. extent_submit_bio_hook_t *submit_bio_hook)
  419. {
  420. struct async_submit_bio *async;
  421. int limit = async_submit_limit(fs_info);
  422. async = kmalloc(sizeof(*async), GFP_NOFS);
  423. if (!async)
  424. return -ENOMEM;
  425. async->inode = inode;
  426. async->rw = rw;
  427. async->bio = bio;
  428. async->mirror_num = mirror_num;
  429. async->submit_bio_hook = submit_bio_hook;
  430. async->work.func = run_one_async_submit;
  431. async->work.flags = 0;
  432. atomic_inc(&fs_info->nr_async_submits);
  433. btrfs_queue_worker(&fs_info->workers, &async->work);
  434. wait_event_timeout(fs_info->async_submit_wait,
  435. (atomic_read(&fs_info->nr_async_submits) < limit),
  436. HZ/10);
  437. return 0;
  438. }
  439. static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  440. int mirror_num)
  441. {
  442. struct btrfs_root *root = BTRFS_I(inode)->root;
  443. u64 offset;
  444. int ret;
  445. offset = bio->bi_sector << 9;
  446. /*
  447. * when we're called for a write, we're already in the async
  448. * submission context. Just jump into btrfs_map_bio
  449. */
  450. if (rw & (1 << BIO_RW)) {
  451. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  452. mirror_num, 1);
  453. }
  454. /*
  455. * called for a read, do the setup so that checksum validation
  456. * can happen in the async kernel threads
  457. */
  458. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
  459. BUG_ON(ret);
  460. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  461. }
  462. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  463. int mirror_num)
  464. {
  465. /*
  466. * kthread helpers are used to submit writes so that checksumming
  467. * can happen in parallel across all CPUs
  468. */
  469. if (!(rw & (1 << BIO_RW))) {
  470. return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
  471. }
  472. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  473. inode, rw, bio, mirror_num,
  474. __btree_submit_bio_hook);
  475. }
  476. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  477. {
  478. struct extent_io_tree *tree;
  479. tree = &BTRFS_I(page->mapping->host)->io_tree;
  480. if (current->flags & PF_MEMALLOC) {
  481. redirty_page_for_writepage(wbc, page);
  482. unlock_page(page);
  483. return 0;
  484. }
  485. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  486. }
  487. static int btree_writepages(struct address_space *mapping,
  488. struct writeback_control *wbc)
  489. {
  490. struct extent_io_tree *tree;
  491. tree = &BTRFS_I(mapping->host)->io_tree;
  492. if (wbc->sync_mode == WB_SYNC_NONE) {
  493. u64 num_dirty;
  494. u64 start = 0;
  495. unsigned long thresh = 8 * 1024 * 1024;
  496. if (wbc->for_kupdate)
  497. return 0;
  498. num_dirty = count_range_bits(tree, &start, (u64)-1,
  499. thresh, EXTENT_DIRTY);
  500. if (num_dirty < thresh) {
  501. return 0;
  502. }
  503. }
  504. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  505. }
  506. int btree_readpage(struct file *file, struct page *page)
  507. {
  508. struct extent_io_tree *tree;
  509. tree = &BTRFS_I(page->mapping->host)->io_tree;
  510. return extent_read_full_page(tree, page, btree_get_extent);
  511. }
  512. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  513. {
  514. struct extent_io_tree *tree;
  515. struct extent_map_tree *map;
  516. int ret;
  517. tree = &BTRFS_I(page->mapping->host)->io_tree;
  518. map = &BTRFS_I(page->mapping->host)->extent_tree;
  519. ret = try_release_extent_state(map, tree, page, gfp_flags);
  520. if (!ret) {
  521. return 0;
  522. }
  523. ret = try_release_extent_buffer(tree, page);
  524. if (ret == 1) {
  525. ClearPagePrivate(page);
  526. set_page_private(page, 0);
  527. page_cache_release(page);
  528. }
  529. return ret;
  530. }
  531. static void btree_invalidatepage(struct page *page, unsigned long offset)
  532. {
  533. struct extent_io_tree *tree;
  534. tree = &BTRFS_I(page->mapping->host)->io_tree;
  535. extent_invalidatepage(tree, page, offset);
  536. btree_releasepage(page, GFP_NOFS);
  537. if (PagePrivate(page)) {
  538. printk("warning page private not zero on page %Lu\n",
  539. page_offset(page));
  540. ClearPagePrivate(page);
  541. set_page_private(page, 0);
  542. page_cache_release(page);
  543. }
  544. }
  545. #if 0
  546. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  547. {
  548. struct buffer_head *bh;
  549. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  550. struct buffer_head *head;
  551. if (!page_has_buffers(page)) {
  552. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  553. (1 << BH_Dirty)|(1 << BH_Uptodate));
  554. }
  555. head = page_buffers(page);
  556. bh = head;
  557. do {
  558. if (buffer_dirty(bh))
  559. csum_tree_block(root, bh, 0);
  560. bh = bh->b_this_page;
  561. } while (bh != head);
  562. return block_write_full_page(page, btree_get_block, wbc);
  563. }
  564. #endif
  565. static struct address_space_operations btree_aops = {
  566. .readpage = btree_readpage,
  567. .writepage = btree_writepage,
  568. .writepages = btree_writepages,
  569. .releasepage = btree_releasepage,
  570. .invalidatepage = btree_invalidatepage,
  571. .sync_page = block_sync_page,
  572. };
  573. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  574. u64 parent_transid)
  575. {
  576. struct extent_buffer *buf = NULL;
  577. struct inode *btree_inode = root->fs_info->btree_inode;
  578. int ret = 0;
  579. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  580. if (!buf)
  581. return 0;
  582. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  583. buf, 0, 0, btree_get_extent, 0);
  584. free_extent_buffer(buf);
  585. return ret;
  586. }
  587. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  588. u64 bytenr, u32 blocksize)
  589. {
  590. struct inode *btree_inode = root->fs_info->btree_inode;
  591. struct extent_buffer *eb;
  592. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  593. bytenr, blocksize, GFP_NOFS);
  594. return eb;
  595. }
  596. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  597. u64 bytenr, u32 blocksize)
  598. {
  599. struct inode *btree_inode = root->fs_info->btree_inode;
  600. struct extent_buffer *eb;
  601. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  602. bytenr, blocksize, NULL, GFP_NOFS);
  603. return eb;
  604. }
  605. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  606. u32 blocksize, u64 parent_transid)
  607. {
  608. struct extent_buffer *buf = NULL;
  609. struct inode *btree_inode = root->fs_info->btree_inode;
  610. struct extent_io_tree *io_tree;
  611. int ret;
  612. io_tree = &BTRFS_I(btree_inode)->io_tree;
  613. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  614. if (!buf)
  615. return NULL;
  616. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  617. if (ret == 0) {
  618. buf->flags |= EXTENT_UPTODATE;
  619. }
  620. return buf;
  621. }
  622. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  623. struct extent_buffer *buf)
  624. {
  625. struct inode *btree_inode = root->fs_info->btree_inode;
  626. if (btrfs_header_generation(buf) ==
  627. root->fs_info->running_transaction->transid) {
  628. WARN_ON(!btrfs_tree_locked(buf));
  629. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  630. buf);
  631. }
  632. return 0;
  633. }
  634. int wait_on_tree_block_writeback(struct btrfs_root *root,
  635. struct extent_buffer *buf)
  636. {
  637. struct inode *btree_inode = root->fs_info->btree_inode;
  638. wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
  639. buf);
  640. return 0;
  641. }
  642. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  643. u32 stripesize, struct btrfs_root *root,
  644. struct btrfs_fs_info *fs_info,
  645. u64 objectid)
  646. {
  647. root->node = NULL;
  648. root->inode = NULL;
  649. root->commit_root = NULL;
  650. root->ref_tree = NULL;
  651. root->sectorsize = sectorsize;
  652. root->nodesize = nodesize;
  653. root->leafsize = leafsize;
  654. root->stripesize = stripesize;
  655. root->ref_cows = 0;
  656. root->track_dirty = 0;
  657. root->fs_info = fs_info;
  658. root->objectid = objectid;
  659. root->last_trans = 0;
  660. root->highest_inode = 0;
  661. root->last_inode_alloc = 0;
  662. root->name = NULL;
  663. root->in_sysfs = 0;
  664. INIT_LIST_HEAD(&root->dirty_list);
  665. INIT_LIST_HEAD(&root->orphan_list);
  666. INIT_LIST_HEAD(&root->dead_list);
  667. spin_lock_init(&root->node_lock);
  668. spin_lock_init(&root->list_lock);
  669. mutex_init(&root->objectid_mutex);
  670. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  671. root->ref_tree = &root->ref_tree_struct;
  672. memset(&root->root_key, 0, sizeof(root->root_key));
  673. memset(&root->root_item, 0, sizeof(root->root_item));
  674. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  675. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  676. root->defrag_trans_start = fs_info->generation;
  677. init_completion(&root->kobj_unregister);
  678. root->defrag_running = 0;
  679. root->defrag_level = 0;
  680. root->root_key.objectid = objectid;
  681. return 0;
  682. }
  683. static int find_and_setup_root(struct btrfs_root *tree_root,
  684. struct btrfs_fs_info *fs_info,
  685. u64 objectid,
  686. struct btrfs_root *root)
  687. {
  688. int ret;
  689. u32 blocksize;
  690. __setup_root(tree_root->nodesize, tree_root->leafsize,
  691. tree_root->sectorsize, tree_root->stripesize,
  692. root, fs_info, objectid);
  693. ret = btrfs_find_last_root(tree_root, objectid,
  694. &root->root_item, &root->root_key);
  695. BUG_ON(ret);
  696. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  697. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  698. blocksize, 0);
  699. BUG_ON(!root->node);
  700. return 0;
  701. }
  702. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
  703. struct btrfs_key *location)
  704. {
  705. struct btrfs_root *root;
  706. struct btrfs_root *tree_root = fs_info->tree_root;
  707. struct btrfs_path *path;
  708. struct extent_buffer *l;
  709. u64 highest_inode;
  710. u32 blocksize;
  711. int ret = 0;
  712. root = kzalloc(sizeof(*root), GFP_NOFS);
  713. if (!root)
  714. return ERR_PTR(-ENOMEM);
  715. if (location->offset == (u64)-1) {
  716. ret = find_and_setup_root(tree_root, fs_info,
  717. location->objectid, root);
  718. if (ret) {
  719. kfree(root);
  720. return ERR_PTR(ret);
  721. }
  722. goto insert;
  723. }
  724. __setup_root(tree_root->nodesize, tree_root->leafsize,
  725. tree_root->sectorsize, tree_root->stripesize,
  726. root, fs_info, location->objectid);
  727. path = btrfs_alloc_path();
  728. BUG_ON(!path);
  729. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  730. if (ret != 0) {
  731. if (ret > 0)
  732. ret = -ENOENT;
  733. goto out;
  734. }
  735. l = path->nodes[0];
  736. read_extent_buffer(l, &root->root_item,
  737. btrfs_item_ptr_offset(l, path->slots[0]),
  738. sizeof(root->root_item));
  739. memcpy(&root->root_key, location, sizeof(*location));
  740. ret = 0;
  741. out:
  742. btrfs_release_path(root, path);
  743. btrfs_free_path(path);
  744. if (ret) {
  745. kfree(root);
  746. return ERR_PTR(ret);
  747. }
  748. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  749. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  750. blocksize, 0);
  751. BUG_ON(!root->node);
  752. insert:
  753. root->ref_cows = 1;
  754. ret = btrfs_find_highest_inode(root, &highest_inode);
  755. if (ret == 0) {
  756. root->highest_inode = highest_inode;
  757. root->last_inode_alloc = highest_inode;
  758. }
  759. return root;
  760. }
  761. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  762. u64 root_objectid)
  763. {
  764. struct btrfs_root *root;
  765. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  766. return fs_info->tree_root;
  767. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  768. return fs_info->extent_root;
  769. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  770. (unsigned long)root_objectid);
  771. return root;
  772. }
  773. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  774. struct btrfs_key *location)
  775. {
  776. struct btrfs_root *root;
  777. int ret;
  778. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  779. return fs_info->tree_root;
  780. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  781. return fs_info->extent_root;
  782. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  783. return fs_info->chunk_root;
  784. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  785. return fs_info->dev_root;
  786. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  787. (unsigned long)location->objectid);
  788. if (root)
  789. return root;
  790. root = btrfs_read_fs_root_no_radix(fs_info, location);
  791. if (IS_ERR(root))
  792. return root;
  793. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  794. (unsigned long)root->root_key.objectid,
  795. root);
  796. if (ret) {
  797. free_extent_buffer(root->node);
  798. kfree(root);
  799. return ERR_PTR(ret);
  800. }
  801. ret = btrfs_find_dead_roots(fs_info->tree_root,
  802. root->root_key.objectid, root);
  803. BUG_ON(ret);
  804. return root;
  805. }
  806. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  807. struct btrfs_key *location,
  808. const char *name, int namelen)
  809. {
  810. struct btrfs_root *root;
  811. int ret;
  812. root = btrfs_read_fs_root_no_name(fs_info, location);
  813. if (!root)
  814. return NULL;
  815. if (root->in_sysfs)
  816. return root;
  817. ret = btrfs_set_root_name(root, name, namelen);
  818. if (ret) {
  819. free_extent_buffer(root->node);
  820. kfree(root);
  821. return ERR_PTR(ret);
  822. }
  823. ret = btrfs_sysfs_add_root(root);
  824. if (ret) {
  825. free_extent_buffer(root->node);
  826. kfree(root->name);
  827. kfree(root);
  828. return ERR_PTR(ret);
  829. }
  830. root->in_sysfs = 1;
  831. return root;
  832. }
  833. #if 0
  834. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  835. struct btrfs_hasher *hasher;
  836. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  837. if (!hasher)
  838. return -ENOMEM;
  839. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  840. if (!hasher->hash_tfm) {
  841. kfree(hasher);
  842. return -EINVAL;
  843. }
  844. spin_lock(&info->hash_lock);
  845. list_add(&hasher->list, &info->hashers);
  846. spin_unlock(&info->hash_lock);
  847. return 0;
  848. }
  849. #endif
  850. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  851. {
  852. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  853. int ret = 0;
  854. struct list_head *cur;
  855. struct btrfs_device *device;
  856. struct backing_dev_info *bdi;
  857. if ((bdi_bits & (1 << BDI_write_congested)) &&
  858. btrfs_congested_async(info, 0))
  859. return 1;
  860. list_for_each(cur, &info->fs_devices->devices) {
  861. device = list_entry(cur, struct btrfs_device, dev_list);
  862. if (!device->bdev)
  863. continue;
  864. bdi = blk_get_backing_dev_info(device->bdev);
  865. if (bdi && bdi_congested(bdi, bdi_bits)) {
  866. ret = 1;
  867. break;
  868. }
  869. }
  870. return ret;
  871. }
  872. /*
  873. * this unplugs every device on the box, and it is only used when page
  874. * is null
  875. */
  876. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  877. {
  878. struct list_head *cur;
  879. struct btrfs_device *device;
  880. struct btrfs_fs_info *info;
  881. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  882. list_for_each(cur, &info->fs_devices->devices) {
  883. device = list_entry(cur, struct btrfs_device, dev_list);
  884. bdi = blk_get_backing_dev_info(device->bdev);
  885. if (bdi->unplug_io_fn) {
  886. bdi->unplug_io_fn(bdi, page);
  887. }
  888. }
  889. }
  890. void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  891. {
  892. struct inode *inode;
  893. struct extent_map_tree *em_tree;
  894. struct extent_map *em;
  895. struct address_space *mapping;
  896. u64 offset;
  897. /* the generic O_DIRECT read code does this */
  898. if (!page) {
  899. __unplug_io_fn(bdi, page);
  900. return;
  901. }
  902. /*
  903. * page->mapping may change at any time. Get a consistent copy
  904. * and use that for everything below
  905. */
  906. smp_mb();
  907. mapping = page->mapping;
  908. if (!mapping)
  909. return;
  910. inode = mapping->host;
  911. offset = page_offset(page);
  912. em_tree = &BTRFS_I(inode)->extent_tree;
  913. spin_lock(&em_tree->lock);
  914. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  915. spin_unlock(&em_tree->lock);
  916. if (!em) {
  917. __unplug_io_fn(bdi, page);
  918. return;
  919. }
  920. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  921. free_extent_map(em);
  922. __unplug_io_fn(bdi, page);
  923. return;
  924. }
  925. offset = offset - em->start;
  926. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  927. em->block_start + offset, page);
  928. free_extent_map(em);
  929. }
  930. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  931. {
  932. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  933. bdi_init(bdi);
  934. #endif
  935. bdi->ra_pages = default_backing_dev_info.ra_pages;
  936. bdi->state = 0;
  937. bdi->capabilities = default_backing_dev_info.capabilities;
  938. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  939. bdi->unplug_io_data = info;
  940. bdi->congested_fn = btrfs_congested_fn;
  941. bdi->congested_data = info;
  942. return 0;
  943. }
  944. static int bio_ready_for_csum(struct bio *bio)
  945. {
  946. u64 length = 0;
  947. u64 buf_len = 0;
  948. u64 start = 0;
  949. struct page *page;
  950. struct extent_io_tree *io_tree = NULL;
  951. struct btrfs_fs_info *info = NULL;
  952. struct bio_vec *bvec;
  953. int i;
  954. int ret;
  955. bio_for_each_segment(bvec, bio, i) {
  956. page = bvec->bv_page;
  957. if (page->private == EXTENT_PAGE_PRIVATE) {
  958. length += bvec->bv_len;
  959. continue;
  960. }
  961. if (!page->private) {
  962. length += bvec->bv_len;
  963. continue;
  964. }
  965. length = bvec->bv_len;
  966. buf_len = page->private >> 2;
  967. start = page_offset(page) + bvec->bv_offset;
  968. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  969. info = BTRFS_I(page->mapping->host)->root->fs_info;
  970. }
  971. /* are we fully contained in this bio? */
  972. if (buf_len <= length)
  973. return 1;
  974. ret = extent_range_uptodate(io_tree, start + length,
  975. start + buf_len - 1);
  976. if (ret == 1)
  977. return ret;
  978. return ret;
  979. }
  980. /*
  981. * called by the kthread helper functions to finally call the bio end_io
  982. * functions. This is where read checksum verification actually happens
  983. */
  984. static void end_workqueue_fn(struct btrfs_work *work)
  985. {
  986. struct bio *bio;
  987. struct end_io_wq *end_io_wq;
  988. struct btrfs_fs_info *fs_info;
  989. int error;
  990. end_io_wq = container_of(work, struct end_io_wq, work);
  991. bio = end_io_wq->bio;
  992. fs_info = end_io_wq->info;
  993. /* metadata bios are special because the whole tree block must
  994. * be checksummed at once. This makes sure the entire block is in
  995. * ram and up to date before trying to verify things. For
  996. * blocksize <= pagesize, it is basically a noop
  997. */
  998. if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
  999. btrfs_queue_worker(&fs_info->endio_workers,
  1000. &end_io_wq->work);
  1001. return;
  1002. }
  1003. error = end_io_wq->error;
  1004. bio->bi_private = end_io_wq->private;
  1005. bio->bi_end_io = end_io_wq->end_io;
  1006. kfree(end_io_wq);
  1007. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
  1008. bio_endio(bio, bio->bi_size, error);
  1009. #else
  1010. bio_endio(bio, error);
  1011. #endif
  1012. }
  1013. static int cleaner_kthread(void *arg)
  1014. {
  1015. struct btrfs_root *root = arg;
  1016. do {
  1017. smp_mb();
  1018. if (root->fs_info->closing)
  1019. break;
  1020. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1021. mutex_lock(&root->fs_info->cleaner_mutex);
  1022. btrfs_clean_old_snapshots(root);
  1023. mutex_unlock(&root->fs_info->cleaner_mutex);
  1024. if (freezing(current)) {
  1025. refrigerator();
  1026. } else {
  1027. smp_mb();
  1028. if (root->fs_info->closing)
  1029. break;
  1030. set_current_state(TASK_INTERRUPTIBLE);
  1031. schedule();
  1032. __set_current_state(TASK_RUNNING);
  1033. }
  1034. } while (!kthread_should_stop());
  1035. return 0;
  1036. }
  1037. static int transaction_kthread(void *arg)
  1038. {
  1039. struct btrfs_root *root = arg;
  1040. struct btrfs_trans_handle *trans;
  1041. struct btrfs_transaction *cur;
  1042. unsigned long now;
  1043. unsigned long delay;
  1044. int ret;
  1045. do {
  1046. smp_mb();
  1047. if (root->fs_info->closing)
  1048. break;
  1049. delay = HZ * 30;
  1050. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1051. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1052. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1053. printk("btrfs: total reference cache size %Lu\n",
  1054. root->fs_info->total_ref_cache_size);
  1055. }
  1056. mutex_lock(&root->fs_info->trans_mutex);
  1057. cur = root->fs_info->running_transaction;
  1058. if (!cur) {
  1059. mutex_unlock(&root->fs_info->trans_mutex);
  1060. goto sleep;
  1061. }
  1062. now = get_seconds();
  1063. if (now < cur->start_time || now - cur->start_time < 30) {
  1064. mutex_unlock(&root->fs_info->trans_mutex);
  1065. delay = HZ * 5;
  1066. goto sleep;
  1067. }
  1068. mutex_unlock(&root->fs_info->trans_mutex);
  1069. trans = btrfs_start_transaction(root, 1);
  1070. ret = btrfs_commit_transaction(trans, root);
  1071. sleep:
  1072. wake_up_process(root->fs_info->cleaner_kthread);
  1073. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1074. if (freezing(current)) {
  1075. refrigerator();
  1076. } else {
  1077. if (root->fs_info->closing)
  1078. break;
  1079. set_current_state(TASK_INTERRUPTIBLE);
  1080. schedule_timeout(delay);
  1081. __set_current_state(TASK_RUNNING);
  1082. }
  1083. } while (!kthread_should_stop());
  1084. return 0;
  1085. }
  1086. struct btrfs_root *open_ctree(struct super_block *sb,
  1087. struct btrfs_fs_devices *fs_devices,
  1088. char *options)
  1089. {
  1090. u32 sectorsize;
  1091. u32 nodesize;
  1092. u32 leafsize;
  1093. u32 blocksize;
  1094. u32 stripesize;
  1095. struct buffer_head *bh;
  1096. struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
  1097. GFP_NOFS);
  1098. struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
  1099. GFP_NOFS);
  1100. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1101. GFP_NOFS);
  1102. struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
  1103. GFP_NOFS);
  1104. struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
  1105. GFP_NOFS);
  1106. int ret;
  1107. int err = -EINVAL;
  1108. struct btrfs_super_block *disk_super;
  1109. if (!extent_root || !tree_root || !fs_info) {
  1110. err = -ENOMEM;
  1111. goto fail;
  1112. }
  1113. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1114. INIT_LIST_HEAD(&fs_info->trans_list);
  1115. INIT_LIST_HEAD(&fs_info->dead_roots);
  1116. INIT_LIST_HEAD(&fs_info->hashers);
  1117. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1118. spin_lock_init(&fs_info->hash_lock);
  1119. spin_lock_init(&fs_info->delalloc_lock);
  1120. spin_lock_init(&fs_info->new_trans_lock);
  1121. spin_lock_init(&fs_info->ref_cache_lock);
  1122. init_completion(&fs_info->kobj_unregister);
  1123. fs_info->tree_root = tree_root;
  1124. fs_info->extent_root = extent_root;
  1125. fs_info->chunk_root = chunk_root;
  1126. fs_info->dev_root = dev_root;
  1127. fs_info->fs_devices = fs_devices;
  1128. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1129. INIT_LIST_HEAD(&fs_info->space_info);
  1130. btrfs_mapping_init(&fs_info->mapping_tree);
  1131. atomic_set(&fs_info->nr_async_submits, 0);
  1132. atomic_set(&fs_info->nr_async_bios, 0);
  1133. atomic_set(&fs_info->throttles, 0);
  1134. atomic_set(&fs_info->throttle_gen, 0);
  1135. fs_info->sb = sb;
  1136. fs_info->max_extent = (u64)-1;
  1137. fs_info->max_inline = 8192 * 1024;
  1138. setup_bdi(fs_info, &fs_info->bdi);
  1139. fs_info->btree_inode = new_inode(sb);
  1140. fs_info->btree_inode->i_ino = 1;
  1141. fs_info->btree_inode->i_nlink = 1;
  1142. fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
  1143. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1144. spin_lock_init(&fs_info->ordered_extent_lock);
  1145. sb->s_blocksize = 4096;
  1146. sb->s_blocksize_bits = blksize_bits(4096);
  1147. /*
  1148. * we set the i_size on the btree inode to the max possible int.
  1149. * the real end of the address space is determined by all of
  1150. * the devices in the system
  1151. */
  1152. fs_info->btree_inode->i_size = OFFSET_MAX;
  1153. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1154. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1155. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1156. fs_info->btree_inode->i_mapping,
  1157. GFP_NOFS);
  1158. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1159. GFP_NOFS);
  1160. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1161. extent_io_tree_init(&fs_info->free_space_cache,
  1162. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1163. extent_io_tree_init(&fs_info->block_group_cache,
  1164. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1165. extent_io_tree_init(&fs_info->pinned_extents,
  1166. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1167. extent_io_tree_init(&fs_info->pending_del,
  1168. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1169. extent_io_tree_init(&fs_info->extent_ins,
  1170. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1171. fs_info->do_barriers = 1;
  1172. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1173. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1174. sizeof(struct btrfs_key));
  1175. insert_inode_hash(fs_info->btree_inode);
  1176. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1177. mutex_init(&fs_info->trans_mutex);
  1178. mutex_init(&fs_info->drop_mutex);
  1179. mutex_init(&fs_info->alloc_mutex);
  1180. mutex_init(&fs_info->chunk_mutex);
  1181. mutex_init(&fs_info->transaction_kthread_mutex);
  1182. mutex_init(&fs_info->cleaner_mutex);
  1183. mutex_init(&fs_info->volume_mutex);
  1184. init_waitqueue_head(&fs_info->transaction_throttle);
  1185. init_waitqueue_head(&fs_info->transaction_wait);
  1186. init_waitqueue_head(&fs_info->async_submit_wait);
  1187. #if 0
  1188. ret = add_hasher(fs_info, "crc32c");
  1189. if (ret) {
  1190. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  1191. err = -ENOMEM;
  1192. goto fail_iput;
  1193. }
  1194. #endif
  1195. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1196. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1197. bh = __bread(fs_devices->latest_bdev,
  1198. BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
  1199. if (!bh)
  1200. goto fail_iput;
  1201. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1202. brelse(bh);
  1203. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1204. disk_super = &fs_info->super_copy;
  1205. if (!btrfs_super_root(disk_super))
  1206. goto fail_sb_buffer;
  1207. err = btrfs_parse_options(tree_root, options);
  1208. if (err)
  1209. goto fail_sb_buffer;
  1210. /*
  1211. * we need to start all the end_io workers up front because the
  1212. * queue work function gets called at interrupt time, and so it
  1213. * cannot dynamically grow.
  1214. */
  1215. btrfs_init_workers(&fs_info->workers, "worker",
  1216. fs_info->thread_pool_size);
  1217. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1218. min_t(u64, fs_devices->num_devices,
  1219. fs_info->thread_pool_size));
  1220. /* a higher idle thresh on the submit workers makes it much more
  1221. * likely that bios will be send down in a sane order to the
  1222. * devices
  1223. */
  1224. fs_info->submit_workers.idle_thresh = 64;
  1225. /* fs_info->workers is responsible for checksumming file data
  1226. * blocks and metadata. Using a larger idle thresh allows each
  1227. * worker thread to operate on things in roughly the order they
  1228. * were sent by the writeback daemons, improving overall locality
  1229. * of the IO going down the pipe.
  1230. */
  1231. fs_info->workers.idle_thresh = 128;
  1232. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1233. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1234. fs_info->thread_pool_size);
  1235. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1236. fs_info->thread_pool_size);
  1237. /*
  1238. * endios are largely parallel and should have a very
  1239. * low idle thresh
  1240. */
  1241. fs_info->endio_workers.idle_thresh = 4;
  1242. fs_info->endio_write_workers.idle_thresh = 4;
  1243. btrfs_start_workers(&fs_info->workers, 1);
  1244. btrfs_start_workers(&fs_info->submit_workers, 1);
  1245. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1246. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1247. btrfs_start_workers(&fs_info->endio_write_workers,
  1248. fs_info->thread_pool_size);
  1249. err = -EINVAL;
  1250. if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
  1251. printk("Btrfs: wanted %llu devices, but found %llu\n",
  1252. (unsigned long long)btrfs_super_num_devices(disk_super),
  1253. (unsigned long long)fs_devices->open_devices);
  1254. if (btrfs_test_opt(tree_root, DEGRADED))
  1255. printk("continuing in degraded mode\n");
  1256. else {
  1257. goto fail_sb_buffer;
  1258. }
  1259. }
  1260. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1261. nodesize = btrfs_super_nodesize(disk_super);
  1262. leafsize = btrfs_super_leafsize(disk_super);
  1263. sectorsize = btrfs_super_sectorsize(disk_super);
  1264. stripesize = btrfs_super_stripesize(disk_super);
  1265. tree_root->nodesize = nodesize;
  1266. tree_root->leafsize = leafsize;
  1267. tree_root->sectorsize = sectorsize;
  1268. tree_root->stripesize = stripesize;
  1269. sb->s_blocksize = sectorsize;
  1270. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1271. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1272. sizeof(disk_super->magic))) {
  1273. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  1274. goto fail_sb_buffer;
  1275. }
  1276. mutex_lock(&fs_info->chunk_mutex);
  1277. ret = btrfs_read_sys_array(tree_root);
  1278. mutex_unlock(&fs_info->chunk_mutex);
  1279. if (ret) {
  1280. printk("btrfs: failed to read the system array on %s\n",
  1281. sb->s_id);
  1282. goto fail_sys_array;
  1283. }
  1284. blocksize = btrfs_level_size(tree_root,
  1285. btrfs_super_chunk_root_level(disk_super));
  1286. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1287. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1288. chunk_root->node = read_tree_block(chunk_root,
  1289. btrfs_super_chunk_root(disk_super),
  1290. blocksize, 0);
  1291. BUG_ON(!chunk_root->node);
  1292. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1293. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1294. BTRFS_UUID_SIZE);
  1295. mutex_lock(&fs_info->chunk_mutex);
  1296. ret = btrfs_read_chunk_tree(chunk_root);
  1297. mutex_unlock(&fs_info->chunk_mutex);
  1298. BUG_ON(ret);
  1299. btrfs_close_extra_devices(fs_devices);
  1300. blocksize = btrfs_level_size(tree_root,
  1301. btrfs_super_root_level(disk_super));
  1302. tree_root->node = read_tree_block(tree_root,
  1303. btrfs_super_root(disk_super),
  1304. blocksize, 0);
  1305. if (!tree_root->node)
  1306. goto fail_sb_buffer;
  1307. ret = find_and_setup_root(tree_root, fs_info,
  1308. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1309. if (ret)
  1310. goto fail_tree_root;
  1311. extent_root->track_dirty = 1;
  1312. ret = find_and_setup_root(tree_root, fs_info,
  1313. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1314. dev_root->track_dirty = 1;
  1315. if (ret)
  1316. goto fail_extent_root;
  1317. btrfs_read_block_groups(extent_root);
  1318. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  1319. fs_info->data_alloc_profile = (u64)-1;
  1320. fs_info->metadata_alloc_profile = (u64)-1;
  1321. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1322. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1323. "btrfs-cleaner");
  1324. if (!fs_info->cleaner_kthread)
  1325. goto fail_extent_root;
  1326. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1327. tree_root,
  1328. "btrfs-transaction");
  1329. if (!fs_info->transaction_kthread)
  1330. goto fail_cleaner;
  1331. return tree_root;
  1332. fail_cleaner:
  1333. kthread_stop(fs_info->cleaner_kthread);
  1334. fail_extent_root:
  1335. free_extent_buffer(extent_root->node);
  1336. fail_tree_root:
  1337. free_extent_buffer(tree_root->node);
  1338. fail_sys_array:
  1339. fail_sb_buffer:
  1340. btrfs_stop_workers(&fs_info->fixup_workers);
  1341. btrfs_stop_workers(&fs_info->workers);
  1342. btrfs_stop_workers(&fs_info->endio_workers);
  1343. btrfs_stop_workers(&fs_info->endio_write_workers);
  1344. btrfs_stop_workers(&fs_info->submit_workers);
  1345. fail_iput:
  1346. iput(fs_info->btree_inode);
  1347. fail:
  1348. btrfs_close_devices(fs_info->fs_devices);
  1349. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1350. kfree(extent_root);
  1351. kfree(tree_root);
  1352. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1353. bdi_destroy(&fs_info->bdi);
  1354. #endif
  1355. kfree(fs_info);
  1356. return ERR_PTR(err);
  1357. }
  1358. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1359. {
  1360. char b[BDEVNAME_SIZE];
  1361. if (uptodate) {
  1362. set_buffer_uptodate(bh);
  1363. } else {
  1364. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1365. printk(KERN_WARNING "lost page write due to "
  1366. "I/O error on %s\n",
  1367. bdevname(bh->b_bdev, b));
  1368. }
  1369. /* note, we dont' set_buffer_write_io_error because we have
  1370. * our own ways of dealing with the IO errors
  1371. */
  1372. clear_buffer_uptodate(bh);
  1373. }
  1374. unlock_buffer(bh);
  1375. put_bh(bh);
  1376. }
  1377. int write_all_supers(struct btrfs_root *root)
  1378. {
  1379. struct list_head *cur;
  1380. struct list_head *head = &root->fs_info->fs_devices->devices;
  1381. struct btrfs_device *dev;
  1382. struct btrfs_super_block *sb;
  1383. struct btrfs_dev_item *dev_item;
  1384. struct buffer_head *bh;
  1385. int ret;
  1386. int do_barriers;
  1387. int max_errors;
  1388. int total_errors = 0;
  1389. u32 crc;
  1390. u64 flags;
  1391. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1392. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1393. sb = &root->fs_info->super_for_commit;
  1394. dev_item = &sb->dev_item;
  1395. list_for_each(cur, head) {
  1396. dev = list_entry(cur, struct btrfs_device, dev_list);
  1397. if (!dev->bdev) {
  1398. total_errors++;
  1399. continue;
  1400. }
  1401. if (!dev->in_fs_metadata)
  1402. continue;
  1403. btrfs_set_stack_device_type(dev_item, dev->type);
  1404. btrfs_set_stack_device_id(dev_item, dev->devid);
  1405. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1406. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1407. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1408. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1409. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1410. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1411. flags = btrfs_super_flags(sb);
  1412. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1413. crc = ~(u32)0;
  1414. crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
  1415. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  1416. btrfs_csum_final(crc, sb->csum);
  1417. bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
  1418. BTRFS_SUPER_INFO_SIZE);
  1419. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1420. dev->pending_io = bh;
  1421. get_bh(bh);
  1422. set_buffer_uptodate(bh);
  1423. lock_buffer(bh);
  1424. bh->b_end_io = btrfs_end_buffer_write_sync;
  1425. if (do_barriers && dev->barriers) {
  1426. ret = submit_bh(WRITE_BARRIER, bh);
  1427. if (ret == -EOPNOTSUPP) {
  1428. printk("btrfs: disabling barriers on dev %s\n",
  1429. dev->name);
  1430. set_buffer_uptodate(bh);
  1431. dev->barriers = 0;
  1432. get_bh(bh);
  1433. lock_buffer(bh);
  1434. ret = submit_bh(WRITE, bh);
  1435. }
  1436. } else {
  1437. ret = submit_bh(WRITE, bh);
  1438. }
  1439. if (ret)
  1440. total_errors++;
  1441. }
  1442. if (total_errors > max_errors) {
  1443. printk("btrfs: %d errors while writing supers\n", total_errors);
  1444. BUG();
  1445. }
  1446. total_errors = 0;
  1447. list_for_each(cur, head) {
  1448. dev = list_entry(cur, struct btrfs_device, dev_list);
  1449. if (!dev->bdev)
  1450. continue;
  1451. if (!dev->in_fs_metadata)
  1452. continue;
  1453. BUG_ON(!dev->pending_io);
  1454. bh = dev->pending_io;
  1455. wait_on_buffer(bh);
  1456. if (!buffer_uptodate(dev->pending_io)) {
  1457. if (do_barriers && dev->barriers) {
  1458. printk("btrfs: disabling barriers on dev %s\n",
  1459. dev->name);
  1460. set_buffer_uptodate(bh);
  1461. get_bh(bh);
  1462. lock_buffer(bh);
  1463. dev->barriers = 0;
  1464. ret = submit_bh(WRITE, bh);
  1465. BUG_ON(ret);
  1466. wait_on_buffer(bh);
  1467. if (!buffer_uptodate(bh))
  1468. total_errors++;
  1469. } else {
  1470. total_errors++;
  1471. }
  1472. }
  1473. dev->pending_io = NULL;
  1474. brelse(bh);
  1475. }
  1476. if (total_errors > max_errors) {
  1477. printk("btrfs: %d errors while writing supers\n", total_errors);
  1478. BUG();
  1479. }
  1480. return 0;
  1481. }
  1482. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  1483. *root)
  1484. {
  1485. int ret;
  1486. ret = write_all_supers(root);
  1487. return ret;
  1488. }
  1489. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1490. {
  1491. radix_tree_delete(&fs_info->fs_roots_radix,
  1492. (unsigned long)root->root_key.objectid);
  1493. if (root->in_sysfs)
  1494. btrfs_sysfs_del_root(root);
  1495. if (root->inode)
  1496. iput(root->inode);
  1497. if (root->node)
  1498. free_extent_buffer(root->node);
  1499. if (root->commit_root)
  1500. free_extent_buffer(root->commit_root);
  1501. if (root->name)
  1502. kfree(root->name);
  1503. kfree(root);
  1504. return 0;
  1505. }
  1506. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1507. {
  1508. int ret;
  1509. struct btrfs_root *gang[8];
  1510. int i;
  1511. while(1) {
  1512. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1513. (void **)gang, 0,
  1514. ARRAY_SIZE(gang));
  1515. if (!ret)
  1516. break;
  1517. for (i = 0; i < ret; i++)
  1518. btrfs_free_fs_root(fs_info, gang[i]);
  1519. }
  1520. return 0;
  1521. }
  1522. int close_ctree(struct btrfs_root *root)
  1523. {
  1524. int ret;
  1525. struct btrfs_trans_handle *trans;
  1526. struct btrfs_fs_info *fs_info = root->fs_info;
  1527. fs_info->closing = 1;
  1528. smp_mb();
  1529. kthread_stop(root->fs_info->transaction_kthread);
  1530. kthread_stop(root->fs_info->cleaner_kthread);
  1531. btrfs_clean_old_snapshots(root);
  1532. trans = btrfs_start_transaction(root, 1);
  1533. ret = btrfs_commit_transaction(trans, root);
  1534. /* run commit again to drop the original snapshot */
  1535. trans = btrfs_start_transaction(root, 1);
  1536. btrfs_commit_transaction(trans, root);
  1537. ret = btrfs_write_and_wait_transaction(NULL, root);
  1538. BUG_ON(ret);
  1539. write_ctree_super(NULL, root);
  1540. if (fs_info->delalloc_bytes) {
  1541. printk("btrfs: at unmount delalloc count %Lu\n",
  1542. fs_info->delalloc_bytes);
  1543. }
  1544. if (fs_info->total_ref_cache_size) {
  1545. printk("btrfs: at umount reference cache size %Lu\n",
  1546. fs_info->total_ref_cache_size);
  1547. }
  1548. if (fs_info->extent_root->node)
  1549. free_extent_buffer(fs_info->extent_root->node);
  1550. if (fs_info->tree_root->node)
  1551. free_extent_buffer(fs_info->tree_root->node);
  1552. if (root->fs_info->chunk_root->node);
  1553. free_extent_buffer(root->fs_info->chunk_root->node);
  1554. if (root->fs_info->dev_root->node);
  1555. free_extent_buffer(root->fs_info->dev_root->node);
  1556. btrfs_free_block_groups(root->fs_info);
  1557. fs_info->closing = 2;
  1558. del_fs_roots(fs_info);
  1559. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1560. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  1561. btrfs_stop_workers(&fs_info->fixup_workers);
  1562. btrfs_stop_workers(&fs_info->workers);
  1563. btrfs_stop_workers(&fs_info->endio_workers);
  1564. btrfs_stop_workers(&fs_info->endio_write_workers);
  1565. btrfs_stop_workers(&fs_info->submit_workers);
  1566. iput(fs_info->btree_inode);
  1567. #if 0
  1568. while(!list_empty(&fs_info->hashers)) {
  1569. struct btrfs_hasher *hasher;
  1570. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1571. hashers);
  1572. list_del(&hasher->hashers);
  1573. crypto_free_hash(&fs_info->hash_tfm);
  1574. kfree(hasher);
  1575. }
  1576. #endif
  1577. btrfs_close_devices(fs_info->fs_devices);
  1578. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1579. #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
  1580. bdi_destroy(&fs_info->bdi);
  1581. #endif
  1582. kfree(fs_info->extent_root);
  1583. kfree(fs_info->tree_root);
  1584. kfree(fs_info->chunk_root);
  1585. kfree(fs_info->dev_root);
  1586. return 0;
  1587. }
  1588. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1589. {
  1590. int ret;
  1591. struct inode *btree_inode = buf->first_page->mapping->host;
  1592. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1593. if (!ret)
  1594. return ret;
  1595. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1596. parent_transid);
  1597. return !ret;
  1598. }
  1599. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1600. {
  1601. struct inode *btree_inode = buf->first_page->mapping->host;
  1602. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1603. buf);
  1604. }
  1605. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1606. {
  1607. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1608. u64 transid = btrfs_header_generation(buf);
  1609. struct inode *btree_inode = root->fs_info->btree_inode;
  1610. WARN_ON(!btrfs_tree_locked(buf));
  1611. if (transid != root->fs_info->generation) {
  1612. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  1613. (unsigned long long)buf->start,
  1614. transid, root->fs_info->generation);
  1615. WARN_ON(1);
  1616. }
  1617. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1618. }
  1619. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1620. {
  1621. /*
  1622. * looks as though older kernels can get into trouble with
  1623. * this code, they end up stuck in balance_dirty_pages forever
  1624. */
  1625. struct extent_io_tree *tree;
  1626. u64 num_dirty;
  1627. u64 start = 0;
  1628. unsigned long thresh = 12 * 1024 * 1024;
  1629. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1630. if (current_is_pdflush())
  1631. return;
  1632. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1633. thresh, EXTENT_DIRTY);
  1634. if (num_dirty > thresh) {
  1635. balance_dirty_pages_ratelimited_nr(
  1636. root->fs_info->btree_inode->i_mapping, 1);
  1637. }
  1638. return;
  1639. }
  1640. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1641. {
  1642. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1643. int ret;
  1644. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1645. if (ret == 0) {
  1646. buf->flags |= EXTENT_UPTODATE;
  1647. }
  1648. return ret;
  1649. }
  1650. static struct extent_io_ops btree_extent_io_ops = {
  1651. .writepage_io_hook = btree_writepage_io_hook,
  1652. .readpage_end_io_hook = btree_readpage_end_io_hook,
  1653. .submit_bio_hook = btree_submit_bio_hook,
  1654. /* note we're sharing with inode.c for the merge bio hook */
  1655. .merge_bio_hook = btrfs_merge_bio_hook,
  1656. };