readahead.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*
  2. * mm/readahead.c - address_space-level file readahead.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 09Apr2002 akpm@zip.com.au
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/fs.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/task_io_accounting_ops.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/pagemap.h>
  18. void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  19. {
  20. }
  21. EXPORT_SYMBOL(default_unplug_io_fn);
  22. struct backing_dev_info default_backing_dev_info = {
  23. .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
  24. .state = 0,
  25. .capabilities = BDI_CAP_MAP_COPY,
  26. .unplug_io_fn = default_unplug_io_fn,
  27. };
  28. EXPORT_SYMBOL_GPL(default_backing_dev_info);
  29. /*
  30. * Initialise a struct file's readahead state. Assumes that the caller has
  31. * memset *ra to zero.
  32. */
  33. void
  34. file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  35. {
  36. ra->ra_pages = mapping->backing_dev_info->ra_pages;
  37. ra->prev_pos = -1;
  38. }
  39. EXPORT_SYMBOL_GPL(file_ra_state_init);
  40. #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  41. /**
  42. * read_cache_pages - populate an address space with some pages & start reads against them
  43. * @mapping: the address_space
  44. * @pages: The address of a list_head which contains the target pages. These
  45. * pages have their ->index populated and are otherwise uninitialised.
  46. * @filler: callback routine for filling a single page.
  47. * @data: private data for the callback routine.
  48. *
  49. * Hides the details of the LRU cache etc from the filesystems.
  50. */
  51. int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  52. int (*filler)(void *, struct page *), void *data)
  53. {
  54. struct page *page;
  55. struct pagevec lru_pvec;
  56. int ret = 0;
  57. pagevec_init(&lru_pvec, 0);
  58. while (!list_empty(pages)) {
  59. page = list_to_page(pages);
  60. list_del(&page->lru);
  61. if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
  62. page_cache_release(page);
  63. continue;
  64. }
  65. ret = filler(data, page);
  66. if (!pagevec_add(&lru_pvec, page))
  67. __pagevec_lru_add(&lru_pvec);
  68. if (ret) {
  69. put_pages_list(pages);
  70. break;
  71. }
  72. task_io_account_read(PAGE_CACHE_SIZE);
  73. }
  74. pagevec_lru_add(&lru_pvec);
  75. return ret;
  76. }
  77. EXPORT_SYMBOL(read_cache_pages);
  78. static int read_pages(struct address_space *mapping, struct file *filp,
  79. struct list_head *pages, unsigned nr_pages)
  80. {
  81. unsigned page_idx;
  82. struct pagevec lru_pvec;
  83. int ret;
  84. if (mapping->a_ops->readpages) {
  85. ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  86. /* Clean up the remaining pages */
  87. put_pages_list(pages);
  88. goto out;
  89. }
  90. pagevec_init(&lru_pvec, 0);
  91. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  92. struct page *page = list_to_page(pages);
  93. list_del(&page->lru);
  94. if (!add_to_page_cache(page, mapping,
  95. page->index, GFP_KERNEL)) {
  96. mapping->a_ops->readpage(filp, page);
  97. if (!pagevec_add(&lru_pvec, page))
  98. __pagevec_lru_add(&lru_pvec);
  99. } else
  100. page_cache_release(page);
  101. }
  102. pagevec_lru_add(&lru_pvec);
  103. ret = 0;
  104. out:
  105. return ret;
  106. }
  107. /*
  108. * do_page_cache_readahead actually reads a chunk of disk. It allocates all
  109. * the pages first, then submits them all for I/O. This avoids the very bad
  110. * behaviour which would occur if page allocations are causing VM writeback.
  111. * We really don't want to intermingle reads and writes like that.
  112. *
  113. * Returns the number of pages requested, or the maximum amount of I/O allowed.
  114. *
  115. * do_page_cache_readahead() returns -1 if it encountered request queue
  116. * congestion.
  117. */
  118. static int
  119. __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  120. pgoff_t offset, unsigned long nr_to_read,
  121. unsigned long lookahead_size)
  122. {
  123. struct inode *inode = mapping->host;
  124. struct page *page;
  125. unsigned long end_index; /* The last page we want to read */
  126. LIST_HEAD(page_pool);
  127. int page_idx;
  128. int ret = 0;
  129. loff_t isize = i_size_read(inode);
  130. if (isize == 0)
  131. goto out;
  132. end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  133. /*
  134. * Preallocate as many pages as we will need.
  135. */
  136. read_lock_irq(&mapping->tree_lock);
  137. for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  138. pgoff_t page_offset = offset + page_idx;
  139. if (page_offset > end_index)
  140. break;
  141. page = radix_tree_lookup(&mapping->page_tree, page_offset);
  142. if (page)
  143. continue;
  144. read_unlock_irq(&mapping->tree_lock);
  145. page = page_cache_alloc_cold(mapping);
  146. read_lock_irq(&mapping->tree_lock);
  147. if (!page)
  148. break;
  149. page->index = page_offset;
  150. list_add(&page->lru, &page_pool);
  151. if (page_idx == nr_to_read - lookahead_size)
  152. SetPageReadahead(page);
  153. ret++;
  154. }
  155. read_unlock_irq(&mapping->tree_lock);
  156. /*
  157. * Now start the IO. We ignore I/O errors - if the page is not
  158. * uptodate then the caller will launch readpage again, and
  159. * will then handle the error.
  160. */
  161. if (ret)
  162. read_pages(mapping, filp, &page_pool, ret);
  163. BUG_ON(!list_empty(&page_pool));
  164. out:
  165. return ret;
  166. }
  167. /*
  168. * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  169. * memory at once.
  170. */
  171. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  172. pgoff_t offset, unsigned long nr_to_read)
  173. {
  174. int ret = 0;
  175. if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  176. return -EINVAL;
  177. while (nr_to_read) {
  178. int err;
  179. unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
  180. if (this_chunk > nr_to_read)
  181. this_chunk = nr_to_read;
  182. err = __do_page_cache_readahead(mapping, filp,
  183. offset, this_chunk, 0);
  184. if (err < 0) {
  185. ret = err;
  186. break;
  187. }
  188. ret += err;
  189. offset += this_chunk;
  190. nr_to_read -= this_chunk;
  191. }
  192. return ret;
  193. }
  194. /*
  195. * This version skips the IO if the queue is read-congested, and will tell the
  196. * block layer to abandon the readahead if request allocation would block.
  197. *
  198. * force_page_cache_readahead() will ignore queue congestion and will block on
  199. * request queues.
  200. */
  201. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  202. pgoff_t offset, unsigned long nr_to_read)
  203. {
  204. if (bdi_read_congested(mapping->backing_dev_info))
  205. return -1;
  206. return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
  207. }
  208. /*
  209. * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  210. * sensible upper limit.
  211. */
  212. unsigned long max_sane_readahead(unsigned long nr)
  213. {
  214. return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
  215. + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
  216. }
  217. /*
  218. * Submit IO for the read-ahead request in file_ra_state.
  219. */
  220. static unsigned long ra_submit(struct file_ra_state *ra,
  221. struct address_space *mapping, struct file *filp)
  222. {
  223. int actual;
  224. actual = __do_page_cache_readahead(mapping, filp,
  225. ra->start, ra->size, ra->async_size);
  226. return actual;
  227. }
  228. /*
  229. * Set the initial window size, round to next power of 2 and square
  230. * for small size, x 4 for medium, and x 2 for large
  231. * for 128k (32 page) max ra
  232. * 1-8 page = 32k initial, > 8 page = 128k initial
  233. */
  234. static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  235. {
  236. unsigned long newsize = roundup_pow_of_two(size);
  237. if (newsize <= max / 32)
  238. newsize = newsize * 4;
  239. else if (newsize <= max / 4)
  240. newsize = newsize * 2;
  241. else
  242. newsize = max;
  243. return newsize;
  244. }
  245. /*
  246. * Get the previous window size, ramp it up, and
  247. * return it as the new window size.
  248. */
  249. static unsigned long get_next_ra_size(struct file_ra_state *ra,
  250. unsigned long max)
  251. {
  252. unsigned long cur = ra->size;
  253. unsigned long newsize;
  254. if (cur < max / 16)
  255. newsize = 4 * cur;
  256. else
  257. newsize = 2 * cur;
  258. return min(newsize, max);
  259. }
  260. /*
  261. * On-demand readahead design.
  262. *
  263. * The fields in struct file_ra_state represent the most-recently-executed
  264. * readahead attempt:
  265. *
  266. * |<----- async_size ---------|
  267. * |------------------- size -------------------->|
  268. * |==================#===========================|
  269. * ^start ^page marked with PG_readahead
  270. *
  271. * To overlap application thinking time and disk I/O time, we do
  272. * `readahead pipelining': Do not wait until the application consumed all
  273. * readahead pages and stalled on the missing page at readahead_index;
  274. * Instead, submit an asynchronous readahead I/O as soon as there are
  275. * only async_size pages left in the readahead window. Normally async_size
  276. * will be equal to size, for maximum pipelining.
  277. *
  278. * In interleaved sequential reads, concurrent streams on the same fd can
  279. * be invalidating each other's readahead state. So we flag the new readahead
  280. * page at (start+size-async_size) with PG_readahead, and use it as readahead
  281. * indicator. The flag won't be set on already cached pages, to avoid the
  282. * readahead-for-nothing fuss, saving pointless page cache lookups.
  283. *
  284. * prev_pos tracks the last visited byte in the _previous_ read request.
  285. * It should be maintained by the caller, and will be used for detecting
  286. * small random reads. Note that the readahead algorithm checks loosely
  287. * for sequential patterns. Hence interleaved reads might be served as
  288. * sequential ones.
  289. *
  290. * There is a special-case: if the first page which the application tries to
  291. * read happens to be the first page of the file, it is assumed that a linear
  292. * read is about to happen and the window is immediately set to the initial size
  293. * based on I/O request size and the max_readahead.
  294. *
  295. * The code ramps up the readahead size aggressively at first, but slow down as
  296. * it approaches max_readhead.
  297. */
  298. /*
  299. * A minimal readahead algorithm for trivial sequential/random reads.
  300. */
  301. static unsigned long
  302. ondemand_readahead(struct address_space *mapping,
  303. struct file_ra_state *ra, struct file *filp,
  304. bool hit_readahead_marker, pgoff_t offset,
  305. unsigned long req_size)
  306. {
  307. int max = ra->ra_pages; /* max readahead pages */
  308. pgoff_t prev_offset;
  309. int sequential;
  310. /*
  311. * It's the expected callback offset, assume sequential access.
  312. * Ramp up sizes, and push forward the readahead window.
  313. */
  314. if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
  315. offset == (ra->start + ra->size))) {
  316. ra->start += ra->size;
  317. ra->size = get_next_ra_size(ra, max);
  318. ra->async_size = ra->size;
  319. goto readit;
  320. }
  321. prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
  322. sequential = offset - prev_offset <= 1UL || req_size > max;
  323. /*
  324. * Standalone, small read.
  325. * Read as is, and do not pollute the readahead state.
  326. */
  327. if (!hit_readahead_marker && !sequential) {
  328. return __do_page_cache_readahead(mapping, filp,
  329. offset, req_size, 0);
  330. }
  331. /*
  332. * Hit a marked page without valid readahead state.
  333. * E.g. interleaved reads.
  334. * Query the pagecache for async_size, which normally equals to
  335. * readahead size. Ramp it up and use it as the new readahead size.
  336. */
  337. if (hit_readahead_marker) {
  338. pgoff_t start;
  339. read_lock_irq(&mapping->tree_lock);
  340. start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
  341. read_unlock_irq(&mapping->tree_lock);
  342. if (!start || start - offset > max)
  343. return 0;
  344. ra->start = start;
  345. ra->size = start - offset; /* old async_size */
  346. ra->size = get_next_ra_size(ra, max);
  347. ra->async_size = ra->size;
  348. goto readit;
  349. }
  350. /*
  351. * It may be one of
  352. * - first read on start of file
  353. * - sequential cache miss
  354. * - oversize random read
  355. * Start readahead for it.
  356. */
  357. ra->start = offset;
  358. ra->size = get_init_ra_size(req_size, max);
  359. ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
  360. readit:
  361. return ra_submit(ra, mapping, filp);
  362. }
  363. /**
  364. * page_cache_sync_readahead - generic file readahead
  365. * @mapping: address_space which holds the pagecache and I/O vectors
  366. * @ra: file_ra_state which holds the readahead state
  367. * @filp: passed on to ->readpage() and ->readpages()
  368. * @offset: start offset into @mapping, in pagecache page-sized units
  369. * @req_size: hint: total size of the read which the caller is performing in
  370. * pagecache pages
  371. *
  372. * page_cache_sync_readahead() should be called when a cache miss happened:
  373. * it will submit the read. The readahead logic may decide to piggyback more
  374. * pages onto the read request if access patterns suggest it will improve
  375. * performance.
  376. */
  377. void page_cache_sync_readahead(struct address_space *mapping,
  378. struct file_ra_state *ra, struct file *filp,
  379. pgoff_t offset, unsigned long req_size)
  380. {
  381. /* no read-ahead */
  382. if (!ra->ra_pages)
  383. return;
  384. /* do read-ahead */
  385. ondemand_readahead(mapping, ra, filp, false, offset, req_size);
  386. }
  387. EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
  388. /**
  389. * page_cache_async_readahead - file readahead for marked pages
  390. * @mapping: address_space which holds the pagecache and I/O vectors
  391. * @ra: file_ra_state which holds the readahead state
  392. * @filp: passed on to ->readpage() and ->readpages()
  393. * @page: the page at @offset which has the PG_readahead flag set
  394. * @offset: start offset into @mapping, in pagecache page-sized units
  395. * @req_size: hint: total size of the read which the caller is performing in
  396. * pagecache pages
  397. *
  398. * page_cache_async_ondemand() should be called when a page is used which
  399. * has the PG_readahead flag: this is a marker to suggest that the application
  400. * has used up enough of the readahead window that we should start pulling in
  401. * more pages. */
  402. void
  403. page_cache_async_readahead(struct address_space *mapping,
  404. struct file_ra_state *ra, struct file *filp,
  405. struct page *page, pgoff_t offset,
  406. unsigned long req_size)
  407. {
  408. /* no read-ahead */
  409. if (!ra->ra_pages)
  410. return;
  411. /*
  412. * Same bit is used for PG_readahead and PG_reclaim.
  413. */
  414. if (PageWriteback(page))
  415. return;
  416. ClearPageReadahead(page);
  417. /*
  418. * Defer asynchronous read-ahead on IO congestion.
  419. */
  420. if (bdi_read_congested(mapping->backing_dev_info))
  421. return;
  422. /* do read-ahead */
  423. ondemand_readahead(mapping, ra, filp, true, offset, req_size);
  424. }
  425. EXPORT_SYMBOL_GPL(page_cache_async_readahead);