vmem.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/hugetlb.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/setup.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/sections.h>
  18. static DEFINE_MUTEX(vmem_mutex);
  19. struct memory_segment {
  20. struct list_head list;
  21. unsigned long start;
  22. unsigned long size;
  23. };
  24. static LIST_HEAD(mem_segs);
  25. void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
  26. unsigned long start_pfn)
  27. {
  28. struct page *start, *end;
  29. struct page *map_start, *map_end;
  30. int i;
  31. start = pfn_to_page(start_pfn);
  32. end = start + size;
  33. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  34. unsigned long cstart, cend;
  35. cstart = PFN_DOWN(memory_chunk[i].addr);
  36. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  37. map_start = mem_map + cstart;
  38. map_end = mem_map + cend;
  39. if (map_start < start)
  40. map_start = start;
  41. if (map_end > end)
  42. map_end = end;
  43. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  44. / sizeof(struct page);
  45. map_end += ((PFN_ALIGN((unsigned long) map_end)
  46. - (unsigned long) map_end)
  47. / sizeof(struct page));
  48. if (map_start < map_end)
  49. memmap_init_zone((unsigned long)(map_end - map_start),
  50. nid, zone, page_to_pfn(map_start),
  51. MEMMAP_EARLY);
  52. }
  53. }
  54. static void __ref *vmem_alloc_pages(unsigned int order)
  55. {
  56. if (slab_is_available())
  57. return (void *)__get_free_pages(GFP_KERNEL, order);
  58. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  59. }
  60. static inline pud_t *vmem_pud_alloc(void)
  61. {
  62. pud_t *pud = NULL;
  63. #ifdef CONFIG_64BIT
  64. pud = vmem_alloc_pages(2);
  65. if (!pud)
  66. return NULL;
  67. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  68. #endif
  69. return pud;
  70. }
  71. static inline pmd_t *vmem_pmd_alloc(void)
  72. {
  73. pmd_t *pmd = NULL;
  74. #ifdef CONFIG_64BIT
  75. pmd = vmem_alloc_pages(2);
  76. if (!pmd)
  77. return NULL;
  78. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  79. #endif
  80. return pmd;
  81. }
  82. static pte_t __init_refok *vmem_pte_alloc(void)
  83. {
  84. pte_t *pte;
  85. if (slab_is_available())
  86. pte = (pte_t *) page_table_alloc(&init_mm);
  87. else
  88. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  89. if (!pte)
  90. return NULL;
  91. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  92. PTRS_PER_PTE * sizeof(pte_t));
  93. return pte;
  94. }
  95. /*
  96. * Add a physical memory range to the 1:1 mapping.
  97. */
  98. static int vmem_add_range(unsigned long start, unsigned long size, int ro)
  99. {
  100. unsigned long address;
  101. pgd_t *pg_dir;
  102. pud_t *pu_dir;
  103. pmd_t *pm_dir;
  104. pte_t *pt_dir;
  105. pte_t pte;
  106. int ret = -ENOMEM;
  107. for (address = start; address < start + size; address += PAGE_SIZE) {
  108. pg_dir = pgd_offset_k(address);
  109. if (pgd_none(*pg_dir)) {
  110. pu_dir = vmem_pud_alloc();
  111. if (!pu_dir)
  112. goto out;
  113. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  114. }
  115. pu_dir = pud_offset(pg_dir, address);
  116. if (pud_none(*pu_dir)) {
  117. pm_dir = vmem_pmd_alloc();
  118. if (!pm_dir)
  119. goto out;
  120. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  121. }
  122. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  123. pm_dir = pmd_offset(pu_dir, address);
  124. #ifdef __s390x__
  125. if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
  126. (address + HPAGE_SIZE <= start + size) &&
  127. (address >= HPAGE_SIZE)) {
  128. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  129. pmd_val(*pm_dir) = pte_val(pte);
  130. address += HPAGE_SIZE - PAGE_SIZE;
  131. continue;
  132. }
  133. #endif
  134. if (pmd_none(*pm_dir)) {
  135. pt_dir = vmem_pte_alloc();
  136. if (!pt_dir)
  137. goto out;
  138. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  139. }
  140. pt_dir = pte_offset_kernel(pm_dir, address);
  141. *pt_dir = pte;
  142. }
  143. ret = 0;
  144. out:
  145. flush_tlb_kernel_range(start, start + size);
  146. return ret;
  147. }
  148. /*
  149. * Remove a physical memory range from the 1:1 mapping.
  150. * Currently only invalidates page table entries.
  151. */
  152. static void vmem_remove_range(unsigned long start, unsigned long size)
  153. {
  154. unsigned long address;
  155. pgd_t *pg_dir;
  156. pud_t *pu_dir;
  157. pmd_t *pm_dir;
  158. pte_t *pt_dir;
  159. pte_t pte;
  160. pte_val(pte) = _PAGE_TYPE_EMPTY;
  161. for (address = start; address < start + size; address += PAGE_SIZE) {
  162. pg_dir = pgd_offset_k(address);
  163. pu_dir = pud_offset(pg_dir, address);
  164. if (pud_none(*pu_dir))
  165. continue;
  166. pm_dir = pmd_offset(pu_dir, address);
  167. if (pmd_none(*pm_dir))
  168. continue;
  169. if (pmd_huge(*pm_dir)) {
  170. pmd_clear_kernel(pm_dir);
  171. address += HPAGE_SIZE - PAGE_SIZE;
  172. continue;
  173. }
  174. pt_dir = pte_offset_kernel(pm_dir, address);
  175. *pt_dir = pte;
  176. }
  177. flush_tlb_kernel_range(start, start + size);
  178. }
  179. /*
  180. * Add a backed mem_map array to the virtual mem_map array.
  181. */
  182. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  183. {
  184. unsigned long address, start_addr, end_addr;
  185. struct page *map_start, *map_end;
  186. pgd_t *pg_dir;
  187. pud_t *pu_dir;
  188. pmd_t *pm_dir;
  189. pte_t *pt_dir;
  190. pte_t pte;
  191. int ret = -ENOMEM;
  192. map_start = VMEM_MAP + PFN_DOWN(start);
  193. map_end = VMEM_MAP + PFN_DOWN(start + size);
  194. start_addr = (unsigned long) map_start & PAGE_MASK;
  195. end_addr = PFN_ALIGN((unsigned long) map_end);
  196. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  197. pg_dir = pgd_offset_k(address);
  198. if (pgd_none(*pg_dir)) {
  199. pu_dir = vmem_pud_alloc();
  200. if (!pu_dir)
  201. goto out;
  202. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  203. }
  204. pu_dir = pud_offset(pg_dir, address);
  205. if (pud_none(*pu_dir)) {
  206. pm_dir = vmem_pmd_alloc();
  207. if (!pm_dir)
  208. goto out;
  209. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  210. }
  211. pm_dir = pmd_offset(pu_dir, address);
  212. if (pmd_none(*pm_dir)) {
  213. pt_dir = vmem_pte_alloc();
  214. if (!pt_dir)
  215. goto out;
  216. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  217. }
  218. pt_dir = pte_offset_kernel(pm_dir, address);
  219. if (pte_none(*pt_dir)) {
  220. unsigned long new_page;
  221. new_page =__pa(vmem_alloc_pages(0));
  222. if (!new_page)
  223. goto out;
  224. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  225. *pt_dir = pte;
  226. }
  227. }
  228. ret = 0;
  229. out:
  230. flush_tlb_kernel_range(start_addr, end_addr);
  231. return ret;
  232. }
  233. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  234. {
  235. int ret;
  236. ret = vmem_add_mem_map(start, size);
  237. if (ret)
  238. return ret;
  239. return vmem_add_range(start, size, ro);
  240. }
  241. /*
  242. * Add memory segment to the segment list if it doesn't overlap with
  243. * an already present segment.
  244. */
  245. static int insert_memory_segment(struct memory_segment *seg)
  246. {
  247. struct memory_segment *tmp;
  248. if (seg->start + seg->size >= VMEM_MAX_PHYS ||
  249. seg->start + seg->size < seg->start)
  250. return -ERANGE;
  251. list_for_each_entry(tmp, &mem_segs, list) {
  252. if (seg->start >= tmp->start + tmp->size)
  253. continue;
  254. if (seg->start + seg->size <= tmp->start)
  255. continue;
  256. return -ENOSPC;
  257. }
  258. list_add(&seg->list, &mem_segs);
  259. return 0;
  260. }
  261. /*
  262. * Remove memory segment from the segment list.
  263. */
  264. static void remove_memory_segment(struct memory_segment *seg)
  265. {
  266. list_del(&seg->list);
  267. }
  268. static void __remove_shared_memory(struct memory_segment *seg)
  269. {
  270. remove_memory_segment(seg);
  271. vmem_remove_range(seg->start, seg->size);
  272. }
  273. int remove_shared_memory(unsigned long start, unsigned long size)
  274. {
  275. struct memory_segment *seg;
  276. int ret;
  277. mutex_lock(&vmem_mutex);
  278. ret = -ENOENT;
  279. list_for_each_entry(seg, &mem_segs, list) {
  280. if (seg->start == start && seg->size == size)
  281. break;
  282. }
  283. if (seg->start != start || seg->size != size)
  284. goto out;
  285. ret = 0;
  286. __remove_shared_memory(seg);
  287. kfree(seg);
  288. out:
  289. mutex_unlock(&vmem_mutex);
  290. return ret;
  291. }
  292. int add_shared_memory(unsigned long start, unsigned long size)
  293. {
  294. struct memory_segment *seg;
  295. struct page *page;
  296. unsigned long pfn, num_pfn, end_pfn;
  297. int ret;
  298. mutex_lock(&vmem_mutex);
  299. ret = -ENOMEM;
  300. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  301. if (!seg)
  302. goto out;
  303. seg->start = start;
  304. seg->size = size;
  305. ret = insert_memory_segment(seg);
  306. if (ret)
  307. goto out_free;
  308. ret = vmem_add_mem(start, size, 0);
  309. if (ret)
  310. goto out_remove;
  311. pfn = PFN_DOWN(start);
  312. num_pfn = PFN_DOWN(size);
  313. end_pfn = pfn + num_pfn;
  314. page = pfn_to_page(pfn);
  315. memset(page, 0, num_pfn * sizeof(struct page));
  316. for (; pfn < end_pfn; pfn++) {
  317. page = pfn_to_page(pfn);
  318. init_page_count(page);
  319. reset_page_mapcount(page);
  320. SetPageReserved(page);
  321. INIT_LIST_HEAD(&page->lru);
  322. }
  323. goto out;
  324. out_remove:
  325. __remove_shared_memory(seg);
  326. out_free:
  327. kfree(seg);
  328. out:
  329. mutex_unlock(&vmem_mutex);
  330. return ret;
  331. }
  332. /*
  333. * map whole physical memory to virtual memory (identity mapping)
  334. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  335. * additional memory segments.
  336. */
  337. void __init vmem_map_init(void)
  338. {
  339. unsigned long ro_start, ro_end;
  340. unsigned long start, end;
  341. int i;
  342. INIT_LIST_HEAD(&init_mm.context.crst_list);
  343. INIT_LIST_HEAD(&init_mm.context.pgtable_list);
  344. init_mm.context.noexec = 0;
  345. NODE_DATA(0)->node_mem_map = VMEM_MAP;
  346. ro_start = ((unsigned long)&_stext) & PAGE_MASK;
  347. ro_end = PFN_ALIGN((unsigned long)&_eshared);
  348. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  349. start = memory_chunk[i].addr;
  350. end = memory_chunk[i].addr + memory_chunk[i].size;
  351. if (start >= ro_end || end <= ro_start)
  352. vmem_add_mem(start, end - start, 0);
  353. else if (start >= ro_start && end <= ro_end)
  354. vmem_add_mem(start, end - start, 1);
  355. else if (start >= ro_start) {
  356. vmem_add_mem(start, ro_end - start, 1);
  357. vmem_add_mem(ro_end, end - ro_end, 0);
  358. } else if (end < ro_end) {
  359. vmem_add_mem(start, ro_start - start, 0);
  360. vmem_add_mem(ro_start, end - ro_start, 1);
  361. } else {
  362. vmem_add_mem(start, ro_start - start, 0);
  363. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  364. vmem_add_mem(ro_end, end - ro_end, 0);
  365. }
  366. }
  367. }
  368. /*
  369. * Convert memory chunk array to a memory segment list so there is a single
  370. * list that contains both r/w memory and shared memory segments.
  371. */
  372. static int __init vmem_convert_memory_chunk(void)
  373. {
  374. struct memory_segment *seg;
  375. int i;
  376. mutex_lock(&vmem_mutex);
  377. for (i = 0; i < MEMORY_CHUNKS; i++) {
  378. if (!memory_chunk[i].size)
  379. continue;
  380. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  381. if (!seg)
  382. panic("Out of memory...\n");
  383. seg->start = memory_chunk[i].addr;
  384. seg->size = memory_chunk[i].size;
  385. insert_memory_segment(seg);
  386. }
  387. mutex_unlock(&vmem_mutex);
  388. return 0;
  389. }
  390. core_initcall(vmem_convert_memory_chunk);