disk-io.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. static struct extent_io_ops btree_extent_io_ops;
  48. static void end_workqueue_fn(struct btrfs_work *work);
  49. static void free_fs_root(struct btrfs_root *root);
  50. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  51. int read_only);
  52. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  53. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  54. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  55. struct btrfs_root *root);
  56. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  57. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  59. struct extent_io_tree *dirty_pages,
  60. int mark);
  61. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  62. struct extent_io_tree *pinned_extents);
  63. /*
  64. * end_io_wq structs are used to do processing in task context when an IO is
  65. * complete. This is used during reads to verify checksums, and it is used
  66. * by writes to insert metadata for new file extents after IO is complete.
  67. */
  68. struct end_io_wq {
  69. struct bio *bio;
  70. bio_end_io_t *end_io;
  71. void *private;
  72. struct btrfs_fs_info *info;
  73. int error;
  74. int metadata;
  75. struct list_head list;
  76. struct btrfs_work work;
  77. };
  78. /*
  79. * async submit bios are used to offload expensive checksumming
  80. * onto the worker threads. They checksum file and metadata bios
  81. * just before they are sent down the IO stack.
  82. */
  83. struct async_submit_bio {
  84. struct inode *inode;
  85. struct bio *bio;
  86. struct list_head list;
  87. extent_submit_bio_hook_t *submit_bio_start;
  88. extent_submit_bio_hook_t *submit_bio_done;
  89. int rw;
  90. int mirror_num;
  91. unsigned long bio_flags;
  92. /*
  93. * bio_offset is optional, can be used if the pages in the bio
  94. * can't tell us where in the file the bio should go
  95. */
  96. u64 bio_offset;
  97. struct btrfs_work work;
  98. int error;
  99. };
  100. /*
  101. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  102. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  103. * the level the eb occupies in the tree.
  104. *
  105. * Different roots are used for different purposes and may nest inside each
  106. * other and they require separate keysets. As lockdep keys should be
  107. * static, assign keysets according to the purpose of the root as indicated
  108. * by btrfs_root->objectid. This ensures that all special purpose roots
  109. * have separate keysets.
  110. *
  111. * Lock-nesting across peer nodes is always done with the immediate parent
  112. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  113. * subclass to avoid triggering lockdep warning in such cases.
  114. *
  115. * The key is set by the readpage_end_io_hook after the buffer has passed
  116. * csum validation but before the pages are unlocked. It is also set by
  117. * btrfs_init_new_buffer on freshly allocated blocks.
  118. *
  119. * We also add a check to make sure the highest level of the tree is the
  120. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  121. * needs update as well.
  122. */
  123. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  124. # if BTRFS_MAX_LEVEL != 8
  125. # error
  126. # endif
  127. static struct btrfs_lockdep_keyset {
  128. u64 id; /* root objectid */
  129. const char *name_stem; /* lock name stem */
  130. char names[BTRFS_MAX_LEVEL + 1][20];
  131. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  132. } btrfs_lockdep_keysets[] = {
  133. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  134. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  135. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  136. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  137. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  138. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  139. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  140. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  141. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  142. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  143. { .id = 0, .name_stem = "tree" },
  144. };
  145. void __init btrfs_init_lockdep(void)
  146. {
  147. int i, j;
  148. /* initialize lockdep class names */
  149. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  150. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  151. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  152. snprintf(ks->names[j], sizeof(ks->names[j]),
  153. "btrfs-%s-%02d", ks->name_stem, j);
  154. }
  155. }
  156. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  157. int level)
  158. {
  159. struct btrfs_lockdep_keyset *ks;
  160. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  161. /* find the matching keyset, id 0 is the default entry */
  162. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  163. if (ks->id == objectid)
  164. break;
  165. lockdep_set_class_and_name(&eb->lock,
  166. &ks->keys[level], ks->names[level]);
  167. }
  168. #endif
  169. /*
  170. * extents on the btree inode are pretty simple, there's one extent
  171. * that covers the entire device
  172. */
  173. static struct extent_map *btree_get_extent(struct inode *inode,
  174. struct page *page, size_t pg_offset, u64 start, u64 len,
  175. int create)
  176. {
  177. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  178. struct extent_map *em;
  179. int ret;
  180. read_lock(&em_tree->lock);
  181. em = lookup_extent_mapping(em_tree, start, len);
  182. if (em) {
  183. em->bdev =
  184. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  185. read_unlock(&em_tree->lock);
  186. goto out;
  187. }
  188. read_unlock(&em_tree->lock);
  189. em = alloc_extent_map();
  190. if (!em) {
  191. em = ERR_PTR(-ENOMEM);
  192. goto out;
  193. }
  194. em->start = 0;
  195. em->len = (u64)-1;
  196. em->block_len = (u64)-1;
  197. em->block_start = 0;
  198. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  199. write_lock(&em_tree->lock);
  200. ret = add_extent_mapping(em_tree, em);
  201. if (ret == -EEXIST) {
  202. u64 failed_start = em->start;
  203. u64 failed_len = em->len;
  204. free_extent_map(em);
  205. em = lookup_extent_mapping(em_tree, start, len);
  206. if (em) {
  207. ret = 0;
  208. } else {
  209. em = lookup_extent_mapping(em_tree, failed_start,
  210. failed_len);
  211. ret = -EIO;
  212. }
  213. } else if (ret) {
  214. free_extent_map(em);
  215. em = NULL;
  216. }
  217. write_unlock(&em_tree->lock);
  218. if (ret)
  219. em = ERR_PTR(ret);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * helper to read a given tree block, doing retries as required when
  329. * the checksums don't match and we have alternate mirrors to try.
  330. */
  331. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  332. struct extent_buffer *eb,
  333. u64 start, u64 parent_transid)
  334. {
  335. struct extent_io_tree *io_tree;
  336. int failed = 0;
  337. int ret;
  338. int num_copies = 0;
  339. int mirror_num = 0;
  340. int failed_mirror = 0;
  341. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  342. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  343. while (1) {
  344. ret = read_extent_buffer_pages(io_tree, eb, start,
  345. WAIT_COMPLETE,
  346. btree_get_extent, mirror_num);
  347. if (!ret && !verify_parent_transid(io_tree, eb,
  348. parent_transid, 0))
  349. break;
  350. /*
  351. * This buffer's crc is fine, but its contents are corrupted, so
  352. * there is no reason to read the other copies, they won't be
  353. * any less wrong.
  354. */
  355. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  356. break;
  357. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  358. eb->start, eb->len);
  359. if (num_copies == 1)
  360. break;
  361. if (!failed_mirror) {
  362. failed = 1;
  363. failed_mirror = eb->read_mirror;
  364. }
  365. mirror_num++;
  366. if (mirror_num == failed_mirror)
  367. mirror_num++;
  368. if (mirror_num > num_copies)
  369. break;
  370. }
  371. if (failed && !ret && failed_mirror)
  372. repair_eb_io_failure(root, eb, failed_mirror);
  373. return ret;
  374. }
  375. /*
  376. * checksum a dirty tree block before IO. This has extra checks to make sure
  377. * we only fill in the checksum field in the first page of a multi-page block
  378. */
  379. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  380. {
  381. struct extent_io_tree *tree;
  382. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  383. u64 found_start;
  384. struct extent_buffer *eb;
  385. tree = &BTRFS_I(page->mapping->host)->io_tree;
  386. eb = (struct extent_buffer *)page->private;
  387. if (page != eb->pages[0])
  388. return 0;
  389. found_start = btrfs_header_bytenr(eb);
  390. if (found_start != start) {
  391. WARN_ON(1);
  392. return 0;
  393. }
  394. if (eb->pages[0] != page) {
  395. WARN_ON(1);
  396. return 0;
  397. }
  398. if (!PageUptodate(page)) {
  399. WARN_ON(1);
  400. return 0;
  401. }
  402. csum_tree_block(root, eb, 0);
  403. return 0;
  404. }
  405. static int check_tree_block_fsid(struct btrfs_root *root,
  406. struct extent_buffer *eb)
  407. {
  408. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  409. u8 fsid[BTRFS_UUID_SIZE];
  410. int ret = 1;
  411. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  412. BTRFS_FSID_SIZE);
  413. while (fs_devices) {
  414. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  415. ret = 0;
  416. break;
  417. }
  418. fs_devices = fs_devices->seed;
  419. }
  420. return ret;
  421. }
  422. #define CORRUPT(reason, eb, root, slot) \
  423. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  424. "root=%llu, slot=%d\n", reason, \
  425. (unsigned long long)btrfs_header_bytenr(eb), \
  426. (unsigned long long)root->objectid, slot)
  427. static noinline int check_leaf(struct btrfs_root *root,
  428. struct extent_buffer *leaf)
  429. {
  430. struct btrfs_key key;
  431. struct btrfs_key leaf_key;
  432. u32 nritems = btrfs_header_nritems(leaf);
  433. int slot;
  434. if (nritems == 0)
  435. return 0;
  436. /* Check the 0 item */
  437. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  438. BTRFS_LEAF_DATA_SIZE(root)) {
  439. CORRUPT("invalid item offset size pair", leaf, root, 0);
  440. return -EIO;
  441. }
  442. /*
  443. * Check to make sure each items keys are in the correct order and their
  444. * offsets make sense. We only have to loop through nritems-1 because
  445. * we check the current slot against the next slot, which verifies the
  446. * next slot's offset+size makes sense and that the current's slot
  447. * offset is correct.
  448. */
  449. for (slot = 0; slot < nritems - 1; slot++) {
  450. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  451. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  452. /* Make sure the keys are in the right order */
  453. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  454. CORRUPT("bad key order", leaf, root, slot);
  455. return -EIO;
  456. }
  457. /*
  458. * Make sure the offset and ends are right, remember that the
  459. * item data starts at the end of the leaf and grows towards the
  460. * front.
  461. */
  462. if (btrfs_item_offset_nr(leaf, slot) !=
  463. btrfs_item_end_nr(leaf, slot + 1)) {
  464. CORRUPT("slot offset bad", leaf, root, slot);
  465. return -EIO;
  466. }
  467. /*
  468. * Check to make sure that we don't point outside of the leaf,
  469. * just incase all the items are consistent to eachother, but
  470. * all point outside of the leaf.
  471. */
  472. if (btrfs_item_end_nr(leaf, slot) >
  473. BTRFS_LEAF_DATA_SIZE(root)) {
  474. CORRUPT("slot end outside of leaf", leaf, root, slot);
  475. return -EIO;
  476. }
  477. }
  478. return 0;
  479. }
  480. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  481. struct page *page, int max_walk)
  482. {
  483. struct extent_buffer *eb;
  484. u64 start = page_offset(page);
  485. u64 target = start;
  486. u64 min_start;
  487. if (start < max_walk)
  488. min_start = 0;
  489. else
  490. min_start = start - max_walk;
  491. while (start >= min_start) {
  492. eb = find_extent_buffer(tree, start, 0);
  493. if (eb) {
  494. /*
  495. * we found an extent buffer and it contains our page
  496. * horray!
  497. */
  498. if (eb->start <= target &&
  499. eb->start + eb->len > target)
  500. return eb;
  501. /* we found an extent buffer that wasn't for us */
  502. free_extent_buffer(eb);
  503. return NULL;
  504. }
  505. if (start == 0)
  506. break;
  507. start -= PAGE_CACHE_SIZE;
  508. }
  509. return NULL;
  510. }
  511. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  512. struct extent_state *state, int mirror)
  513. {
  514. struct extent_io_tree *tree;
  515. u64 found_start;
  516. int found_level;
  517. struct extent_buffer *eb;
  518. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  519. int ret = 0;
  520. int reads_done;
  521. if (!page->private)
  522. goto out;
  523. tree = &BTRFS_I(page->mapping->host)->io_tree;
  524. eb = (struct extent_buffer *)page->private;
  525. /* the pending IO might have been the only thing that kept this buffer
  526. * in memory. Make sure we have a ref for all this other checks
  527. */
  528. extent_buffer_get(eb);
  529. reads_done = atomic_dec_and_test(&eb->io_pages);
  530. if (!reads_done)
  531. goto err;
  532. eb->read_mirror = mirror;
  533. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  534. ret = -EIO;
  535. goto err;
  536. }
  537. found_start = btrfs_header_bytenr(eb);
  538. if (found_start != eb->start) {
  539. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  540. "%llu %llu\n",
  541. (unsigned long long)found_start,
  542. (unsigned long long)eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. if (check_tree_block_fsid(root, eb)) {
  547. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  548. (unsigned long long)eb->start);
  549. ret = -EIO;
  550. goto err;
  551. }
  552. found_level = btrfs_header_level(eb);
  553. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  554. eb, found_level);
  555. ret = csum_tree_block(root, eb, 1);
  556. if (ret) {
  557. ret = -EIO;
  558. goto err;
  559. }
  560. /*
  561. * If this is a leaf block and it is corrupt, set the corrupt bit so
  562. * that we don't try and read the other copies of this block, just
  563. * return -EIO.
  564. */
  565. if (found_level == 0 && check_leaf(root, eb)) {
  566. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  567. ret = -EIO;
  568. }
  569. if (!ret)
  570. set_extent_buffer_uptodate(eb);
  571. err:
  572. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  573. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  574. btree_readahead_hook(root, eb, eb->start, ret);
  575. }
  576. if (ret)
  577. clear_extent_buffer_uptodate(eb);
  578. free_extent_buffer(eb);
  579. out:
  580. return ret;
  581. }
  582. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  583. {
  584. struct extent_buffer *eb;
  585. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  586. eb = (struct extent_buffer *)page->private;
  587. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  588. eb->read_mirror = failed_mirror;
  589. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  590. btree_readahead_hook(root, eb, eb->start, -EIO);
  591. return -EIO; /* we fixed nothing */
  592. }
  593. static void end_workqueue_bio(struct bio *bio, int err)
  594. {
  595. struct end_io_wq *end_io_wq = bio->bi_private;
  596. struct btrfs_fs_info *fs_info;
  597. fs_info = end_io_wq->info;
  598. end_io_wq->error = err;
  599. end_io_wq->work.func = end_workqueue_fn;
  600. end_io_wq->work.flags = 0;
  601. if (bio->bi_rw & REQ_WRITE) {
  602. if (end_io_wq->metadata == 1)
  603. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  604. &end_io_wq->work);
  605. else if (end_io_wq->metadata == 2)
  606. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  607. &end_io_wq->work);
  608. else
  609. btrfs_queue_worker(&fs_info->endio_write_workers,
  610. &end_io_wq->work);
  611. } else {
  612. if (end_io_wq->metadata)
  613. btrfs_queue_worker(&fs_info->endio_meta_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_worker(&fs_info->endio_workers,
  617. &end_io_wq->work);
  618. }
  619. }
  620. /*
  621. * For the metadata arg you want
  622. *
  623. * 0 - if data
  624. * 1 - if normal metadta
  625. * 2 - if writing to the free space cache area
  626. */
  627. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  628. int metadata)
  629. {
  630. struct end_io_wq *end_io_wq;
  631. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  632. if (!end_io_wq)
  633. return -ENOMEM;
  634. end_io_wq->private = bio->bi_private;
  635. end_io_wq->end_io = bio->bi_end_io;
  636. end_io_wq->info = info;
  637. end_io_wq->error = 0;
  638. end_io_wq->bio = bio;
  639. end_io_wq->metadata = metadata;
  640. bio->bi_private = end_io_wq;
  641. bio->bi_end_io = end_workqueue_bio;
  642. return 0;
  643. }
  644. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  645. {
  646. unsigned long limit = min_t(unsigned long,
  647. info->workers.max_workers,
  648. info->fs_devices->open_devices);
  649. return 256 * limit;
  650. }
  651. static void run_one_async_start(struct btrfs_work *work)
  652. {
  653. struct async_submit_bio *async;
  654. int ret;
  655. async = container_of(work, struct async_submit_bio, work);
  656. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  657. async->mirror_num, async->bio_flags,
  658. async->bio_offset);
  659. if (ret)
  660. async->error = ret;
  661. }
  662. static void run_one_async_done(struct btrfs_work *work)
  663. {
  664. struct btrfs_fs_info *fs_info;
  665. struct async_submit_bio *async;
  666. int limit;
  667. async = container_of(work, struct async_submit_bio, work);
  668. fs_info = BTRFS_I(async->inode)->root->fs_info;
  669. limit = btrfs_async_submit_limit(fs_info);
  670. limit = limit * 2 / 3;
  671. atomic_dec(&fs_info->nr_async_submits);
  672. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  673. waitqueue_active(&fs_info->async_submit_wait))
  674. wake_up(&fs_info->async_submit_wait);
  675. /* If an error occured we just want to clean up the bio and move on */
  676. if (async->error) {
  677. bio_endio(async->bio, async->error);
  678. return;
  679. }
  680. async->submit_bio_done(async->inode, async->rw, async->bio,
  681. async->mirror_num, async->bio_flags,
  682. async->bio_offset);
  683. }
  684. static void run_one_async_free(struct btrfs_work *work)
  685. {
  686. struct async_submit_bio *async;
  687. async = container_of(work, struct async_submit_bio, work);
  688. kfree(async);
  689. }
  690. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  691. int rw, struct bio *bio, int mirror_num,
  692. unsigned long bio_flags,
  693. u64 bio_offset,
  694. extent_submit_bio_hook_t *submit_bio_start,
  695. extent_submit_bio_hook_t *submit_bio_done)
  696. {
  697. struct async_submit_bio *async;
  698. async = kmalloc(sizeof(*async), GFP_NOFS);
  699. if (!async)
  700. return -ENOMEM;
  701. async->inode = inode;
  702. async->rw = rw;
  703. async->bio = bio;
  704. async->mirror_num = mirror_num;
  705. async->submit_bio_start = submit_bio_start;
  706. async->submit_bio_done = submit_bio_done;
  707. async->work.func = run_one_async_start;
  708. async->work.ordered_func = run_one_async_done;
  709. async->work.ordered_free = run_one_async_free;
  710. async->work.flags = 0;
  711. async->bio_flags = bio_flags;
  712. async->bio_offset = bio_offset;
  713. async->error = 0;
  714. atomic_inc(&fs_info->nr_async_submits);
  715. if (rw & REQ_SYNC)
  716. btrfs_set_work_high_prio(&async->work);
  717. btrfs_queue_worker(&fs_info->workers, &async->work);
  718. while (atomic_read(&fs_info->async_submit_draining) &&
  719. atomic_read(&fs_info->nr_async_submits)) {
  720. wait_event(fs_info->async_submit_wait,
  721. (atomic_read(&fs_info->nr_async_submits) == 0));
  722. }
  723. return 0;
  724. }
  725. static int btree_csum_one_bio(struct bio *bio)
  726. {
  727. struct bio_vec *bvec = bio->bi_io_vec;
  728. int bio_index = 0;
  729. struct btrfs_root *root;
  730. int ret = 0;
  731. WARN_ON(bio->bi_vcnt <= 0);
  732. while (bio_index < bio->bi_vcnt) {
  733. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  734. ret = csum_dirty_buffer(root, bvec->bv_page);
  735. if (ret)
  736. break;
  737. bio_index++;
  738. bvec++;
  739. }
  740. return ret;
  741. }
  742. static int __btree_submit_bio_start(struct inode *inode, int rw,
  743. struct bio *bio, int mirror_num,
  744. unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. /*
  748. * when we're called for a write, we're already in the async
  749. * submission context. Just jump into btrfs_map_bio
  750. */
  751. return btree_csum_one_bio(bio);
  752. }
  753. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  754. int mirror_num, unsigned long bio_flags,
  755. u64 bio_offset)
  756. {
  757. /*
  758. * when we're called for a write, we're already in the async
  759. * submission context. Just jump into btrfs_map_bio
  760. */
  761. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  762. }
  763. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  764. int mirror_num, unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. int ret;
  768. if (!(rw & REQ_WRITE)) {
  769. /*
  770. * called for a read, do the setup so that checksum validation
  771. * can happen in the async kernel threads
  772. */
  773. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  774. bio, 1);
  775. if (ret)
  776. return ret;
  777. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  778. mirror_num, 0);
  779. }
  780. /*
  781. * kthread helpers are used to submit writes so that checksumming
  782. * can happen in parallel across all CPUs
  783. */
  784. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  785. inode, rw, bio, mirror_num, 0,
  786. bio_offset,
  787. __btree_submit_bio_start,
  788. __btree_submit_bio_done);
  789. }
  790. #ifdef CONFIG_MIGRATION
  791. static int btree_migratepage(struct address_space *mapping,
  792. struct page *newpage, struct page *page,
  793. enum migrate_mode mode)
  794. {
  795. /*
  796. * we can't safely write a btree page from here,
  797. * we haven't done the locking hook
  798. */
  799. if (PageDirty(page))
  800. return -EAGAIN;
  801. /*
  802. * Buffers may be managed in a filesystem specific way.
  803. * We must have no buffers or drop them.
  804. */
  805. if (page_has_private(page) &&
  806. !try_to_release_page(page, GFP_KERNEL))
  807. return -EAGAIN;
  808. return migrate_page(mapping, newpage, page, mode);
  809. }
  810. #endif
  811. static int btree_writepages(struct address_space *mapping,
  812. struct writeback_control *wbc)
  813. {
  814. struct extent_io_tree *tree;
  815. tree = &BTRFS_I(mapping->host)->io_tree;
  816. if (wbc->sync_mode == WB_SYNC_NONE) {
  817. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  818. u64 num_dirty;
  819. unsigned long thresh = 32 * 1024 * 1024;
  820. if (wbc->for_kupdate)
  821. return 0;
  822. /* this is a bit racy, but that's ok */
  823. num_dirty = root->fs_info->dirty_metadata_bytes;
  824. if (num_dirty < thresh)
  825. return 0;
  826. }
  827. return btree_write_cache_pages(mapping, wbc);
  828. }
  829. static int btree_readpage(struct file *file, struct page *page)
  830. {
  831. struct extent_io_tree *tree;
  832. tree = &BTRFS_I(page->mapping->host)->io_tree;
  833. return extent_read_full_page(tree, page, btree_get_extent, 0);
  834. }
  835. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  836. {
  837. if (PageWriteback(page) || PageDirty(page))
  838. return 0;
  839. /*
  840. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  841. * slab allocation from alloc_extent_state down the callchain where
  842. * it'd hit a BUG_ON as those flags are not allowed.
  843. */
  844. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  845. return try_release_extent_buffer(page, gfp_flags);
  846. }
  847. static void btree_invalidatepage(struct page *page, unsigned long offset)
  848. {
  849. struct extent_io_tree *tree;
  850. tree = &BTRFS_I(page->mapping->host)->io_tree;
  851. extent_invalidatepage(tree, page, offset);
  852. btree_releasepage(page, GFP_NOFS);
  853. if (PagePrivate(page)) {
  854. printk(KERN_WARNING "btrfs warning page private not zero "
  855. "on page %llu\n", (unsigned long long)page_offset(page));
  856. ClearPagePrivate(page);
  857. set_page_private(page, 0);
  858. page_cache_release(page);
  859. }
  860. }
  861. static int btree_set_page_dirty(struct page *page)
  862. {
  863. struct extent_buffer *eb;
  864. BUG_ON(!PagePrivate(page));
  865. eb = (struct extent_buffer *)page->private;
  866. BUG_ON(!eb);
  867. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  868. BUG_ON(!atomic_read(&eb->refs));
  869. btrfs_assert_tree_locked(eb);
  870. return __set_page_dirty_nobuffers(page);
  871. }
  872. static const struct address_space_operations btree_aops = {
  873. .readpage = btree_readpage,
  874. .writepages = btree_writepages,
  875. .releasepage = btree_releasepage,
  876. .invalidatepage = btree_invalidatepage,
  877. #ifdef CONFIG_MIGRATION
  878. .migratepage = btree_migratepage,
  879. #endif
  880. .set_page_dirty = btree_set_page_dirty,
  881. };
  882. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  883. u64 parent_transid)
  884. {
  885. struct extent_buffer *buf = NULL;
  886. struct inode *btree_inode = root->fs_info->btree_inode;
  887. int ret = 0;
  888. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  889. if (!buf)
  890. return 0;
  891. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  892. buf, 0, WAIT_NONE, btree_get_extent, 0);
  893. free_extent_buffer(buf);
  894. return ret;
  895. }
  896. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  897. int mirror_num, struct extent_buffer **eb)
  898. {
  899. struct extent_buffer *buf = NULL;
  900. struct inode *btree_inode = root->fs_info->btree_inode;
  901. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  902. int ret;
  903. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  904. if (!buf)
  905. return 0;
  906. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  907. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  908. btree_get_extent, mirror_num);
  909. if (ret) {
  910. free_extent_buffer(buf);
  911. return ret;
  912. }
  913. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  914. free_extent_buffer(buf);
  915. return -EIO;
  916. } else if (extent_buffer_uptodate(buf)) {
  917. *eb = buf;
  918. } else {
  919. free_extent_buffer(buf);
  920. }
  921. return 0;
  922. }
  923. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  924. u64 bytenr, u32 blocksize)
  925. {
  926. struct inode *btree_inode = root->fs_info->btree_inode;
  927. struct extent_buffer *eb;
  928. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  929. bytenr, blocksize);
  930. return eb;
  931. }
  932. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  933. u64 bytenr, u32 blocksize)
  934. {
  935. struct inode *btree_inode = root->fs_info->btree_inode;
  936. struct extent_buffer *eb;
  937. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  938. bytenr, blocksize);
  939. return eb;
  940. }
  941. int btrfs_write_tree_block(struct extent_buffer *buf)
  942. {
  943. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  944. buf->start + buf->len - 1);
  945. }
  946. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  947. {
  948. return filemap_fdatawait_range(buf->pages[0]->mapping,
  949. buf->start, buf->start + buf->len - 1);
  950. }
  951. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  952. u32 blocksize, u64 parent_transid)
  953. {
  954. struct extent_buffer *buf = NULL;
  955. int ret;
  956. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  957. if (!buf)
  958. return NULL;
  959. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  960. return buf;
  961. }
  962. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  963. struct extent_buffer *buf)
  964. {
  965. if (btrfs_header_generation(buf) ==
  966. root->fs_info->running_transaction->transid) {
  967. btrfs_assert_tree_locked(buf);
  968. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  969. spin_lock(&root->fs_info->delalloc_lock);
  970. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  971. root->fs_info->dirty_metadata_bytes -= buf->len;
  972. else {
  973. spin_unlock(&root->fs_info->delalloc_lock);
  974. btrfs_panic(root->fs_info, -EOVERFLOW,
  975. "Can't clear %lu bytes from "
  976. " dirty_mdatadata_bytes (%llu)",
  977. buf->len,
  978. root->fs_info->dirty_metadata_bytes);
  979. }
  980. spin_unlock(&root->fs_info->delalloc_lock);
  981. }
  982. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  983. btrfs_set_lock_blocking(buf);
  984. clear_extent_buffer_dirty(buf);
  985. }
  986. }
  987. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  988. u32 stripesize, struct btrfs_root *root,
  989. struct btrfs_fs_info *fs_info,
  990. u64 objectid)
  991. {
  992. root->node = NULL;
  993. root->commit_root = NULL;
  994. root->sectorsize = sectorsize;
  995. root->nodesize = nodesize;
  996. root->leafsize = leafsize;
  997. root->stripesize = stripesize;
  998. root->ref_cows = 0;
  999. root->track_dirty = 0;
  1000. root->in_radix = 0;
  1001. root->orphan_item_inserted = 0;
  1002. root->orphan_cleanup_state = 0;
  1003. root->objectid = objectid;
  1004. root->last_trans = 0;
  1005. root->highest_objectid = 0;
  1006. root->name = NULL;
  1007. root->inode_tree = RB_ROOT;
  1008. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1009. root->block_rsv = NULL;
  1010. root->orphan_block_rsv = NULL;
  1011. INIT_LIST_HEAD(&root->dirty_list);
  1012. INIT_LIST_HEAD(&root->root_list);
  1013. spin_lock_init(&root->orphan_lock);
  1014. spin_lock_init(&root->inode_lock);
  1015. spin_lock_init(&root->accounting_lock);
  1016. mutex_init(&root->objectid_mutex);
  1017. mutex_init(&root->log_mutex);
  1018. init_waitqueue_head(&root->log_writer_wait);
  1019. init_waitqueue_head(&root->log_commit_wait[0]);
  1020. init_waitqueue_head(&root->log_commit_wait[1]);
  1021. atomic_set(&root->log_commit[0], 0);
  1022. atomic_set(&root->log_commit[1], 0);
  1023. atomic_set(&root->log_writers, 0);
  1024. atomic_set(&root->orphan_inodes, 0);
  1025. root->log_batch = 0;
  1026. root->log_transid = 0;
  1027. root->last_log_commit = 0;
  1028. extent_io_tree_init(&root->dirty_log_pages,
  1029. fs_info->btree_inode->i_mapping);
  1030. memset(&root->root_key, 0, sizeof(root->root_key));
  1031. memset(&root->root_item, 0, sizeof(root->root_item));
  1032. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1033. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1034. root->defrag_trans_start = fs_info->generation;
  1035. init_completion(&root->kobj_unregister);
  1036. root->defrag_running = 0;
  1037. root->root_key.objectid = objectid;
  1038. root->anon_dev = 0;
  1039. spin_lock_init(&root->root_times_lock);
  1040. }
  1041. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1042. struct btrfs_fs_info *fs_info,
  1043. u64 objectid,
  1044. struct btrfs_root *root)
  1045. {
  1046. int ret;
  1047. u32 blocksize;
  1048. u64 generation;
  1049. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1050. tree_root->sectorsize, tree_root->stripesize,
  1051. root, fs_info, objectid);
  1052. ret = btrfs_find_last_root(tree_root, objectid,
  1053. &root->root_item, &root->root_key);
  1054. if (ret > 0)
  1055. return -ENOENT;
  1056. else if (ret < 0)
  1057. return ret;
  1058. generation = btrfs_root_generation(&root->root_item);
  1059. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1060. root->commit_root = NULL;
  1061. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1062. blocksize, generation);
  1063. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1064. free_extent_buffer(root->node);
  1065. root->node = NULL;
  1066. return -EIO;
  1067. }
  1068. root->commit_root = btrfs_root_node(root);
  1069. return 0;
  1070. }
  1071. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1072. {
  1073. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1074. if (root)
  1075. root->fs_info = fs_info;
  1076. return root;
  1077. }
  1078. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1079. struct btrfs_fs_info *fs_info,
  1080. u64 objectid)
  1081. {
  1082. struct extent_buffer *leaf;
  1083. struct btrfs_root *tree_root = fs_info->tree_root;
  1084. struct btrfs_root *root;
  1085. struct btrfs_key key;
  1086. int ret = 0;
  1087. u64 bytenr;
  1088. root = btrfs_alloc_root(fs_info);
  1089. if (!root)
  1090. return ERR_PTR(-ENOMEM);
  1091. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1092. tree_root->sectorsize, tree_root->stripesize,
  1093. root, fs_info, objectid);
  1094. root->root_key.objectid = objectid;
  1095. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1096. root->root_key.offset = 0;
  1097. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1098. 0, objectid, NULL, 0, 0, 0);
  1099. if (IS_ERR(leaf)) {
  1100. ret = PTR_ERR(leaf);
  1101. goto fail;
  1102. }
  1103. bytenr = leaf->start;
  1104. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1105. btrfs_set_header_bytenr(leaf, leaf->start);
  1106. btrfs_set_header_generation(leaf, trans->transid);
  1107. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1108. btrfs_set_header_owner(leaf, objectid);
  1109. root->node = leaf;
  1110. write_extent_buffer(leaf, fs_info->fsid,
  1111. (unsigned long)btrfs_header_fsid(leaf),
  1112. BTRFS_FSID_SIZE);
  1113. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1114. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1115. BTRFS_UUID_SIZE);
  1116. btrfs_mark_buffer_dirty(leaf);
  1117. root->commit_root = btrfs_root_node(root);
  1118. root->track_dirty = 1;
  1119. root->root_item.flags = 0;
  1120. root->root_item.byte_limit = 0;
  1121. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1122. btrfs_set_root_generation(&root->root_item, trans->transid);
  1123. btrfs_set_root_level(&root->root_item, 0);
  1124. btrfs_set_root_refs(&root->root_item, 1);
  1125. btrfs_set_root_used(&root->root_item, leaf->len);
  1126. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1127. btrfs_set_root_dirid(&root->root_item, 0);
  1128. root->root_item.drop_level = 0;
  1129. key.objectid = objectid;
  1130. key.type = BTRFS_ROOT_ITEM_KEY;
  1131. key.offset = 0;
  1132. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1133. if (ret)
  1134. goto fail;
  1135. btrfs_tree_unlock(leaf);
  1136. fail:
  1137. if (ret)
  1138. return ERR_PTR(ret);
  1139. return root;
  1140. }
  1141. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1142. struct btrfs_fs_info *fs_info)
  1143. {
  1144. struct btrfs_root *root;
  1145. struct btrfs_root *tree_root = fs_info->tree_root;
  1146. struct extent_buffer *leaf;
  1147. root = btrfs_alloc_root(fs_info);
  1148. if (!root)
  1149. return ERR_PTR(-ENOMEM);
  1150. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1151. tree_root->sectorsize, tree_root->stripesize,
  1152. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1153. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1154. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1155. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1156. /*
  1157. * log trees do not get reference counted because they go away
  1158. * before a real commit is actually done. They do store pointers
  1159. * to file data extents, and those reference counts still get
  1160. * updated (along with back refs to the log tree).
  1161. */
  1162. root->ref_cows = 0;
  1163. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1164. BTRFS_TREE_LOG_OBJECTID, NULL,
  1165. 0, 0, 0);
  1166. if (IS_ERR(leaf)) {
  1167. kfree(root);
  1168. return ERR_CAST(leaf);
  1169. }
  1170. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1171. btrfs_set_header_bytenr(leaf, leaf->start);
  1172. btrfs_set_header_generation(leaf, trans->transid);
  1173. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1174. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1175. root->node = leaf;
  1176. write_extent_buffer(root->node, root->fs_info->fsid,
  1177. (unsigned long)btrfs_header_fsid(root->node),
  1178. BTRFS_FSID_SIZE);
  1179. btrfs_mark_buffer_dirty(root->node);
  1180. btrfs_tree_unlock(root->node);
  1181. return root;
  1182. }
  1183. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1184. struct btrfs_fs_info *fs_info)
  1185. {
  1186. struct btrfs_root *log_root;
  1187. log_root = alloc_log_tree(trans, fs_info);
  1188. if (IS_ERR(log_root))
  1189. return PTR_ERR(log_root);
  1190. WARN_ON(fs_info->log_root_tree);
  1191. fs_info->log_root_tree = log_root;
  1192. return 0;
  1193. }
  1194. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1195. struct btrfs_root *root)
  1196. {
  1197. struct btrfs_root *log_root;
  1198. struct btrfs_inode_item *inode_item;
  1199. log_root = alloc_log_tree(trans, root->fs_info);
  1200. if (IS_ERR(log_root))
  1201. return PTR_ERR(log_root);
  1202. log_root->last_trans = trans->transid;
  1203. log_root->root_key.offset = root->root_key.objectid;
  1204. inode_item = &log_root->root_item.inode;
  1205. inode_item->generation = cpu_to_le64(1);
  1206. inode_item->size = cpu_to_le64(3);
  1207. inode_item->nlink = cpu_to_le32(1);
  1208. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1209. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1210. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1211. WARN_ON(root->log_root);
  1212. root->log_root = log_root;
  1213. root->log_transid = 0;
  1214. root->last_log_commit = 0;
  1215. return 0;
  1216. }
  1217. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1218. struct btrfs_key *location)
  1219. {
  1220. struct btrfs_root *root;
  1221. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1222. struct btrfs_path *path;
  1223. struct extent_buffer *l;
  1224. u64 generation;
  1225. u32 blocksize;
  1226. int ret = 0;
  1227. int slot;
  1228. root = btrfs_alloc_root(fs_info);
  1229. if (!root)
  1230. return ERR_PTR(-ENOMEM);
  1231. if (location->offset == (u64)-1) {
  1232. ret = find_and_setup_root(tree_root, fs_info,
  1233. location->objectid, root);
  1234. if (ret) {
  1235. kfree(root);
  1236. return ERR_PTR(ret);
  1237. }
  1238. goto out;
  1239. }
  1240. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1241. tree_root->sectorsize, tree_root->stripesize,
  1242. root, fs_info, location->objectid);
  1243. path = btrfs_alloc_path();
  1244. if (!path) {
  1245. kfree(root);
  1246. return ERR_PTR(-ENOMEM);
  1247. }
  1248. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1249. if (ret == 0) {
  1250. l = path->nodes[0];
  1251. slot = path->slots[0];
  1252. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1253. memcpy(&root->root_key, location, sizeof(*location));
  1254. }
  1255. btrfs_free_path(path);
  1256. if (ret) {
  1257. kfree(root);
  1258. if (ret > 0)
  1259. ret = -ENOENT;
  1260. return ERR_PTR(ret);
  1261. }
  1262. generation = btrfs_root_generation(&root->root_item);
  1263. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1264. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1265. blocksize, generation);
  1266. root->commit_root = btrfs_root_node(root);
  1267. BUG_ON(!root->node); /* -ENOMEM */
  1268. out:
  1269. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1270. root->ref_cows = 1;
  1271. btrfs_check_and_init_root_item(&root->root_item);
  1272. }
  1273. return root;
  1274. }
  1275. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1276. struct btrfs_key *location)
  1277. {
  1278. struct btrfs_root *root;
  1279. int ret;
  1280. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1281. return fs_info->tree_root;
  1282. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1283. return fs_info->extent_root;
  1284. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1285. return fs_info->chunk_root;
  1286. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1287. return fs_info->dev_root;
  1288. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1289. return fs_info->csum_root;
  1290. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1291. return fs_info->quota_root ? fs_info->quota_root :
  1292. ERR_PTR(-ENOENT);
  1293. again:
  1294. spin_lock(&fs_info->fs_roots_radix_lock);
  1295. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1296. (unsigned long)location->objectid);
  1297. spin_unlock(&fs_info->fs_roots_radix_lock);
  1298. if (root)
  1299. return root;
  1300. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1301. if (IS_ERR(root))
  1302. return root;
  1303. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1304. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1305. GFP_NOFS);
  1306. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1307. ret = -ENOMEM;
  1308. goto fail;
  1309. }
  1310. btrfs_init_free_ino_ctl(root);
  1311. mutex_init(&root->fs_commit_mutex);
  1312. spin_lock_init(&root->cache_lock);
  1313. init_waitqueue_head(&root->cache_wait);
  1314. ret = get_anon_bdev(&root->anon_dev);
  1315. if (ret)
  1316. goto fail;
  1317. if (btrfs_root_refs(&root->root_item) == 0) {
  1318. ret = -ENOENT;
  1319. goto fail;
  1320. }
  1321. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1322. if (ret < 0)
  1323. goto fail;
  1324. if (ret == 0)
  1325. root->orphan_item_inserted = 1;
  1326. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1327. if (ret)
  1328. goto fail;
  1329. spin_lock(&fs_info->fs_roots_radix_lock);
  1330. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1331. (unsigned long)root->root_key.objectid,
  1332. root);
  1333. if (ret == 0)
  1334. root->in_radix = 1;
  1335. spin_unlock(&fs_info->fs_roots_radix_lock);
  1336. radix_tree_preload_end();
  1337. if (ret) {
  1338. if (ret == -EEXIST) {
  1339. free_fs_root(root);
  1340. goto again;
  1341. }
  1342. goto fail;
  1343. }
  1344. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1345. root->root_key.objectid);
  1346. WARN_ON(ret);
  1347. return root;
  1348. fail:
  1349. free_fs_root(root);
  1350. return ERR_PTR(ret);
  1351. }
  1352. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1353. {
  1354. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1355. int ret = 0;
  1356. struct btrfs_device *device;
  1357. struct backing_dev_info *bdi;
  1358. rcu_read_lock();
  1359. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1360. if (!device->bdev)
  1361. continue;
  1362. bdi = blk_get_backing_dev_info(device->bdev);
  1363. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1364. ret = 1;
  1365. break;
  1366. }
  1367. }
  1368. rcu_read_unlock();
  1369. return ret;
  1370. }
  1371. /*
  1372. * If this fails, caller must call bdi_destroy() to get rid of the
  1373. * bdi again.
  1374. */
  1375. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1376. {
  1377. int err;
  1378. bdi->capabilities = BDI_CAP_MAP_COPY;
  1379. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1380. if (err)
  1381. return err;
  1382. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1383. bdi->congested_fn = btrfs_congested_fn;
  1384. bdi->congested_data = info;
  1385. return 0;
  1386. }
  1387. /*
  1388. * called by the kthread helper functions to finally call the bio end_io
  1389. * functions. This is where read checksum verification actually happens
  1390. */
  1391. static void end_workqueue_fn(struct btrfs_work *work)
  1392. {
  1393. struct bio *bio;
  1394. struct end_io_wq *end_io_wq;
  1395. struct btrfs_fs_info *fs_info;
  1396. int error;
  1397. end_io_wq = container_of(work, struct end_io_wq, work);
  1398. bio = end_io_wq->bio;
  1399. fs_info = end_io_wq->info;
  1400. error = end_io_wq->error;
  1401. bio->bi_private = end_io_wq->private;
  1402. bio->bi_end_io = end_io_wq->end_io;
  1403. kfree(end_io_wq);
  1404. bio_endio(bio, error);
  1405. }
  1406. static int cleaner_kthread(void *arg)
  1407. {
  1408. struct btrfs_root *root = arg;
  1409. do {
  1410. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1411. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1412. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1413. btrfs_run_delayed_iputs(root);
  1414. btrfs_clean_old_snapshots(root);
  1415. mutex_unlock(&root->fs_info->cleaner_mutex);
  1416. btrfs_run_defrag_inodes(root->fs_info);
  1417. }
  1418. if (!try_to_freeze()) {
  1419. set_current_state(TASK_INTERRUPTIBLE);
  1420. if (!kthread_should_stop())
  1421. schedule();
  1422. __set_current_state(TASK_RUNNING);
  1423. }
  1424. } while (!kthread_should_stop());
  1425. return 0;
  1426. }
  1427. static int transaction_kthread(void *arg)
  1428. {
  1429. struct btrfs_root *root = arg;
  1430. struct btrfs_trans_handle *trans;
  1431. struct btrfs_transaction *cur;
  1432. u64 transid;
  1433. unsigned long now;
  1434. unsigned long delay;
  1435. bool cannot_commit;
  1436. do {
  1437. cannot_commit = false;
  1438. delay = HZ * 30;
  1439. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1440. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1441. spin_lock(&root->fs_info->trans_lock);
  1442. cur = root->fs_info->running_transaction;
  1443. if (!cur) {
  1444. spin_unlock(&root->fs_info->trans_lock);
  1445. goto sleep;
  1446. }
  1447. now = get_seconds();
  1448. if (!cur->blocked &&
  1449. (now < cur->start_time || now - cur->start_time < 30)) {
  1450. spin_unlock(&root->fs_info->trans_lock);
  1451. delay = HZ * 5;
  1452. goto sleep;
  1453. }
  1454. transid = cur->transid;
  1455. spin_unlock(&root->fs_info->trans_lock);
  1456. /* If the file system is aborted, this will always fail. */
  1457. trans = btrfs_join_transaction(root);
  1458. if (IS_ERR(trans)) {
  1459. cannot_commit = true;
  1460. goto sleep;
  1461. }
  1462. if (transid == trans->transid) {
  1463. btrfs_commit_transaction(trans, root);
  1464. } else {
  1465. btrfs_end_transaction(trans, root);
  1466. }
  1467. sleep:
  1468. wake_up_process(root->fs_info->cleaner_kthread);
  1469. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1470. if (!try_to_freeze()) {
  1471. set_current_state(TASK_INTERRUPTIBLE);
  1472. if (!kthread_should_stop() &&
  1473. (!btrfs_transaction_blocked(root->fs_info) ||
  1474. cannot_commit))
  1475. schedule_timeout(delay);
  1476. __set_current_state(TASK_RUNNING);
  1477. }
  1478. } while (!kthread_should_stop());
  1479. return 0;
  1480. }
  1481. /*
  1482. * this will find the highest generation in the array of
  1483. * root backups. The index of the highest array is returned,
  1484. * or -1 if we can't find anything.
  1485. *
  1486. * We check to make sure the array is valid by comparing the
  1487. * generation of the latest root in the array with the generation
  1488. * in the super block. If they don't match we pitch it.
  1489. */
  1490. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1491. {
  1492. u64 cur;
  1493. int newest_index = -1;
  1494. struct btrfs_root_backup *root_backup;
  1495. int i;
  1496. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1497. root_backup = info->super_copy->super_roots + i;
  1498. cur = btrfs_backup_tree_root_gen(root_backup);
  1499. if (cur == newest_gen)
  1500. newest_index = i;
  1501. }
  1502. /* check to see if we actually wrapped around */
  1503. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1504. root_backup = info->super_copy->super_roots;
  1505. cur = btrfs_backup_tree_root_gen(root_backup);
  1506. if (cur == newest_gen)
  1507. newest_index = 0;
  1508. }
  1509. return newest_index;
  1510. }
  1511. /*
  1512. * find the oldest backup so we know where to store new entries
  1513. * in the backup array. This will set the backup_root_index
  1514. * field in the fs_info struct
  1515. */
  1516. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1517. u64 newest_gen)
  1518. {
  1519. int newest_index = -1;
  1520. newest_index = find_newest_super_backup(info, newest_gen);
  1521. /* if there was garbage in there, just move along */
  1522. if (newest_index == -1) {
  1523. info->backup_root_index = 0;
  1524. } else {
  1525. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1526. }
  1527. }
  1528. /*
  1529. * copy all the root pointers into the super backup array.
  1530. * this will bump the backup pointer by one when it is
  1531. * done
  1532. */
  1533. static void backup_super_roots(struct btrfs_fs_info *info)
  1534. {
  1535. int next_backup;
  1536. struct btrfs_root_backup *root_backup;
  1537. int last_backup;
  1538. next_backup = info->backup_root_index;
  1539. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1540. BTRFS_NUM_BACKUP_ROOTS;
  1541. /*
  1542. * just overwrite the last backup if we're at the same generation
  1543. * this happens only at umount
  1544. */
  1545. root_backup = info->super_for_commit->super_roots + last_backup;
  1546. if (btrfs_backup_tree_root_gen(root_backup) ==
  1547. btrfs_header_generation(info->tree_root->node))
  1548. next_backup = last_backup;
  1549. root_backup = info->super_for_commit->super_roots + next_backup;
  1550. /*
  1551. * make sure all of our padding and empty slots get zero filled
  1552. * regardless of which ones we use today
  1553. */
  1554. memset(root_backup, 0, sizeof(*root_backup));
  1555. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1556. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1557. btrfs_set_backup_tree_root_gen(root_backup,
  1558. btrfs_header_generation(info->tree_root->node));
  1559. btrfs_set_backup_tree_root_level(root_backup,
  1560. btrfs_header_level(info->tree_root->node));
  1561. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1562. btrfs_set_backup_chunk_root_gen(root_backup,
  1563. btrfs_header_generation(info->chunk_root->node));
  1564. btrfs_set_backup_chunk_root_level(root_backup,
  1565. btrfs_header_level(info->chunk_root->node));
  1566. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1567. btrfs_set_backup_extent_root_gen(root_backup,
  1568. btrfs_header_generation(info->extent_root->node));
  1569. btrfs_set_backup_extent_root_level(root_backup,
  1570. btrfs_header_level(info->extent_root->node));
  1571. /*
  1572. * we might commit during log recovery, which happens before we set
  1573. * the fs_root. Make sure it is valid before we fill it in.
  1574. */
  1575. if (info->fs_root && info->fs_root->node) {
  1576. btrfs_set_backup_fs_root(root_backup,
  1577. info->fs_root->node->start);
  1578. btrfs_set_backup_fs_root_gen(root_backup,
  1579. btrfs_header_generation(info->fs_root->node));
  1580. btrfs_set_backup_fs_root_level(root_backup,
  1581. btrfs_header_level(info->fs_root->node));
  1582. }
  1583. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1584. btrfs_set_backup_dev_root_gen(root_backup,
  1585. btrfs_header_generation(info->dev_root->node));
  1586. btrfs_set_backup_dev_root_level(root_backup,
  1587. btrfs_header_level(info->dev_root->node));
  1588. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1589. btrfs_set_backup_csum_root_gen(root_backup,
  1590. btrfs_header_generation(info->csum_root->node));
  1591. btrfs_set_backup_csum_root_level(root_backup,
  1592. btrfs_header_level(info->csum_root->node));
  1593. btrfs_set_backup_total_bytes(root_backup,
  1594. btrfs_super_total_bytes(info->super_copy));
  1595. btrfs_set_backup_bytes_used(root_backup,
  1596. btrfs_super_bytes_used(info->super_copy));
  1597. btrfs_set_backup_num_devices(root_backup,
  1598. btrfs_super_num_devices(info->super_copy));
  1599. /*
  1600. * if we don't copy this out to the super_copy, it won't get remembered
  1601. * for the next commit
  1602. */
  1603. memcpy(&info->super_copy->super_roots,
  1604. &info->super_for_commit->super_roots,
  1605. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1606. }
  1607. /*
  1608. * this copies info out of the root backup array and back into
  1609. * the in-memory super block. It is meant to help iterate through
  1610. * the array, so you send it the number of backups you've already
  1611. * tried and the last backup index you used.
  1612. *
  1613. * this returns -1 when it has tried all the backups
  1614. */
  1615. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1616. struct btrfs_super_block *super,
  1617. int *num_backups_tried, int *backup_index)
  1618. {
  1619. struct btrfs_root_backup *root_backup;
  1620. int newest = *backup_index;
  1621. if (*num_backups_tried == 0) {
  1622. u64 gen = btrfs_super_generation(super);
  1623. newest = find_newest_super_backup(info, gen);
  1624. if (newest == -1)
  1625. return -1;
  1626. *backup_index = newest;
  1627. *num_backups_tried = 1;
  1628. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1629. /* we've tried all the backups, all done */
  1630. return -1;
  1631. } else {
  1632. /* jump to the next oldest backup */
  1633. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1634. BTRFS_NUM_BACKUP_ROOTS;
  1635. *backup_index = newest;
  1636. *num_backups_tried += 1;
  1637. }
  1638. root_backup = super->super_roots + newest;
  1639. btrfs_set_super_generation(super,
  1640. btrfs_backup_tree_root_gen(root_backup));
  1641. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1642. btrfs_set_super_root_level(super,
  1643. btrfs_backup_tree_root_level(root_backup));
  1644. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1645. /*
  1646. * fixme: the total bytes and num_devices need to match or we should
  1647. * need a fsck
  1648. */
  1649. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1650. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1651. return 0;
  1652. }
  1653. /* helper to cleanup tree roots */
  1654. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1655. {
  1656. free_extent_buffer(info->tree_root->node);
  1657. free_extent_buffer(info->tree_root->commit_root);
  1658. free_extent_buffer(info->dev_root->node);
  1659. free_extent_buffer(info->dev_root->commit_root);
  1660. free_extent_buffer(info->extent_root->node);
  1661. free_extent_buffer(info->extent_root->commit_root);
  1662. free_extent_buffer(info->csum_root->node);
  1663. free_extent_buffer(info->csum_root->commit_root);
  1664. if (info->quota_root) {
  1665. free_extent_buffer(info->quota_root->node);
  1666. free_extent_buffer(info->quota_root->commit_root);
  1667. }
  1668. info->tree_root->node = NULL;
  1669. info->tree_root->commit_root = NULL;
  1670. info->dev_root->node = NULL;
  1671. info->dev_root->commit_root = NULL;
  1672. info->extent_root->node = NULL;
  1673. info->extent_root->commit_root = NULL;
  1674. info->csum_root->node = NULL;
  1675. info->csum_root->commit_root = NULL;
  1676. if (info->quota_root) {
  1677. info->quota_root->node = NULL;
  1678. info->quota_root->commit_root = NULL;
  1679. }
  1680. if (chunk_root) {
  1681. free_extent_buffer(info->chunk_root->node);
  1682. free_extent_buffer(info->chunk_root->commit_root);
  1683. info->chunk_root->node = NULL;
  1684. info->chunk_root->commit_root = NULL;
  1685. }
  1686. }
  1687. int open_ctree(struct super_block *sb,
  1688. struct btrfs_fs_devices *fs_devices,
  1689. char *options)
  1690. {
  1691. u32 sectorsize;
  1692. u32 nodesize;
  1693. u32 leafsize;
  1694. u32 blocksize;
  1695. u32 stripesize;
  1696. u64 generation;
  1697. u64 features;
  1698. struct btrfs_key location;
  1699. struct buffer_head *bh;
  1700. struct btrfs_super_block *disk_super;
  1701. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1702. struct btrfs_root *tree_root;
  1703. struct btrfs_root *extent_root;
  1704. struct btrfs_root *csum_root;
  1705. struct btrfs_root *chunk_root;
  1706. struct btrfs_root *dev_root;
  1707. struct btrfs_root *quota_root;
  1708. struct btrfs_root *log_tree_root;
  1709. int ret;
  1710. int err = -EINVAL;
  1711. int num_backups_tried = 0;
  1712. int backup_index = 0;
  1713. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1714. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1715. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1716. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1717. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1718. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1719. if (!tree_root || !extent_root || !csum_root ||
  1720. !chunk_root || !dev_root || !quota_root) {
  1721. err = -ENOMEM;
  1722. goto fail;
  1723. }
  1724. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1725. if (ret) {
  1726. err = ret;
  1727. goto fail;
  1728. }
  1729. ret = setup_bdi(fs_info, &fs_info->bdi);
  1730. if (ret) {
  1731. err = ret;
  1732. goto fail_srcu;
  1733. }
  1734. fs_info->btree_inode = new_inode(sb);
  1735. if (!fs_info->btree_inode) {
  1736. err = -ENOMEM;
  1737. goto fail_bdi;
  1738. }
  1739. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1740. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1741. INIT_LIST_HEAD(&fs_info->trans_list);
  1742. INIT_LIST_HEAD(&fs_info->dead_roots);
  1743. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1744. INIT_LIST_HEAD(&fs_info->hashers);
  1745. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1746. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1747. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1748. spin_lock_init(&fs_info->delalloc_lock);
  1749. spin_lock_init(&fs_info->trans_lock);
  1750. spin_lock_init(&fs_info->ref_cache_lock);
  1751. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1752. spin_lock_init(&fs_info->delayed_iput_lock);
  1753. spin_lock_init(&fs_info->defrag_inodes_lock);
  1754. spin_lock_init(&fs_info->free_chunk_lock);
  1755. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1756. rwlock_init(&fs_info->tree_mod_log_lock);
  1757. mutex_init(&fs_info->reloc_mutex);
  1758. init_completion(&fs_info->kobj_unregister);
  1759. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1760. INIT_LIST_HEAD(&fs_info->space_info);
  1761. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1762. btrfs_mapping_init(&fs_info->mapping_tree);
  1763. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1764. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1765. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1766. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1767. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1768. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1769. atomic_set(&fs_info->nr_async_submits, 0);
  1770. atomic_set(&fs_info->async_delalloc_pages, 0);
  1771. atomic_set(&fs_info->async_submit_draining, 0);
  1772. atomic_set(&fs_info->nr_async_bios, 0);
  1773. atomic_set(&fs_info->defrag_running, 0);
  1774. atomic_set(&fs_info->tree_mod_seq, 0);
  1775. fs_info->sb = sb;
  1776. fs_info->max_inline = 8192 * 1024;
  1777. fs_info->metadata_ratio = 0;
  1778. fs_info->defrag_inodes = RB_ROOT;
  1779. fs_info->trans_no_join = 0;
  1780. fs_info->free_chunk_space = 0;
  1781. fs_info->tree_mod_log = RB_ROOT;
  1782. init_waitqueue_head(&fs_info->tree_mod_seq_wait);
  1783. /* readahead state */
  1784. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1785. spin_lock_init(&fs_info->reada_lock);
  1786. fs_info->thread_pool_size = min_t(unsigned long,
  1787. num_online_cpus() + 2, 8);
  1788. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1789. spin_lock_init(&fs_info->ordered_extent_lock);
  1790. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1791. GFP_NOFS);
  1792. if (!fs_info->delayed_root) {
  1793. err = -ENOMEM;
  1794. goto fail_iput;
  1795. }
  1796. btrfs_init_delayed_root(fs_info->delayed_root);
  1797. mutex_init(&fs_info->scrub_lock);
  1798. atomic_set(&fs_info->scrubs_running, 0);
  1799. atomic_set(&fs_info->scrub_pause_req, 0);
  1800. atomic_set(&fs_info->scrubs_paused, 0);
  1801. atomic_set(&fs_info->scrub_cancel_req, 0);
  1802. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1803. init_rwsem(&fs_info->scrub_super_lock);
  1804. fs_info->scrub_workers_refcnt = 0;
  1805. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1806. fs_info->check_integrity_print_mask = 0;
  1807. #endif
  1808. spin_lock_init(&fs_info->balance_lock);
  1809. mutex_init(&fs_info->balance_mutex);
  1810. atomic_set(&fs_info->balance_running, 0);
  1811. atomic_set(&fs_info->balance_pause_req, 0);
  1812. atomic_set(&fs_info->balance_cancel_req, 0);
  1813. fs_info->balance_ctl = NULL;
  1814. init_waitqueue_head(&fs_info->balance_wait_q);
  1815. sb->s_blocksize = 4096;
  1816. sb->s_blocksize_bits = blksize_bits(4096);
  1817. sb->s_bdi = &fs_info->bdi;
  1818. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1819. set_nlink(fs_info->btree_inode, 1);
  1820. /*
  1821. * we set the i_size on the btree inode to the max possible int.
  1822. * the real end of the address space is determined by all of
  1823. * the devices in the system
  1824. */
  1825. fs_info->btree_inode->i_size = OFFSET_MAX;
  1826. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1827. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1828. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1829. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1830. fs_info->btree_inode->i_mapping);
  1831. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1832. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1833. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1834. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1835. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1836. sizeof(struct btrfs_key));
  1837. set_bit(BTRFS_INODE_DUMMY,
  1838. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1839. insert_inode_hash(fs_info->btree_inode);
  1840. spin_lock_init(&fs_info->block_group_cache_lock);
  1841. fs_info->block_group_cache_tree = RB_ROOT;
  1842. extent_io_tree_init(&fs_info->freed_extents[0],
  1843. fs_info->btree_inode->i_mapping);
  1844. extent_io_tree_init(&fs_info->freed_extents[1],
  1845. fs_info->btree_inode->i_mapping);
  1846. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1847. fs_info->do_barriers = 1;
  1848. mutex_init(&fs_info->ordered_operations_mutex);
  1849. mutex_init(&fs_info->tree_log_mutex);
  1850. mutex_init(&fs_info->chunk_mutex);
  1851. mutex_init(&fs_info->transaction_kthread_mutex);
  1852. mutex_init(&fs_info->cleaner_mutex);
  1853. mutex_init(&fs_info->volume_mutex);
  1854. init_rwsem(&fs_info->extent_commit_sem);
  1855. init_rwsem(&fs_info->cleanup_work_sem);
  1856. init_rwsem(&fs_info->subvol_sem);
  1857. spin_lock_init(&fs_info->qgroup_lock);
  1858. fs_info->qgroup_tree = RB_ROOT;
  1859. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1860. fs_info->qgroup_seq = 1;
  1861. fs_info->quota_enabled = 0;
  1862. fs_info->pending_quota_state = 0;
  1863. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1864. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1865. init_waitqueue_head(&fs_info->transaction_throttle);
  1866. init_waitqueue_head(&fs_info->transaction_wait);
  1867. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1868. init_waitqueue_head(&fs_info->async_submit_wait);
  1869. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1870. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1871. invalidate_bdev(fs_devices->latest_bdev);
  1872. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1873. if (!bh) {
  1874. err = -EINVAL;
  1875. goto fail_alloc;
  1876. }
  1877. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1878. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1879. sizeof(*fs_info->super_for_commit));
  1880. brelse(bh);
  1881. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1882. disk_super = fs_info->super_copy;
  1883. if (!btrfs_super_root(disk_super))
  1884. goto fail_alloc;
  1885. /* check FS state, whether FS is broken. */
  1886. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1887. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1888. if (ret) {
  1889. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1890. err = ret;
  1891. goto fail_alloc;
  1892. }
  1893. /*
  1894. * run through our array of backup supers and setup
  1895. * our ring pointer to the oldest one
  1896. */
  1897. generation = btrfs_super_generation(disk_super);
  1898. find_oldest_super_backup(fs_info, generation);
  1899. /*
  1900. * In the long term, we'll store the compression type in the super
  1901. * block, and it'll be used for per file compression control.
  1902. */
  1903. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1904. ret = btrfs_parse_options(tree_root, options);
  1905. if (ret) {
  1906. err = ret;
  1907. goto fail_alloc;
  1908. }
  1909. features = btrfs_super_incompat_flags(disk_super) &
  1910. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1911. if (features) {
  1912. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1913. "unsupported optional features (%Lx).\n",
  1914. (unsigned long long)features);
  1915. err = -EINVAL;
  1916. goto fail_alloc;
  1917. }
  1918. if (btrfs_super_leafsize(disk_super) !=
  1919. btrfs_super_nodesize(disk_super)) {
  1920. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1921. "blocksizes don't match. node %d leaf %d\n",
  1922. btrfs_super_nodesize(disk_super),
  1923. btrfs_super_leafsize(disk_super));
  1924. err = -EINVAL;
  1925. goto fail_alloc;
  1926. }
  1927. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1928. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1929. "blocksize (%d) was too large\n",
  1930. btrfs_super_leafsize(disk_super));
  1931. err = -EINVAL;
  1932. goto fail_alloc;
  1933. }
  1934. features = btrfs_super_incompat_flags(disk_super);
  1935. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1936. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1937. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1938. /*
  1939. * flag our filesystem as having big metadata blocks if
  1940. * they are bigger than the page size
  1941. */
  1942. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1943. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1944. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1945. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1946. }
  1947. nodesize = btrfs_super_nodesize(disk_super);
  1948. leafsize = btrfs_super_leafsize(disk_super);
  1949. sectorsize = btrfs_super_sectorsize(disk_super);
  1950. stripesize = btrfs_super_stripesize(disk_super);
  1951. /*
  1952. * mixed block groups end up with duplicate but slightly offset
  1953. * extent buffers for the same range. It leads to corruptions
  1954. */
  1955. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1956. (sectorsize != leafsize)) {
  1957. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1958. "are not allowed for mixed block groups on %s\n",
  1959. sb->s_id);
  1960. goto fail_alloc;
  1961. }
  1962. btrfs_set_super_incompat_flags(disk_super, features);
  1963. features = btrfs_super_compat_ro_flags(disk_super) &
  1964. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1965. if (!(sb->s_flags & MS_RDONLY) && features) {
  1966. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1967. "unsupported option features (%Lx).\n",
  1968. (unsigned long long)features);
  1969. err = -EINVAL;
  1970. goto fail_alloc;
  1971. }
  1972. btrfs_init_workers(&fs_info->generic_worker,
  1973. "genwork", 1, NULL);
  1974. btrfs_init_workers(&fs_info->workers, "worker",
  1975. fs_info->thread_pool_size,
  1976. &fs_info->generic_worker);
  1977. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1978. fs_info->thread_pool_size,
  1979. &fs_info->generic_worker);
  1980. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1981. min_t(u64, fs_devices->num_devices,
  1982. fs_info->thread_pool_size),
  1983. &fs_info->generic_worker);
  1984. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1985. 2, &fs_info->generic_worker);
  1986. /* a higher idle thresh on the submit workers makes it much more
  1987. * likely that bios will be send down in a sane order to the
  1988. * devices
  1989. */
  1990. fs_info->submit_workers.idle_thresh = 64;
  1991. fs_info->workers.idle_thresh = 16;
  1992. fs_info->workers.ordered = 1;
  1993. fs_info->delalloc_workers.idle_thresh = 2;
  1994. fs_info->delalloc_workers.ordered = 1;
  1995. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1996. &fs_info->generic_worker);
  1997. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1998. fs_info->thread_pool_size,
  1999. &fs_info->generic_worker);
  2000. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2001. fs_info->thread_pool_size,
  2002. &fs_info->generic_worker);
  2003. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2004. "endio-meta-write", fs_info->thread_pool_size,
  2005. &fs_info->generic_worker);
  2006. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2007. fs_info->thread_pool_size,
  2008. &fs_info->generic_worker);
  2009. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2010. 1, &fs_info->generic_worker);
  2011. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2012. fs_info->thread_pool_size,
  2013. &fs_info->generic_worker);
  2014. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2015. fs_info->thread_pool_size,
  2016. &fs_info->generic_worker);
  2017. /*
  2018. * endios are largely parallel and should have a very
  2019. * low idle thresh
  2020. */
  2021. fs_info->endio_workers.idle_thresh = 4;
  2022. fs_info->endio_meta_workers.idle_thresh = 4;
  2023. fs_info->endio_write_workers.idle_thresh = 2;
  2024. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2025. fs_info->readahead_workers.idle_thresh = 2;
  2026. /*
  2027. * btrfs_start_workers can really only fail because of ENOMEM so just
  2028. * return -ENOMEM if any of these fail.
  2029. */
  2030. ret = btrfs_start_workers(&fs_info->workers);
  2031. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2032. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2033. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2034. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2035. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2036. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2037. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2038. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2039. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2040. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2041. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2042. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2043. if (ret) {
  2044. err = -ENOMEM;
  2045. goto fail_sb_buffer;
  2046. }
  2047. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2048. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2049. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2050. tree_root->nodesize = nodesize;
  2051. tree_root->leafsize = leafsize;
  2052. tree_root->sectorsize = sectorsize;
  2053. tree_root->stripesize = stripesize;
  2054. sb->s_blocksize = sectorsize;
  2055. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2056. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2057. sizeof(disk_super->magic))) {
  2058. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2059. goto fail_sb_buffer;
  2060. }
  2061. if (sectorsize != PAGE_SIZE) {
  2062. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2063. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2064. goto fail_sb_buffer;
  2065. }
  2066. mutex_lock(&fs_info->chunk_mutex);
  2067. ret = btrfs_read_sys_array(tree_root);
  2068. mutex_unlock(&fs_info->chunk_mutex);
  2069. if (ret) {
  2070. printk(KERN_WARNING "btrfs: failed to read the system "
  2071. "array on %s\n", sb->s_id);
  2072. goto fail_sb_buffer;
  2073. }
  2074. blocksize = btrfs_level_size(tree_root,
  2075. btrfs_super_chunk_root_level(disk_super));
  2076. generation = btrfs_super_chunk_root_generation(disk_super);
  2077. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2078. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2079. chunk_root->node = read_tree_block(chunk_root,
  2080. btrfs_super_chunk_root(disk_super),
  2081. blocksize, generation);
  2082. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2083. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2084. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2085. sb->s_id);
  2086. goto fail_tree_roots;
  2087. }
  2088. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2089. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2090. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2091. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2092. BTRFS_UUID_SIZE);
  2093. ret = btrfs_read_chunk_tree(chunk_root);
  2094. if (ret) {
  2095. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2096. sb->s_id);
  2097. goto fail_tree_roots;
  2098. }
  2099. btrfs_close_extra_devices(fs_devices);
  2100. if (!fs_devices->latest_bdev) {
  2101. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2102. sb->s_id);
  2103. goto fail_tree_roots;
  2104. }
  2105. retry_root_backup:
  2106. blocksize = btrfs_level_size(tree_root,
  2107. btrfs_super_root_level(disk_super));
  2108. generation = btrfs_super_generation(disk_super);
  2109. tree_root->node = read_tree_block(tree_root,
  2110. btrfs_super_root(disk_super),
  2111. blocksize, generation);
  2112. if (!tree_root->node ||
  2113. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2114. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2115. sb->s_id);
  2116. goto recovery_tree_root;
  2117. }
  2118. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2119. tree_root->commit_root = btrfs_root_node(tree_root);
  2120. ret = find_and_setup_root(tree_root, fs_info,
  2121. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2122. if (ret)
  2123. goto recovery_tree_root;
  2124. extent_root->track_dirty = 1;
  2125. ret = find_and_setup_root(tree_root, fs_info,
  2126. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2127. if (ret)
  2128. goto recovery_tree_root;
  2129. dev_root->track_dirty = 1;
  2130. ret = find_and_setup_root(tree_root, fs_info,
  2131. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2132. if (ret)
  2133. goto recovery_tree_root;
  2134. csum_root->track_dirty = 1;
  2135. ret = find_and_setup_root(tree_root, fs_info,
  2136. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2137. if (ret) {
  2138. kfree(quota_root);
  2139. quota_root = fs_info->quota_root = NULL;
  2140. } else {
  2141. quota_root->track_dirty = 1;
  2142. fs_info->quota_enabled = 1;
  2143. fs_info->pending_quota_state = 1;
  2144. }
  2145. fs_info->generation = generation;
  2146. fs_info->last_trans_committed = generation;
  2147. ret = btrfs_recover_balance(fs_info);
  2148. if (ret) {
  2149. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2150. goto fail_block_groups;
  2151. }
  2152. ret = btrfs_init_dev_stats(fs_info);
  2153. if (ret) {
  2154. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2155. ret);
  2156. goto fail_block_groups;
  2157. }
  2158. ret = btrfs_init_space_info(fs_info);
  2159. if (ret) {
  2160. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2161. goto fail_block_groups;
  2162. }
  2163. ret = btrfs_read_block_groups(extent_root);
  2164. if (ret) {
  2165. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2166. goto fail_block_groups;
  2167. }
  2168. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2169. "btrfs-cleaner");
  2170. if (IS_ERR(fs_info->cleaner_kthread))
  2171. goto fail_block_groups;
  2172. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2173. tree_root,
  2174. "btrfs-transaction");
  2175. if (IS_ERR(fs_info->transaction_kthread))
  2176. goto fail_cleaner;
  2177. if (!btrfs_test_opt(tree_root, SSD) &&
  2178. !btrfs_test_opt(tree_root, NOSSD) &&
  2179. !fs_info->fs_devices->rotating) {
  2180. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2181. "mode\n");
  2182. btrfs_set_opt(fs_info->mount_opt, SSD);
  2183. }
  2184. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2185. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2186. ret = btrfsic_mount(tree_root, fs_devices,
  2187. btrfs_test_opt(tree_root,
  2188. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2189. 1 : 0,
  2190. fs_info->check_integrity_print_mask);
  2191. if (ret)
  2192. printk(KERN_WARNING "btrfs: failed to initialize"
  2193. " integrity check module %s\n", sb->s_id);
  2194. }
  2195. #endif
  2196. ret = btrfs_read_qgroup_config(fs_info);
  2197. if (ret)
  2198. goto fail_trans_kthread;
  2199. /* do not make disk changes in broken FS */
  2200. if (btrfs_super_log_root(disk_super) != 0 &&
  2201. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2202. u64 bytenr = btrfs_super_log_root(disk_super);
  2203. if (fs_devices->rw_devices == 0) {
  2204. printk(KERN_WARNING "Btrfs log replay required "
  2205. "on RO media\n");
  2206. err = -EIO;
  2207. goto fail_qgroup;
  2208. }
  2209. blocksize =
  2210. btrfs_level_size(tree_root,
  2211. btrfs_super_log_root_level(disk_super));
  2212. log_tree_root = btrfs_alloc_root(fs_info);
  2213. if (!log_tree_root) {
  2214. err = -ENOMEM;
  2215. goto fail_qgroup;
  2216. }
  2217. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2218. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2219. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2220. blocksize,
  2221. generation + 1);
  2222. /* returns with log_tree_root freed on success */
  2223. ret = btrfs_recover_log_trees(log_tree_root);
  2224. if (ret) {
  2225. btrfs_error(tree_root->fs_info, ret,
  2226. "Failed to recover log tree");
  2227. free_extent_buffer(log_tree_root->node);
  2228. kfree(log_tree_root);
  2229. goto fail_trans_kthread;
  2230. }
  2231. if (sb->s_flags & MS_RDONLY) {
  2232. ret = btrfs_commit_super(tree_root);
  2233. if (ret)
  2234. goto fail_trans_kthread;
  2235. }
  2236. }
  2237. ret = btrfs_find_orphan_roots(tree_root);
  2238. if (ret)
  2239. goto fail_trans_kthread;
  2240. if (!(sb->s_flags & MS_RDONLY)) {
  2241. ret = btrfs_cleanup_fs_roots(fs_info);
  2242. if (ret)
  2243. goto fail_trans_kthread;
  2244. ret = btrfs_recover_relocation(tree_root);
  2245. if (ret < 0) {
  2246. printk(KERN_WARNING
  2247. "btrfs: failed to recover relocation\n");
  2248. err = -EINVAL;
  2249. goto fail_qgroup;
  2250. }
  2251. }
  2252. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2253. location.type = BTRFS_ROOT_ITEM_KEY;
  2254. location.offset = (u64)-1;
  2255. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2256. if (!fs_info->fs_root)
  2257. goto fail_qgroup;
  2258. if (IS_ERR(fs_info->fs_root)) {
  2259. err = PTR_ERR(fs_info->fs_root);
  2260. goto fail_qgroup;
  2261. }
  2262. if (sb->s_flags & MS_RDONLY)
  2263. return 0;
  2264. down_read(&fs_info->cleanup_work_sem);
  2265. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2266. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2267. up_read(&fs_info->cleanup_work_sem);
  2268. close_ctree(tree_root);
  2269. return ret;
  2270. }
  2271. up_read(&fs_info->cleanup_work_sem);
  2272. ret = btrfs_resume_balance_async(fs_info);
  2273. if (ret) {
  2274. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2275. close_ctree(tree_root);
  2276. return ret;
  2277. }
  2278. return 0;
  2279. fail_qgroup:
  2280. btrfs_free_qgroup_config(fs_info);
  2281. fail_trans_kthread:
  2282. kthread_stop(fs_info->transaction_kthread);
  2283. fail_cleaner:
  2284. kthread_stop(fs_info->cleaner_kthread);
  2285. /*
  2286. * make sure we're done with the btree inode before we stop our
  2287. * kthreads
  2288. */
  2289. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2290. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2291. fail_block_groups:
  2292. btrfs_free_block_groups(fs_info);
  2293. fail_tree_roots:
  2294. free_root_pointers(fs_info, 1);
  2295. fail_sb_buffer:
  2296. btrfs_stop_workers(&fs_info->generic_worker);
  2297. btrfs_stop_workers(&fs_info->readahead_workers);
  2298. btrfs_stop_workers(&fs_info->fixup_workers);
  2299. btrfs_stop_workers(&fs_info->delalloc_workers);
  2300. btrfs_stop_workers(&fs_info->workers);
  2301. btrfs_stop_workers(&fs_info->endio_workers);
  2302. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2303. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2304. btrfs_stop_workers(&fs_info->endio_write_workers);
  2305. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2306. btrfs_stop_workers(&fs_info->submit_workers);
  2307. btrfs_stop_workers(&fs_info->delayed_workers);
  2308. btrfs_stop_workers(&fs_info->caching_workers);
  2309. fail_alloc:
  2310. fail_iput:
  2311. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2312. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2313. iput(fs_info->btree_inode);
  2314. fail_bdi:
  2315. bdi_destroy(&fs_info->bdi);
  2316. fail_srcu:
  2317. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2318. fail:
  2319. btrfs_close_devices(fs_info->fs_devices);
  2320. return err;
  2321. recovery_tree_root:
  2322. if (!btrfs_test_opt(tree_root, RECOVERY))
  2323. goto fail_tree_roots;
  2324. free_root_pointers(fs_info, 0);
  2325. /* don't use the log in recovery mode, it won't be valid */
  2326. btrfs_set_super_log_root(disk_super, 0);
  2327. /* we can't trust the free space cache either */
  2328. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2329. ret = next_root_backup(fs_info, fs_info->super_copy,
  2330. &num_backups_tried, &backup_index);
  2331. if (ret == -1)
  2332. goto fail_block_groups;
  2333. goto retry_root_backup;
  2334. }
  2335. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2336. {
  2337. if (uptodate) {
  2338. set_buffer_uptodate(bh);
  2339. } else {
  2340. struct btrfs_device *device = (struct btrfs_device *)
  2341. bh->b_private;
  2342. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2343. "I/O error on %s\n",
  2344. rcu_str_deref(device->name));
  2345. /* note, we dont' set_buffer_write_io_error because we have
  2346. * our own ways of dealing with the IO errors
  2347. */
  2348. clear_buffer_uptodate(bh);
  2349. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2350. }
  2351. unlock_buffer(bh);
  2352. put_bh(bh);
  2353. }
  2354. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2355. {
  2356. struct buffer_head *bh;
  2357. struct buffer_head *latest = NULL;
  2358. struct btrfs_super_block *super;
  2359. int i;
  2360. u64 transid = 0;
  2361. u64 bytenr;
  2362. /* we would like to check all the supers, but that would make
  2363. * a btrfs mount succeed after a mkfs from a different FS.
  2364. * So, we need to add a special mount option to scan for
  2365. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2366. */
  2367. for (i = 0; i < 1; i++) {
  2368. bytenr = btrfs_sb_offset(i);
  2369. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2370. break;
  2371. bh = __bread(bdev, bytenr / 4096, 4096);
  2372. if (!bh)
  2373. continue;
  2374. super = (struct btrfs_super_block *)bh->b_data;
  2375. if (btrfs_super_bytenr(super) != bytenr ||
  2376. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2377. sizeof(super->magic))) {
  2378. brelse(bh);
  2379. continue;
  2380. }
  2381. if (!latest || btrfs_super_generation(super) > transid) {
  2382. brelse(latest);
  2383. latest = bh;
  2384. transid = btrfs_super_generation(super);
  2385. } else {
  2386. brelse(bh);
  2387. }
  2388. }
  2389. return latest;
  2390. }
  2391. /*
  2392. * this should be called twice, once with wait == 0 and
  2393. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2394. * we write are pinned.
  2395. *
  2396. * They are released when wait == 1 is done.
  2397. * max_mirrors must be the same for both runs, and it indicates how
  2398. * many supers on this one device should be written.
  2399. *
  2400. * max_mirrors == 0 means to write them all.
  2401. */
  2402. static int write_dev_supers(struct btrfs_device *device,
  2403. struct btrfs_super_block *sb,
  2404. int do_barriers, int wait, int max_mirrors)
  2405. {
  2406. struct buffer_head *bh;
  2407. int i;
  2408. int ret;
  2409. int errors = 0;
  2410. u32 crc;
  2411. u64 bytenr;
  2412. if (max_mirrors == 0)
  2413. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2414. for (i = 0; i < max_mirrors; i++) {
  2415. bytenr = btrfs_sb_offset(i);
  2416. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2417. break;
  2418. if (wait) {
  2419. bh = __find_get_block(device->bdev, bytenr / 4096,
  2420. BTRFS_SUPER_INFO_SIZE);
  2421. BUG_ON(!bh);
  2422. wait_on_buffer(bh);
  2423. if (!buffer_uptodate(bh))
  2424. errors++;
  2425. /* drop our reference */
  2426. brelse(bh);
  2427. /* drop the reference from the wait == 0 run */
  2428. brelse(bh);
  2429. continue;
  2430. } else {
  2431. btrfs_set_super_bytenr(sb, bytenr);
  2432. crc = ~(u32)0;
  2433. crc = btrfs_csum_data(NULL, (char *)sb +
  2434. BTRFS_CSUM_SIZE, crc,
  2435. BTRFS_SUPER_INFO_SIZE -
  2436. BTRFS_CSUM_SIZE);
  2437. btrfs_csum_final(crc, sb->csum);
  2438. /*
  2439. * one reference for us, and we leave it for the
  2440. * caller
  2441. */
  2442. bh = __getblk(device->bdev, bytenr / 4096,
  2443. BTRFS_SUPER_INFO_SIZE);
  2444. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2445. /* one reference for submit_bh */
  2446. get_bh(bh);
  2447. set_buffer_uptodate(bh);
  2448. lock_buffer(bh);
  2449. bh->b_end_io = btrfs_end_buffer_write_sync;
  2450. bh->b_private = device;
  2451. }
  2452. /*
  2453. * we fua the first super. The others we allow
  2454. * to go down lazy.
  2455. */
  2456. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2457. if (ret)
  2458. errors++;
  2459. }
  2460. return errors < i ? 0 : -1;
  2461. }
  2462. /*
  2463. * endio for the write_dev_flush, this will wake anyone waiting
  2464. * for the barrier when it is done
  2465. */
  2466. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2467. {
  2468. if (err) {
  2469. if (err == -EOPNOTSUPP)
  2470. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2471. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2472. }
  2473. if (bio->bi_private)
  2474. complete(bio->bi_private);
  2475. bio_put(bio);
  2476. }
  2477. /*
  2478. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2479. * sent down. With wait == 1, it waits for the previous flush.
  2480. *
  2481. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2482. * capable
  2483. */
  2484. static int write_dev_flush(struct btrfs_device *device, int wait)
  2485. {
  2486. struct bio *bio;
  2487. int ret = 0;
  2488. if (device->nobarriers)
  2489. return 0;
  2490. if (wait) {
  2491. bio = device->flush_bio;
  2492. if (!bio)
  2493. return 0;
  2494. wait_for_completion(&device->flush_wait);
  2495. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2496. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2497. rcu_str_deref(device->name));
  2498. device->nobarriers = 1;
  2499. }
  2500. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2501. ret = -EIO;
  2502. if (!bio_flagged(bio, BIO_EOPNOTSUPP))
  2503. btrfs_dev_stat_inc_and_print(device,
  2504. BTRFS_DEV_STAT_FLUSH_ERRS);
  2505. }
  2506. /* drop the reference from the wait == 0 run */
  2507. bio_put(bio);
  2508. device->flush_bio = NULL;
  2509. return ret;
  2510. }
  2511. /*
  2512. * one reference for us, and we leave it for the
  2513. * caller
  2514. */
  2515. device->flush_bio = NULL;
  2516. bio = bio_alloc(GFP_NOFS, 0);
  2517. if (!bio)
  2518. return -ENOMEM;
  2519. bio->bi_end_io = btrfs_end_empty_barrier;
  2520. bio->bi_bdev = device->bdev;
  2521. init_completion(&device->flush_wait);
  2522. bio->bi_private = &device->flush_wait;
  2523. device->flush_bio = bio;
  2524. bio_get(bio);
  2525. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2526. return 0;
  2527. }
  2528. /*
  2529. * send an empty flush down to each device in parallel,
  2530. * then wait for them
  2531. */
  2532. static int barrier_all_devices(struct btrfs_fs_info *info)
  2533. {
  2534. struct list_head *head;
  2535. struct btrfs_device *dev;
  2536. int errors = 0;
  2537. int ret;
  2538. /* send down all the barriers */
  2539. head = &info->fs_devices->devices;
  2540. list_for_each_entry_rcu(dev, head, dev_list) {
  2541. if (!dev->bdev) {
  2542. errors++;
  2543. continue;
  2544. }
  2545. if (!dev->in_fs_metadata || !dev->writeable)
  2546. continue;
  2547. ret = write_dev_flush(dev, 0);
  2548. if (ret)
  2549. errors++;
  2550. }
  2551. /* wait for all the barriers */
  2552. list_for_each_entry_rcu(dev, head, dev_list) {
  2553. if (!dev->bdev) {
  2554. errors++;
  2555. continue;
  2556. }
  2557. if (!dev->in_fs_metadata || !dev->writeable)
  2558. continue;
  2559. ret = write_dev_flush(dev, 1);
  2560. if (ret)
  2561. errors++;
  2562. }
  2563. if (errors)
  2564. return -EIO;
  2565. return 0;
  2566. }
  2567. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2568. {
  2569. struct list_head *head;
  2570. struct btrfs_device *dev;
  2571. struct btrfs_super_block *sb;
  2572. struct btrfs_dev_item *dev_item;
  2573. int ret;
  2574. int do_barriers;
  2575. int max_errors;
  2576. int total_errors = 0;
  2577. u64 flags;
  2578. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2579. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2580. backup_super_roots(root->fs_info);
  2581. sb = root->fs_info->super_for_commit;
  2582. dev_item = &sb->dev_item;
  2583. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2584. head = &root->fs_info->fs_devices->devices;
  2585. if (do_barriers)
  2586. barrier_all_devices(root->fs_info);
  2587. list_for_each_entry_rcu(dev, head, dev_list) {
  2588. if (!dev->bdev) {
  2589. total_errors++;
  2590. continue;
  2591. }
  2592. if (!dev->in_fs_metadata || !dev->writeable)
  2593. continue;
  2594. btrfs_set_stack_device_generation(dev_item, 0);
  2595. btrfs_set_stack_device_type(dev_item, dev->type);
  2596. btrfs_set_stack_device_id(dev_item, dev->devid);
  2597. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2598. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2599. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2600. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2601. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2602. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2603. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2604. flags = btrfs_super_flags(sb);
  2605. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2606. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2607. if (ret)
  2608. total_errors++;
  2609. }
  2610. if (total_errors > max_errors) {
  2611. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2612. total_errors);
  2613. /* This shouldn't happen. FUA is masked off if unsupported */
  2614. BUG();
  2615. }
  2616. total_errors = 0;
  2617. list_for_each_entry_rcu(dev, head, dev_list) {
  2618. if (!dev->bdev)
  2619. continue;
  2620. if (!dev->in_fs_metadata || !dev->writeable)
  2621. continue;
  2622. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2623. if (ret)
  2624. total_errors++;
  2625. }
  2626. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2627. if (total_errors > max_errors) {
  2628. btrfs_error(root->fs_info, -EIO,
  2629. "%d errors while writing supers", total_errors);
  2630. return -EIO;
  2631. }
  2632. return 0;
  2633. }
  2634. int write_ctree_super(struct btrfs_trans_handle *trans,
  2635. struct btrfs_root *root, int max_mirrors)
  2636. {
  2637. int ret;
  2638. ret = write_all_supers(root, max_mirrors);
  2639. return ret;
  2640. }
  2641. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2642. {
  2643. spin_lock(&fs_info->fs_roots_radix_lock);
  2644. radix_tree_delete(&fs_info->fs_roots_radix,
  2645. (unsigned long)root->root_key.objectid);
  2646. spin_unlock(&fs_info->fs_roots_radix_lock);
  2647. if (btrfs_root_refs(&root->root_item) == 0)
  2648. synchronize_srcu(&fs_info->subvol_srcu);
  2649. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2650. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2651. free_fs_root(root);
  2652. }
  2653. static void free_fs_root(struct btrfs_root *root)
  2654. {
  2655. iput(root->cache_inode);
  2656. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2657. if (root->anon_dev)
  2658. free_anon_bdev(root->anon_dev);
  2659. free_extent_buffer(root->node);
  2660. free_extent_buffer(root->commit_root);
  2661. kfree(root->free_ino_ctl);
  2662. kfree(root->free_ino_pinned);
  2663. kfree(root->name);
  2664. kfree(root);
  2665. }
  2666. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2667. {
  2668. int ret;
  2669. struct btrfs_root *gang[8];
  2670. int i;
  2671. while (!list_empty(&fs_info->dead_roots)) {
  2672. gang[0] = list_entry(fs_info->dead_roots.next,
  2673. struct btrfs_root, root_list);
  2674. list_del(&gang[0]->root_list);
  2675. if (gang[0]->in_radix) {
  2676. btrfs_free_fs_root(fs_info, gang[0]);
  2677. } else {
  2678. free_extent_buffer(gang[0]->node);
  2679. free_extent_buffer(gang[0]->commit_root);
  2680. kfree(gang[0]);
  2681. }
  2682. }
  2683. while (1) {
  2684. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2685. (void **)gang, 0,
  2686. ARRAY_SIZE(gang));
  2687. if (!ret)
  2688. break;
  2689. for (i = 0; i < ret; i++)
  2690. btrfs_free_fs_root(fs_info, gang[i]);
  2691. }
  2692. }
  2693. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2694. {
  2695. u64 root_objectid = 0;
  2696. struct btrfs_root *gang[8];
  2697. int i;
  2698. int ret;
  2699. while (1) {
  2700. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2701. (void **)gang, root_objectid,
  2702. ARRAY_SIZE(gang));
  2703. if (!ret)
  2704. break;
  2705. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2706. for (i = 0; i < ret; i++) {
  2707. int err;
  2708. root_objectid = gang[i]->root_key.objectid;
  2709. err = btrfs_orphan_cleanup(gang[i]);
  2710. if (err)
  2711. return err;
  2712. }
  2713. root_objectid++;
  2714. }
  2715. return 0;
  2716. }
  2717. int btrfs_commit_super(struct btrfs_root *root)
  2718. {
  2719. struct btrfs_trans_handle *trans;
  2720. int ret;
  2721. mutex_lock(&root->fs_info->cleaner_mutex);
  2722. btrfs_run_delayed_iputs(root);
  2723. btrfs_clean_old_snapshots(root);
  2724. mutex_unlock(&root->fs_info->cleaner_mutex);
  2725. /* wait until ongoing cleanup work done */
  2726. down_write(&root->fs_info->cleanup_work_sem);
  2727. up_write(&root->fs_info->cleanup_work_sem);
  2728. trans = btrfs_join_transaction(root);
  2729. if (IS_ERR(trans))
  2730. return PTR_ERR(trans);
  2731. ret = btrfs_commit_transaction(trans, root);
  2732. if (ret)
  2733. return ret;
  2734. /* run commit again to drop the original snapshot */
  2735. trans = btrfs_join_transaction(root);
  2736. if (IS_ERR(trans))
  2737. return PTR_ERR(trans);
  2738. ret = btrfs_commit_transaction(trans, root);
  2739. if (ret)
  2740. return ret;
  2741. ret = btrfs_write_and_wait_transaction(NULL, root);
  2742. if (ret) {
  2743. btrfs_error(root->fs_info, ret,
  2744. "Failed to sync btree inode to disk.");
  2745. return ret;
  2746. }
  2747. ret = write_ctree_super(NULL, root, 0);
  2748. return ret;
  2749. }
  2750. int close_ctree(struct btrfs_root *root)
  2751. {
  2752. struct btrfs_fs_info *fs_info = root->fs_info;
  2753. int ret;
  2754. fs_info->closing = 1;
  2755. smp_mb();
  2756. /* pause restriper - we want to resume on mount */
  2757. btrfs_pause_balance(root->fs_info);
  2758. btrfs_scrub_cancel(root);
  2759. /* wait for any defraggers to finish */
  2760. wait_event(fs_info->transaction_wait,
  2761. (atomic_read(&fs_info->defrag_running) == 0));
  2762. /* clear out the rbtree of defraggable inodes */
  2763. btrfs_run_defrag_inodes(fs_info);
  2764. /*
  2765. * Here come 2 situations when btrfs is broken to flip readonly:
  2766. *
  2767. * 1. when btrfs flips readonly somewhere else before
  2768. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2769. * and btrfs will skip to write sb directly to keep
  2770. * ERROR state on disk.
  2771. *
  2772. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2773. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2774. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2775. * btrfs will cleanup all FS resources first and write sb then.
  2776. */
  2777. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2778. ret = btrfs_commit_super(root);
  2779. if (ret)
  2780. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2781. }
  2782. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2783. ret = btrfs_error_commit_super(root);
  2784. if (ret)
  2785. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2786. }
  2787. btrfs_put_block_group_cache(fs_info);
  2788. kthread_stop(fs_info->transaction_kthread);
  2789. kthread_stop(fs_info->cleaner_kthread);
  2790. fs_info->closing = 2;
  2791. smp_mb();
  2792. btrfs_free_qgroup_config(root->fs_info);
  2793. if (fs_info->delalloc_bytes) {
  2794. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2795. (unsigned long long)fs_info->delalloc_bytes);
  2796. }
  2797. if (fs_info->total_ref_cache_size) {
  2798. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2799. (unsigned long long)fs_info->total_ref_cache_size);
  2800. }
  2801. free_extent_buffer(fs_info->extent_root->node);
  2802. free_extent_buffer(fs_info->extent_root->commit_root);
  2803. free_extent_buffer(fs_info->tree_root->node);
  2804. free_extent_buffer(fs_info->tree_root->commit_root);
  2805. free_extent_buffer(fs_info->chunk_root->node);
  2806. free_extent_buffer(fs_info->chunk_root->commit_root);
  2807. free_extent_buffer(fs_info->dev_root->node);
  2808. free_extent_buffer(fs_info->dev_root->commit_root);
  2809. free_extent_buffer(fs_info->csum_root->node);
  2810. free_extent_buffer(fs_info->csum_root->commit_root);
  2811. if (fs_info->quota_root) {
  2812. free_extent_buffer(fs_info->quota_root->node);
  2813. free_extent_buffer(fs_info->quota_root->commit_root);
  2814. }
  2815. btrfs_free_block_groups(fs_info);
  2816. del_fs_roots(fs_info);
  2817. iput(fs_info->btree_inode);
  2818. btrfs_stop_workers(&fs_info->generic_worker);
  2819. btrfs_stop_workers(&fs_info->fixup_workers);
  2820. btrfs_stop_workers(&fs_info->delalloc_workers);
  2821. btrfs_stop_workers(&fs_info->workers);
  2822. btrfs_stop_workers(&fs_info->endio_workers);
  2823. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2824. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2825. btrfs_stop_workers(&fs_info->endio_write_workers);
  2826. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2827. btrfs_stop_workers(&fs_info->submit_workers);
  2828. btrfs_stop_workers(&fs_info->delayed_workers);
  2829. btrfs_stop_workers(&fs_info->caching_workers);
  2830. btrfs_stop_workers(&fs_info->readahead_workers);
  2831. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2832. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2833. btrfsic_unmount(root, fs_info->fs_devices);
  2834. #endif
  2835. btrfs_close_devices(fs_info->fs_devices);
  2836. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2837. bdi_destroy(&fs_info->bdi);
  2838. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2839. return 0;
  2840. }
  2841. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2842. int atomic)
  2843. {
  2844. int ret;
  2845. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2846. ret = extent_buffer_uptodate(buf);
  2847. if (!ret)
  2848. return ret;
  2849. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2850. parent_transid, atomic);
  2851. if (ret == -EAGAIN)
  2852. return ret;
  2853. return !ret;
  2854. }
  2855. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2856. {
  2857. return set_extent_buffer_uptodate(buf);
  2858. }
  2859. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2860. {
  2861. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2862. u64 transid = btrfs_header_generation(buf);
  2863. int was_dirty;
  2864. btrfs_assert_tree_locked(buf);
  2865. if (transid != root->fs_info->generation) {
  2866. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2867. "found %llu running %llu\n",
  2868. (unsigned long long)buf->start,
  2869. (unsigned long long)transid,
  2870. (unsigned long long)root->fs_info->generation);
  2871. WARN_ON(1);
  2872. }
  2873. was_dirty = set_extent_buffer_dirty(buf);
  2874. if (!was_dirty) {
  2875. spin_lock(&root->fs_info->delalloc_lock);
  2876. root->fs_info->dirty_metadata_bytes += buf->len;
  2877. spin_unlock(&root->fs_info->delalloc_lock);
  2878. }
  2879. }
  2880. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2881. {
  2882. /*
  2883. * looks as though older kernels can get into trouble with
  2884. * this code, they end up stuck in balance_dirty_pages forever
  2885. */
  2886. u64 num_dirty;
  2887. unsigned long thresh = 32 * 1024 * 1024;
  2888. if (current->flags & PF_MEMALLOC)
  2889. return;
  2890. btrfs_balance_delayed_items(root);
  2891. num_dirty = root->fs_info->dirty_metadata_bytes;
  2892. if (num_dirty > thresh) {
  2893. balance_dirty_pages_ratelimited_nr(
  2894. root->fs_info->btree_inode->i_mapping, 1);
  2895. }
  2896. return;
  2897. }
  2898. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2899. {
  2900. /*
  2901. * looks as though older kernels can get into trouble with
  2902. * this code, they end up stuck in balance_dirty_pages forever
  2903. */
  2904. u64 num_dirty;
  2905. unsigned long thresh = 32 * 1024 * 1024;
  2906. if (current->flags & PF_MEMALLOC)
  2907. return;
  2908. num_dirty = root->fs_info->dirty_metadata_bytes;
  2909. if (num_dirty > thresh) {
  2910. balance_dirty_pages_ratelimited_nr(
  2911. root->fs_info->btree_inode->i_mapping, 1);
  2912. }
  2913. return;
  2914. }
  2915. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2916. {
  2917. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2918. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2919. }
  2920. int btree_lock_page_hook(struct page *page, void *data,
  2921. void (*flush_fn)(void *))
  2922. {
  2923. struct inode *inode = page->mapping->host;
  2924. struct btrfs_root *root = BTRFS_I(inode)->root;
  2925. struct extent_buffer *eb;
  2926. /*
  2927. * We culled this eb but the page is still hanging out on the mapping,
  2928. * carry on.
  2929. */
  2930. if (!PagePrivate(page))
  2931. goto out;
  2932. eb = (struct extent_buffer *)page->private;
  2933. if (!eb) {
  2934. WARN_ON(1);
  2935. goto out;
  2936. }
  2937. if (page != eb->pages[0])
  2938. goto out;
  2939. if (!btrfs_try_tree_write_lock(eb)) {
  2940. flush_fn(data);
  2941. btrfs_tree_lock(eb);
  2942. }
  2943. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2944. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2945. spin_lock(&root->fs_info->delalloc_lock);
  2946. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2947. root->fs_info->dirty_metadata_bytes -= eb->len;
  2948. else
  2949. WARN_ON(1);
  2950. spin_unlock(&root->fs_info->delalloc_lock);
  2951. }
  2952. btrfs_tree_unlock(eb);
  2953. out:
  2954. if (!trylock_page(page)) {
  2955. flush_fn(data);
  2956. lock_page(page);
  2957. }
  2958. return 0;
  2959. }
  2960. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2961. int read_only)
  2962. {
  2963. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2964. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2965. return -EINVAL;
  2966. }
  2967. if (read_only)
  2968. return 0;
  2969. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2970. printk(KERN_WARNING "warning: mount fs with errors, "
  2971. "running btrfsck is recommended\n");
  2972. }
  2973. return 0;
  2974. }
  2975. int btrfs_error_commit_super(struct btrfs_root *root)
  2976. {
  2977. int ret;
  2978. mutex_lock(&root->fs_info->cleaner_mutex);
  2979. btrfs_run_delayed_iputs(root);
  2980. mutex_unlock(&root->fs_info->cleaner_mutex);
  2981. down_write(&root->fs_info->cleanup_work_sem);
  2982. up_write(&root->fs_info->cleanup_work_sem);
  2983. /* cleanup FS via transaction */
  2984. btrfs_cleanup_transaction(root);
  2985. ret = write_ctree_super(NULL, root, 0);
  2986. return ret;
  2987. }
  2988. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2989. {
  2990. struct btrfs_inode *btrfs_inode;
  2991. struct list_head splice;
  2992. INIT_LIST_HEAD(&splice);
  2993. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2994. spin_lock(&root->fs_info->ordered_extent_lock);
  2995. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2996. while (!list_empty(&splice)) {
  2997. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2998. ordered_operations);
  2999. list_del_init(&btrfs_inode->ordered_operations);
  3000. btrfs_invalidate_inodes(btrfs_inode->root);
  3001. }
  3002. spin_unlock(&root->fs_info->ordered_extent_lock);
  3003. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3004. }
  3005. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3006. {
  3007. struct list_head splice;
  3008. struct btrfs_ordered_extent *ordered;
  3009. struct inode *inode;
  3010. INIT_LIST_HEAD(&splice);
  3011. spin_lock(&root->fs_info->ordered_extent_lock);
  3012. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3013. while (!list_empty(&splice)) {
  3014. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3015. root_extent_list);
  3016. list_del_init(&ordered->root_extent_list);
  3017. atomic_inc(&ordered->refs);
  3018. /* the inode may be getting freed (in sys_unlink path). */
  3019. inode = igrab(ordered->inode);
  3020. spin_unlock(&root->fs_info->ordered_extent_lock);
  3021. if (inode)
  3022. iput(inode);
  3023. atomic_set(&ordered->refs, 1);
  3024. btrfs_put_ordered_extent(ordered);
  3025. spin_lock(&root->fs_info->ordered_extent_lock);
  3026. }
  3027. spin_unlock(&root->fs_info->ordered_extent_lock);
  3028. }
  3029. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3030. struct btrfs_root *root)
  3031. {
  3032. struct rb_node *node;
  3033. struct btrfs_delayed_ref_root *delayed_refs;
  3034. struct btrfs_delayed_ref_node *ref;
  3035. int ret = 0;
  3036. delayed_refs = &trans->delayed_refs;
  3037. spin_lock(&delayed_refs->lock);
  3038. if (delayed_refs->num_entries == 0) {
  3039. spin_unlock(&delayed_refs->lock);
  3040. printk(KERN_INFO "delayed_refs has NO entry\n");
  3041. return ret;
  3042. }
  3043. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3044. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3045. atomic_set(&ref->refs, 1);
  3046. if (btrfs_delayed_ref_is_head(ref)) {
  3047. struct btrfs_delayed_ref_head *head;
  3048. head = btrfs_delayed_node_to_head(ref);
  3049. if (!mutex_trylock(&head->mutex)) {
  3050. atomic_inc(&ref->refs);
  3051. spin_unlock(&delayed_refs->lock);
  3052. /* Need to wait for the delayed ref to run */
  3053. mutex_lock(&head->mutex);
  3054. mutex_unlock(&head->mutex);
  3055. btrfs_put_delayed_ref(ref);
  3056. spin_lock(&delayed_refs->lock);
  3057. continue;
  3058. }
  3059. kfree(head->extent_op);
  3060. delayed_refs->num_heads--;
  3061. if (list_empty(&head->cluster))
  3062. delayed_refs->num_heads_ready--;
  3063. list_del_init(&head->cluster);
  3064. }
  3065. ref->in_tree = 0;
  3066. rb_erase(&ref->rb_node, &delayed_refs->root);
  3067. delayed_refs->num_entries--;
  3068. spin_unlock(&delayed_refs->lock);
  3069. btrfs_put_delayed_ref(ref);
  3070. cond_resched();
  3071. spin_lock(&delayed_refs->lock);
  3072. }
  3073. spin_unlock(&delayed_refs->lock);
  3074. return ret;
  3075. }
  3076. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3077. {
  3078. struct btrfs_pending_snapshot *snapshot;
  3079. struct list_head splice;
  3080. INIT_LIST_HEAD(&splice);
  3081. list_splice_init(&t->pending_snapshots, &splice);
  3082. while (!list_empty(&splice)) {
  3083. snapshot = list_entry(splice.next,
  3084. struct btrfs_pending_snapshot,
  3085. list);
  3086. list_del_init(&snapshot->list);
  3087. kfree(snapshot);
  3088. }
  3089. }
  3090. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3091. {
  3092. struct btrfs_inode *btrfs_inode;
  3093. struct list_head splice;
  3094. INIT_LIST_HEAD(&splice);
  3095. spin_lock(&root->fs_info->delalloc_lock);
  3096. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3097. while (!list_empty(&splice)) {
  3098. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3099. delalloc_inodes);
  3100. list_del_init(&btrfs_inode->delalloc_inodes);
  3101. btrfs_invalidate_inodes(btrfs_inode->root);
  3102. }
  3103. spin_unlock(&root->fs_info->delalloc_lock);
  3104. }
  3105. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3106. struct extent_io_tree *dirty_pages,
  3107. int mark)
  3108. {
  3109. int ret;
  3110. struct page *page;
  3111. struct inode *btree_inode = root->fs_info->btree_inode;
  3112. struct extent_buffer *eb;
  3113. u64 start = 0;
  3114. u64 end;
  3115. u64 offset;
  3116. unsigned long index;
  3117. while (1) {
  3118. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3119. mark);
  3120. if (ret)
  3121. break;
  3122. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3123. while (start <= end) {
  3124. index = start >> PAGE_CACHE_SHIFT;
  3125. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3126. page = find_get_page(btree_inode->i_mapping, index);
  3127. if (!page)
  3128. continue;
  3129. offset = page_offset(page);
  3130. spin_lock(&dirty_pages->buffer_lock);
  3131. eb = radix_tree_lookup(
  3132. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3133. offset >> PAGE_CACHE_SHIFT);
  3134. spin_unlock(&dirty_pages->buffer_lock);
  3135. if (eb)
  3136. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3137. &eb->bflags);
  3138. if (PageWriteback(page))
  3139. end_page_writeback(page);
  3140. lock_page(page);
  3141. if (PageDirty(page)) {
  3142. clear_page_dirty_for_io(page);
  3143. spin_lock_irq(&page->mapping->tree_lock);
  3144. radix_tree_tag_clear(&page->mapping->page_tree,
  3145. page_index(page),
  3146. PAGECACHE_TAG_DIRTY);
  3147. spin_unlock_irq(&page->mapping->tree_lock);
  3148. }
  3149. unlock_page(page);
  3150. page_cache_release(page);
  3151. }
  3152. }
  3153. return ret;
  3154. }
  3155. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3156. struct extent_io_tree *pinned_extents)
  3157. {
  3158. struct extent_io_tree *unpin;
  3159. u64 start;
  3160. u64 end;
  3161. int ret;
  3162. bool loop = true;
  3163. unpin = pinned_extents;
  3164. again:
  3165. while (1) {
  3166. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3167. EXTENT_DIRTY);
  3168. if (ret)
  3169. break;
  3170. /* opt_discard */
  3171. if (btrfs_test_opt(root, DISCARD))
  3172. ret = btrfs_error_discard_extent(root, start,
  3173. end + 1 - start,
  3174. NULL);
  3175. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3176. btrfs_error_unpin_extent_range(root, start, end);
  3177. cond_resched();
  3178. }
  3179. if (loop) {
  3180. if (unpin == &root->fs_info->freed_extents[0])
  3181. unpin = &root->fs_info->freed_extents[1];
  3182. else
  3183. unpin = &root->fs_info->freed_extents[0];
  3184. loop = false;
  3185. goto again;
  3186. }
  3187. return 0;
  3188. }
  3189. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3190. struct btrfs_root *root)
  3191. {
  3192. btrfs_destroy_delayed_refs(cur_trans, root);
  3193. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3194. cur_trans->dirty_pages.dirty_bytes);
  3195. /* FIXME: cleanup wait for commit */
  3196. cur_trans->in_commit = 1;
  3197. cur_trans->blocked = 1;
  3198. wake_up(&root->fs_info->transaction_blocked_wait);
  3199. cur_trans->blocked = 0;
  3200. wake_up(&root->fs_info->transaction_wait);
  3201. cur_trans->commit_done = 1;
  3202. wake_up(&cur_trans->commit_wait);
  3203. btrfs_destroy_delayed_inodes(root);
  3204. btrfs_assert_delayed_root_empty(root);
  3205. btrfs_destroy_pending_snapshots(cur_trans);
  3206. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3207. EXTENT_DIRTY);
  3208. btrfs_destroy_pinned_extent(root,
  3209. root->fs_info->pinned_extents);
  3210. /*
  3211. memset(cur_trans, 0, sizeof(*cur_trans));
  3212. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3213. */
  3214. }
  3215. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3216. {
  3217. struct btrfs_transaction *t;
  3218. LIST_HEAD(list);
  3219. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3220. spin_lock(&root->fs_info->trans_lock);
  3221. list_splice_init(&root->fs_info->trans_list, &list);
  3222. root->fs_info->trans_no_join = 1;
  3223. spin_unlock(&root->fs_info->trans_lock);
  3224. while (!list_empty(&list)) {
  3225. t = list_entry(list.next, struct btrfs_transaction, list);
  3226. if (!t)
  3227. break;
  3228. btrfs_destroy_ordered_operations(root);
  3229. btrfs_destroy_ordered_extents(root);
  3230. btrfs_destroy_delayed_refs(t, root);
  3231. btrfs_block_rsv_release(root,
  3232. &root->fs_info->trans_block_rsv,
  3233. t->dirty_pages.dirty_bytes);
  3234. /* FIXME: cleanup wait for commit */
  3235. t->in_commit = 1;
  3236. t->blocked = 1;
  3237. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3238. wake_up(&root->fs_info->transaction_blocked_wait);
  3239. t->blocked = 0;
  3240. if (waitqueue_active(&root->fs_info->transaction_wait))
  3241. wake_up(&root->fs_info->transaction_wait);
  3242. t->commit_done = 1;
  3243. if (waitqueue_active(&t->commit_wait))
  3244. wake_up(&t->commit_wait);
  3245. btrfs_destroy_delayed_inodes(root);
  3246. btrfs_assert_delayed_root_empty(root);
  3247. btrfs_destroy_pending_snapshots(t);
  3248. btrfs_destroy_delalloc_inodes(root);
  3249. spin_lock(&root->fs_info->trans_lock);
  3250. root->fs_info->running_transaction = NULL;
  3251. spin_unlock(&root->fs_info->trans_lock);
  3252. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3253. EXTENT_DIRTY);
  3254. btrfs_destroy_pinned_extent(root,
  3255. root->fs_info->pinned_extents);
  3256. atomic_set(&t->use_count, 0);
  3257. list_del_init(&t->list);
  3258. memset(t, 0, sizeof(*t));
  3259. kmem_cache_free(btrfs_transaction_cachep, t);
  3260. }
  3261. spin_lock(&root->fs_info->trans_lock);
  3262. root->fs_info->trans_no_join = 0;
  3263. spin_unlock(&root->fs_info->trans_lock);
  3264. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3265. return 0;
  3266. }
  3267. static struct extent_io_ops btree_extent_io_ops = {
  3268. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3269. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3270. .readpage_io_failed_hook = btree_io_failed_hook,
  3271. .submit_bio_hook = btree_submit_bio_hook,
  3272. /* note we're sharing with inode.c for the merge bio hook */
  3273. .merge_bio_hook = btrfs_merge_bio_hook,
  3274. };