mmu.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  109. | shadow_x_mask | shadow_nx_mask)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. /*
  159. * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
  160. * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
  161. * number.
  162. */
  163. #define MMIO_SPTE_GEN_LOW_SHIFT 3
  164. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  165. #define MMIO_GEN_SHIFT 19
  166. #define MMIO_GEN_LOW_SHIFT 9
  167. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
  168. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  169. #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
  170. static u64 generation_mmio_spte_mask(unsigned int gen)
  171. {
  172. u64 mask;
  173. WARN_ON(gen > MMIO_MAX_GEN);
  174. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  175. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  176. return mask;
  177. }
  178. static unsigned int get_mmio_spte_generation(u64 spte)
  179. {
  180. unsigned int gen;
  181. spte &= ~shadow_mmio_mask;
  182. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  183. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  184. return gen;
  185. }
  186. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  187. {
  188. /*
  189. * Init kvm generation close to MMIO_MAX_GEN to easily test the
  190. * code of handling generation number wrap-around.
  191. */
  192. return (kvm_memslots(kvm)->generation +
  193. MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
  194. }
  195. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  196. unsigned access)
  197. {
  198. unsigned int gen = kvm_current_mmio_generation(kvm);
  199. u64 mask = generation_mmio_spte_mask(gen);
  200. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  201. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  202. trace_mark_mmio_spte(sptep, gfn, access, gen);
  203. mmu_spte_set(sptep, mask);
  204. }
  205. static bool is_mmio_spte(u64 spte)
  206. {
  207. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  208. }
  209. static gfn_t get_mmio_spte_gfn(u64 spte)
  210. {
  211. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  212. return (spte & ~mask) >> PAGE_SHIFT;
  213. }
  214. static unsigned get_mmio_spte_access(u64 spte)
  215. {
  216. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  217. return (spte & ~mask) & ~PAGE_MASK;
  218. }
  219. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  220. pfn_t pfn, unsigned access)
  221. {
  222. if (unlikely(is_noslot_pfn(pfn))) {
  223. mark_mmio_spte(kvm, sptep, gfn, access);
  224. return true;
  225. }
  226. return false;
  227. }
  228. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  229. {
  230. unsigned int kvm_gen, spte_gen;
  231. kvm_gen = kvm_current_mmio_generation(kvm);
  232. spte_gen = get_mmio_spte_generation(spte);
  233. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  234. return likely(kvm_gen == spte_gen);
  235. }
  236. static inline u64 rsvd_bits(int s, int e)
  237. {
  238. return ((1ULL << (e - s + 1)) - 1) << s;
  239. }
  240. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  241. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  242. {
  243. shadow_user_mask = user_mask;
  244. shadow_accessed_mask = accessed_mask;
  245. shadow_dirty_mask = dirty_mask;
  246. shadow_nx_mask = nx_mask;
  247. shadow_x_mask = x_mask;
  248. }
  249. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  250. static int is_cpuid_PSE36(void)
  251. {
  252. return 1;
  253. }
  254. static int is_nx(struct kvm_vcpu *vcpu)
  255. {
  256. return vcpu->arch.efer & EFER_NX;
  257. }
  258. static int is_shadow_present_pte(u64 pte)
  259. {
  260. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  261. }
  262. static int is_large_pte(u64 pte)
  263. {
  264. return pte & PT_PAGE_SIZE_MASK;
  265. }
  266. static int is_rmap_spte(u64 pte)
  267. {
  268. return is_shadow_present_pte(pte);
  269. }
  270. static int is_last_spte(u64 pte, int level)
  271. {
  272. if (level == PT_PAGE_TABLE_LEVEL)
  273. return 1;
  274. if (is_large_pte(pte))
  275. return 1;
  276. return 0;
  277. }
  278. static pfn_t spte_to_pfn(u64 pte)
  279. {
  280. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  281. }
  282. static gfn_t pse36_gfn_delta(u32 gpte)
  283. {
  284. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  285. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  286. }
  287. #ifdef CONFIG_X86_64
  288. static void __set_spte(u64 *sptep, u64 spte)
  289. {
  290. *sptep = spte;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. *sptep = spte;
  295. }
  296. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  297. {
  298. return xchg(sptep, spte);
  299. }
  300. static u64 __get_spte_lockless(u64 *sptep)
  301. {
  302. return ACCESS_ONCE(*sptep);
  303. }
  304. static bool __check_direct_spte_mmio_pf(u64 spte)
  305. {
  306. /* It is valid if the spte is zapped. */
  307. return spte == 0ull;
  308. }
  309. #else
  310. union split_spte {
  311. struct {
  312. u32 spte_low;
  313. u32 spte_high;
  314. };
  315. u64 spte;
  316. };
  317. static void count_spte_clear(u64 *sptep, u64 spte)
  318. {
  319. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  320. if (is_shadow_present_pte(spte))
  321. return;
  322. /* Ensure the spte is completely set before we increase the count */
  323. smp_wmb();
  324. sp->clear_spte_count++;
  325. }
  326. static void __set_spte(u64 *sptep, u64 spte)
  327. {
  328. union split_spte *ssptep, sspte;
  329. ssptep = (union split_spte *)sptep;
  330. sspte = (union split_spte)spte;
  331. ssptep->spte_high = sspte.spte_high;
  332. /*
  333. * If we map the spte from nonpresent to present, We should store
  334. * the high bits firstly, then set present bit, so cpu can not
  335. * fetch this spte while we are setting the spte.
  336. */
  337. smp_wmb();
  338. ssptep->spte_low = sspte.spte_low;
  339. }
  340. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  341. {
  342. union split_spte *ssptep, sspte;
  343. ssptep = (union split_spte *)sptep;
  344. sspte = (union split_spte)spte;
  345. ssptep->spte_low = sspte.spte_low;
  346. /*
  347. * If we map the spte from present to nonpresent, we should clear
  348. * present bit firstly to avoid vcpu fetch the old high bits.
  349. */
  350. smp_wmb();
  351. ssptep->spte_high = sspte.spte_high;
  352. count_spte_clear(sptep, spte);
  353. }
  354. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  355. {
  356. union split_spte *ssptep, sspte, orig;
  357. ssptep = (union split_spte *)sptep;
  358. sspte = (union split_spte)spte;
  359. /* xchg acts as a barrier before the setting of the high bits */
  360. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  361. orig.spte_high = ssptep->spte_high;
  362. ssptep->spte_high = sspte.spte_high;
  363. count_spte_clear(sptep, spte);
  364. return orig.spte;
  365. }
  366. /*
  367. * The idea using the light way get the spte on x86_32 guest is from
  368. * gup_get_pte(arch/x86/mm/gup.c).
  369. *
  370. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  371. * coalesces them and we are running out of the MMU lock. Therefore
  372. * we need to protect against in-progress updates of the spte.
  373. *
  374. * Reading the spte while an update is in progress may get the old value
  375. * for the high part of the spte. The race is fine for a present->non-present
  376. * change (because the high part of the spte is ignored for non-present spte),
  377. * but for a present->present change we must reread the spte.
  378. *
  379. * All such changes are done in two steps (present->non-present and
  380. * non-present->present), hence it is enough to count the number of
  381. * present->non-present updates: if it changed while reading the spte,
  382. * we might have hit the race. This is done using clear_spte_count.
  383. */
  384. static u64 __get_spte_lockless(u64 *sptep)
  385. {
  386. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  387. union split_spte spte, *orig = (union split_spte *)sptep;
  388. int count;
  389. retry:
  390. count = sp->clear_spte_count;
  391. smp_rmb();
  392. spte.spte_low = orig->spte_low;
  393. smp_rmb();
  394. spte.spte_high = orig->spte_high;
  395. smp_rmb();
  396. if (unlikely(spte.spte_low != orig->spte_low ||
  397. count != sp->clear_spte_count))
  398. goto retry;
  399. return spte.spte;
  400. }
  401. static bool __check_direct_spte_mmio_pf(u64 spte)
  402. {
  403. union split_spte sspte = (union split_spte)spte;
  404. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  405. /* It is valid if the spte is zapped. */
  406. if (spte == 0ull)
  407. return true;
  408. /* It is valid if the spte is being zapped. */
  409. if (sspte.spte_low == 0ull &&
  410. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  411. return true;
  412. return false;
  413. }
  414. #endif
  415. static bool spte_is_locklessly_modifiable(u64 spte)
  416. {
  417. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  418. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  419. }
  420. static bool spte_has_volatile_bits(u64 spte)
  421. {
  422. /*
  423. * Always atomicly update spte if it can be updated
  424. * out of mmu-lock, it can ensure dirty bit is not lost,
  425. * also, it can help us to get a stable is_writable_pte()
  426. * to ensure tlb flush is not missed.
  427. */
  428. if (spte_is_locklessly_modifiable(spte))
  429. return true;
  430. if (!shadow_accessed_mask)
  431. return false;
  432. if (!is_shadow_present_pte(spte))
  433. return false;
  434. if ((spte & shadow_accessed_mask) &&
  435. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  436. return false;
  437. return true;
  438. }
  439. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  440. {
  441. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  442. }
  443. /* Rules for using mmu_spte_set:
  444. * Set the sptep from nonpresent to present.
  445. * Note: the sptep being assigned *must* be either not present
  446. * or in a state where the hardware will not attempt to update
  447. * the spte.
  448. */
  449. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  450. {
  451. WARN_ON(is_shadow_present_pte(*sptep));
  452. __set_spte(sptep, new_spte);
  453. }
  454. /* Rules for using mmu_spte_update:
  455. * Update the state bits, it means the mapped pfn is not changged.
  456. *
  457. * Whenever we overwrite a writable spte with a read-only one we
  458. * should flush remote TLBs. Otherwise rmap_write_protect
  459. * will find a read-only spte, even though the writable spte
  460. * might be cached on a CPU's TLB, the return value indicates this
  461. * case.
  462. */
  463. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  464. {
  465. u64 old_spte = *sptep;
  466. bool ret = false;
  467. WARN_ON(!is_rmap_spte(new_spte));
  468. if (!is_shadow_present_pte(old_spte)) {
  469. mmu_spte_set(sptep, new_spte);
  470. return ret;
  471. }
  472. if (!spte_has_volatile_bits(old_spte))
  473. __update_clear_spte_fast(sptep, new_spte);
  474. else
  475. old_spte = __update_clear_spte_slow(sptep, new_spte);
  476. /*
  477. * For the spte updated out of mmu-lock is safe, since
  478. * we always atomicly update it, see the comments in
  479. * spte_has_volatile_bits().
  480. */
  481. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  482. ret = true;
  483. if (!shadow_accessed_mask)
  484. return ret;
  485. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  486. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  487. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  488. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  489. return ret;
  490. }
  491. /*
  492. * Rules for using mmu_spte_clear_track_bits:
  493. * It sets the sptep from present to nonpresent, and track the
  494. * state bits, it is used to clear the last level sptep.
  495. */
  496. static int mmu_spte_clear_track_bits(u64 *sptep)
  497. {
  498. pfn_t pfn;
  499. u64 old_spte = *sptep;
  500. if (!spte_has_volatile_bits(old_spte))
  501. __update_clear_spte_fast(sptep, 0ull);
  502. else
  503. old_spte = __update_clear_spte_slow(sptep, 0ull);
  504. if (!is_rmap_spte(old_spte))
  505. return 0;
  506. pfn = spte_to_pfn(old_spte);
  507. /*
  508. * KVM does not hold the refcount of the page used by
  509. * kvm mmu, before reclaiming the page, we should
  510. * unmap it from mmu first.
  511. */
  512. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  513. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  514. kvm_set_pfn_accessed(pfn);
  515. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  516. kvm_set_pfn_dirty(pfn);
  517. return 1;
  518. }
  519. /*
  520. * Rules for using mmu_spte_clear_no_track:
  521. * Directly clear spte without caring the state bits of sptep,
  522. * it is used to set the upper level spte.
  523. */
  524. static void mmu_spte_clear_no_track(u64 *sptep)
  525. {
  526. __update_clear_spte_fast(sptep, 0ull);
  527. }
  528. static u64 mmu_spte_get_lockless(u64 *sptep)
  529. {
  530. return __get_spte_lockless(sptep);
  531. }
  532. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  533. {
  534. /*
  535. * Prevent page table teardown by making any free-er wait during
  536. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  537. */
  538. local_irq_disable();
  539. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  540. /*
  541. * Make sure a following spte read is not reordered ahead of the write
  542. * to vcpu->mode.
  543. */
  544. smp_mb();
  545. }
  546. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  547. {
  548. /*
  549. * Make sure the write to vcpu->mode is not reordered in front of
  550. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  551. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  552. */
  553. smp_mb();
  554. vcpu->mode = OUTSIDE_GUEST_MODE;
  555. local_irq_enable();
  556. }
  557. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  558. struct kmem_cache *base_cache, int min)
  559. {
  560. void *obj;
  561. if (cache->nobjs >= min)
  562. return 0;
  563. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  564. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  565. if (!obj)
  566. return -ENOMEM;
  567. cache->objects[cache->nobjs++] = obj;
  568. }
  569. return 0;
  570. }
  571. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  572. {
  573. return cache->nobjs;
  574. }
  575. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  576. struct kmem_cache *cache)
  577. {
  578. while (mc->nobjs)
  579. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  580. }
  581. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  582. int min)
  583. {
  584. void *page;
  585. if (cache->nobjs >= min)
  586. return 0;
  587. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  588. page = (void *)__get_free_page(GFP_KERNEL);
  589. if (!page)
  590. return -ENOMEM;
  591. cache->objects[cache->nobjs++] = page;
  592. }
  593. return 0;
  594. }
  595. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  596. {
  597. while (mc->nobjs)
  598. free_page((unsigned long)mc->objects[--mc->nobjs]);
  599. }
  600. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  601. {
  602. int r;
  603. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  604. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  605. if (r)
  606. goto out;
  607. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  608. if (r)
  609. goto out;
  610. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  611. mmu_page_header_cache, 4);
  612. out:
  613. return r;
  614. }
  615. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  616. {
  617. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  618. pte_list_desc_cache);
  619. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  620. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  621. mmu_page_header_cache);
  622. }
  623. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  624. {
  625. void *p;
  626. BUG_ON(!mc->nobjs);
  627. p = mc->objects[--mc->nobjs];
  628. return p;
  629. }
  630. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  631. {
  632. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  633. }
  634. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  635. {
  636. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  637. }
  638. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  639. {
  640. if (!sp->role.direct)
  641. return sp->gfns[index];
  642. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  643. }
  644. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  645. {
  646. if (sp->role.direct)
  647. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  648. else
  649. sp->gfns[index] = gfn;
  650. }
  651. /*
  652. * Return the pointer to the large page information for a given gfn,
  653. * handling slots that are not large page aligned.
  654. */
  655. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  656. struct kvm_memory_slot *slot,
  657. int level)
  658. {
  659. unsigned long idx;
  660. idx = gfn_to_index(gfn, slot->base_gfn, level);
  661. return &slot->arch.lpage_info[level - 2][idx];
  662. }
  663. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  664. {
  665. struct kvm_memory_slot *slot;
  666. struct kvm_lpage_info *linfo;
  667. int i;
  668. slot = gfn_to_memslot(kvm, gfn);
  669. for (i = PT_DIRECTORY_LEVEL;
  670. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  671. linfo = lpage_info_slot(gfn, slot, i);
  672. linfo->write_count += 1;
  673. }
  674. kvm->arch.indirect_shadow_pages++;
  675. }
  676. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  677. {
  678. struct kvm_memory_slot *slot;
  679. struct kvm_lpage_info *linfo;
  680. int i;
  681. slot = gfn_to_memslot(kvm, gfn);
  682. for (i = PT_DIRECTORY_LEVEL;
  683. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  684. linfo = lpage_info_slot(gfn, slot, i);
  685. linfo->write_count -= 1;
  686. WARN_ON(linfo->write_count < 0);
  687. }
  688. kvm->arch.indirect_shadow_pages--;
  689. }
  690. static int has_wrprotected_page(struct kvm *kvm,
  691. gfn_t gfn,
  692. int level)
  693. {
  694. struct kvm_memory_slot *slot;
  695. struct kvm_lpage_info *linfo;
  696. slot = gfn_to_memslot(kvm, gfn);
  697. if (slot) {
  698. linfo = lpage_info_slot(gfn, slot, level);
  699. return linfo->write_count;
  700. }
  701. return 1;
  702. }
  703. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  704. {
  705. unsigned long page_size;
  706. int i, ret = 0;
  707. page_size = kvm_host_page_size(kvm, gfn);
  708. for (i = PT_PAGE_TABLE_LEVEL;
  709. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  710. if (page_size >= KVM_HPAGE_SIZE(i))
  711. ret = i;
  712. else
  713. break;
  714. }
  715. return ret;
  716. }
  717. static struct kvm_memory_slot *
  718. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  719. bool no_dirty_log)
  720. {
  721. struct kvm_memory_slot *slot;
  722. slot = gfn_to_memslot(vcpu->kvm, gfn);
  723. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  724. (no_dirty_log && slot->dirty_bitmap))
  725. slot = NULL;
  726. return slot;
  727. }
  728. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  729. {
  730. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  731. }
  732. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  733. {
  734. int host_level, level, max_level;
  735. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  736. if (host_level == PT_PAGE_TABLE_LEVEL)
  737. return host_level;
  738. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  739. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  740. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  741. break;
  742. return level - 1;
  743. }
  744. /*
  745. * Pte mapping structures:
  746. *
  747. * If pte_list bit zero is zero, then pte_list point to the spte.
  748. *
  749. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  750. * pte_list_desc containing more mappings.
  751. *
  752. * Returns the number of pte entries before the spte was added or zero if
  753. * the spte was not added.
  754. *
  755. */
  756. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  757. unsigned long *pte_list)
  758. {
  759. struct pte_list_desc *desc;
  760. int i, count = 0;
  761. if (!*pte_list) {
  762. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  763. *pte_list = (unsigned long)spte;
  764. } else if (!(*pte_list & 1)) {
  765. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  766. desc = mmu_alloc_pte_list_desc(vcpu);
  767. desc->sptes[0] = (u64 *)*pte_list;
  768. desc->sptes[1] = spte;
  769. *pte_list = (unsigned long)desc | 1;
  770. ++count;
  771. } else {
  772. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  773. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  774. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  775. desc = desc->more;
  776. count += PTE_LIST_EXT;
  777. }
  778. if (desc->sptes[PTE_LIST_EXT-1]) {
  779. desc->more = mmu_alloc_pte_list_desc(vcpu);
  780. desc = desc->more;
  781. }
  782. for (i = 0; desc->sptes[i]; ++i)
  783. ++count;
  784. desc->sptes[i] = spte;
  785. }
  786. return count;
  787. }
  788. static void
  789. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  790. int i, struct pte_list_desc *prev_desc)
  791. {
  792. int j;
  793. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  794. ;
  795. desc->sptes[i] = desc->sptes[j];
  796. desc->sptes[j] = NULL;
  797. if (j != 0)
  798. return;
  799. if (!prev_desc && !desc->more)
  800. *pte_list = (unsigned long)desc->sptes[0];
  801. else
  802. if (prev_desc)
  803. prev_desc->more = desc->more;
  804. else
  805. *pte_list = (unsigned long)desc->more | 1;
  806. mmu_free_pte_list_desc(desc);
  807. }
  808. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  809. {
  810. struct pte_list_desc *desc;
  811. struct pte_list_desc *prev_desc;
  812. int i;
  813. if (!*pte_list) {
  814. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  815. BUG();
  816. } else if (!(*pte_list & 1)) {
  817. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  818. if ((u64 *)*pte_list != spte) {
  819. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  820. BUG();
  821. }
  822. *pte_list = 0;
  823. } else {
  824. rmap_printk("pte_list_remove: %p many->many\n", spte);
  825. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  826. prev_desc = NULL;
  827. while (desc) {
  828. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  829. if (desc->sptes[i] == spte) {
  830. pte_list_desc_remove_entry(pte_list,
  831. desc, i,
  832. prev_desc);
  833. return;
  834. }
  835. prev_desc = desc;
  836. desc = desc->more;
  837. }
  838. pr_err("pte_list_remove: %p many->many\n", spte);
  839. BUG();
  840. }
  841. }
  842. typedef void (*pte_list_walk_fn) (u64 *spte);
  843. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  844. {
  845. struct pte_list_desc *desc;
  846. int i;
  847. if (!*pte_list)
  848. return;
  849. if (!(*pte_list & 1))
  850. return fn((u64 *)*pte_list);
  851. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  852. while (desc) {
  853. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  854. fn(desc->sptes[i]);
  855. desc = desc->more;
  856. }
  857. }
  858. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  859. struct kvm_memory_slot *slot)
  860. {
  861. unsigned long idx;
  862. idx = gfn_to_index(gfn, slot->base_gfn, level);
  863. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  864. }
  865. /*
  866. * Take gfn and return the reverse mapping to it.
  867. */
  868. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  869. {
  870. struct kvm_memory_slot *slot;
  871. slot = gfn_to_memslot(kvm, gfn);
  872. return __gfn_to_rmap(gfn, level, slot);
  873. }
  874. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  875. {
  876. struct kvm_mmu_memory_cache *cache;
  877. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  878. return mmu_memory_cache_free_objects(cache);
  879. }
  880. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  881. {
  882. struct kvm_mmu_page *sp;
  883. unsigned long *rmapp;
  884. sp = page_header(__pa(spte));
  885. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  886. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  887. return pte_list_add(vcpu, spte, rmapp);
  888. }
  889. static void rmap_remove(struct kvm *kvm, u64 *spte)
  890. {
  891. struct kvm_mmu_page *sp;
  892. gfn_t gfn;
  893. unsigned long *rmapp;
  894. sp = page_header(__pa(spte));
  895. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  896. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  897. pte_list_remove(spte, rmapp);
  898. }
  899. /*
  900. * Used by the following functions to iterate through the sptes linked by a
  901. * rmap. All fields are private and not assumed to be used outside.
  902. */
  903. struct rmap_iterator {
  904. /* private fields */
  905. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  906. int pos; /* index of the sptep */
  907. };
  908. /*
  909. * Iteration must be started by this function. This should also be used after
  910. * removing/dropping sptes from the rmap link because in such cases the
  911. * information in the itererator may not be valid.
  912. *
  913. * Returns sptep if found, NULL otherwise.
  914. */
  915. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  916. {
  917. if (!rmap)
  918. return NULL;
  919. if (!(rmap & 1)) {
  920. iter->desc = NULL;
  921. return (u64 *)rmap;
  922. }
  923. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  924. iter->pos = 0;
  925. return iter->desc->sptes[iter->pos];
  926. }
  927. /*
  928. * Must be used with a valid iterator: e.g. after rmap_get_first().
  929. *
  930. * Returns sptep if found, NULL otherwise.
  931. */
  932. static u64 *rmap_get_next(struct rmap_iterator *iter)
  933. {
  934. if (iter->desc) {
  935. if (iter->pos < PTE_LIST_EXT - 1) {
  936. u64 *sptep;
  937. ++iter->pos;
  938. sptep = iter->desc->sptes[iter->pos];
  939. if (sptep)
  940. return sptep;
  941. }
  942. iter->desc = iter->desc->more;
  943. if (iter->desc) {
  944. iter->pos = 0;
  945. /* desc->sptes[0] cannot be NULL */
  946. return iter->desc->sptes[iter->pos];
  947. }
  948. }
  949. return NULL;
  950. }
  951. static void drop_spte(struct kvm *kvm, u64 *sptep)
  952. {
  953. if (mmu_spte_clear_track_bits(sptep))
  954. rmap_remove(kvm, sptep);
  955. }
  956. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  957. {
  958. if (is_large_pte(*sptep)) {
  959. WARN_ON(page_header(__pa(sptep))->role.level ==
  960. PT_PAGE_TABLE_LEVEL);
  961. drop_spte(kvm, sptep);
  962. --kvm->stat.lpages;
  963. return true;
  964. }
  965. return false;
  966. }
  967. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  968. {
  969. if (__drop_large_spte(vcpu->kvm, sptep))
  970. kvm_flush_remote_tlbs(vcpu->kvm);
  971. }
  972. /*
  973. * Write-protect on the specified @sptep, @pt_protect indicates whether
  974. * spte writ-protection is caused by protecting shadow page table.
  975. * @flush indicates whether tlb need be flushed.
  976. *
  977. * Note: write protection is difference between drity logging and spte
  978. * protection:
  979. * - for dirty logging, the spte can be set to writable at anytime if
  980. * its dirty bitmap is properly set.
  981. * - for spte protection, the spte can be writable only after unsync-ing
  982. * shadow page.
  983. *
  984. * Return true if the spte is dropped.
  985. */
  986. static bool
  987. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  988. {
  989. u64 spte = *sptep;
  990. if (!is_writable_pte(spte) &&
  991. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  992. return false;
  993. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  994. if (__drop_large_spte(kvm, sptep)) {
  995. *flush |= true;
  996. return true;
  997. }
  998. if (pt_protect)
  999. spte &= ~SPTE_MMU_WRITEABLE;
  1000. spte = spte & ~PT_WRITABLE_MASK;
  1001. *flush |= mmu_spte_update(sptep, spte);
  1002. return false;
  1003. }
  1004. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  1005. bool pt_protect)
  1006. {
  1007. u64 *sptep;
  1008. struct rmap_iterator iter;
  1009. bool flush = false;
  1010. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1011. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1012. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  1013. sptep = rmap_get_first(*rmapp, &iter);
  1014. continue;
  1015. }
  1016. sptep = rmap_get_next(&iter);
  1017. }
  1018. return flush;
  1019. }
  1020. /**
  1021. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1022. * @kvm: kvm instance
  1023. * @slot: slot to protect
  1024. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1025. * @mask: indicates which pages we should protect
  1026. *
  1027. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1028. * logging we do not have any such mappings.
  1029. */
  1030. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1031. struct kvm_memory_slot *slot,
  1032. gfn_t gfn_offset, unsigned long mask)
  1033. {
  1034. unsigned long *rmapp;
  1035. while (mask) {
  1036. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1037. PT_PAGE_TABLE_LEVEL, slot);
  1038. __rmap_write_protect(kvm, rmapp, false);
  1039. /* clear the first set bit */
  1040. mask &= mask - 1;
  1041. }
  1042. }
  1043. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1044. {
  1045. struct kvm_memory_slot *slot;
  1046. unsigned long *rmapp;
  1047. int i;
  1048. bool write_protected = false;
  1049. slot = gfn_to_memslot(kvm, gfn);
  1050. for (i = PT_PAGE_TABLE_LEVEL;
  1051. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1052. rmapp = __gfn_to_rmap(gfn, i, slot);
  1053. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1054. }
  1055. return write_protected;
  1056. }
  1057. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1058. struct kvm_memory_slot *slot, unsigned long data)
  1059. {
  1060. u64 *sptep;
  1061. struct rmap_iterator iter;
  1062. int need_tlb_flush = 0;
  1063. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1064. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1065. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1066. drop_spte(kvm, sptep);
  1067. need_tlb_flush = 1;
  1068. }
  1069. return need_tlb_flush;
  1070. }
  1071. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1072. struct kvm_memory_slot *slot, unsigned long data)
  1073. {
  1074. u64 *sptep;
  1075. struct rmap_iterator iter;
  1076. int need_flush = 0;
  1077. u64 new_spte;
  1078. pte_t *ptep = (pte_t *)data;
  1079. pfn_t new_pfn;
  1080. WARN_ON(pte_huge(*ptep));
  1081. new_pfn = pte_pfn(*ptep);
  1082. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1083. BUG_ON(!is_shadow_present_pte(*sptep));
  1084. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1085. need_flush = 1;
  1086. if (pte_write(*ptep)) {
  1087. drop_spte(kvm, sptep);
  1088. sptep = rmap_get_first(*rmapp, &iter);
  1089. } else {
  1090. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1091. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1092. new_spte &= ~PT_WRITABLE_MASK;
  1093. new_spte &= ~SPTE_HOST_WRITEABLE;
  1094. new_spte &= ~shadow_accessed_mask;
  1095. mmu_spte_clear_track_bits(sptep);
  1096. mmu_spte_set(sptep, new_spte);
  1097. sptep = rmap_get_next(&iter);
  1098. }
  1099. }
  1100. if (need_flush)
  1101. kvm_flush_remote_tlbs(kvm);
  1102. return 0;
  1103. }
  1104. static int kvm_handle_hva_range(struct kvm *kvm,
  1105. unsigned long start,
  1106. unsigned long end,
  1107. unsigned long data,
  1108. int (*handler)(struct kvm *kvm,
  1109. unsigned long *rmapp,
  1110. struct kvm_memory_slot *slot,
  1111. unsigned long data))
  1112. {
  1113. int j;
  1114. int ret = 0;
  1115. struct kvm_memslots *slots;
  1116. struct kvm_memory_slot *memslot;
  1117. slots = kvm_memslots(kvm);
  1118. kvm_for_each_memslot(memslot, slots) {
  1119. unsigned long hva_start, hva_end;
  1120. gfn_t gfn_start, gfn_end;
  1121. hva_start = max(start, memslot->userspace_addr);
  1122. hva_end = min(end, memslot->userspace_addr +
  1123. (memslot->npages << PAGE_SHIFT));
  1124. if (hva_start >= hva_end)
  1125. continue;
  1126. /*
  1127. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1128. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1129. */
  1130. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1131. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1132. for (j = PT_PAGE_TABLE_LEVEL;
  1133. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1134. unsigned long idx, idx_end;
  1135. unsigned long *rmapp;
  1136. /*
  1137. * {idx(page_j) | page_j intersects with
  1138. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1139. */
  1140. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1141. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1142. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1143. for (; idx <= idx_end; ++idx)
  1144. ret |= handler(kvm, rmapp++, memslot, data);
  1145. }
  1146. }
  1147. return ret;
  1148. }
  1149. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1150. unsigned long data,
  1151. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1152. struct kvm_memory_slot *slot,
  1153. unsigned long data))
  1154. {
  1155. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1156. }
  1157. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1158. {
  1159. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1160. }
  1161. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1162. {
  1163. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1164. }
  1165. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1166. {
  1167. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1168. }
  1169. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1170. struct kvm_memory_slot *slot, unsigned long data)
  1171. {
  1172. u64 *sptep;
  1173. struct rmap_iterator uninitialized_var(iter);
  1174. int young = 0;
  1175. /*
  1176. * In case of absence of EPT Access and Dirty Bits supports,
  1177. * emulate the accessed bit for EPT, by checking if this page has
  1178. * an EPT mapping, and clearing it if it does. On the next access,
  1179. * a new EPT mapping will be established.
  1180. * This has some overhead, but not as much as the cost of swapping
  1181. * out actively used pages or breaking up actively used hugepages.
  1182. */
  1183. if (!shadow_accessed_mask) {
  1184. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1185. goto out;
  1186. }
  1187. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1188. sptep = rmap_get_next(&iter)) {
  1189. BUG_ON(!is_shadow_present_pte(*sptep));
  1190. if (*sptep & shadow_accessed_mask) {
  1191. young = 1;
  1192. clear_bit((ffs(shadow_accessed_mask) - 1),
  1193. (unsigned long *)sptep);
  1194. }
  1195. }
  1196. out:
  1197. /* @data has hva passed to kvm_age_hva(). */
  1198. trace_kvm_age_page(data, slot, young);
  1199. return young;
  1200. }
  1201. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1202. struct kvm_memory_slot *slot, unsigned long data)
  1203. {
  1204. u64 *sptep;
  1205. struct rmap_iterator iter;
  1206. int young = 0;
  1207. /*
  1208. * If there's no access bit in the secondary pte set by the
  1209. * hardware it's up to gup-fast/gup to set the access bit in
  1210. * the primary pte or in the page structure.
  1211. */
  1212. if (!shadow_accessed_mask)
  1213. goto out;
  1214. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1215. sptep = rmap_get_next(&iter)) {
  1216. BUG_ON(!is_shadow_present_pte(*sptep));
  1217. if (*sptep & shadow_accessed_mask) {
  1218. young = 1;
  1219. break;
  1220. }
  1221. }
  1222. out:
  1223. return young;
  1224. }
  1225. #define RMAP_RECYCLE_THRESHOLD 1000
  1226. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1227. {
  1228. unsigned long *rmapp;
  1229. struct kvm_mmu_page *sp;
  1230. sp = page_header(__pa(spte));
  1231. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1232. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1233. kvm_flush_remote_tlbs(vcpu->kvm);
  1234. }
  1235. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1236. {
  1237. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1238. }
  1239. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1240. {
  1241. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1242. }
  1243. #ifdef MMU_DEBUG
  1244. static int is_empty_shadow_page(u64 *spt)
  1245. {
  1246. u64 *pos;
  1247. u64 *end;
  1248. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1249. if (is_shadow_present_pte(*pos)) {
  1250. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1251. pos, *pos);
  1252. return 0;
  1253. }
  1254. return 1;
  1255. }
  1256. #endif
  1257. /*
  1258. * This value is the sum of all of the kvm instances's
  1259. * kvm->arch.n_used_mmu_pages values. We need a global,
  1260. * aggregate version in order to make the slab shrinker
  1261. * faster
  1262. */
  1263. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1264. {
  1265. kvm->arch.n_used_mmu_pages += nr;
  1266. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1267. }
  1268. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1269. {
  1270. ASSERT(is_empty_shadow_page(sp->spt));
  1271. hlist_del(&sp->hash_link);
  1272. list_del(&sp->link);
  1273. free_page((unsigned long)sp->spt);
  1274. if (!sp->role.direct)
  1275. free_page((unsigned long)sp->gfns);
  1276. kmem_cache_free(mmu_page_header_cache, sp);
  1277. }
  1278. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1279. {
  1280. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1281. }
  1282. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1283. struct kvm_mmu_page *sp, u64 *parent_pte)
  1284. {
  1285. if (!parent_pte)
  1286. return;
  1287. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1288. }
  1289. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1290. u64 *parent_pte)
  1291. {
  1292. pte_list_remove(parent_pte, &sp->parent_ptes);
  1293. }
  1294. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1295. u64 *parent_pte)
  1296. {
  1297. mmu_page_remove_parent_pte(sp, parent_pte);
  1298. mmu_spte_clear_no_track(parent_pte);
  1299. }
  1300. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1301. u64 *parent_pte, int direct)
  1302. {
  1303. struct kvm_mmu_page *sp;
  1304. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1305. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1306. if (!direct)
  1307. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1308. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1309. /*
  1310. * The active_mmu_pages list is the FIFO list, do not move the
  1311. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1312. * this feature. See the comments in kvm_zap_obsolete_pages().
  1313. */
  1314. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1315. sp->parent_ptes = 0;
  1316. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1317. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1318. return sp;
  1319. }
  1320. static void mark_unsync(u64 *spte);
  1321. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1322. {
  1323. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1324. }
  1325. static void mark_unsync(u64 *spte)
  1326. {
  1327. struct kvm_mmu_page *sp;
  1328. unsigned int index;
  1329. sp = page_header(__pa(spte));
  1330. index = spte - sp->spt;
  1331. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1332. return;
  1333. if (sp->unsync_children++)
  1334. return;
  1335. kvm_mmu_mark_parents_unsync(sp);
  1336. }
  1337. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1338. struct kvm_mmu_page *sp)
  1339. {
  1340. return 1;
  1341. }
  1342. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1343. {
  1344. }
  1345. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1346. struct kvm_mmu_page *sp, u64 *spte,
  1347. const void *pte)
  1348. {
  1349. WARN_ON(1);
  1350. }
  1351. #define KVM_PAGE_ARRAY_NR 16
  1352. struct kvm_mmu_pages {
  1353. struct mmu_page_and_offset {
  1354. struct kvm_mmu_page *sp;
  1355. unsigned int idx;
  1356. } page[KVM_PAGE_ARRAY_NR];
  1357. unsigned int nr;
  1358. };
  1359. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1360. int idx)
  1361. {
  1362. int i;
  1363. if (sp->unsync)
  1364. for (i=0; i < pvec->nr; i++)
  1365. if (pvec->page[i].sp == sp)
  1366. return 0;
  1367. pvec->page[pvec->nr].sp = sp;
  1368. pvec->page[pvec->nr].idx = idx;
  1369. pvec->nr++;
  1370. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1371. }
  1372. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1373. struct kvm_mmu_pages *pvec)
  1374. {
  1375. int i, ret, nr_unsync_leaf = 0;
  1376. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1377. struct kvm_mmu_page *child;
  1378. u64 ent = sp->spt[i];
  1379. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1380. goto clear_child_bitmap;
  1381. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1382. if (child->unsync_children) {
  1383. if (mmu_pages_add(pvec, child, i))
  1384. return -ENOSPC;
  1385. ret = __mmu_unsync_walk(child, pvec);
  1386. if (!ret)
  1387. goto clear_child_bitmap;
  1388. else if (ret > 0)
  1389. nr_unsync_leaf += ret;
  1390. else
  1391. return ret;
  1392. } else if (child->unsync) {
  1393. nr_unsync_leaf++;
  1394. if (mmu_pages_add(pvec, child, i))
  1395. return -ENOSPC;
  1396. } else
  1397. goto clear_child_bitmap;
  1398. continue;
  1399. clear_child_bitmap:
  1400. __clear_bit(i, sp->unsync_child_bitmap);
  1401. sp->unsync_children--;
  1402. WARN_ON((int)sp->unsync_children < 0);
  1403. }
  1404. return nr_unsync_leaf;
  1405. }
  1406. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1407. struct kvm_mmu_pages *pvec)
  1408. {
  1409. if (!sp->unsync_children)
  1410. return 0;
  1411. mmu_pages_add(pvec, sp, 0);
  1412. return __mmu_unsync_walk(sp, pvec);
  1413. }
  1414. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1415. {
  1416. WARN_ON(!sp->unsync);
  1417. trace_kvm_mmu_sync_page(sp);
  1418. sp->unsync = 0;
  1419. --kvm->stat.mmu_unsync;
  1420. }
  1421. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1422. struct list_head *invalid_list);
  1423. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1424. struct list_head *invalid_list);
  1425. /*
  1426. * NOTE: we should pay more attention on the zapped-obsolete page
  1427. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1428. * since it has been deleted from active_mmu_pages but still can be found
  1429. * at hast list.
  1430. *
  1431. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1432. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1433. * all the obsolete pages.
  1434. */
  1435. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1436. hlist_for_each_entry(_sp, \
  1437. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1438. if ((_sp)->gfn != (_gfn)) {} else
  1439. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1440. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1441. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1442. /* @sp->gfn should be write-protected at the call site */
  1443. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1444. struct list_head *invalid_list, bool clear_unsync)
  1445. {
  1446. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1447. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1448. return 1;
  1449. }
  1450. if (clear_unsync)
  1451. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1452. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1453. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1454. return 1;
  1455. }
  1456. kvm_mmu_flush_tlb(vcpu);
  1457. return 0;
  1458. }
  1459. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1460. struct kvm_mmu_page *sp)
  1461. {
  1462. LIST_HEAD(invalid_list);
  1463. int ret;
  1464. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1465. if (ret)
  1466. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1467. return ret;
  1468. }
  1469. #ifdef CONFIG_KVM_MMU_AUDIT
  1470. #include "mmu_audit.c"
  1471. #else
  1472. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1473. static void mmu_audit_disable(void) { }
  1474. #endif
  1475. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1476. struct list_head *invalid_list)
  1477. {
  1478. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1479. }
  1480. /* @gfn should be write-protected at the call site */
  1481. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1482. {
  1483. struct kvm_mmu_page *s;
  1484. LIST_HEAD(invalid_list);
  1485. bool flush = false;
  1486. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1487. if (!s->unsync)
  1488. continue;
  1489. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1490. kvm_unlink_unsync_page(vcpu->kvm, s);
  1491. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1492. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1493. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1494. continue;
  1495. }
  1496. flush = true;
  1497. }
  1498. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1499. if (flush)
  1500. kvm_mmu_flush_tlb(vcpu);
  1501. }
  1502. struct mmu_page_path {
  1503. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1504. unsigned int idx[PT64_ROOT_LEVEL-1];
  1505. };
  1506. #define for_each_sp(pvec, sp, parents, i) \
  1507. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1508. sp = pvec.page[i].sp; \
  1509. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1510. i = mmu_pages_next(&pvec, &parents, i))
  1511. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1512. struct mmu_page_path *parents,
  1513. int i)
  1514. {
  1515. int n;
  1516. for (n = i+1; n < pvec->nr; n++) {
  1517. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1518. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1519. parents->idx[0] = pvec->page[n].idx;
  1520. return n;
  1521. }
  1522. parents->parent[sp->role.level-2] = sp;
  1523. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1524. }
  1525. return n;
  1526. }
  1527. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1528. {
  1529. struct kvm_mmu_page *sp;
  1530. unsigned int level = 0;
  1531. do {
  1532. unsigned int idx = parents->idx[level];
  1533. sp = parents->parent[level];
  1534. if (!sp)
  1535. return;
  1536. --sp->unsync_children;
  1537. WARN_ON((int)sp->unsync_children < 0);
  1538. __clear_bit(idx, sp->unsync_child_bitmap);
  1539. level++;
  1540. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1541. }
  1542. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1543. struct mmu_page_path *parents,
  1544. struct kvm_mmu_pages *pvec)
  1545. {
  1546. parents->parent[parent->role.level-1] = NULL;
  1547. pvec->nr = 0;
  1548. }
  1549. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1550. struct kvm_mmu_page *parent)
  1551. {
  1552. int i;
  1553. struct kvm_mmu_page *sp;
  1554. struct mmu_page_path parents;
  1555. struct kvm_mmu_pages pages;
  1556. LIST_HEAD(invalid_list);
  1557. kvm_mmu_pages_init(parent, &parents, &pages);
  1558. while (mmu_unsync_walk(parent, &pages)) {
  1559. bool protected = false;
  1560. for_each_sp(pages, sp, parents, i)
  1561. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1562. if (protected)
  1563. kvm_flush_remote_tlbs(vcpu->kvm);
  1564. for_each_sp(pages, sp, parents, i) {
  1565. kvm_sync_page(vcpu, sp, &invalid_list);
  1566. mmu_pages_clear_parents(&parents);
  1567. }
  1568. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1569. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1570. kvm_mmu_pages_init(parent, &parents, &pages);
  1571. }
  1572. }
  1573. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1574. {
  1575. int i;
  1576. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1577. sp->spt[i] = 0ull;
  1578. }
  1579. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1580. {
  1581. sp->write_flooding_count = 0;
  1582. }
  1583. static void clear_sp_write_flooding_count(u64 *spte)
  1584. {
  1585. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1586. __clear_sp_write_flooding_count(sp);
  1587. }
  1588. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1589. {
  1590. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1591. }
  1592. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1593. gfn_t gfn,
  1594. gva_t gaddr,
  1595. unsigned level,
  1596. int direct,
  1597. unsigned access,
  1598. u64 *parent_pte)
  1599. {
  1600. union kvm_mmu_page_role role;
  1601. unsigned quadrant;
  1602. struct kvm_mmu_page *sp;
  1603. bool need_sync = false;
  1604. role = vcpu->arch.mmu.base_role;
  1605. role.level = level;
  1606. role.direct = direct;
  1607. if (role.direct)
  1608. role.cr4_pae = 0;
  1609. role.access = access;
  1610. if (!vcpu->arch.mmu.direct_map
  1611. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1612. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1613. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1614. role.quadrant = quadrant;
  1615. }
  1616. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1617. if (is_obsolete_sp(vcpu->kvm, sp))
  1618. continue;
  1619. if (!need_sync && sp->unsync)
  1620. need_sync = true;
  1621. if (sp->role.word != role.word)
  1622. continue;
  1623. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1624. break;
  1625. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1626. if (sp->unsync_children) {
  1627. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1628. kvm_mmu_mark_parents_unsync(sp);
  1629. } else if (sp->unsync)
  1630. kvm_mmu_mark_parents_unsync(sp);
  1631. __clear_sp_write_flooding_count(sp);
  1632. trace_kvm_mmu_get_page(sp, false);
  1633. return sp;
  1634. }
  1635. ++vcpu->kvm->stat.mmu_cache_miss;
  1636. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1637. if (!sp)
  1638. return sp;
  1639. sp->gfn = gfn;
  1640. sp->role = role;
  1641. hlist_add_head(&sp->hash_link,
  1642. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1643. if (!direct) {
  1644. if (rmap_write_protect(vcpu->kvm, gfn))
  1645. kvm_flush_remote_tlbs(vcpu->kvm);
  1646. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1647. kvm_sync_pages(vcpu, gfn);
  1648. account_shadowed(vcpu->kvm, gfn);
  1649. }
  1650. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1651. init_shadow_page_table(sp);
  1652. trace_kvm_mmu_get_page(sp, true);
  1653. return sp;
  1654. }
  1655. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1656. struct kvm_vcpu *vcpu, u64 addr)
  1657. {
  1658. iterator->addr = addr;
  1659. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1660. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1661. if (iterator->level == PT64_ROOT_LEVEL &&
  1662. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1663. !vcpu->arch.mmu.direct_map)
  1664. --iterator->level;
  1665. if (iterator->level == PT32E_ROOT_LEVEL) {
  1666. iterator->shadow_addr
  1667. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1668. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1669. --iterator->level;
  1670. if (!iterator->shadow_addr)
  1671. iterator->level = 0;
  1672. }
  1673. }
  1674. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1675. {
  1676. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1677. return false;
  1678. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1679. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1680. return true;
  1681. }
  1682. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1683. u64 spte)
  1684. {
  1685. if (is_last_spte(spte, iterator->level)) {
  1686. iterator->level = 0;
  1687. return;
  1688. }
  1689. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1690. --iterator->level;
  1691. }
  1692. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1693. {
  1694. return __shadow_walk_next(iterator, *iterator->sptep);
  1695. }
  1696. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1697. {
  1698. u64 spte;
  1699. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1700. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1701. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1702. shadow_user_mask | shadow_x_mask;
  1703. if (accessed)
  1704. spte |= shadow_accessed_mask;
  1705. mmu_spte_set(sptep, spte);
  1706. }
  1707. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1708. unsigned direct_access)
  1709. {
  1710. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1711. struct kvm_mmu_page *child;
  1712. /*
  1713. * For the direct sp, if the guest pte's dirty bit
  1714. * changed form clean to dirty, it will corrupt the
  1715. * sp's access: allow writable in the read-only sp,
  1716. * so we should update the spte at this point to get
  1717. * a new sp with the correct access.
  1718. */
  1719. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1720. if (child->role.access == direct_access)
  1721. return;
  1722. drop_parent_pte(child, sptep);
  1723. kvm_flush_remote_tlbs(vcpu->kvm);
  1724. }
  1725. }
  1726. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1727. u64 *spte)
  1728. {
  1729. u64 pte;
  1730. struct kvm_mmu_page *child;
  1731. pte = *spte;
  1732. if (is_shadow_present_pte(pte)) {
  1733. if (is_last_spte(pte, sp->role.level)) {
  1734. drop_spte(kvm, spte);
  1735. if (is_large_pte(pte))
  1736. --kvm->stat.lpages;
  1737. } else {
  1738. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1739. drop_parent_pte(child, spte);
  1740. }
  1741. return true;
  1742. }
  1743. if (is_mmio_spte(pte))
  1744. mmu_spte_clear_no_track(spte);
  1745. return false;
  1746. }
  1747. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1748. struct kvm_mmu_page *sp)
  1749. {
  1750. unsigned i;
  1751. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1752. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1753. }
  1754. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1755. {
  1756. mmu_page_remove_parent_pte(sp, parent_pte);
  1757. }
  1758. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1759. {
  1760. u64 *sptep;
  1761. struct rmap_iterator iter;
  1762. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1763. drop_parent_pte(sp, sptep);
  1764. }
  1765. static int mmu_zap_unsync_children(struct kvm *kvm,
  1766. struct kvm_mmu_page *parent,
  1767. struct list_head *invalid_list)
  1768. {
  1769. int i, zapped = 0;
  1770. struct mmu_page_path parents;
  1771. struct kvm_mmu_pages pages;
  1772. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1773. return 0;
  1774. kvm_mmu_pages_init(parent, &parents, &pages);
  1775. while (mmu_unsync_walk(parent, &pages)) {
  1776. struct kvm_mmu_page *sp;
  1777. for_each_sp(pages, sp, parents, i) {
  1778. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1779. mmu_pages_clear_parents(&parents);
  1780. zapped++;
  1781. }
  1782. kvm_mmu_pages_init(parent, &parents, &pages);
  1783. }
  1784. return zapped;
  1785. }
  1786. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1787. struct list_head *invalid_list)
  1788. {
  1789. int ret;
  1790. trace_kvm_mmu_prepare_zap_page(sp);
  1791. ++kvm->stat.mmu_shadow_zapped;
  1792. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1793. kvm_mmu_page_unlink_children(kvm, sp);
  1794. kvm_mmu_unlink_parents(kvm, sp);
  1795. if (!sp->role.invalid && !sp->role.direct)
  1796. unaccount_shadowed(kvm, sp->gfn);
  1797. if (sp->unsync)
  1798. kvm_unlink_unsync_page(kvm, sp);
  1799. if (!sp->root_count) {
  1800. /* Count self */
  1801. ret++;
  1802. list_move(&sp->link, invalid_list);
  1803. kvm_mod_used_mmu_pages(kvm, -1);
  1804. } else {
  1805. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1806. /*
  1807. * The obsolete pages can not be used on any vcpus.
  1808. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1809. */
  1810. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1811. kvm_reload_remote_mmus(kvm);
  1812. }
  1813. sp->role.invalid = 1;
  1814. return ret;
  1815. }
  1816. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1817. struct list_head *invalid_list)
  1818. {
  1819. struct kvm_mmu_page *sp, *nsp;
  1820. if (list_empty(invalid_list))
  1821. return;
  1822. /*
  1823. * wmb: make sure everyone sees our modifications to the page tables
  1824. * rmb: make sure we see changes to vcpu->mode
  1825. */
  1826. smp_mb();
  1827. /*
  1828. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1829. * page table walks.
  1830. */
  1831. kvm_flush_remote_tlbs(kvm);
  1832. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1833. WARN_ON(!sp->role.invalid || sp->root_count);
  1834. kvm_mmu_free_page(sp);
  1835. }
  1836. }
  1837. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1838. struct list_head *invalid_list)
  1839. {
  1840. struct kvm_mmu_page *sp;
  1841. if (list_empty(&kvm->arch.active_mmu_pages))
  1842. return false;
  1843. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1844. struct kvm_mmu_page, link);
  1845. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1846. return true;
  1847. }
  1848. /*
  1849. * Changing the number of mmu pages allocated to the vm
  1850. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1851. */
  1852. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1853. {
  1854. LIST_HEAD(invalid_list);
  1855. spin_lock(&kvm->mmu_lock);
  1856. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1857. /* Need to free some mmu pages to achieve the goal. */
  1858. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1859. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1860. break;
  1861. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1862. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1863. }
  1864. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1865. spin_unlock(&kvm->mmu_lock);
  1866. }
  1867. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1868. {
  1869. struct kvm_mmu_page *sp;
  1870. LIST_HEAD(invalid_list);
  1871. int r;
  1872. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1873. r = 0;
  1874. spin_lock(&kvm->mmu_lock);
  1875. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1876. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1877. sp->role.word);
  1878. r = 1;
  1879. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1880. }
  1881. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1882. spin_unlock(&kvm->mmu_lock);
  1883. return r;
  1884. }
  1885. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1886. /*
  1887. * The function is based on mtrr_type_lookup() in
  1888. * arch/x86/kernel/cpu/mtrr/generic.c
  1889. */
  1890. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1891. u64 start, u64 end)
  1892. {
  1893. int i;
  1894. u64 base, mask;
  1895. u8 prev_match, curr_match;
  1896. int num_var_ranges = KVM_NR_VAR_MTRR;
  1897. if (!mtrr_state->enabled)
  1898. return 0xFF;
  1899. /* Make end inclusive end, instead of exclusive */
  1900. end--;
  1901. /* Look in fixed ranges. Just return the type as per start */
  1902. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1903. int idx;
  1904. if (start < 0x80000) {
  1905. idx = 0;
  1906. idx += (start >> 16);
  1907. return mtrr_state->fixed_ranges[idx];
  1908. } else if (start < 0xC0000) {
  1909. idx = 1 * 8;
  1910. idx += ((start - 0x80000) >> 14);
  1911. return mtrr_state->fixed_ranges[idx];
  1912. } else if (start < 0x1000000) {
  1913. idx = 3 * 8;
  1914. idx += ((start - 0xC0000) >> 12);
  1915. return mtrr_state->fixed_ranges[idx];
  1916. }
  1917. }
  1918. /*
  1919. * Look in variable ranges
  1920. * Look of multiple ranges matching this address and pick type
  1921. * as per MTRR precedence
  1922. */
  1923. if (!(mtrr_state->enabled & 2))
  1924. return mtrr_state->def_type;
  1925. prev_match = 0xFF;
  1926. for (i = 0; i < num_var_ranges; ++i) {
  1927. unsigned short start_state, end_state;
  1928. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1929. continue;
  1930. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1931. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1932. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1933. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1934. start_state = ((start & mask) == (base & mask));
  1935. end_state = ((end & mask) == (base & mask));
  1936. if (start_state != end_state)
  1937. return 0xFE;
  1938. if ((start & mask) != (base & mask))
  1939. continue;
  1940. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1941. if (prev_match == 0xFF) {
  1942. prev_match = curr_match;
  1943. continue;
  1944. }
  1945. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1946. curr_match == MTRR_TYPE_UNCACHABLE)
  1947. return MTRR_TYPE_UNCACHABLE;
  1948. if ((prev_match == MTRR_TYPE_WRBACK &&
  1949. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1950. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1951. curr_match == MTRR_TYPE_WRBACK)) {
  1952. prev_match = MTRR_TYPE_WRTHROUGH;
  1953. curr_match = MTRR_TYPE_WRTHROUGH;
  1954. }
  1955. if (prev_match != curr_match)
  1956. return MTRR_TYPE_UNCACHABLE;
  1957. }
  1958. if (prev_match != 0xFF)
  1959. return prev_match;
  1960. return mtrr_state->def_type;
  1961. }
  1962. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1963. {
  1964. u8 mtrr;
  1965. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1966. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1967. if (mtrr == 0xfe || mtrr == 0xff)
  1968. mtrr = MTRR_TYPE_WRBACK;
  1969. return mtrr;
  1970. }
  1971. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1972. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1973. {
  1974. trace_kvm_mmu_unsync_page(sp);
  1975. ++vcpu->kvm->stat.mmu_unsync;
  1976. sp->unsync = 1;
  1977. kvm_mmu_mark_parents_unsync(sp);
  1978. }
  1979. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1980. {
  1981. struct kvm_mmu_page *s;
  1982. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1983. if (s->unsync)
  1984. continue;
  1985. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1986. __kvm_unsync_page(vcpu, s);
  1987. }
  1988. }
  1989. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1990. bool can_unsync)
  1991. {
  1992. struct kvm_mmu_page *s;
  1993. bool need_unsync = false;
  1994. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1995. if (!can_unsync)
  1996. return 1;
  1997. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1998. return 1;
  1999. if (!s->unsync)
  2000. need_unsync = true;
  2001. }
  2002. if (need_unsync)
  2003. kvm_unsync_pages(vcpu, gfn);
  2004. return 0;
  2005. }
  2006. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2007. unsigned pte_access, int level,
  2008. gfn_t gfn, pfn_t pfn, bool speculative,
  2009. bool can_unsync, bool host_writable)
  2010. {
  2011. u64 spte;
  2012. int ret = 0;
  2013. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2014. return 0;
  2015. spte = PT_PRESENT_MASK;
  2016. if (!speculative)
  2017. spte |= shadow_accessed_mask;
  2018. if (pte_access & ACC_EXEC_MASK)
  2019. spte |= shadow_x_mask;
  2020. else
  2021. spte |= shadow_nx_mask;
  2022. if (pte_access & ACC_USER_MASK)
  2023. spte |= shadow_user_mask;
  2024. if (level > PT_PAGE_TABLE_LEVEL)
  2025. spte |= PT_PAGE_SIZE_MASK;
  2026. if (tdp_enabled)
  2027. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2028. kvm_is_mmio_pfn(pfn));
  2029. if (host_writable)
  2030. spte |= SPTE_HOST_WRITEABLE;
  2031. else
  2032. pte_access &= ~ACC_WRITE_MASK;
  2033. spte |= (u64)pfn << PAGE_SHIFT;
  2034. if (pte_access & ACC_WRITE_MASK) {
  2035. /*
  2036. * Other vcpu creates new sp in the window between
  2037. * mapping_level() and acquiring mmu-lock. We can
  2038. * allow guest to retry the access, the mapping can
  2039. * be fixed if guest refault.
  2040. */
  2041. if (level > PT_PAGE_TABLE_LEVEL &&
  2042. has_wrprotected_page(vcpu->kvm, gfn, level))
  2043. goto done;
  2044. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2045. /*
  2046. * Optimization: for pte sync, if spte was writable the hash
  2047. * lookup is unnecessary (and expensive). Write protection
  2048. * is responsibility of mmu_get_page / kvm_sync_page.
  2049. * Same reasoning can be applied to dirty page accounting.
  2050. */
  2051. if (!can_unsync && is_writable_pte(*sptep))
  2052. goto set_pte;
  2053. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2054. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2055. __func__, gfn);
  2056. ret = 1;
  2057. pte_access &= ~ACC_WRITE_MASK;
  2058. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2059. }
  2060. }
  2061. if (pte_access & ACC_WRITE_MASK)
  2062. mark_page_dirty(vcpu->kvm, gfn);
  2063. set_pte:
  2064. if (mmu_spte_update(sptep, spte))
  2065. kvm_flush_remote_tlbs(vcpu->kvm);
  2066. done:
  2067. return ret;
  2068. }
  2069. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2070. unsigned pte_access, int write_fault, int *emulate,
  2071. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2072. bool host_writable)
  2073. {
  2074. int was_rmapped = 0;
  2075. int rmap_count;
  2076. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2077. *sptep, write_fault, gfn);
  2078. if (is_rmap_spte(*sptep)) {
  2079. /*
  2080. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2081. * the parent of the now unreachable PTE.
  2082. */
  2083. if (level > PT_PAGE_TABLE_LEVEL &&
  2084. !is_large_pte(*sptep)) {
  2085. struct kvm_mmu_page *child;
  2086. u64 pte = *sptep;
  2087. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2088. drop_parent_pte(child, sptep);
  2089. kvm_flush_remote_tlbs(vcpu->kvm);
  2090. } else if (pfn != spte_to_pfn(*sptep)) {
  2091. pgprintk("hfn old %llx new %llx\n",
  2092. spte_to_pfn(*sptep), pfn);
  2093. drop_spte(vcpu->kvm, sptep);
  2094. kvm_flush_remote_tlbs(vcpu->kvm);
  2095. } else
  2096. was_rmapped = 1;
  2097. }
  2098. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2099. true, host_writable)) {
  2100. if (write_fault)
  2101. *emulate = 1;
  2102. kvm_mmu_flush_tlb(vcpu);
  2103. }
  2104. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2105. *emulate = 1;
  2106. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2107. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2108. is_large_pte(*sptep)? "2MB" : "4kB",
  2109. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2110. *sptep, sptep);
  2111. if (!was_rmapped && is_large_pte(*sptep))
  2112. ++vcpu->kvm->stat.lpages;
  2113. if (is_shadow_present_pte(*sptep)) {
  2114. if (!was_rmapped) {
  2115. rmap_count = rmap_add(vcpu, sptep, gfn);
  2116. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2117. rmap_recycle(vcpu, sptep, gfn);
  2118. }
  2119. }
  2120. kvm_release_pfn_clean(pfn);
  2121. }
  2122. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2123. {
  2124. mmu_free_roots(vcpu);
  2125. }
  2126. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2127. bool no_dirty_log)
  2128. {
  2129. struct kvm_memory_slot *slot;
  2130. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2131. if (!slot)
  2132. return KVM_PFN_ERR_FAULT;
  2133. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2134. }
  2135. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2136. struct kvm_mmu_page *sp,
  2137. u64 *start, u64 *end)
  2138. {
  2139. struct page *pages[PTE_PREFETCH_NUM];
  2140. unsigned access = sp->role.access;
  2141. int i, ret;
  2142. gfn_t gfn;
  2143. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2144. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2145. return -1;
  2146. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2147. if (ret <= 0)
  2148. return -1;
  2149. for (i = 0; i < ret; i++, gfn++, start++)
  2150. mmu_set_spte(vcpu, start, access, 0, NULL,
  2151. sp->role.level, gfn, page_to_pfn(pages[i]),
  2152. true, true);
  2153. return 0;
  2154. }
  2155. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2156. struct kvm_mmu_page *sp, u64 *sptep)
  2157. {
  2158. u64 *spte, *start = NULL;
  2159. int i;
  2160. WARN_ON(!sp->role.direct);
  2161. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2162. spte = sp->spt + i;
  2163. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2164. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2165. if (!start)
  2166. continue;
  2167. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2168. break;
  2169. start = NULL;
  2170. } else if (!start)
  2171. start = spte;
  2172. }
  2173. }
  2174. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2175. {
  2176. struct kvm_mmu_page *sp;
  2177. /*
  2178. * Since it's no accessed bit on EPT, it's no way to
  2179. * distinguish between actually accessed translations
  2180. * and prefetched, so disable pte prefetch if EPT is
  2181. * enabled.
  2182. */
  2183. if (!shadow_accessed_mask)
  2184. return;
  2185. sp = page_header(__pa(sptep));
  2186. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2187. return;
  2188. __direct_pte_prefetch(vcpu, sp, sptep);
  2189. }
  2190. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2191. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2192. bool prefault)
  2193. {
  2194. struct kvm_shadow_walk_iterator iterator;
  2195. struct kvm_mmu_page *sp;
  2196. int emulate = 0;
  2197. gfn_t pseudo_gfn;
  2198. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2199. if (iterator.level == level) {
  2200. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2201. write, &emulate, level, gfn, pfn,
  2202. prefault, map_writable);
  2203. direct_pte_prefetch(vcpu, iterator.sptep);
  2204. ++vcpu->stat.pf_fixed;
  2205. break;
  2206. }
  2207. if (!is_shadow_present_pte(*iterator.sptep)) {
  2208. u64 base_addr = iterator.addr;
  2209. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2210. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2211. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2212. iterator.level - 1,
  2213. 1, ACC_ALL, iterator.sptep);
  2214. link_shadow_page(iterator.sptep, sp, true);
  2215. }
  2216. }
  2217. return emulate;
  2218. }
  2219. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2220. {
  2221. siginfo_t info;
  2222. info.si_signo = SIGBUS;
  2223. info.si_errno = 0;
  2224. info.si_code = BUS_MCEERR_AR;
  2225. info.si_addr = (void __user *)address;
  2226. info.si_addr_lsb = PAGE_SHIFT;
  2227. send_sig_info(SIGBUS, &info, tsk);
  2228. }
  2229. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2230. {
  2231. /*
  2232. * Do not cache the mmio info caused by writing the readonly gfn
  2233. * into the spte otherwise read access on readonly gfn also can
  2234. * caused mmio page fault and treat it as mmio access.
  2235. * Return 1 to tell kvm to emulate it.
  2236. */
  2237. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2238. return 1;
  2239. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2240. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2241. return 0;
  2242. }
  2243. return -EFAULT;
  2244. }
  2245. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2246. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2247. {
  2248. pfn_t pfn = *pfnp;
  2249. gfn_t gfn = *gfnp;
  2250. int level = *levelp;
  2251. /*
  2252. * Check if it's a transparent hugepage. If this would be an
  2253. * hugetlbfs page, level wouldn't be set to
  2254. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2255. * here.
  2256. */
  2257. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2258. level == PT_PAGE_TABLE_LEVEL &&
  2259. PageTransCompound(pfn_to_page(pfn)) &&
  2260. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2261. unsigned long mask;
  2262. /*
  2263. * mmu_notifier_retry was successful and we hold the
  2264. * mmu_lock here, so the pmd can't become splitting
  2265. * from under us, and in turn
  2266. * __split_huge_page_refcount() can't run from under
  2267. * us and we can safely transfer the refcount from
  2268. * PG_tail to PG_head as we switch the pfn to tail to
  2269. * head.
  2270. */
  2271. *levelp = level = PT_DIRECTORY_LEVEL;
  2272. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2273. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2274. if (pfn & mask) {
  2275. gfn &= ~mask;
  2276. *gfnp = gfn;
  2277. kvm_release_pfn_clean(pfn);
  2278. pfn &= ~mask;
  2279. kvm_get_pfn(pfn);
  2280. *pfnp = pfn;
  2281. }
  2282. }
  2283. }
  2284. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2285. pfn_t pfn, unsigned access, int *ret_val)
  2286. {
  2287. bool ret = true;
  2288. /* The pfn is invalid, report the error! */
  2289. if (unlikely(is_error_pfn(pfn))) {
  2290. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2291. goto exit;
  2292. }
  2293. if (unlikely(is_noslot_pfn(pfn)))
  2294. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2295. ret = false;
  2296. exit:
  2297. return ret;
  2298. }
  2299. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2300. {
  2301. /*
  2302. * Do not fix the mmio spte with invalid generation number which
  2303. * need to be updated by slow page fault path.
  2304. */
  2305. if (unlikely(error_code & PFERR_RSVD_MASK))
  2306. return false;
  2307. /*
  2308. * #PF can be fast only if the shadow page table is present and it
  2309. * is caused by write-protect, that means we just need change the
  2310. * W bit of the spte which can be done out of mmu-lock.
  2311. */
  2312. if (!(error_code & PFERR_PRESENT_MASK) ||
  2313. !(error_code & PFERR_WRITE_MASK))
  2314. return false;
  2315. return true;
  2316. }
  2317. static bool
  2318. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2319. {
  2320. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2321. gfn_t gfn;
  2322. WARN_ON(!sp->role.direct);
  2323. /*
  2324. * The gfn of direct spte is stable since it is calculated
  2325. * by sp->gfn.
  2326. */
  2327. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2328. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2329. mark_page_dirty(vcpu->kvm, gfn);
  2330. return true;
  2331. }
  2332. /*
  2333. * Return value:
  2334. * - true: let the vcpu to access on the same address again.
  2335. * - false: let the real page fault path to fix it.
  2336. */
  2337. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2338. u32 error_code)
  2339. {
  2340. struct kvm_shadow_walk_iterator iterator;
  2341. bool ret = false;
  2342. u64 spte = 0ull;
  2343. if (!page_fault_can_be_fast(vcpu, error_code))
  2344. return false;
  2345. walk_shadow_page_lockless_begin(vcpu);
  2346. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2347. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2348. break;
  2349. /*
  2350. * If the mapping has been changed, let the vcpu fault on the
  2351. * same address again.
  2352. */
  2353. if (!is_rmap_spte(spte)) {
  2354. ret = true;
  2355. goto exit;
  2356. }
  2357. if (!is_last_spte(spte, level))
  2358. goto exit;
  2359. /*
  2360. * Check if it is a spurious fault caused by TLB lazily flushed.
  2361. *
  2362. * Need not check the access of upper level table entries since
  2363. * they are always ACC_ALL.
  2364. */
  2365. if (is_writable_pte(spte)) {
  2366. ret = true;
  2367. goto exit;
  2368. }
  2369. /*
  2370. * Currently, to simplify the code, only the spte write-protected
  2371. * by dirty-log can be fast fixed.
  2372. */
  2373. if (!spte_is_locklessly_modifiable(spte))
  2374. goto exit;
  2375. /*
  2376. * Currently, fast page fault only works for direct mapping since
  2377. * the gfn is not stable for indirect shadow page.
  2378. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2379. */
  2380. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2381. exit:
  2382. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2383. spte, ret);
  2384. walk_shadow_page_lockless_end(vcpu);
  2385. return ret;
  2386. }
  2387. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2388. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2389. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2390. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2391. gfn_t gfn, bool prefault)
  2392. {
  2393. int r;
  2394. int level;
  2395. int force_pt_level;
  2396. pfn_t pfn;
  2397. unsigned long mmu_seq;
  2398. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2399. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2400. if (likely(!force_pt_level)) {
  2401. level = mapping_level(vcpu, gfn);
  2402. /*
  2403. * This path builds a PAE pagetable - so we can map
  2404. * 2mb pages at maximum. Therefore check if the level
  2405. * is larger than that.
  2406. */
  2407. if (level > PT_DIRECTORY_LEVEL)
  2408. level = PT_DIRECTORY_LEVEL;
  2409. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2410. } else
  2411. level = PT_PAGE_TABLE_LEVEL;
  2412. if (fast_page_fault(vcpu, v, level, error_code))
  2413. return 0;
  2414. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2415. smp_rmb();
  2416. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2417. return 0;
  2418. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2419. return r;
  2420. spin_lock(&vcpu->kvm->mmu_lock);
  2421. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2422. goto out_unlock;
  2423. make_mmu_pages_available(vcpu);
  2424. if (likely(!force_pt_level))
  2425. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2426. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2427. prefault);
  2428. spin_unlock(&vcpu->kvm->mmu_lock);
  2429. return r;
  2430. out_unlock:
  2431. spin_unlock(&vcpu->kvm->mmu_lock);
  2432. kvm_release_pfn_clean(pfn);
  2433. return 0;
  2434. }
  2435. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2436. {
  2437. int i;
  2438. struct kvm_mmu_page *sp;
  2439. LIST_HEAD(invalid_list);
  2440. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2441. return;
  2442. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2443. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2444. vcpu->arch.mmu.direct_map)) {
  2445. hpa_t root = vcpu->arch.mmu.root_hpa;
  2446. spin_lock(&vcpu->kvm->mmu_lock);
  2447. sp = page_header(root);
  2448. --sp->root_count;
  2449. if (!sp->root_count && sp->role.invalid) {
  2450. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2451. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2452. }
  2453. spin_unlock(&vcpu->kvm->mmu_lock);
  2454. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2455. return;
  2456. }
  2457. spin_lock(&vcpu->kvm->mmu_lock);
  2458. for (i = 0; i < 4; ++i) {
  2459. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2460. if (root) {
  2461. root &= PT64_BASE_ADDR_MASK;
  2462. sp = page_header(root);
  2463. --sp->root_count;
  2464. if (!sp->root_count && sp->role.invalid)
  2465. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2466. &invalid_list);
  2467. }
  2468. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2469. }
  2470. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2471. spin_unlock(&vcpu->kvm->mmu_lock);
  2472. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2473. }
  2474. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2475. {
  2476. int ret = 0;
  2477. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2478. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2479. ret = 1;
  2480. }
  2481. return ret;
  2482. }
  2483. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2484. {
  2485. struct kvm_mmu_page *sp;
  2486. unsigned i;
  2487. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2488. spin_lock(&vcpu->kvm->mmu_lock);
  2489. make_mmu_pages_available(vcpu);
  2490. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2491. 1, ACC_ALL, NULL);
  2492. ++sp->root_count;
  2493. spin_unlock(&vcpu->kvm->mmu_lock);
  2494. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2495. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2496. for (i = 0; i < 4; ++i) {
  2497. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2498. ASSERT(!VALID_PAGE(root));
  2499. spin_lock(&vcpu->kvm->mmu_lock);
  2500. make_mmu_pages_available(vcpu);
  2501. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2502. i << 30,
  2503. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2504. NULL);
  2505. root = __pa(sp->spt);
  2506. ++sp->root_count;
  2507. spin_unlock(&vcpu->kvm->mmu_lock);
  2508. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2509. }
  2510. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2511. } else
  2512. BUG();
  2513. return 0;
  2514. }
  2515. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2516. {
  2517. struct kvm_mmu_page *sp;
  2518. u64 pdptr, pm_mask;
  2519. gfn_t root_gfn;
  2520. int i;
  2521. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2522. if (mmu_check_root(vcpu, root_gfn))
  2523. return 1;
  2524. /*
  2525. * Do we shadow a long mode page table? If so we need to
  2526. * write-protect the guests page table root.
  2527. */
  2528. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2529. hpa_t root = vcpu->arch.mmu.root_hpa;
  2530. ASSERT(!VALID_PAGE(root));
  2531. spin_lock(&vcpu->kvm->mmu_lock);
  2532. make_mmu_pages_available(vcpu);
  2533. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2534. 0, ACC_ALL, NULL);
  2535. root = __pa(sp->spt);
  2536. ++sp->root_count;
  2537. spin_unlock(&vcpu->kvm->mmu_lock);
  2538. vcpu->arch.mmu.root_hpa = root;
  2539. return 0;
  2540. }
  2541. /*
  2542. * We shadow a 32 bit page table. This may be a legacy 2-level
  2543. * or a PAE 3-level page table. In either case we need to be aware that
  2544. * the shadow page table may be a PAE or a long mode page table.
  2545. */
  2546. pm_mask = PT_PRESENT_MASK;
  2547. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2548. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2549. for (i = 0; i < 4; ++i) {
  2550. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2551. ASSERT(!VALID_PAGE(root));
  2552. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2553. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2554. if (!is_present_gpte(pdptr)) {
  2555. vcpu->arch.mmu.pae_root[i] = 0;
  2556. continue;
  2557. }
  2558. root_gfn = pdptr >> PAGE_SHIFT;
  2559. if (mmu_check_root(vcpu, root_gfn))
  2560. return 1;
  2561. }
  2562. spin_lock(&vcpu->kvm->mmu_lock);
  2563. make_mmu_pages_available(vcpu);
  2564. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2565. PT32_ROOT_LEVEL, 0,
  2566. ACC_ALL, NULL);
  2567. root = __pa(sp->spt);
  2568. ++sp->root_count;
  2569. spin_unlock(&vcpu->kvm->mmu_lock);
  2570. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2571. }
  2572. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2573. /*
  2574. * If we shadow a 32 bit page table with a long mode page
  2575. * table we enter this path.
  2576. */
  2577. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2578. if (vcpu->arch.mmu.lm_root == NULL) {
  2579. /*
  2580. * The additional page necessary for this is only
  2581. * allocated on demand.
  2582. */
  2583. u64 *lm_root;
  2584. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2585. if (lm_root == NULL)
  2586. return 1;
  2587. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2588. vcpu->arch.mmu.lm_root = lm_root;
  2589. }
  2590. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2591. }
  2592. return 0;
  2593. }
  2594. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2595. {
  2596. if (vcpu->arch.mmu.direct_map)
  2597. return mmu_alloc_direct_roots(vcpu);
  2598. else
  2599. return mmu_alloc_shadow_roots(vcpu);
  2600. }
  2601. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2602. {
  2603. int i;
  2604. struct kvm_mmu_page *sp;
  2605. if (vcpu->arch.mmu.direct_map)
  2606. return;
  2607. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2608. return;
  2609. vcpu_clear_mmio_info(vcpu, ~0ul);
  2610. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2611. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2612. hpa_t root = vcpu->arch.mmu.root_hpa;
  2613. sp = page_header(root);
  2614. mmu_sync_children(vcpu, sp);
  2615. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2616. return;
  2617. }
  2618. for (i = 0; i < 4; ++i) {
  2619. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2620. if (root && VALID_PAGE(root)) {
  2621. root &= PT64_BASE_ADDR_MASK;
  2622. sp = page_header(root);
  2623. mmu_sync_children(vcpu, sp);
  2624. }
  2625. }
  2626. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2627. }
  2628. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2629. {
  2630. spin_lock(&vcpu->kvm->mmu_lock);
  2631. mmu_sync_roots(vcpu);
  2632. spin_unlock(&vcpu->kvm->mmu_lock);
  2633. }
  2634. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2635. u32 access, struct x86_exception *exception)
  2636. {
  2637. if (exception)
  2638. exception->error_code = 0;
  2639. return vaddr;
  2640. }
  2641. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2642. u32 access,
  2643. struct x86_exception *exception)
  2644. {
  2645. if (exception)
  2646. exception->error_code = 0;
  2647. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2648. }
  2649. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2650. {
  2651. if (direct)
  2652. return vcpu_match_mmio_gpa(vcpu, addr);
  2653. return vcpu_match_mmio_gva(vcpu, addr);
  2654. }
  2655. /*
  2656. * On direct hosts, the last spte is only allows two states
  2657. * for mmio page fault:
  2658. * - It is the mmio spte
  2659. * - It is zapped or it is being zapped.
  2660. *
  2661. * This function completely checks the spte when the last spte
  2662. * is not the mmio spte.
  2663. */
  2664. static bool check_direct_spte_mmio_pf(u64 spte)
  2665. {
  2666. return __check_direct_spte_mmio_pf(spte);
  2667. }
  2668. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2669. {
  2670. struct kvm_shadow_walk_iterator iterator;
  2671. u64 spte = 0ull;
  2672. walk_shadow_page_lockless_begin(vcpu);
  2673. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2674. if (!is_shadow_present_pte(spte))
  2675. break;
  2676. walk_shadow_page_lockless_end(vcpu);
  2677. return spte;
  2678. }
  2679. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2680. {
  2681. u64 spte;
  2682. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2683. return RET_MMIO_PF_EMULATE;
  2684. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2685. if (is_mmio_spte(spte)) {
  2686. gfn_t gfn = get_mmio_spte_gfn(spte);
  2687. unsigned access = get_mmio_spte_access(spte);
  2688. if (!check_mmio_spte(vcpu->kvm, spte))
  2689. return RET_MMIO_PF_INVALID;
  2690. if (direct)
  2691. addr = 0;
  2692. trace_handle_mmio_page_fault(addr, gfn, access);
  2693. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2694. return RET_MMIO_PF_EMULATE;
  2695. }
  2696. /*
  2697. * It's ok if the gva is remapped by other cpus on shadow guest,
  2698. * it's a BUG if the gfn is not a mmio page.
  2699. */
  2700. if (direct && !check_direct_spte_mmio_pf(spte))
  2701. return RET_MMIO_PF_BUG;
  2702. /*
  2703. * If the page table is zapped by other cpus, let CPU fault again on
  2704. * the address.
  2705. */
  2706. return RET_MMIO_PF_RETRY;
  2707. }
  2708. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2709. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2710. u32 error_code, bool direct)
  2711. {
  2712. int ret;
  2713. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2714. WARN_ON(ret == RET_MMIO_PF_BUG);
  2715. return ret;
  2716. }
  2717. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2718. u32 error_code, bool prefault)
  2719. {
  2720. gfn_t gfn;
  2721. int r;
  2722. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2723. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2724. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2725. if (likely(r != RET_MMIO_PF_INVALID))
  2726. return r;
  2727. }
  2728. r = mmu_topup_memory_caches(vcpu);
  2729. if (r)
  2730. return r;
  2731. ASSERT(vcpu);
  2732. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2733. gfn = gva >> PAGE_SHIFT;
  2734. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2735. error_code, gfn, prefault);
  2736. }
  2737. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2738. {
  2739. struct kvm_arch_async_pf arch;
  2740. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2741. arch.gfn = gfn;
  2742. arch.direct_map = vcpu->arch.mmu.direct_map;
  2743. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2744. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2745. }
  2746. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2747. {
  2748. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2749. kvm_event_needs_reinjection(vcpu)))
  2750. return false;
  2751. return kvm_x86_ops->interrupt_allowed(vcpu);
  2752. }
  2753. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2754. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2755. {
  2756. bool async;
  2757. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2758. if (!async)
  2759. return false; /* *pfn has correct page already */
  2760. if (!prefault && can_do_async_pf(vcpu)) {
  2761. trace_kvm_try_async_get_page(gva, gfn);
  2762. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2763. trace_kvm_async_pf_doublefault(gva, gfn);
  2764. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2765. return true;
  2766. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2767. return true;
  2768. }
  2769. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2770. return false;
  2771. }
  2772. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2773. bool prefault)
  2774. {
  2775. pfn_t pfn;
  2776. int r;
  2777. int level;
  2778. int force_pt_level;
  2779. gfn_t gfn = gpa >> PAGE_SHIFT;
  2780. unsigned long mmu_seq;
  2781. int write = error_code & PFERR_WRITE_MASK;
  2782. bool map_writable;
  2783. ASSERT(vcpu);
  2784. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2785. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2786. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2787. if (likely(r != RET_MMIO_PF_INVALID))
  2788. return r;
  2789. }
  2790. r = mmu_topup_memory_caches(vcpu);
  2791. if (r)
  2792. return r;
  2793. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2794. if (likely(!force_pt_level)) {
  2795. level = mapping_level(vcpu, gfn);
  2796. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2797. } else
  2798. level = PT_PAGE_TABLE_LEVEL;
  2799. if (fast_page_fault(vcpu, gpa, level, error_code))
  2800. return 0;
  2801. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2802. smp_rmb();
  2803. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2804. return 0;
  2805. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2806. return r;
  2807. spin_lock(&vcpu->kvm->mmu_lock);
  2808. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2809. goto out_unlock;
  2810. make_mmu_pages_available(vcpu);
  2811. if (likely(!force_pt_level))
  2812. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2813. r = __direct_map(vcpu, gpa, write, map_writable,
  2814. level, gfn, pfn, prefault);
  2815. spin_unlock(&vcpu->kvm->mmu_lock);
  2816. return r;
  2817. out_unlock:
  2818. spin_unlock(&vcpu->kvm->mmu_lock);
  2819. kvm_release_pfn_clean(pfn);
  2820. return 0;
  2821. }
  2822. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2823. {
  2824. mmu_free_roots(vcpu);
  2825. }
  2826. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2827. struct kvm_mmu *context)
  2828. {
  2829. context->new_cr3 = nonpaging_new_cr3;
  2830. context->page_fault = nonpaging_page_fault;
  2831. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2832. context->free = nonpaging_free;
  2833. context->sync_page = nonpaging_sync_page;
  2834. context->invlpg = nonpaging_invlpg;
  2835. context->update_pte = nonpaging_update_pte;
  2836. context->root_level = 0;
  2837. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2838. context->root_hpa = INVALID_PAGE;
  2839. context->direct_map = true;
  2840. context->nx = false;
  2841. return 0;
  2842. }
  2843. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2844. {
  2845. ++vcpu->stat.tlb_flush;
  2846. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2847. }
  2848. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2849. {
  2850. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2851. mmu_free_roots(vcpu);
  2852. }
  2853. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2854. {
  2855. return kvm_read_cr3(vcpu);
  2856. }
  2857. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2858. struct x86_exception *fault)
  2859. {
  2860. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2861. }
  2862. static void paging_free(struct kvm_vcpu *vcpu)
  2863. {
  2864. nonpaging_free(vcpu);
  2865. }
  2866. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2867. unsigned access, int *nr_present)
  2868. {
  2869. if (unlikely(is_mmio_spte(*sptep))) {
  2870. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2871. mmu_spte_clear_no_track(sptep);
  2872. return true;
  2873. }
  2874. (*nr_present)++;
  2875. mark_mmio_spte(kvm, sptep, gfn, access);
  2876. return true;
  2877. }
  2878. return false;
  2879. }
  2880. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2881. {
  2882. unsigned index;
  2883. index = level - 1;
  2884. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2885. return mmu->last_pte_bitmap & (1 << index);
  2886. }
  2887. #define PTTYPE_EPT 18 /* arbitrary */
  2888. #define PTTYPE PTTYPE_EPT
  2889. #include "paging_tmpl.h"
  2890. #undef PTTYPE
  2891. #define PTTYPE 64
  2892. #include "paging_tmpl.h"
  2893. #undef PTTYPE
  2894. #define PTTYPE 32
  2895. #include "paging_tmpl.h"
  2896. #undef PTTYPE
  2897. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2898. struct kvm_mmu *context)
  2899. {
  2900. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2901. u64 exb_bit_rsvd = 0;
  2902. if (!context->nx)
  2903. exb_bit_rsvd = rsvd_bits(63, 63);
  2904. switch (context->root_level) {
  2905. case PT32_ROOT_LEVEL:
  2906. /* no rsvd bits for 2 level 4K page table entries */
  2907. context->rsvd_bits_mask[0][1] = 0;
  2908. context->rsvd_bits_mask[0][0] = 0;
  2909. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2910. if (!is_pse(vcpu)) {
  2911. context->rsvd_bits_mask[1][1] = 0;
  2912. break;
  2913. }
  2914. if (is_cpuid_PSE36())
  2915. /* 36bits PSE 4MB page */
  2916. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2917. else
  2918. /* 32 bits PSE 4MB page */
  2919. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2920. break;
  2921. case PT32E_ROOT_LEVEL:
  2922. context->rsvd_bits_mask[0][2] =
  2923. rsvd_bits(maxphyaddr, 63) |
  2924. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2925. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2926. rsvd_bits(maxphyaddr, 62); /* PDE */
  2927. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2928. rsvd_bits(maxphyaddr, 62); /* PTE */
  2929. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2930. rsvd_bits(maxphyaddr, 62) |
  2931. rsvd_bits(13, 20); /* large page */
  2932. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2933. break;
  2934. case PT64_ROOT_LEVEL:
  2935. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2936. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2937. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2938. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2939. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2940. rsvd_bits(maxphyaddr, 51);
  2941. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2942. rsvd_bits(maxphyaddr, 51);
  2943. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2944. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2945. rsvd_bits(maxphyaddr, 51) |
  2946. rsvd_bits(13, 29);
  2947. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2948. rsvd_bits(maxphyaddr, 51) |
  2949. rsvd_bits(13, 20); /* large page */
  2950. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2951. break;
  2952. }
  2953. }
  2954. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2955. {
  2956. unsigned bit, byte, pfec;
  2957. u8 map;
  2958. bool fault, x, w, u, wf, uf, ff, smep;
  2959. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2960. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2961. pfec = byte << 1;
  2962. map = 0;
  2963. wf = pfec & PFERR_WRITE_MASK;
  2964. uf = pfec & PFERR_USER_MASK;
  2965. ff = pfec & PFERR_FETCH_MASK;
  2966. for (bit = 0; bit < 8; ++bit) {
  2967. x = bit & ACC_EXEC_MASK;
  2968. w = bit & ACC_WRITE_MASK;
  2969. u = bit & ACC_USER_MASK;
  2970. /* Not really needed: !nx will cause pte.nx to fault */
  2971. x |= !mmu->nx;
  2972. /* Allow supervisor writes if !cr0.wp */
  2973. w |= !is_write_protection(vcpu) && !uf;
  2974. /* Disallow supervisor fetches of user code if cr4.smep */
  2975. x &= !(smep && u && !uf);
  2976. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2977. map |= fault << bit;
  2978. }
  2979. mmu->permissions[byte] = map;
  2980. }
  2981. }
  2982. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2983. {
  2984. u8 map;
  2985. unsigned level, root_level = mmu->root_level;
  2986. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2987. if (root_level == PT32E_ROOT_LEVEL)
  2988. --root_level;
  2989. /* PT_PAGE_TABLE_LEVEL always terminates */
  2990. map = 1 | (1 << ps_set_index);
  2991. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2992. if (level <= PT_PDPE_LEVEL
  2993. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2994. map |= 1 << (ps_set_index | (level - 1));
  2995. }
  2996. mmu->last_pte_bitmap = map;
  2997. }
  2998. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2999. struct kvm_mmu *context,
  3000. int level)
  3001. {
  3002. context->nx = is_nx(vcpu);
  3003. context->root_level = level;
  3004. reset_rsvds_bits_mask(vcpu, context);
  3005. update_permission_bitmask(vcpu, context);
  3006. update_last_pte_bitmap(vcpu, context);
  3007. ASSERT(is_pae(vcpu));
  3008. context->new_cr3 = paging_new_cr3;
  3009. context->page_fault = paging64_page_fault;
  3010. context->gva_to_gpa = paging64_gva_to_gpa;
  3011. context->sync_page = paging64_sync_page;
  3012. context->invlpg = paging64_invlpg;
  3013. context->update_pte = paging64_update_pte;
  3014. context->free = paging_free;
  3015. context->shadow_root_level = level;
  3016. context->root_hpa = INVALID_PAGE;
  3017. context->direct_map = false;
  3018. return 0;
  3019. }
  3020. static int paging64_init_context(struct kvm_vcpu *vcpu,
  3021. struct kvm_mmu *context)
  3022. {
  3023. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3024. }
  3025. static int paging32_init_context(struct kvm_vcpu *vcpu,
  3026. struct kvm_mmu *context)
  3027. {
  3028. context->nx = false;
  3029. context->root_level = PT32_ROOT_LEVEL;
  3030. reset_rsvds_bits_mask(vcpu, context);
  3031. update_permission_bitmask(vcpu, context);
  3032. update_last_pte_bitmap(vcpu, context);
  3033. context->new_cr3 = paging_new_cr3;
  3034. context->page_fault = paging32_page_fault;
  3035. context->gva_to_gpa = paging32_gva_to_gpa;
  3036. context->free = paging_free;
  3037. context->sync_page = paging32_sync_page;
  3038. context->invlpg = paging32_invlpg;
  3039. context->update_pte = paging32_update_pte;
  3040. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3041. context->root_hpa = INVALID_PAGE;
  3042. context->direct_map = false;
  3043. return 0;
  3044. }
  3045. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  3046. struct kvm_mmu *context)
  3047. {
  3048. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3049. }
  3050. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3051. {
  3052. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3053. context->base_role.word = 0;
  3054. context->new_cr3 = nonpaging_new_cr3;
  3055. context->page_fault = tdp_page_fault;
  3056. context->free = nonpaging_free;
  3057. context->sync_page = nonpaging_sync_page;
  3058. context->invlpg = nonpaging_invlpg;
  3059. context->update_pte = nonpaging_update_pte;
  3060. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3061. context->root_hpa = INVALID_PAGE;
  3062. context->direct_map = true;
  3063. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3064. context->get_cr3 = get_cr3;
  3065. context->get_pdptr = kvm_pdptr_read;
  3066. context->inject_page_fault = kvm_inject_page_fault;
  3067. if (!is_paging(vcpu)) {
  3068. context->nx = false;
  3069. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3070. context->root_level = 0;
  3071. } else if (is_long_mode(vcpu)) {
  3072. context->nx = is_nx(vcpu);
  3073. context->root_level = PT64_ROOT_LEVEL;
  3074. reset_rsvds_bits_mask(vcpu, context);
  3075. context->gva_to_gpa = paging64_gva_to_gpa;
  3076. } else if (is_pae(vcpu)) {
  3077. context->nx = is_nx(vcpu);
  3078. context->root_level = PT32E_ROOT_LEVEL;
  3079. reset_rsvds_bits_mask(vcpu, context);
  3080. context->gva_to_gpa = paging64_gva_to_gpa;
  3081. } else {
  3082. context->nx = false;
  3083. context->root_level = PT32_ROOT_LEVEL;
  3084. reset_rsvds_bits_mask(vcpu, context);
  3085. context->gva_to_gpa = paging32_gva_to_gpa;
  3086. }
  3087. update_permission_bitmask(vcpu, context);
  3088. update_last_pte_bitmap(vcpu, context);
  3089. return 0;
  3090. }
  3091. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3092. {
  3093. int r;
  3094. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3095. ASSERT(vcpu);
  3096. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3097. if (!is_paging(vcpu))
  3098. r = nonpaging_init_context(vcpu, context);
  3099. else if (is_long_mode(vcpu))
  3100. r = paging64_init_context(vcpu, context);
  3101. else if (is_pae(vcpu))
  3102. r = paging32E_init_context(vcpu, context);
  3103. else
  3104. r = paging32_init_context(vcpu, context);
  3105. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3106. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3107. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3108. vcpu->arch.mmu.base_role.smep_andnot_wp
  3109. = smep && !is_write_protection(vcpu);
  3110. return r;
  3111. }
  3112. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3113. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3114. {
  3115. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3116. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3117. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3118. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3119. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3120. return r;
  3121. }
  3122. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3123. {
  3124. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3125. g_context->get_cr3 = get_cr3;
  3126. g_context->get_pdptr = kvm_pdptr_read;
  3127. g_context->inject_page_fault = kvm_inject_page_fault;
  3128. /*
  3129. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3130. * translation of l2_gpa to l1_gpa addresses is done using the
  3131. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3132. * functions between mmu and nested_mmu are swapped.
  3133. */
  3134. if (!is_paging(vcpu)) {
  3135. g_context->nx = false;
  3136. g_context->root_level = 0;
  3137. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3138. } else if (is_long_mode(vcpu)) {
  3139. g_context->nx = is_nx(vcpu);
  3140. g_context->root_level = PT64_ROOT_LEVEL;
  3141. reset_rsvds_bits_mask(vcpu, g_context);
  3142. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3143. } else if (is_pae(vcpu)) {
  3144. g_context->nx = is_nx(vcpu);
  3145. g_context->root_level = PT32E_ROOT_LEVEL;
  3146. reset_rsvds_bits_mask(vcpu, g_context);
  3147. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3148. } else {
  3149. g_context->nx = false;
  3150. g_context->root_level = PT32_ROOT_LEVEL;
  3151. reset_rsvds_bits_mask(vcpu, g_context);
  3152. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3153. }
  3154. update_permission_bitmask(vcpu, g_context);
  3155. update_last_pte_bitmap(vcpu, g_context);
  3156. return 0;
  3157. }
  3158. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3159. {
  3160. if (mmu_is_nested(vcpu))
  3161. return init_kvm_nested_mmu(vcpu);
  3162. else if (tdp_enabled)
  3163. return init_kvm_tdp_mmu(vcpu);
  3164. else
  3165. return init_kvm_softmmu(vcpu);
  3166. }
  3167. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3168. {
  3169. ASSERT(vcpu);
  3170. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3171. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3172. vcpu->arch.mmu.free(vcpu);
  3173. }
  3174. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3175. {
  3176. destroy_kvm_mmu(vcpu);
  3177. return init_kvm_mmu(vcpu);
  3178. }
  3179. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3180. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3181. {
  3182. int r;
  3183. r = mmu_topup_memory_caches(vcpu);
  3184. if (r)
  3185. goto out;
  3186. r = mmu_alloc_roots(vcpu);
  3187. kvm_mmu_sync_roots(vcpu);
  3188. if (r)
  3189. goto out;
  3190. /* set_cr3() should ensure TLB has been flushed */
  3191. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3192. out:
  3193. return r;
  3194. }
  3195. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3196. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3197. {
  3198. mmu_free_roots(vcpu);
  3199. }
  3200. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3201. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3202. struct kvm_mmu_page *sp, u64 *spte,
  3203. const void *new)
  3204. {
  3205. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3206. ++vcpu->kvm->stat.mmu_pde_zapped;
  3207. return;
  3208. }
  3209. ++vcpu->kvm->stat.mmu_pte_updated;
  3210. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3211. }
  3212. static bool need_remote_flush(u64 old, u64 new)
  3213. {
  3214. if (!is_shadow_present_pte(old))
  3215. return false;
  3216. if (!is_shadow_present_pte(new))
  3217. return true;
  3218. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3219. return true;
  3220. old ^= shadow_nx_mask;
  3221. new ^= shadow_nx_mask;
  3222. return (old & ~new & PT64_PERM_MASK) != 0;
  3223. }
  3224. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3225. bool remote_flush, bool local_flush)
  3226. {
  3227. if (zap_page)
  3228. return;
  3229. if (remote_flush)
  3230. kvm_flush_remote_tlbs(vcpu->kvm);
  3231. else if (local_flush)
  3232. kvm_mmu_flush_tlb(vcpu);
  3233. }
  3234. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3235. const u8 *new, int *bytes)
  3236. {
  3237. u64 gentry;
  3238. int r;
  3239. /*
  3240. * Assume that the pte write on a page table of the same type
  3241. * as the current vcpu paging mode since we update the sptes only
  3242. * when they have the same mode.
  3243. */
  3244. if (is_pae(vcpu) && *bytes == 4) {
  3245. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3246. *gpa &= ~(gpa_t)7;
  3247. *bytes = 8;
  3248. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3249. if (r)
  3250. gentry = 0;
  3251. new = (const u8 *)&gentry;
  3252. }
  3253. switch (*bytes) {
  3254. case 4:
  3255. gentry = *(const u32 *)new;
  3256. break;
  3257. case 8:
  3258. gentry = *(const u64 *)new;
  3259. break;
  3260. default:
  3261. gentry = 0;
  3262. break;
  3263. }
  3264. return gentry;
  3265. }
  3266. /*
  3267. * If we're seeing too many writes to a page, it may no longer be a page table,
  3268. * or we may be forking, in which case it is better to unmap the page.
  3269. */
  3270. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3271. {
  3272. /*
  3273. * Skip write-flooding detected for the sp whose level is 1, because
  3274. * it can become unsync, then the guest page is not write-protected.
  3275. */
  3276. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3277. return false;
  3278. return ++sp->write_flooding_count >= 3;
  3279. }
  3280. /*
  3281. * Misaligned accesses are too much trouble to fix up; also, they usually
  3282. * indicate a page is not used as a page table.
  3283. */
  3284. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3285. int bytes)
  3286. {
  3287. unsigned offset, pte_size, misaligned;
  3288. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3289. gpa, bytes, sp->role.word);
  3290. offset = offset_in_page(gpa);
  3291. pte_size = sp->role.cr4_pae ? 8 : 4;
  3292. /*
  3293. * Sometimes, the OS only writes the last one bytes to update status
  3294. * bits, for example, in linux, andb instruction is used in clear_bit().
  3295. */
  3296. if (!(offset & (pte_size - 1)) && bytes == 1)
  3297. return false;
  3298. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3299. misaligned |= bytes < 4;
  3300. return misaligned;
  3301. }
  3302. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3303. {
  3304. unsigned page_offset, quadrant;
  3305. u64 *spte;
  3306. int level;
  3307. page_offset = offset_in_page(gpa);
  3308. level = sp->role.level;
  3309. *nspte = 1;
  3310. if (!sp->role.cr4_pae) {
  3311. page_offset <<= 1; /* 32->64 */
  3312. /*
  3313. * A 32-bit pde maps 4MB while the shadow pdes map
  3314. * only 2MB. So we need to double the offset again
  3315. * and zap two pdes instead of one.
  3316. */
  3317. if (level == PT32_ROOT_LEVEL) {
  3318. page_offset &= ~7; /* kill rounding error */
  3319. page_offset <<= 1;
  3320. *nspte = 2;
  3321. }
  3322. quadrant = page_offset >> PAGE_SHIFT;
  3323. page_offset &= ~PAGE_MASK;
  3324. if (quadrant != sp->role.quadrant)
  3325. return NULL;
  3326. }
  3327. spte = &sp->spt[page_offset / sizeof(*spte)];
  3328. return spte;
  3329. }
  3330. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3331. const u8 *new, int bytes)
  3332. {
  3333. gfn_t gfn = gpa >> PAGE_SHIFT;
  3334. union kvm_mmu_page_role mask = { .word = 0 };
  3335. struct kvm_mmu_page *sp;
  3336. LIST_HEAD(invalid_list);
  3337. u64 entry, gentry, *spte;
  3338. int npte;
  3339. bool remote_flush, local_flush, zap_page;
  3340. /*
  3341. * If we don't have indirect shadow pages, it means no page is
  3342. * write-protected, so we can exit simply.
  3343. */
  3344. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3345. return;
  3346. zap_page = remote_flush = local_flush = false;
  3347. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3348. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3349. /*
  3350. * No need to care whether allocation memory is successful
  3351. * or not since pte prefetch is skiped if it does not have
  3352. * enough objects in the cache.
  3353. */
  3354. mmu_topup_memory_caches(vcpu);
  3355. spin_lock(&vcpu->kvm->mmu_lock);
  3356. ++vcpu->kvm->stat.mmu_pte_write;
  3357. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3358. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3359. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3360. if (detect_write_misaligned(sp, gpa, bytes) ||
  3361. detect_write_flooding(sp)) {
  3362. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3363. &invalid_list);
  3364. ++vcpu->kvm->stat.mmu_flooded;
  3365. continue;
  3366. }
  3367. spte = get_written_sptes(sp, gpa, &npte);
  3368. if (!spte)
  3369. continue;
  3370. local_flush = true;
  3371. while (npte--) {
  3372. entry = *spte;
  3373. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3374. if (gentry &&
  3375. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3376. & mask.word) && rmap_can_add(vcpu))
  3377. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3378. if (need_remote_flush(entry, *spte))
  3379. remote_flush = true;
  3380. ++spte;
  3381. }
  3382. }
  3383. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3384. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3385. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3386. spin_unlock(&vcpu->kvm->mmu_lock);
  3387. }
  3388. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3389. {
  3390. gpa_t gpa;
  3391. int r;
  3392. if (vcpu->arch.mmu.direct_map)
  3393. return 0;
  3394. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3395. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3396. return r;
  3397. }
  3398. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3399. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3400. {
  3401. LIST_HEAD(invalid_list);
  3402. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3403. return;
  3404. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3405. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3406. break;
  3407. ++vcpu->kvm->stat.mmu_recycled;
  3408. }
  3409. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3410. }
  3411. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3412. {
  3413. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3414. return vcpu_match_mmio_gpa(vcpu, addr);
  3415. return vcpu_match_mmio_gva(vcpu, addr);
  3416. }
  3417. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3418. void *insn, int insn_len)
  3419. {
  3420. int r, emulation_type = EMULTYPE_RETRY;
  3421. enum emulation_result er;
  3422. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3423. if (r < 0)
  3424. goto out;
  3425. if (!r) {
  3426. r = 1;
  3427. goto out;
  3428. }
  3429. if (is_mmio_page_fault(vcpu, cr2))
  3430. emulation_type = 0;
  3431. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3432. switch (er) {
  3433. case EMULATE_DONE:
  3434. return 1;
  3435. case EMULATE_USER_EXIT:
  3436. ++vcpu->stat.mmio_exits;
  3437. /* fall through */
  3438. case EMULATE_FAIL:
  3439. return 0;
  3440. default:
  3441. BUG();
  3442. }
  3443. out:
  3444. return r;
  3445. }
  3446. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3447. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3448. {
  3449. vcpu->arch.mmu.invlpg(vcpu, gva);
  3450. kvm_mmu_flush_tlb(vcpu);
  3451. ++vcpu->stat.invlpg;
  3452. }
  3453. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3454. void kvm_enable_tdp(void)
  3455. {
  3456. tdp_enabled = true;
  3457. }
  3458. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3459. void kvm_disable_tdp(void)
  3460. {
  3461. tdp_enabled = false;
  3462. }
  3463. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3464. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3465. {
  3466. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3467. if (vcpu->arch.mmu.lm_root != NULL)
  3468. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3469. }
  3470. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3471. {
  3472. struct page *page;
  3473. int i;
  3474. ASSERT(vcpu);
  3475. /*
  3476. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3477. * Therefore we need to allocate shadow page tables in the first
  3478. * 4GB of memory, which happens to fit the DMA32 zone.
  3479. */
  3480. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3481. if (!page)
  3482. return -ENOMEM;
  3483. vcpu->arch.mmu.pae_root = page_address(page);
  3484. for (i = 0; i < 4; ++i)
  3485. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3486. return 0;
  3487. }
  3488. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3489. {
  3490. ASSERT(vcpu);
  3491. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3492. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3493. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3494. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3495. return alloc_mmu_pages(vcpu);
  3496. }
  3497. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3498. {
  3499. ASSERT(vcpu);
  3500. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3501. return init_kvm_mmu(vcpu);
  3502. }
  3503. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3504. {
  3505. struct kvm_memory_slot *memslot;
  3506. gfn_t last_gfn;
  3507. int i;
  3508. memslot = id_to_memslot(kvm->memslots, slot);
  3509. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3510. spin_lock(&kvm->mmu_lock);
  3511. for (i = PT_PAGE_TABLE_LEVEL;
  3512. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3513. unsigned long *rmapp;
  3514. unsigned long last_index, index;
  3515. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3516. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3517. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3518. if (*rmapp)
  3519. __rmap_write_protect(kvm, rmapp, false);
  3520. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3521. kvm_flush_remote_tlbs(kvm);
  3522. cond_resched_lock(&kvm->mmu_lock);
  3523. }
  3524. }
  3525. }
  3526. kvm_flush_remote_tlbs(kvm);
  3527. spin_unlock(&kvm->mmu_lock);
  3528. }
  3529. #define BATCH_ZAP_PAGES 10
  3530. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3531. {
  3532. struct kvm_mmu_page *sp, *node;
  3533. int batch = 0;
  3534. restart:
  3535. list_for_each_entry_safe_reverse(sp, node,
  3536. &kvm->arch.active_mmu_pages, link) {
  3537. int ret;
  3538. /*
  3539. * No obsolete page exists before new created page since
  3540. * active_mmu_pages is the FIFO list.
  3541. */
  3542. if (!is_obsolete_sp(kvm, sp))
  3543. break;
  3544. /*
  3545. * Since we are reversely walking the list and the invalid
  3546. * list will be moved to the head, skip the invalid page
  3547. * can help us to avoid the infinity list walking.
  3548. */
  3549. if (sp->role.invalid)
  3550. continue;
  3551. /*
  3552. * Need not flush tlb since we only zap the sp with invalid
  3553. * generation number.
  3554. */
  3555. if (batch >= BATCH_ZAP_PAGES &&
  3556. cond_resched_lock(&kvm->mmu_lock)) {
  3557. batch = 0;
  3558. goto restart;
  3559. }
  3560. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3561. &kvm->arch.zapped_obsolete_pages);
  3562. batch += ret;
  3563. if (ret)
  3564. goto restart;
  3565. }
  3566. /*
  3567. * Should flush tlb before free page tables since lockless-walking
  3568. * may use the pages.
  3569. */
  3570. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3571. }
  3572. /*
  3573. * Fast invalidate all shadow pages and use lock-break technique
  3574. * to zap obsolete pages.
  3575. *
  3576. * It's required when memslot is being deleted or VM is being
  3577. * destroyed, in these cases, we should ensure that KVM MMU does
  3578. * not use any resource of the being-deleted slot or all slots
  3579. * after calling the function.
  3580. */
  3581. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3582. {
  3583. spin_lock(&kvm->mmu_lock);
  3584. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3585. kvm->arch.mmu_valid_gen++;
  3586. /*
  3587. * Notify all vcpus to reload its shadow page table
  3588. * and flush TLB. Then all vcpus will switch to new
  3589. * shadow page table with the new mmu_valid_gen.
  3590. *
  3591. * Note: we should do this under the protection of
  3592. * mmu-lock, otherwise, vcpu would purge shadow page
  3593. * but miss tlb flush.
  3594. */
  3595. kvm_reload_remote_mmus(kvm);
  3596. kvm_zap_obsolete_pages(kvm);
  3597. spin_unlock(&kvm->mmu_lock);
  3598. }
  3599. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3600. {
  3601. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3602. }
  3603. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3604. {
  3605. /*
  3606. * The very rare case: if the generation-number is round,
  3607. * zap all shadow pages.
  3608. */
  3609. if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
  3610. printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
  3611. kvm_mmu_invalidate_zap_all_pages(kvm);
  3612. }
  3613. }
  3614. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3615. {
  3616. struct kvm *kvm;
  3617. int nr_to_scan = sc->nr_to_scan;
  3618. if (nr_to_scan == 0)
  3619. goto out;
  3620. raw_spin_lock(&kvm_lock);
  3621. list_for_each_entry(kvm, &vm_list, vm_list) {
  3622. int idx;
  3623. LIST_HEAD(invalid_list);
  3624. /*
  3625. * Never scan more than sc->nr_to_scan VM instances.
  3626. * Will not hit this condition practically since we do not try
  3627. * to shrink more than one VM and it is very unlikely to see
  3628. * !n_used_mmu_pages so many times.
  3629. */
  3630. if (!nr_to_scan--)
  3631. break;
  3632. /*
  3633. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3634. * here. We may skip a VM instance errorneosly, but we do not
  3635. * want to shrink a VM that only started to populate its MMU
  3636. * anyway.
  3637. */
  3638. if (!kvm->arch.n_used_mmu_pages &&
  3639. !kvm_has_zapped_obsolete_pages(kvm))
  3640. continue;
  3641. idx = srcu_read_lock(&kvm->srcu);
  3642. spin_lock(&kvm->mmu_lock);
  3643. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3644. kvm_mmu_commit_zap_page(kvm,
  3645. &kvm->arch.zapped_obsolete_pages);
  3646. goto unlock;
  3647. }
  3648. prepare_zap_oldest_mmu_page(kvm, &invalid_list);
  3649. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3650. unlock:
  3651. spin_unlock(&kvm->mmu_lock);
  3652. srcu_read_unlock(&kvm->srcu, idx);
  3653. list_move_tail(&kvm->vm_list, &vm_list);
  3654. break;
  3655. }
  3656. raw_spin_unlock(&kvm_lock);
  3657. out:
  3658. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3659. }
  3660. static struct shrinker mmu_shrinker = {
  3661. .shrink = mmu_shrink,
  3662. .seeks = DEFAULT_SEEKS * 10,
  3663. };
  3664. static void mmu_destroy_caches(void)
  3665. {
  3666. if (pte_list_desc_cache)
  3667. kmem_cache_destroy(pte_list_desc_cache);
  3668. if (mmu_page_header_cache)
  3669. kmem_cache_destroy(mmu_page_header_cache);
  3670. }
  3671. int kvm_mmu_module_init(void)
  3672. {
  3673. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3674. sizeof(struct pte_list_desc),
  3675. 0, 0, NULL);
  3676. if (!pte_list_desc_cache)
  3677. goto nomem;
  3678. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3679. sizeof(struct kvm_mmu_page),
  3680. 0, 0, NULL);
  3681. if (!mmu_page_header_cache)
  3682. goto nomem;
  3683. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3684. goto nomem;
  3685. register_shrinker(&mmu_shrinker);
  3686. return 0;
  3687. nomem:
  3688. mmu_destroy_caches();
  3689. return -ENOMEM;
  3690. }
  3691. /*
  3692. * Caculate mmu pages needed for kvm.
  3693. */
  3694. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3695. {
  3696. unsigned int nr_mmu_pages;
  3697. unsigned int nr_pages = 0;
  3698. struct kvm_memslots *slots;
  3699. struct kvm_memory_slot *memslot;
  3700. slots = kvm_memslots(kvm);
  3701. kvm_for_each_memslot(memslot, slots)
  3702. nr_pages += memslot->npages;
  3703. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3704. nr_mmu_pages = max(nr_mmu_pages,
  3705. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3706. return nr_mmu_pages;
  3707. }
  3708. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3709. {
  3710. struct kvm_shadow_walk_iterator iterator;
  3711. u64 spte;
  3712. int nr_sptes = 0;
  3713. walk_shadow_page_lockless_begin(vcpu);
  3714. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3715. sptes[iterator.level-1] = spte;
  3716. nr_sptes++;
  3717. if (!is_shadow_present_pte(spte))
  3718. break;
  3719. }
  3720. walk_shadow_page_lockless_end(vcpu);
  3721. return nr_sptes;
  3722. }
  3723. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3724. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3725. {
  3726. ASSERT(vcpu);
  3727. destroy_kvm_mmu(vcpu);
  3728. free_mmu_pages(vcpu);
  3729. mmu_free_memory_caches(vcpu);
  3730. }
  3731. void kvm_mmu_module_exit(void)
  3732. {
  3733. mmu_destroy_caches();
  3734. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3735. unregister_shrinker(&mmu_shrinker);
  3736. mmu_audit_disable();
  3737. }