forcedeth.c 122 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  111. *
  112. * Known bugs:
  113. * We suspect that on some hardware no TX done interrupts are generated.
  114. * This means recovery from netif_stop_queue only happens if the hw timer
  115. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  116. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  117. * If your hardware reliably generates tx done interrupts, then you can remove
  118. * DEV_NEED_TIMERIRQ from the driver_data flags.
  119. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  120. * superfluous timer interrupts from the nic.
  121. */
  122. #define FORCEDETH_VERSION "0.55"
  123. #define DRV_NAME "forcedeth"
  124. #include <linux/module.h>
  125. #include <linux/types.h>
  126. #include <linux/pci.h>
  127. #include <linux/interrupt.h>
  128. #include <linux/netdevice.h>
  129. #include <linux/etherdevice.h>
  130. #include <linux/delay.h>
  131. #include <linux/spinlock.h>
  132. #include <linux/ethtool.h>
  133. #include <linux/timer.h>
  134. #include <linux/skbuff.h>
  135. #include <linux/mii.h>
  136. #include <linux/random.h>
  137. #include <linux/init.h>
  138. #include <linux/if_vlan.h>
  139. #include <linux/dma-mapping.h>
  140. #include <asm/irq.h>
  141. #include <asm/io.h>
  142. #include <asm/uaccess.h>
  143. #include <asm/system.h>
  144. #if 0
  145. #define dprintk printk
  146. #else
  147. #define dprintk(x...) do { } while (0)
  148. #endif
  149. /*
  150. * Hardware access:
  151. */
  152. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  153. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  154. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  155. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  156. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  157. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  158. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  159. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  160. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  161. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  162. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  163. enum {
  164. NvRegIrqStatus = 0x000,
  165. #define NVREG_IRQSTAT_MIIEVENT 0x040
  166. #define NVREG_IRQSTAT_MASK 0x1ff
  167. NvRegIrqMask = 0x004,
  168. #define NVREG_IRQ_RX_ERROR 0x0001
  169. #define NVREG_IRQ_RX 0x0002
  170. #define NVREG_IRQ_RX_NOBUF 0x0004
  171. #define NVREG_IRQ_TX_ERR 0x0008
  172. #define NVREG_IRQ_TX_OK 0x0010
  173. #define NVREG_IRQ_TIMER 0x0020
  174. #define NVREG_IRQ_LINK 0x0040
  175. #define NVREG_IRQ_RX_FORCED 0x0080
  176. #define NVREG_IRQ_TX_FORCED 0x0100
  177. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  178. #define NVREG_IRQMASK_CPU 0x0040
  179. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  180. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  181. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  182. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  183. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  184. NVREG_IRQ_TX_FORCED))
  185. NvRegUnknownSetupReg6 = 0x008,
  186. #define NVREG_UNKSETUP6_VAL 3
  187. /*
  188. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  189. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  190. */
  191. NvRegPollingInterval = 0x00c,
  192. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  193. #define NVREG_POLL_DEFAULT_CPU 13
  194. NvRegMSIMap0 = 0x020,
  195. NvRegMSIMap1 = 0x024,
  196. NvRegMSIIrqMask = 0x030,
  197. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  198. NvRegMisc1 = 0x080,
  199. #define NVREG_MISC1_PAUSE_TX 0x01
  200. #define NVREG_MISC1_HD 0x02
  201. #define NVREG_MISC1_FORCE 0x3b0f3c
  202. NvRegMacReset = 0x3c,
  203. #define NVREG_MAC_RESET_ASSERT 0x0F3
  204. NvRegTransmitterControl = 0x084,
  205. #define NVREG_XMITCTL_START 0x01
  206. NvRegTransmitterStatus = 0x088,
  207. #define NVREG_XMITSTAT_BUSY 0x01
  208. NvRegPacketFilterFlags = 0x8c,
  209. #define NVREG_PFF_PAUSE_RX 0x08
  210. #define NVREG_PFF_ALWAYS 0x7F0000
  211. #define NVREG_PFF_PROMISC 0x80
  212. #define NVREG_PFF_MYADDR 0x20
  213. NvRegOffloadConfig = 0x90,
  214. #define NVREG_OFFLOAD_HOMEPHY 0x601
  215. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  216. NvRegReceiverControl = 0x094,
  217. #define NVREG_RCVCTL_START 0x01
  218. NvRegReceiverStatus = 0x98,
  219. #define NVREG_RCVSTAT_BUSY 0x01
  220. NvRegRandomSeed = 0x9c,
  221. #define NVREG_RNDSEED_MASK 0x00ff
  222. #define NVREG_RNDSEED_FORCE 0x7f00
  223. #define NVREG_RNDSEED_FORCE2 0x2d00
  224. #define NVREG_RNDSEED_FORCE3 0x7400
  225. NvRegUnknownSetupReg1 = 0xA0,
  226. #define NVREG_UNKSETUP1_VAL 0x16070f
  227. NvRegUnknownSetupReg2 = 0xA4,
  228. #define NVREG_UNKSETUP2_VAL 0x16
  229. NvRegMacAddrA = 0xA8,
  230. NvRegMacAddrB = 0xAC,
  231. NvRegMulticastAddrA = 0xB0,
  232. #define NVREG_MCASTADDRA_FORCE 0x01
  233. NvRegMulticastAddrB = 0xB4,
  234. NvRegMulticastMaskA = 0xB8,
  235. NvRegMulticastMaskB = 0xBC,
  236. NvRegPhyInterface = 0xC0,
  237. #define PHY_RGMII 0x10000000
  238. NvRegTxRingPhysAddr = 0x100,
  239. NvRegRxRingPhysAddr = 0x104,
  240. NvRegRingSizes = 0x108,
  241. #define NVREG_RINGSZ_TXSHIFT 0
  242. #define NVREG_RINGSZ_RXSHIFT 16
  243. NvRegUnknownTransmitterReg = 0x10c,
  244. NvRegLinkSpeed = 0x110,
  245. #define NVREG_LINKSPEED_FORCE 0x10000
  246. #define NVREG_LINKSPEED_10 1000
  247. #define NVREG_LINKSPEED_100 100
  248. #define NVREG_LINKSPEED_1000 50
  249. #define NVREG_LINKSPEED_MASK (0xFFF)
  250. NvRegUnknownSetupReg5 = 0x130,
  251. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  252. NvRegUnknownSetupReg3 = 0x13c,
  253. #define NVREG_UNKSETUP3_VAL1 0x200010
  254. NvRegTxRxControl = 0x144,
  255. #define NVREG_TXRXCTL_KICK 0x0001
  256. #define NVREG_TXRXCTL_BIT1 0x0002
  257. #define NVREG_TXRXCTL_BIT2 0x0004
  258. #define NVREG_TXRXCTL_IDLE 0x0008
  259. #define NVREG_TXRXCTL_RESET 0x0010
  260. #define NVREG_TXRXCTL_RXCHECK 0x0400
  261. #define NVREG_TXRXCTL_DESC_1 0
  262. #define NVREG_TXRXCTL_DESC_2 0x02100
  263. #define NVREG_TXRXCTL_DESC_3 0x02200
  264. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  265. #define NVREG_TXRXCTL_VLANINS 0x00080
  266. NvRegTxRingPhysAddrHigh = 0x148,
  267. NvRegRxRingPhysAddrHigh = 0x14C,
  268. NvRegTxPauseFrame = 0x170,
  269. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  270. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  271. NvRegMIIStatus = 0x180,
  272. #define NVREG_MIISTAT_ERROR 0x0001
  273. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  274. #define NVREG_MIISTAT_MASK 0x000f
  275. #define NVREG_MIISTAT_MASK2 0x000f
  276. NvRegUnknownSetupReg4 = 0x184,
  277. #define NVREG_UNKSETUP4_VAL 8
  278. NvRegAdapterControl = 0x188,
  279. #define NVREG_ADAPTCTL_START 0x02
  280. #define NVREG_ADAPTCTL_LINKUP 0x04
  281. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  282. #define NVREG_ADAPTCTL_RUNNING 0x100000
  283. #define NVREG_ADAPTCTL_PHYSHIFT 24
  284. NvRegMIISpeed = 0x18c,
  285. #define NVREG_MIISPEED_BIT8 (1<<8)
  286. #define NVREG_MIIDELAY 5
  287. NvRegMIIControl = 0x190,
  288. #define NVREG_MIICTL_INUSE 0x08000
  289. #define NVREG_MIICTL_WRITE 0x00400
  290. #define NVREG_MIICTL_ADDRSHIFT 5
  291. NvRegMIIData = 0x194,
  292. NvRegWakeUpFlags = 0x200,
  293. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  294. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  295. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  296. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  297. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  298. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  299. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  300. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  301. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  302. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  303. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  304. NvRegPatternCRC = 0x204,
  305. NvRegPatternMask = 0x208,
  306. NvRegPowerCap = 0x268,
  307. #define NVREG_POWERCAP_D3SUPP (1<<30)
  308. #define NVREG_POWERCAP_D2SUPP (1<<26)
  309. #define NVREG_POWERCAP_D1SUPP (1<<25)
  310. NvRegPowerState = 0x26c,
  311. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  312. #define NVREG_POWERSTATE_VALID 0x0100
  313. #define NVREG_POWERSTATE_MASK 0x0003
  314. #define NVREG_POWERSTATE_D0 0x0000
  315. #define NVREG_POWERSTATE_D1 0x0001
  316. #define NVREG_POWERSTATE_D2 0x0002
  317. #define NVREG_POWERSTATE_D3 0x0003
  318. NvRegTxCnt = 0x280,
  319. NvRegTxZeroReXmt = 0x284,
  320. NvRegTxOneReXmt = 0x288,
  321. NvRegTxManyReXmt = 0x28c,
  322. NvRegTxLateCol = 0x290,
  323. NvRegTxUnderflow = 0x294,
  324. NvRegTxLossCarrier = 0x298,
  325. NvRegTxExcessDef = 0x29c,
  326. NvRegTxRetryErr = 0x2a0,
  327. NvRegRxFrameErr = 0x2a4,
  328. NvRegRxExtraByte = 0x2a8,
  329. NvRegRxLateCol = 0x2ac,
  330. NvRegRxRunt = 0x2b0,
  331. NvRegRxFrameTooLong = 0x2b4,
  332. NvRegRxOverflow = 0x2b8,
  333. NvRegRxFCSErr = 0x2bc,
  334. NvRegRxFrameAlignErr = 0x2c0,
  335. NvRegRxLenErr = 0x2c4,
  336. NvRegRxUnicast = 0x2c8,
  337. NvRegRxMulticast = 0x2cc,
  338. NvRegRxBroadcast = 0x2d0,
  339. NvRegTxDef = 0x2d4,
  340. NvRegTxFrame = 0x2d8,
  341. NvRegRxCnt = 0x2dc,
  342. NvRegTxPause = 0x2e0,
  343. NvRegRxPause = 0x2e4,
  344. NvRegRxDropFrame = 0x2e8,
  345. NvRegVlanControl = 0x300,
  346. #define NVREG_VLANCONTROL_ENABLE 0x2000
  347. NvRegMSIXMap0 = 0x3e0,
  348. NvRegMSIXMap1 = 0x3e4,
  349. NvRegMSIXIrqStatus = 0x3f0,
  350. NvRegPowerState2 = 0x600,
  351. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  352. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  353. };
  354. /* Big endian: should work, but is untested */
  355. struct ring_desc {
  356. u32 PacketBuffer;
  357. u32 FlagLen;
  358. };
  359. struct ring_desc_ex {
  360. u32 PacketBufferHigh;
  361. u32 PacketBufferLow;
  362. u32 TxVlan;
  363. u32 FlagLen;
  364. };
  365. typedef union _ring_type {
  366. struct ring_desc* orig;
  367. struct ring_desc_ex* ex;
  368. } ring_type;
  369. #define FLAG_MASK_V1 0xffff0000
  370. #define FLAG_MASK_V2 0xffffc000
  371. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  372. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  373. #define NV_TX_LASTPACKET (1<<16)
  374. #define NV_TX_RETRYERROR (1<<19)
  375. #define NV_TX_FORCED_INTERRUPT (1<<24)
  376. #define NV_TX_DEFERRED (1<<26)
  377. #define NV_TX_CARRIERLOST (1<<27)
  378. #define NV_TX_LATECOLLISION (1<<28)
  379. #define NV_TX_UNDERFLOW (1<<29)
  380. #define NV_TX_ERROR (1<<30)
  381. #define NV_TX_VALID (1<<31)
  382. #define NV_TX2_LASTPACKET (1<<29)
  383. #define NV_TX2_RETRYERROR (1<<18)
  384. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  385. #define NV_TX2_DEFERRED (1<<25)
  386. #define NV_TX2_CARRIERLOST (1<<26)
  387. #define NV_TX2_LATECOLLISION (1<<27)
  388. #define NV_TX2_UNDERFLOW (1<<28)
  389. /* error and valid are the same for both */
  390. #define NV_TX2_ERROR (1<<30)
  391. #define NV_TX2_VALID (1<<31)
  392. #define NV_TX2_TSO (1<<28)
  393. #define NV_TX2_TSO_SHIFT 14
  394. #define NV_TX2_TSO_MAX_SHIFT 14
  395. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  396. #define NV_TX2_CHECKSUM_L3 (1<<27)
  397. #define NV_TX2_CHECKSUM_L4 (1<<26)
  398. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  399. #define NV_RX_DESCRIPTORVALID (1<<16)
  400. #define NV_RX_MISSEDFRAME (1<<17)
  401. #define NV_RX_SUBSTRACT1 (1<<18)
  402. #define NV_RX_ERROR1 (1<<23)
  403. #define NV_RX_ERROR2 (1<<24)
  404. #define NV_RX_ERROR3 (1<<25)
  405. #define NV_RX_ERROR4 (1<<26)
  406. #define NV_RX_CRCERR (1<<27)
  407. #define NV_RX_OVERFLOW (1<<28)
  408. #define NV_RX_FRAMINGERR (1<<29)
  409. #define NV_RX_ERROR (1<<30)
  410. #define NV_RX_AVAIL (1<<31)
  411. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  412. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  413. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  414. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  415. #define NV_RX2_DESCRIPTORVALID (1<<29)
  416. #define NV_RX2_SUBSTRACT1 (1<<25)
  417. #define NV_RX2_ERROR1 (1<<18)
  418. #define NV_RX2_ERROR2 (1<<19)
  419. #define NV_RX2_ERROR3 (1<<20)
  420. #define NV_RX2_ERROR4 (1<<21)
  421. #define NV_RX2_CRCERR (1<<22)
  422. #define NV_RX2_OVERFLOW (1<<23)
  423. #define NV_RX2_FRAMINGERR (1<<24)
  424. /* error and avail are the same for both */
  425. #define NV_RX2_ERROR (1<<30)
  426. #define NV_RX2_AVAIL (1<<31)
  427. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  428. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  429. /* Miscelaneous hardware related defines: */
  430. #define NV_PCI_REGSZ_VER1 0x270
  431. #define NV_PCI_REGSZ_VER2 0x604
  432. /* various timeout delays: all in usec */
  433. #define NV_TXRX_RESET_DELAY 4
  434. #define NV_TXSTOP_DELAY1 10
  435. #define NV_TXSTOP_DELAY1MAX 500000
  436. #define NV_TXSTOP_DELAY2 100
  437. #define NV_RXSTOP_DELAY1 10
  438. #define NV_RXSTOP_DELAY1MAX 500000
  439. #define NV_RXSTOP_DELAY2 100
  440. #define NV_SETUP5_DELAY 5
  441. #define NV_SETUP5_DELAYMAX 50000
  442. #define NV_POWERUP_DELAY 5
  443. #define NV_POWERUP_DELAYMAX 5000
  444. #define NV_MIIBUSY_DELAY 50
  445. #define NV_MIIPHY_DELAY 10
  446. #define NV_MIIPHY_DELAYMAX 10000
  447. #define NV_MAC_RESET_DELAY 64
  448. #define NV_WAKEUPPATTERNS 5
  449. #define NV_WAKEUPMASKENTRIES 4
  450. /* General driver defaults */
  451. #define NV_WATCHDOG_TIMEO (5*HZ)
  452. #define RX_RING_DEFAULT 128
  453. #define TX_RING_DEFAULT 256
  454. #define RX_RING_MIN 128
  455. #define TX_RING_MIN 64
  456. #define RING_MAX_DESC_VER_1 1024
  457. #define RING_MAX_DESC_VER_2_3 16384
  458. /*
  459. * Difference between the get and put pointers for the tx ring.
  460. * This is used to throttle the amount of data outstanding in the
  461. * tx ring.
  462. */
  463. #define TX_LIMIT_DIFFERENCE 1
  464. /* rx/tx mac addr + type + vlan + align + slack*/
  465. #define NV_RX_HEADERS (64)
  466. /* even more slack. */
  467. #define NV_RX_ALLOC_PAD (64)
  468. /* maximum mtu size */
  469. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  470. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  471. #define OOM_REFILL (1+HZ/20)
  472. #define POLL_WAIT (1+HZ/100)
  473. #define LINK_TIMEOUT (3*HZ)
  474. #define STATS_INTERVAL (10*HZ)
  475. /*
  476. * desc_ver values:
  477. * The nic supports three different descriptor types:
  478. * - DESC_VER_1: Original
  479. * - DESC_VER_2: support for jumbo frames.
  480. * - DESC_VER_3: 64-bit format.
  481. */
  482. #define DESC_VER_1 1
  483. #define DESC_VER_2 2
  484. #define DESC_VER_3 3
  485. /* PHY defines */
  486. #define PHY_OUI_MARVELL 0x5043
  487. #define PHY_OUI_CICADA 0x03f1
  488. #define PHYID1_OUI_MASK 0x03ff
  489. #define PHYID1_OUI_SHFT 6
  490. #define PHYID2_OUI_MASK 0xfc00
  491. #define PHYID2_OUI_SHFT 10
  492. #define PHY_INIT1 0x0f000
  493. #define PHY_INIT2 0x0e00
  494. #define PHY_INIT3 0x01000
  495. #define PHY_INIT4 0x0200
  496. #define PHY_INIT5 0x0004
  497. #define PHY_INIT6 0x02000
  498. #define PHY_GIGABIT 0x0100
  499. #define PHY_TIMEOUT 0x1
  500. #define PHY_ERROR 0x2
  501. #define PHY_100 0x1
  502. #define PHY_1000 0x2
  503. #define PHY_HALF 0x100
  504. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  505. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  506. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  507. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  508. #define NV_PAUSEFRAME_RX_REQ 0x0010
  509. #define NV_PAUSEFRAME_TX_REQ 0x0020
  510. #define NV_PAUSEFRAME_AUTONEG 0x0040
  511. /* MSI/MSI-X defines */
  512. #define NV_MSI_X_MAX_VECTORS 8
  513. #define NV_MSI_X_VECTORS_MASK 0x000f
  514. #define NV_MSI_CAPABLE 0x0010
  515. #define NV_MSI_X_CAPABLE 0x0020
  516. #define NV_MSI_ENABLED 0x0040
  517. #define NV_MSI_X_ENABLED 0x0080
  518. #define NV_MSI_X_VECTOR_ALL 0x0
  519. #define NV_MSI_X_VECTOR_RX 0x0
  520. #define NV_MSI_X_VECTOR_TX 0x1
  521. #define NV_MSI_X_VECTOR_OTHER 0x2
  522. /* statistics */
  523. struct nv_ethtool_str {
  524. char name[ETH_GSTRING_LEN];
  525. };
  526. static const struct nv_ethtool_str nv_estats_str[] = {
  527. { "tx_bytes" },
  528. { "tx_zero_rexmt" },
  529. { "tx_one_rexmt" },
  530. { "tx_many_rexmt" },
  531. { "tx_late_collision" },
  532. { "tx_fifo_errors" },
  533. { "tx_carrier_errors" },
  534. { "tx_excess_deferral" },
  535. { "tx_retry_error" },
  536. { "tx_deferral" },
  537. { "tx_packets" },
  538. { "tx_pause" },
  539. { "rx_frame_error" },
  540. { "rx_extra_byte" },
  541. { "rx_late_collision" },
  542. { "rx_runt" },
  543. { "rx_frame_too_long" },
  544. { "rx_over_errors" },
  545. { "rx_crc_errors" },
  546. { "rx_frame_align_error" },
  547. { "rx_length_error" },
  548. { "rx_unicast" },
  549. { "rx_multicast" },
  550. { "rx_broadcast" },
  551. { "rx_bytes" },
  552. { "rx_pause" },
  553. { "rx_drop_frame" },
  554. { "rx_packets" },
  555. { "rx_errors_total" }
  556. };
  557. struct nv_ethtool_stats {
  558. u64 tx_bytes;
  559. u64 tx_zero_rexmt;
  560. u64 tx_one_rexmt;
  561. u64 tx_many_rexmt;
  562. u64 tx_late_collision;
  563. u64 tx_fifo_errors;
  564. u64 tx_carrier_errors;
  565. u64 tx_excess_deferral;
  566. u64 tx_retry_error;
  567. u64 tx_deferral;
  568. u64 tx_packets;
  569. u64 tx_pause;
  570. u64 rx_frame_error;
  571. u64 rx_extra_byte;
  572. u64 rx_late_collision;
  573. u64 rx_runt;
  574. u64 rx_frame_too_long;
  575. u64 rx_over_errors;
  576. u64 rx_crc_errors;
  577. u64 rx_frame_align_error;
  578. u64 rx_length_error;
  579. u64 rx_unicast;
  580. u64 rx_multicast;
  581. u64 rx_broadcast;
  582. u64 rx_bytes;
  583. u64 rx_pause;
  584. u64 rx_drop_frame;
  585. u64 rx_packets;
  586. u64 rx_errors_total;
  587. };
  588. /*
  589. * SMP locking:
  590. * All hardware access under dev->priv->lock, except the performance
  591. * critical parts:
  592. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  593. * by the arch code for interrupts.
  594. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  595. * needs dev->priv->lock :-(
  596. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  597. */
  598. /* in dev: base, irq */
  599. struct fe_priv {
  600. spinlock_t lock;
  601. /* General data:
  602. * Locking: spin_lock(&np->lock); */
  603. struct net_device_stats stats;
  604. struct nv_ethtool_stats estats;
  605. int in_shutdown;
  606. u32 linkspeed;
  607. int duplex;
  608. int autoneg;
  609. int fixed_mode;
  610. int phyaddr;
  611. int wolenabled;
  612. unsigned int phy_oui;
  613. u16 gigabit;
  614. /* General data: RO fields */
  615. dma_addr_t ring_addr;
  616. struct pci_dev *pci_dev;
  617. u32 orig_mac[2];
  618. u32 irqmask;
  619. u32 desc_ver;
  620. u32 txrxctl_bits;
  621. u32 vlanctl_bits;
  622. u32 driver_data;
  623. u32 register_size;
  624. void __iomem *base;
  625. /* rx specific fields.
  626. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  627. */
  628. ring_type rx_ring;
  629. unsigned int cur_rx, refill_rx;
  630. struct sk_buff **rx_skbuff;
  631. dma_addr_t *rx_dma;
  632. unsigned int rx_buf_sz;
  633. unsigned int pkt_limit;
  634. struct timer_list oom_kick;
  635. struct timer_list nic_poll;
  636. struct timer_list stats_poll;
  637. u32 nic_poll_irq;
  638. int rx_ring_size;
  639. /* media detection workaround.
  640. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  641. */
  642. int need_linktimer;
  643. unsigned long link_timeout;
  644. /*
  645. * tx specific fields.
  646. */
  647. ring_type tx_ring;
  648. unsigned int next_tx, nic_tx;
  649. struct sk_buff **tx_skbuff;
  650. dma_addr_t *tx_dma;
  651. unsigned int *tx_dma_len;
  652. u32 tx_flags;
  653. int tx_ring_size;
  654. int tx_limit_start;
  655. int tx_limit_stop;
  656. /* vlan fields */
  657. struct vlan_group *vlangrp;
  658. /* msi/msi-x fields */
  659. u32 msi_flags;
  660. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  661. /* flow control */
  662. u32 pause_flags;
  663. };
  664. /*
  665. * Maximum number of loops until we assume that a bit in the irq mask
  666. * is stuck. Overridable with module param.
  667. */
  668. static int max_interrupt_work = 5;
  669. /*
  670. * Optimization can be either throuput mode or cpu mode
  671. *
  672. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  673. * CPU Mode: Interrupts are controlled by a timer.
  674. */
  675. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  676. #define NV_OPTIMIZATION_MODE_CPU 1
  677. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  678. /*
  679. * Poll interval for timer irq
  680. *
  681. * This interval determines how frequent an interrupt is generated.
  682. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  683. * Min = 0, and Max = 65535
  684. */
  685. static int poll_interval = -1;
  686. /*
  687. * Disable MSI interrupts
  688. */
  689. static int disable_msi = 0;
  690. /*
  691. * Disable MSIX interrupts
  692. */
  693. static int disable_msix = 0;
  694. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  695. {
  696. return netdev_priv(dev);
  697. }
  698. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  699. {
  700. return ((struct fe_priv *)netdev_priv(dev))->base;
  701. }
  702. static inline void pci_push(u8 __iomem *base)
  703. {
  704. /* force out pending posted writes */
  705. readl(base);
  706. }
  707. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  708. {
  709. return le32_to_cpu(prd->FlagLen)
  710. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  711. }
  712. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  713. {
  714. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  715. }
  716. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  717. int delay, int delaymax, const char *msg)
  718. {
  719. u8 __iomem *base = get_hwbase(dev);
  720. pci_push(base);
  721. do {
  722. udelay(delay);
  723. delaymax -= delay;
  724. if (delaymax < 0) {
  725. if (msg)
  726. printk(msg);
  727. return 1;
  728. }
  729. } while ((readl(base + offset) & mask) != target);
  730. return 0;
  731. }
  732. #define NV_SETUP_RX_RING 0x01
  733. #define NV_SETUP_TX_RING 0x02
  734. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  735. {
  736. struct fe_priv *np = get_nvpriv(dev);
  737. u8 __iomem *base = get_hwbase(dev);
  738. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  739. if (rxtx_flags & NV_SETUP_RX_RING) {
  740. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  741. }
  742. if (rxtx_flags & NV_SETUP_TX_RING) {
  743. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  744. }
  745. } else {
  746. if (rxtx_flags & NV_SETUP_RX_RING) {
  747. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  748. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  749. }
  750. if (rxtx_flags & NV_SETUP_TX_RING) {
  751. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  752. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  753. }
  754. }
  755. }
  756. static void free_rings(struct net_device *dev)
  757. {
  758. struct fe_priv *np = get_nvpriv(dev);
  759. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  760. if(np->rx_ring.orig)
  761. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  762. np->rx_ring.orig, np->ring_addr);
  763. } else {
  764. if (np->rx_ring.ex)
  765. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  766. np->rx_ring.ex, np->ring_addr);
  767. }
  768. if (np->rx_skbuff)
  769. kfree(np->rx_skbuff);
  770. if (np->rx_dma)
  771. kfree(np->rx_dma);
  772. if (np->tx_skbuff)
  773. kfree(np->tx_skbuff);
  774. if (np->tx_dma)
  775. kfree(np->tx_dma);
  776. if (np->tx_dma_len)
  777. kfree(np->tx_dma_len);
  778. }
  779. static int using_multi_irqs(struct net_device *dev)
  780. {
  781. struct fe_priv *np = get_nvpriv(dev);
  782. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  783. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  784. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  785. return 0;
  786. else
  787. return 1;
  788. }
  789. static void nv_enable_irq(struct net_device *dev)
  790. {
  791. struct fe_priv *np = get_nvpriv(dev);
  792. if (!using_multi_irqs(dev)) {
  793. if (np->msi_flags & NV_MSI_X_ENABLED)
  794. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  795. else
  796. enable_irq(dev->irq);
  797. } else {
  798. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  799. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  800. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  801. }
  802. }
  803. static void nv_disable_irq(struct net_device *dev)
  804. {
  805. struct fe_priv *np = get_nvpriv(dev);
  806. if (!using_multi_irqs(dev)) {
  807. if (np->msi_flags & NV_MSI_X_ENABLED)
  808. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  809. else
  810. disable_irq(dev->irq);
  811. } else {
  812. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  813. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  814. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  815. }
  816. }
  817. /* In MSIX mode, a write to irqmask behaves as XOR */
  818. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  819. {
  820. u8 __iomem *base = get_hwbase(dev);
  821. writel(mask, base + NvRegIrqMask);
  822. }
  823. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  824. {
  825. struct fe_priv *np = get_nvpriv(dev);
  826. u8 __iomem *base = get_hwbase(dev);
  827. if (np->msi_flags & NV_MSI_X_ENABLED) {
  828. writel(mask, base + NvRegIrqMask);
  829. } else {
  830. if (np->msi_flags & NV_MSI_ENABLED)
  831. writel(0, base + NvRegMSIIrqMask);
  832. writel(0, base + NvRegIrqMask);
  833. }
  834. }
  835. #define MII_READ (-1)
  836. /* mii_rw: read/write a register on the PHY.
  837. *
  838. * Caller must guarantee serialization
  839. */
  840. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  841. {
  842. u8 __iomem *base = get_hwbase(dev);
  843. u32 reg;
  844. int retval;
  845. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  846. reg = readl(base + NvRegMIIControl);
  847. if (reg & NVREG_MIICTL_INUSE) {
  848. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  849. udelay(NV_MIIBUSY_DELAY);
  850. }
  851. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  852. if (value != MII_READ) {
  853. writel(value, base + NvRegMIIData);
  854. reg |= NVREG_MIICTL_WRITE;
  855. }
  856. writel(reg, base + NvRegMIIControl);
  857. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  858. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  859. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  860. dev->name, miireg, addr);
  861. retval = -1;
  862. } else if (value != MII_READ) {
  863. /* it was a write operation - fewer failures are detectable */
  864. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  865. dev->name, value, miireg, addr);
  866. retval = 0;
  867. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  868. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  869. dev->name, miireg, addr);
  870. retval = -1;
  871. } else {
  872. retval = readl(base + NvRegMIIData);
  873. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  874. dev->name, miireg, addr, retval);
  875. }
  876. return retval;
  877. }
  878. static int phy_reset(struct net_device *dev)
  879. {
  880. struct fe_priv *np = netdev_priv(dev);
  881. u32 miicontrol;
  882. unsigned int tries = 0;
  883. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  884. miicontrol |= BMCR_RESET;
  885. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  886. return -1;
  887. }
  888. /* wait for 500ms */
  889. msleep(500);
  890. /* must wait till reset is deasserted */
  891. while (miicontrol & BMCR_RESET) {
  892. msleep(10);
  893. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  894. /* FIXME: 100 tries seem excessive */
  895. if (tries++ > 100)
  896. return -1;
  897. }
  898. return 0;
  899. }
  900. static int phy_init(struct net_device *dev)
  901. {
  902. struct fe_priv *np = get_nvpriv(dev);
  903. u8 __iomem *base = get_hwbase(dev);
  904. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  905. /* set advertise register */
  906. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  907. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  908. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  909. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  910. return PHY_ERROR;
  911. }
  912. /* get phy interface type */
  913. phyinterface = readl(base + NvRegPhyInterface);
  914. /* see if gigabit phy */
  915. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  916. if (mii_status & PHY_GIGABIT) {
  917. np->gigabit = PHY_GIGABIT;
  918. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  919. mii_control_1000 &= ~ADVERTISE_1000HALF;
  920. if (phyinterface & PHY_RGMII)
  921. mii_control_1000 |= ADVERTISE_1000FULL;
  922. else
  923. mii_control_1000 &= ~ADVERTISE_1000FULL;
  924. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  925. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  926. return PHY_ERROR;
  927. }
  928. }
  929. else
  930. np->gigabit = 0;
  931. /* reset the phy */
  932. if (phy_reset(dev)) {
  933. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  934. return PHY_ERROR;
  935. }
  936. /* phy vendor specific configuration */
  937. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  938. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  939. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  940. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  941. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  942. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  943. return PHY_ERROR;
  944. }
  945. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  946. phy_reserved |= PHY_INIT5;
  947. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  948. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  949. return PHY_ERROR;
  950. }
  951. }
  952. if (np->phy_oui == PHY_OUI_CICADA) {
  953. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  954. phy_reserved |= PHY_INIT6;
  955. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  956. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  957. return PHY_ERROR;
  958. }
  959. }
  960. /* some phys clear out pause advertisment on reset, set it back */
  961. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  962. /* restart auto negotiation */
  963. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  964. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  965. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  966. return PHY_ERROR;
  967. }
  968. return 0;
  969. }
  970. static void nv_start_rx(struct net_device *dev)
  971. {
  972. struct fe_priv *np = netdev_priv(dev);
  973. u8 __iomem *base = get_hwbase(dev);
  974. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  975. /* Already running? Stop it. */
  976. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  977. writel(0, base + NvRegReceiverControl);
  978. pci_push(base);
  979. }
  980. writel(np->linkspeed, base + NvRegLinkSpeed);
  981. pci_push(base);
  982. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  983. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  984. dev->name, np->duplex, np->linkspeed);
  985. pci_push(base);
  986. }
  987. static void nv_stop_rx(struct net_device *dev)
  988. {
  989. u8 __iomem *base = get_hwbase(dev);
  990. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  991. writel(0, base + NvRegReceiverControl);
  992. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  993. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  994. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  995. udelay(NV_RXSTOP_DELAY2);
  996. writel(0, base + NvRegLinkSpeed);
  997. }
  998. static void nv_start_tx(struct net_device *dev)
  999. {
  1000. u8 __iomem *base = get_hwbase(dev);
  1001. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1002. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  1003. pci_push(base);
  1004. }
  1005. static void nv_stop_tx(struct net_device *dev)
  1006. {
  1007. u8 __iomem *base = get_hwbase(dev);
  1008. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1009. writel(0, base + NvRegTransmitterControl);
  1010. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1011. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1012. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1013. udelay(NV_TXSTOP_DELAY2);
  1014. writel(0, base + NvRegUnknownTransmitterReg);
  1015. }
  1016. static void nv_txrx_reset(struct net_device *dev)
  1017. {
  1018. struct fe_priv *np = netdev_priv(dev);
  1019. u8 __iomem *base = get_hwbase(dev);
  1020. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1021. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1022. pci_push(base);
  1023. udelay(NV_TXRX_RESET_DELAY);
  1024. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1025. pci_push(base);
  1026. }
  1027. static void nv_mac_reset(struct net_device *dev)
  1028. {
  1029. struct fe_priv *np = netdev_priv(dev);
  1030. u8 __iomem *base = get_hwbase(dev);
  1031. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1032. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1033. pci_push(base);
  1034. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1035. pci_push(base);
  1036. udelay(NV_MAC_RESET_DELAY);
  1037. writel(0, base + NvRegMacReset);
  1038. pci_push(base);
  1039. udelay(NV_MAC_RESET_DELAY);
  1040. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1041. pci_push(base);
  1042. }
  1043. /*
  1044. * nv_get_stats: dev->get_stats function
  1045. * Get latest stats value from the nic.
  1046. * Called with read_lock(&dev_base_lock) held for read -
  1047. * only synchronized against unregister_netdevice.
  1048. */
  1049. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1050. {
  1051. struct fe_priv *np = netdev_priv(dev);
  1052. /* It seems that the nic always generates interrupts and doesn't
  1053. * accumulate errors internally. Thus the current values in np->stats
  1054. * are already up to date.
  1055. */
  1056. return &np->stats;
  1057. }
  1058. /*
  1059. * nv_alloc_rx: fill rx ring entries.
  1060. * Return 1 if the allocations for the skbs failed and the
  1061. * rx engine is without Available descriptors
  1062. */
  1063. static int nv_alloc_rx(struct net_device *dev)
  1064. {
  1065. struct fe_priv *np = netdev_priv(dev);
  1066. unsigned int refill_rx = np->refill_rx;
  1067. int nr;
  1068. while (np->cur_rx != refill_rx) {
  1069. struct sk_buff *skb;
  1070. nr = refill_rx % np->rx_ring_size;
  1071. if (np->rx_skbuff[nr] == NULL) {
  1072. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1073. if (!skb)
  1074. break;
  1075. skb->dev = dev;
  1076. np->rx_skbuff[nr] = skb;
  1077. } else {
  1078. skb = np->rx_skbuff[nr];
  1079. }
  1080. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  1081. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1082. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1083. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  1084. wmb();
  1085. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1086. } else {
  1087. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  1088. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  1089. wmb();
  1090. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1091. }
  1092. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  1093. dev->name, refill_rx);
  1094. refill_rx++;
  1095. }
  1096. np->refill_rx = refill_rx;
  1097. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1098. return 1;
  1099. return 0;
  1100. }
  1101. static void nv_do_rx_refill(unsigned long data)
  1102. {
  1103. struct net_device *dev = (struct net_device *) data;
  1104. struct fe_priv *np = netdev_priv(dev);
  1105. if (!using_multi_irqs(dev)) {
  1106. if (np->msi_flags & NV_MSI_X_ENABLED)
  1107. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1108. else
  1109. disable_irq(dev->irq);
  1110. } else {
  1111. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1112. }
  1113. if (nv_alloc_rx(dev)) {
  1114. spin_lock_irq(&np->lock);
  1115. if (!np->in_shutdown)
  1116. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1117. spin_unlock_irq(&np->lock);
  1118. }
  1119. if (!using_multi_irqs(dev)) {
  1120. if (np->msi_flags & NV_MSI_X_ENABLED)
  1121. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1122. else
  1123. enable_irq(dev->irq);
  1124. } else {
  1125. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1126. }
  1127. }
  1128. static void nv_init_rx(struct net_device *dev)
  1129. {
  1130. struct fe_priv *np = netdev_priv(dev);
  1131. int i;
  1132. np->cur_rx = np->rx_ring_size;
  1133. np->refill_rx = 0;
  1134. for (i = 0; i < np->rx_ring_size; i++)
  1135. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1136. np->rx_ring.orig[i].FlagLen = 0;
  1137. else
  1138. np->rx_ring.ex[i].FlagLen = 0;
  1139. }
  1140. static void nv_init_tx(struct net_device *dev)
  1141. {
  1142. struct fe_priv *np = netdev_priv(dev);
  1143. int i;
  1144. np->next_tx = np->nic_tx = 0;
  1145. for (i = 0; i < np->tx_ring_size; i++) {
  1146. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1147. np->tx_ring.orig[i].FlagLen = 0;
  1148. else
  1149. np->tx_ring.ex[i].FlagLen = 0;
  1150. np->tx_skbuff[i] = NULL;
  1151. np->tx_dma[i] = 0;
  1152. }
  1153. }
  1154. static int nv_init_ring(struct net_device *dev)
  1155. {
  1156. nv_init_tx(dev);
  1157. nv_init_rx(dev);
  1158. return nv_alloc_rx(dev);
  1159. }
  1160. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1161. {
  1162. struct fe_priv *np = netdev_priv(dev);
  1163. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1164. dev->name, skbnr);
  1165. if (np->tx_dma[skbnr]) {
  1166. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1167. np->tx_dma_len[skbnr],
  1168. PCI_DMA_TODEVICE);
  1169. np->tx_dma[skbnr] = 0;
  1170. }
  1171. if (np->tx_skbuff[skbnr]) {
  1172. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1173. np->tx_skbuff[skbnr] = NULL;
  1174. return 1;
  1175. } else {
  1176. return 0;
  1177. }
  1178. }
  1179. static void nv_drain_tx(struct net_device *dev)
  1180. {
  1181. struct fe_priv *np = netdev_priv(dev);
  1182. unsigned int i;
  1183. for (i = 0; i < np->tx_ring_size; i++) {
  1184. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1185. np->tx_ring.orig[i].FlagLen = 0;
  1186. else
  1187. np->tx_ring.ex[i].FlagLen = 0;
  1188. if (nv_release_txskb(dev, i))
  1189. np->stats.tx_dropped++;
  1190. }
  1191. }
  1192. static void nv_drain_rx(struct net_device *dev)
  1193. {
  1194. struct fe_priv *np = netdev_priv(dev);
  1195. int i;
  1196. for (i = 0; i < np->rx_ring_size; i++) {
  1197. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1198. np->rx_ring.orig[i].FlagLen = 0;
  1199. else
  1200. np->rx_ring.ex[i].FlagLen = 0;
  1201. wmb();
  1202. if (np->rx_skbuff[i]) {
  1203. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1204. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1205. PCI_DMA_FROMDEVICE);
  1206. dev_kfree_skb(np->rx_skbuff[i]);
  1207. np->rx_skbuff[i] = NULL;
  1208. }
  1209. }
  1210. }
  1211. static void drain_ring(struct net_device *dev)
  1212. {
  1213. nv_drain_tx(dev);
  1214. nv_drain_rx(dev);
  1215. }
  1216. /*
  1217. * nv_start_xmit: dev->hard_start_xmit function
  1218. * Called with dev->xmit_lock held.
  1219. */
  1220. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1221. {
  1222. struct fe_priv *np = netdev_priv(dev);
  1223. u32 tx_flags = 0;
  1224. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1225. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1226. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1227. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1228. unsigned int i;
  1229. u32 offset = 0;
  1230. u32 bcnt;
  1231. u32 size = skb->len-skb->data_len;
  1232. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1233. u32 tx_flags_vlan = 0;
  1234. /* add fragments to entries count */
  1235. for (i = 0; i < fragments; i++) {
  1236. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1237. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1238. }
  1239. spin_lock_irq(&np->lock);
  1240. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1241. spin_unlock_irq(&np->lock);
  1242. netif_stop_queue(dev);
  1243. return NETDEV_TX_BUSY;
  1244. }
  1245. /* setup the header buffer */
  1246. do {
  1247. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1248. nr = (nr + 1) % np->tx_ring_size;
  1249. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1250. PCI_DMA_TODEVICE);
  1251. np->tx_dma_len[nr] = bcnt;
  1252. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1253. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1254. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1255. } else {
  1256. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1257. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1258. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1259. }
  1260. tx_flags = np->tx_flags;
  1261. offset += bcnt;
  1262. size -= bcnt;
  1263. } while(size);
  1264. /* setup the fragments */
  1265. for (i = 0; i < fragments; i++) {
  1266. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1267. u32 size = frag->size;
  1268. offset = 0;
  1269. do {
  1270. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1271. nr = (nr + 1) % np->tx_ring_size;
  1272. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1273. PCI_DMA_TODEVICE);
  1274. np->tx_dma_len[nr] = bcnt;
  1275. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1276. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1277. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1278. } else {
  1279. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1280. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1281. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1282. }
  1283. offset += bcnt;
  1284. size -= bcnt;
  1285. } while (size);
  1286. }
  1287. /* set last fragment flag */
  1288. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1289. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1290. } else {
  1291. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1292. }
  1293. np->tx_skbuff[nr] = skb;
  1294. #ifdef NETIF_F_TSO
  1295. if (skb_shinfo(skb)->tso_size)
  1296. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1297. else
  1298. #endif
  1299. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1300. /* vlan tag */
  1301. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1302. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1303. }
  1304. /* set tx flags */
  1305. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1306. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1307. } else {
  1308. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1309. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1310. }
  1311. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1312. dev->name, np->next_tx, entries, tx_flags_extra);
  1313. {
  1314. int j;
  1315. for (j=0; j<64; j++) {
  1316. if ((j%16) == 0)
  1317. dprintk("\n%03x:", j);
  1318. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1319. }
  1320. dprintk("\n");
  1321. }
  1322. np->next_tx += entries;
  1323. dev->trans_start = jiffies;
  1324. spin_unlock_irq(&np->lock);
  1325. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1326. pci_push(get_hwbase(dev));
  1327. return NETDEV_TX_OK;
  1328. }
  1329. /*
  1330. * nv_tx_done: check for completed packets, release the skbs.
  1331. *
  1332. * Caller must own np->lock.
  1333. */
  1334. static void nv_tx_done(struct net_device *dev)
  1335. {
  1336. struct fe_priv *np = netdev_priv(dev);
  1337. u32 Flags;
  1338. unsigned int i;
  1339. struct sk_buff *skb;
  1340. while (np->nic_tx != np->next_tx) {
  1341. i = np->nic_tx % np->tx_ring_size;
  1342. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1343. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1344. else
  1345. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1346. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1347. dev->name, np->nic_tx, Flags);
  1348. if (Flags & NV_TX_VALID)
  1349. break;
  1350. if (np->desc_ver == DESC_VER_1) {
  1351. if (Flags & NV_TX_LASTPACKET) {
  1352. skb = np->tx_skbuff[i];
  1353. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1354. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1355. if (Flags & NV_TX_UNDERFLOW)
  1356. np->stats.tx_fifo_errors++;
  1357. if (Flags & NV_TX_CARRIERLOST)
  1358. np->stats.tx_carrier_errors++;
  1359. np->stats.tx_errors++;
  1360. } else {
  1361. np->stats.tx_packets++;
  1362. np->stats.tx_bytes += skb->len;
  1363. }
  1364. }
  1365. } else {
  1366. if (Flags & NV_TX2_LASTPACKET) {
  1367. skb = np->tx_skbuff[i];
  1368. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1369. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1370. if (Flags & NV_TX2_UNDERFLOW)
  1371. np->stats.tx_fifo_errors++;
  1372. if (Flags & NV_TX2_CARRIERLOST)
  1373. np->stats.tx_carrier_errors++;
  1374. np->stats.tx_errors++;
  1375. } else {
  1376. np->stats.tx_packets++;
  1377. np->stats.tx_bytes += skb->len;
  1378. }
  1379. }
  1380. }
  1381. nv_release_txskb(dev, i);
  1382. np->nic_tx++;
  1383. }
  1384. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1385. netif_wake_queue(dev);
  1386. }
  1387. /*
  1388. * nv_tx_timeout: dev->tx_timeout function
  1389. * Called with dev->xmit_lock held.
  1390. */
  1391. static void nv_tx_timeout(struct net_device *dev)
  1392. {
  1393. struct fe_priv *np = netdev_priv(dev);
  1394. u8 __iomem *base = get_hwbase(dev);
  1395. u32 status;
  1396. if (np->msi_flags & NV_MSI_X_ENABLED)
  1397. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1398. else
  1399. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1400. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1401. {
  1402. int i;
  1403. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1404. dev->name, (unsigned long)np->ring_addr,
  1405. np->next_tx, np->nic_tx);
  1406. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1407. for (i=0;i<=np->register_size;i+= 32) {
  1408. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1409. i,
  1410. readl(base + i + 0), readl(base + i + 4),
  1411. readl(base + i + 8), readl(base + i + 12),
  1412. readl(base + i + 16), readl(base + i + 20),
  1413. readl(base + i + 24), readl(base + i + 28));
  1414. }
  1415. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1416. for (i=0;i<np->tx_ring_size;i+= 4) {
  1417. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1418. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1419. i,
  1420. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1421. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1422. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1423. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1424. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1425. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1426. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1427. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1428. } else {
  1429. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1430. i,
  1431. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1432. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1433. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1434. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1435. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1436. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1437. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1438. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1439. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1440. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1441. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1442. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1443. }
  1444. }
  1445. }
  1446. spin_lock_irq(&np->lock);
  1447. /* 1) stop tx engine */
  1448. nv_stop_tx(dev);
  1449. /* 2) check that the packets were not sent already: */
  1450. nv_tx_done(dev);
  1451. /* 3) if there are dead entries: clear everything */
  1452. if (np->next_tx != np->nic_tx) {
  1453. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1454. nv_drain_tx(dev);
  1455. np->next_tx = np->nic_tx = 0;
  1456. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1457. netif_wake_queue(dev);
  1458. }
  1459. /* 4) restart tx engine */
  1460. nv_start_tx(dev);
  1461. spin_unlock_irq(&np->lock);
  1462. }
  1463. /*
  1464. * Called when the nic notices a mismatch between the actual data len on the
  1465. * wire and the len indicated in the 802 header
  1466. */
  1467. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1468. {
  1469. int hdrlen; /* length of the 802 header */
  1470. int protolen; /* length as stored in the proto field */
  1471. /* 1) calculate len according to header */
  1472. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1473. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1474. hdrlen = VLAN_HLEN;
  1475. } else {
  1476. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1477. hdrlen = ETH_HLEN;
  1478. }
  1479. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1480. dev->name, datalen, protolen, hdrlen);
  1481. if (protolen > ETH_DATA_LEN)
  1482. return datalen; /* Value in proto field not a len, no checks possible */
  1483. protolen += hdrlen;
  1484. /* consistency checks: */
  1485. if (datalen > ETH_ZLEN) {
  1486. if (datalen >= protolen) {
  1487. /* more data on wire than in 802 header, trim of
  1488. * additional data.
  1489. */
  1490. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1491. dev->name, protolen);
  1492. return protolen;
  1493. } else {
  1494. /* less data on wire than mentioned in header.
  1495. * Discard the packet.
  1496. */
  1497. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1498. dev->name);
  1499. return -1;
  1500. }
  1501. } else {
  1502. /* short packet. Accept only if 802 values are also short */
  1503. if (protolen > ETH_ZLEN) {
  1504. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1505. dev->name);
  1506. return -1;
  1507. }
  1508. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1509. dev->name, datalen);
  1510. return datalen;
  1511. }
  1512. }
  1513. static void nv_rx_process(struct net_device *dev)
  1514. {
  1515. struct fe_priv *np = netdev_priv(dev);
  1516. u32 Flags;
  1517. u32 vlanflags = 0;
  1518. for (;;) {
  1519. struct sk_buff *skb;
  1520. int len;
  1521. int i;
  1522. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1523. break; /* we scanned the whole ring - do not continue */
  1524. i = np->cur_rx % np->rx_ring_size;
  1525. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1526. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1527. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1528. } else {
  1529. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1530. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1531. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1532. }
  1533. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1534. dev->name, np->cur_rx, Flags);
  1535. if (Flags & NV_RX_AVAIL)
  1536. break; /* still owned by hardware, */
  1537. /*
  1538. * the packet is for us - immediately tear down the pci mapping.
  1539. * TODO: check if a prefetch of the first cacheline improves
  1540. * the performance.
  1541. */
  1542. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1543. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1544. PCI_DMA_FROMDEVICE);
  1545. {
  1546. int j;
  1547. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1548. for (j=0; j<64; j++) {
  1549. if ((j%16) == 0)
  1550. dprintk("\n%03x:", j);
  1551. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1552. }
  1553. dprintk("\n");
  1554. }
  1555. /* look at what we actually got: */
  1556. if (np->desc_ver == DESC_VER_1) {
  1557. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1558. goto next_pkt;
  1559. if (Flags & NV_RX_ERROR) {
  1560. if (Flags & NV_RX_MISSEDFRAME) {
  1561. np->stats.rx_missed_errors++;
  1562. np->stats.rx_errors++;
  1563. goto next_pkt;
  1564. }
  1565. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1566. np->stats.rx_errors++;
  1567. goto next_pkt;
  1568. }
  1569. if (Flags & NV_RX_CRCERR) {
  1570. np->stats.rx_crc_errors++;
  1571. np->stats.rx_errors++;
  1572. goto next_pkt;
  1573. }
  1574. if (Flags & NV_RX_OVERFLOW) {
  1575. np->stats.rx_over_errors++;
  1576. np->stats.rx_errors++;
  1577. goto next_pkt;
  1578. }
  1579. if (Flags & NV_RX_ERROR4) {
  1580. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1581. if (len < 0) {
  1582. np->stats.rx_errors++;
  1583. goto next_pkt;
  1584. }
  1585. }
  1586. /* framing errors are soft errors. */
  1587. if (Flags & NV_RX_FRAMINGERR) {
  1588. if (Flags & NV_RX_SUBSTRACT1) {
  1589. len--;
  1590. }
  1591. }
  1592. }
  1593. } else {
  1594. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1595. goto next_pkt;
  1596. if (Flags & NV_RX2_ERROR) {
  1597. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1598. np->stats.rx_errors++;
  1599. goto next_pkt;
  1600. }
  1601. if (Flags & NV_RX2_CRCERR) {
  1602. np->stats.rx_crc_errors++;
  1603. np->stats.rx_errors++;
  1604. goto next_pkt;
  1605. }
  1606. if (Flags & NV_RX2_OVERFLOW) {
  1607. np->stats.rx_over_errors++;
  1608. np->stats.rx_errors++;
  1609. goto next_pkt;
  1610. }
  1611. if (Flags & NV_RX2_ERROR4) {
  1612. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1613. if (len < 0) {
  1614. np->stats.rx_errors++;
  1615. goto next_pkt;
  1616. }
  1617. }
  1618. /* framing errors are soft errors */
  1619. if (Flags & NV_RX2_FRAMINGERR) {
  1620. if (Flags & NV_RX2_SUBSTRACT1) {
  1621. len--;
  1622. }
  1623. }
  1624. }
  1625. if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
  1626. Flags &= NV_RX2_CHECKSUMMASK;
  1627. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1628. Flags == NV_RX2_CHECKSUMOK2 ||
  1629. Flags == NV_RX2_CHECKSUMOK3) {
  1630. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1631. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1632. } else {
  1633. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1634. }
  1635. }
  1636. }
  1637. /* got a valid packet - forward it to the network core */
  1638. skb = np->rx_skbuff[i];
  1639. np->rx_skbuff[i] = NULL;
  1640. skb_put(skb, len);
  1641. skb->protocol = eth_type_trans(skb, dev);
  1642. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1643. dev->name, np->cur_rx, len, skb->protocol);
  1644. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1645. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1646. } else {
  1647. netif_rx(skb);
  1648. }
  1649. dev->last_rx = jiffies;
  1650. np->stats.rx_packets++;
  1651. np->stats.rx_bytes += len;
  1652. next_pkt:
  1653. np->cur_rx++;
  1654. }
  1655. }
  1656. static void set_bufsize(struct net_device *dev)
  1657. {
  1658. struct fe_priv *np = netdev_priv(dev);
  1659. if (dev->mtu <= ETH_DATA_LEN)
  1660. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1661. else
  1662. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1663. }
  1664. /*
  1665. * nv_change_mtu: dev->change_mtu function
  1666. * Called with dev_base_lock held for read.
  1667. */
  1668. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1669. {
  1670. struct fe_priv *np = netdev_priv(dev);
  1671. int old_mtu;
  1672. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1673. return -EINVAL;
  1674. old_mtu = dev->mtu;
  1675. dev->mtu = new_mtu;
  1676. /* return early if the buffer sizes will not change */
  1677. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1678. return 0;
  1679. if (old_mtu == new_mtu)
  1680. return 0;
  1681. /* synchronized against open : rtnl_lock() held by caller */
  1682. if (netif_running(dev)) {
  1683. u8 __iomem *base = get_hwbase(dev);
  1684. /*
  1685. * It seems that the nic preloads valid ring entries into an
  1686. * internal buffer. The procedure for flushing everything is
  1687. * guessed, there is probably a simpler approach.
  1688. * Changing the MTU is a rare event, it shouldn't matter.
  1689. */
  1690. nv_disable_irq(dev);
  1691. spin_lock_bh(&dev->xmit_lock);
  1692. spin_lock(&np->lock);
  1693. /* stop engines */
  1694. nv_stop_rx(dev);
  1695. nv_stop_tx(dev);
  1696. nv_txrx_reset(dev);
  1697. /* drain rx queue */
  1698. nv_drain_rx(dev);
  1699. nv_drain_tx(dev);
  1700. /* reinit driver view of the rx queue */
  1701. set_bufsize(dev);
  1702. if (nv_init_ring(dev)) {
  1703. if (!np->in_shutdown)
  1704. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1705. }
  1706. /* reinit nic view of the rx queue */
  1707. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1708. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1709. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1710. base + NvRegRingSizes);
  1711. pci_push(base);
  1712. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1713. pci_push(base);
  1714. /* restart rx engine */
  1715. nv_start_rx(dev);
  1716. nv_start_tx(dev);
  1717. spin_unlock(&np->lock);
  1718. spin_unlock_bh(&dev->xmit_lock);
  1719. nv_enable_irq(dev);
  1720. }
  1721. return 0;
  1722. }
  1723. static void nv_copy_mac_to_hw(struct net_device *dev)
  1724. {
  1725. u8 __iomem *base = get_hwbase(dev);
  1726. u32 mac[2];
  1727. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1728. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1729. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1730. writel(mac[0], base + NvRegMacAddrA);
  1731. writel(mac[1], base + NvRegMacAddrB);
  1732. }
  1733. /*
  1734. * nv_set_mac_address: dev->set_mac_address function
  1735. * Called with rtnl_lock() held.
  1736. */
  1737. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1738. {
  1739. struct fe_priv *np = netdev_priv(dev);
  1740. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1741. if(!is_valid_ether_addr(macaddr->sa_data))
  1742. return -EADDRNOTAVAIL;
  1743. /* synchronized against open : rtnl_lock() held by caller */
  1744. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1745. if (netif_running(dev)) {
  1746. spin_lock_bh(&dev->xmit_lock);
  1747. spin_lock_irq(&np->lock);
  1748. /* stop rx engine */
  1749. nv_stop_rx(dev);
  1750. /* set mac address */
  1751. nv_copy_mac_to_hw(dev);
  1752. /* restart rx engine */
  1753. nv_start_rx(dev);
  1754. spin_unlock_irq(&np->lock);
  1755. spin_unlock_bh(&dev->xmit_lock);
  1756. } else {
  1757. nv_copy_mac_to_hw(dev);
  1758. }
  1759. return 0;
  1760. }
  1761. /*
  1762. * nv_set_multicast: dev->set_multicast function
  1763. * Called with dev->xmit_lock held.
  1764. */
  1765. static void nv_set_multicast(struct net_device *dev)
  1766. {
  1767. struct fe_priv *np = netdev_priv(dev);
  1768. u8 __iomem *base = get_hwbase(dev);
  1769. u32 addr[2];
  1770. u32 mask[2];
  1771. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1772. memset(addr, 0, sizeof(addr));
  1773. memset(mask, 0, sizeof(mask));
  1774. if (dev->flags & IFF_PROMISC) {
  1775. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1776. pff |= NVREG_PFF_PROMISC;
  1777. } else {
  1778. pff |= NVREG_PFF_MYADDR;
  1779. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1780. u32 alwaysOff[2];
  1781. u32 alwaysOn[2];
  1782. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1783. if (dev->flags & IFF_ALLMULTI) {
  1784. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1785. } else {
  1786. struct dev_mc_list *walk;
  1787. walk = dev->mc_list;
  1788. while (walk != NULL) {
  1789. u32 a, b;
  1790. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1791. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1792. alwaysOn[0] &= a;
  1793. alwaysOff[0] &= ~a;
  1794. alwaysOn[1] &= b;
  1795. alwaysOff[1] &= ~b;
  1796. walk = walk->next;
  1797. }
  1798. }
  1799. addr[0] = alwaysOn[0];
  1800. addr[1] = alwaysOn[1];
  1801. mask[0] = alwaysOn[0] | alwaysOff[0];
  1802. mask[1] = alwaysOn[1] | alwaysOff[1];
  1803. }
  1804. }
  1805. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1806. pff |= NVREG_PFF_ALWAYS;
  1807. spin_lock_irq(&np->lock);
  1808. nv_stop_rx(dev);
  1809. writel(addr[0], base + NvRegMulticastAddrA);
  1810. writel(addr[1], base + NvRegMulticastAddrB);
  1811. writel(mask[0], base + NvRegMulticastMaskA);
  1812. writel(mask[1], base + NvRegMulticastMaskB);
  1813. writel(pff, base + NvRegPacketFilterFlags);
  1814. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1815. dev->name);
  1816. nv_start_rx(dev);
  1817. spin_unlock_irq(&np->lock);
  1818. }
  1819. void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1820. {
  1821. struct fe_priv *np = netdev_priv(dev);
  1822. u8 __iomem *base = get_hwbase(dev);
  1823. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1824. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1825. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1826. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1827. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1828. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1829. } else {
  1830. writel(pff, base + NvRegPacketFilterFlags);
  1831. }
  1832. }
  1833. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1834. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1835. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1836. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1837. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1838. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1839. } else {
  1840. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1841. writel(regmisc, base + NvRegMisc1);
  1842. }
  1843. }
  1844. }
  1845. /**
  1846. * nv_update_linkspeed: Setup the MAC according to the link partner
  1847. * @dev: Network device to be configured
  1848. *
  1849. * The function queries the PHY and checks if there is a link partner.
  1850. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1851. * set to 10 MBit HD.
  1852. *
  1853. * The function returns 0 if there is no link partner and 1 if there is
  1854. * a good link partner.
  1855. */
  1856. static int nv_update_linkspeed(struct net_device *dev)
  1857. {
  1858. struct fe_priv *np = netdev_priv(dev);
  1859. u8 __iomem *base = get_hwbase(dev);
  1860. int adv = 0;
  1861. int lpa = 0;
  1862. int adv_lpa, adv_pause, lpa_pause;
  1863. int newls = np->linkspeed;
  1864. int newdup = np->duplex;
  1865. int mii_status;
  1866. int retval = 0;
  1867. u32 control_1000, status_1000, phyreg, pause_flags;
  1868. /* BMSR_LSTATUS is latched, read it twice:
  1869. * we want the current value.
  1870. */
  1871. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1872. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1873. if (!(mii_status & BMSR_LSTATUS)) {
  1874. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1875. dev->name);
  1876. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1877. newdup = 0;
  1878. retval = 0;
  1879. goto set_speed;
  1880. }
  1881. if (np->autoneg == 0) {
  1882. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1883. dev->name, np->fixed_mode);
  1884. if (np->fixed_mode & LPA_100FULL) {
  1885. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1886. newdup = 1;
  1887. } else if (np->fixed_mode & LPA_100HALF) {
  1888. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1889. newdup = 0;
  1890. } else if (np->fixed_mode & LPA_10FULL) {
  1891. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1892. newdup = 1;
  1893. } else {
  1894. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1895. newdup = 0;
  1896. }
  1897. retval = 1;
  1898. goto set_speed;
  1899. }
  1900. /* check auto negotiation is complete */
  1901. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1902. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1903. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1904. newdup = 0;
  1905. retval = 0;
  1906. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1907. goto set_speed;
  1908. }
  1909. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1910. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1911. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1912. dev->name, adv, lpa);
  1913. retval = 1;
  1914. if (np->gigabit == PHY_GIGABIT) {
  1915. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1916. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  1917. if ((control_1000 & ADVERTISE_1000FULL) &&
  1918. (status_1000 & LPA_1000FULL)) {
  1919. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1920. dev->name);
  1921. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1922. newdup = 1;
  1923. goto set_speed;
  1924. }
  1925. }
  1926. /* FIXME: handle parallel detection properly */
  1927. adv_lpa = lpa & adv;
  1928. if (adv_lpa & LPA_100FULL) {
  1929. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1930. newdup = 1;
  1931. } else if (adv_lpa & LPA_100HALF) {
  1932. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1933. newdup = 0;
  1934. } else if (adv_lpa & LPA_10FULL) {
  1935. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1936. newdup = 1;
  1937. } else if (adv_lpa & LPA_10HALF) {
  1938. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1939. newdup = 0;
  1940. } else {
  1941. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  1942. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1943. newdup = 0;
  1944. }
  1945. set_speed:
  1946. if (np->duplex == newdup && np->linkspeed == newls)
  1947. return retval;
  1948. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1949. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1950. np->duplex = newdup;
  1951. np->linkspeed = newls;
  1952. if (np->gigabit == PHY_GIGABIT) {
  1953. phyreg = readl(base + NvRegRandomSeed);
  1954. phyreg &= ~(0x3FF00);
  1955. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1956. phyreg |= NVREG_RNDSEED_FORCE3;
  1957. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1958. phyreg |= NVREG_RNDSEED_FORCE2;
  1959. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1960. phyreg |= NVREG_RNDSEED_FORCE;
  1961. writel(phyreg, base + NvRegRandomSeed);
  1962. }
  1963. phyreg = readl(base + NvRegPhyInterface);
  1964. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1965. if (np->duplex == 0)
  1966. phyreg |= PHY_HALF;
  1967. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1968. phyreg |= PHY_100;
  1969. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1970. phyreg |= PHY_1000;
  1971. writel(phyreg, base + NvRegPhyInterface);
  1972. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1973. base + NvRegMisc1);
  1974. pci_push(base);
  1975. writel(np->linkspeed, base + NvRegLinkSpeed);
  1976. pci_push(base);
  1977. pause_flags = 0;
  1978. /* setup pause frame */
  1979. if (np->duplex != 0) {
  1980. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  1981. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  1982. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  1983. switch (adv_pause) {
  1984. case (ADVERTISE_PAUSE_CAP):
  1985. if (lpa_pause & LPA_PAUSE_CAP) {
  1986. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1987. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  1988. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1989. }
  1990. break;
  1991. case (ADVERTISE_PAUSE_ASYM):
  1992. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  1993. {
  1994. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1995. }
  1996. break;
  1997. case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
  1998. if (lpa_pause & LPA_PAUSE_CAP)
  1999. {
  2000. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2001. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2002. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2003. }
  2004. if (lpa_pause == LPA_PAUSE_ASYM)
  2005. {
  2006. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2007. }
  2008. break;
  2009. }
  2010. } else {
  2011. pause_flags = np->pause_flags;
  2012. }
  2013. }
  2014. nv_update_pause(dev, pause_flags);
  2015. return retval;
  2016. }
  2017. static void nv_linkchange(struct net_device *dev)
  2018. {
  2019. if (nv_update_linkspeed(dev)) {
  2020. if (!netif_carrier_ok(dev)) {
  2021. netif_carrier_on(dev);
  2022. printk(KERN_INFO "%s: link up.\n", dev->name);
  2023. nv_start_rx(dev);
  2024. }
  2025. } else {
  2026. if (netif_carrier_ok(dev)) {
  2027. netif_carrier_off(dev);
  2028. printk(KERN_INFO "%s: link down.\n", dev->name);
  2029. nv_stop_rx(dev);
  2030. }
  2031. }
  2032. }
  2033. static void nv_link_irq(struct net_device *dev)
  2034. {
  2035. u8 __iomem *base = get_hwbase(dev);
  2036. u32 miistat;
  2037. miistat = readl(base + NvRegMIIStatus);
  2038. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2039. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2040. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2041. nv_linkchange(dev);
  2042. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2043. }
  2044. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  2045. {
  2046. struct net_device *dev = (struct net_device *) data;
  2047. struct fe_priv *np = netdev_priv(dev);
  2048. u8 __iomem *base = get_hwbase(dev);
  2049. u32 events;
  2050. int i;
  2051. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2052. for (i=0; ; i++) {
  2053. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2054. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2055. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2056. } else {
  2057. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2058. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2059. }
  2060. pci_push(base);
  2061. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2062. if (!(events & np->irqmask))
  2063. break;
  2064. spin_lock(&np->lock);
  2065. nv_tx_done(dev);
  2066. spin_unlock(&np->lock);
  2067. nv_rx_process(dev);
  2068. if (nv_alloc_rx(dev)) {
  2069. spin_lock(&np->lock);
  2070. if (!np->in_shutdown)
  2071. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2072. spin_unlock(&np->lock);
  2073. }
  2074. if (events & NVREG_IRQ_LINK) {
  2075. spin_lock(&np->lock);
  2076. nv_link_irq(dev);
  2077. spin_unlock(&np->lock);
  2078. }
  2079. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2080. spin_lock(&np->lock);
  2081. nv_linkchange(dev);
  2082. spin_unlock(&np->lock);
  2083. np->link_timeout = jiffies + LINK_TIMEOUT;
  2084. }
  2085. if (events & (NVREG_IRQ_TX_ERR)) {
  2086. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2087. dev->name, events);
  2088. }
  2089. if (events & (NVREG_IRQ_UNKNOWN)) {
  2090. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2091. dev->name, events);
  2092. }
  2093. if (i > max_interrupt_work) {
  2094. spin_lock(&np->lock);
  2095. /* disable interrupts on the nic */
  2096. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2097. writel(0, base + NvRegIrqMask);
  2098. else
  2099. writel(np->irqmask, base + NvRegIrqMask);
  2100. pci_push(base);
  2101. if (!np->in_shutdown) {
  2102. np->nic_poll_irq = np->irqmask;
  2103. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2104. }
  2105. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2106. spin_unlock(&np->lock);
  2107. break;
  2108. }
  2109. }
  2110. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2111. return IRQ_RETVAL(i);
  2112. }
  2113. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  2114. {
  2115. struct net_device *dev = (struct net_device *) data;
  2116. struct fe_priv *np = netdev_priv(dev);
  2117. u8 __iomem *base = get_hwbase(dev);
  2118. u32 events;
  2119. int i;
  2120. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2121. for (i=0; ; i++) {
  2122. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2123. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2124. pci_push(base);
  2125. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2126. if (!(events & np->irqmask))
  2127. break;
  2128. spin_lock_irq(&np->lock);
  2129. nv_tx_done(dev);
  2130. spin_unlock_irq(&np->lock);
  2131. if (events & (NVREG_IRQ_TX_ERR)) {
  2132. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2133. dev->name, events);
  2134. }
  2135. if (i > max_interrupt_work) {
  2136. spin_lock_irq(&np->lock);
  2137. /* disable interrupts on the nic */
  2138. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2139. pci_push(base);
  2140. if (!np->in_shutdown) {
  2141. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2142. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2143. }
  2144. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2145. spin_unlock_irq(&np->lock);
  2146. break;
  2147. }
  2148. }
  2149. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2150. return IRQ_RETVAL(i);
  2151. }
  2152. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  2153. {
  2154. struct net_device *dev = (struct net_device *) data;
  2155. struct fe_priv *np = netdev_priv(dev);
  2156. u8 __iomem *base = get_hwbase(dev);
  2157. u32 events;
  2158. int i;
  2159. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2160. for (i=0; ; i++) {
  2161. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2162. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2163. pci_push(base);
  2164. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2165. if (!(events & np->irqmask))
  2166. break;
  2167. nv_rx_process(dev);
  2168. if (nv_alloc_rx(dev)) {
  2169. spin_lock_irq(&np->lock);
  2170. if (!np->in_shutdown)
  2171. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2172. spin_unlock_irq(&np->lock);
  2173. }
  2174. if (i > max_interrupt_work) {
  2175. spin_lock_irq(&np->lock);
  2176. /* disable interrupts on the nic */
  2177. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2178. pci_push(base);
  2179. if (!np->in_shutdown) {
  2180. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2181. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2182. }
  2183. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2184. spin_unlock_irq(&np->lock);
  2185. break;
  2186. }
  2187. }
  2188. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2189. return IRQ_RETVAL(i);
  2190. }
  2191. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  2192. {
  2193. struct net_device *dev = (struct net_device *) data;
  2194. struct fe_priv *np = netdev_priv(dev);
  2195. u8 __iomem *base = get_hwbase(dev);
  2196. u32 events;
  2197. int i;
  2198. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2199. for (i=0; ; i++) {
  2200. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2201. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2202. pci_push(base);
  2203. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2204. if (!(events & np->irqmask))
  2205. break;
  2206. if (events & NVREG_IRQ_LINK) {
  2207. spin_lock_irq(&np->lock);
  2208. nv_link_irq(dev);
  2209. spin_unlock_irq(&np->lock);
  2210. }
  2211. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2212. spin_lock_irq(&np->lock);
  2213. nv_linkchange(dev);
  2214. spin_unlock_irq(&np->lock);
  2215. np->link_timeout = jiffies + LINK_TIMEOUT;
  2216. }
  2217. if (events & (NVREG_IRQ_UNKNOWN)) {
  2218. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2219. dev->name, events);
  2220. }
  2221. if (i > max_interrupt_work) {
  2222. spin_lock_irq(&np->lock);
  2223. /* disable interrupts on the nic */
  2224. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2225. pci_push(base);
  2226. if (!np->in_shutdown) {
  2227. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2228. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2229. }
  2230. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2231. spin_unlock_irq(&np->lock);
  2232. break;
  2233. }
  2234. }
  2235. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2236. return IRQ_RETVAL(i);
  2237. }
  2238. static void nv_do_nic_poll(unsigned long data)
  2239. {
  2240. struct net_device *dev = (struct net_device *) data;
  2241. struct fe_priv *np = netdev_priv(dev);
  2242. u8 __iomem *base = get_hwbase(dev);
  2243. u32 mask = 0;
  2244. /*
  2245. * First disable irq(s) and then
  2246. * reenable interrupts on the nic, we have to do this before calling
  2247. * nv_nic_irq because that may decide to do otherwise
  2248. */
  2249. if (!using_multi_irqs(dev)) {
  2250. if (np->msi_flags & NV_MSI_X_ENABLED)
  2251. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2252. else
  2253. disable_irq(dev->irq);
  2254. mask = np->irqmask;
  2255. } else {
  2256. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2257. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2258. mask |= NVREG_IRQ_RX_ALL;
  2259. }
  2260. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2261. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2262. mask |= NVREG_IRQ_TX_ALL;
  2263. }
  2264. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2265. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2266. mask |= NVREG_IRQ_OTHER;
  2267. }
  2268. }
  2269. np->nic_poll_irq = 0;
  2270. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2271. writel(mask, base + NvRegIrqMask);
  2272. pci_push(base);
  2273. if (!using_multi_irqs(dev)) {
  2274. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2275. if (np->msi_flags & NV_MSI_X_ENABLED)
  2276. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2277. else
  2278. enable_irq(dev->irq);
  2279. } else {
  2280. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2281. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2282. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2283. }
  2284. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2285. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2286. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2287. }
  2288. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2289. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2290. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2291. }
  2292. }
  2293. }
  2294. #ifdef CONFIG_NET_POLL_CONTROLLER
  2295. static void nv_poll_controller(struct net_device *dev)
  2296. {
  2297. nv_do_nic_poll((unsigned long) dev);
  2298. }
  2299. #endif
  2300. static void nv_do_stats_poll(unsigned long data)
  2301. {
  2302. struct net_device *dev = (struct net_device *) data;
  2303. struct fe_priv *np = netdev_priv(dev);
  2304. u8 __iomem *base = get_hwbase(dev);
  2305. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2306. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2307. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2308. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2309. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2310. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2311. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2312. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2313. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2314. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2315. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2316. np->estats.tx_pause += readl(base + NvRegTxPause);
  2317. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2318. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2319. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2320. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2321. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2322. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2323. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2324. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2325. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2326. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2327. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2328. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2329. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2330. np->estats.rx_pause += readl(base + NvRegRxPause);
  2331. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2332. np->estats.rx_packets =
  2333. np->estats.rx_unicast +
  2334. np->estats.rx_multicast +
  2335. np->estats.rx_broadcast;
  2336. np->estats.rx_errors_total =
  2337. np->estats.rx_crc_errors +
  2338. np->estats.rx_over_errors +
  2339. np->estats.rx_frame_error +
  2340. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2341. np->estats.rx_late_collision +
  2342. np->estats.rx_runt +
  2343. np->estats.rx_frame_too_long;
  2344. if (!np->in_shutdown)
  2345. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2346. }
  2347. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2348. {
  2349. struct fe_priv *np = netdev_priv(dev);
  2350. strcpy(info->driver, "forcedeth");
  2351. strcpy(info->version, FORCEDETH_VERSION);
  2352. strcpy(info->bus_info, pci_name(np->pci_dev));
  2353. }
  2354. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2355. {
  2356. struct fe_priv *np = netdev_priv(dev);
  2357. wolinfo->supported = WAKE_MAGIC;
  2358. spin_lock_irq(&np->lock);
  2359. if (np->wolenabled)
  2360. wolinfo->wolopts = WAKE_MAGIC;
  2361. spin_unlock_irq(&np->lock);
  2362. }
  2363. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2364. {
  2365. struct fe_priv *np = netdev_priv(dev);
  2366. u8 __iomem *base = get_hwbase(dev);
  2367. u32 flags = 0;
  2368. if (wolinfo->wolopts == 0) {
  2369. np->wolenabled = 0;
  2370. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2371. np->wolenabled = 1;
  2372. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2373. }
  2374. if (netif_running(dev)) {
  2375. spin_lock_irq(&np->lock);
  2376. writel(flags, base + NvRegWakeUpFlags);
  2377. spin_unlock_irq(&np->lock);
  2378. }
  2379. return 0;
  2380. }
  2381. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2382. {
  2383. struct fe_priv *np = netdev_priv(dev);
  2384. int adv;
  2385. spin_lock_irq(&np->lock);
  2386. ecmd->port = PORT_MII;
  2387. if (!netif_running(dev)) {
  2388. /* We do not track link speed / duplex setting if the
  2389. * interface is disabled. Force a link check */
  2390. if (nv_update_linkspeed(dev)) {
  2391. if (!netif_carrier_ok(dev))
  2392. netif_carrier_on(dev);
  2393. } else {
  2394. if (netif_carrier_ok(dev))
  2395. netif_carrier_off(dev);
  2396. }
  2397. }
  2398. if (netif_carrier_ok(dev)) {
  2399. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2400. case NVREG_LINKSPEED_10:
  2401. ecmd->speed = SPEED_10;
  2402. break;
  2403. case NVREG_LINKSPEED_100:
  2404. ecmd->speed = SPEED_100;
  2405. break;
  2406. case NVREG_LINKSPEED_1000:
  2407. ecmd->speed = SPEED_1000;
  2408. break;
  2409. }
  2410. ecmd->duplex = DUPLEX_HALF;
  2411. if (np->duplex)
  2412. ecmd->duplex = DUPLEX_FULL;
  2413. } else {
  2414. ecmd->speed = -1;
  2415. ecmd->duplex = -1;
  2416. }
  2417. ecmd->autoneg = np->autoneg;
  2418. ecmd->advertising = ADVERTISED_MII;
  2419. if (np->autoneg) {
  2420. ecmd->advertising |= ADVERTISED_Autoneg;
  2421. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2422. if (adv & ADVERTISE_10HALF)
  2423. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2424. if (adv & ADVERTISE_10FULL)
  2425. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2426. if (adv & ADVERTISE_100HALF)
  2427. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2428. if (adv & ADVERTISE_100FULL)
  2429. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2430. if (np->gigabit == PHY_GIGABIT) {
  2431. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2432. if (adv & ADVERTISE_1000FULL)
  2433. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2434. }
  2435. }
  2436. ecmd->supported = (SUPPORTED_Autoneg |
  2437. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2438. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2439. SUPPORTED_MII);
  2440. if (np->gigabit == PHY_GIGABIT)
  2441. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2442. ecmd->phy_address = np->phyaddr;
  2443. ecmd->transceiver = XCVR_EXTERNAL;
  2444. /* ignore maxtxpkt, maxrxpkt for now */
  2445. spin_unlock_irq(&np->lock);
  2446. return 0;
  2447. }
  2448. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2449. {
  2450. struct fe_priv *np = netdev_priv(dev);
  2451. if (ecmd->port != PORT_MII)
  2452. return -EINVAL;
  2453. if (ecmd->transceiver != XCVR_EXTERNAL)
  2454. return -EINVAL;
  2455. if (ecmd->phy_address != np->phyaddr) {
  2456. /* TODO: support switching between multiple phys. Should be
  2457. * trivial, but not enabled due to lack of test hardware. */
  2458. return -EINVAL;
  2459. }
  2460. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2461. u32 mask;
  2462. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2463. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2464. if (np->gigabit == PHY_GIGABIT)
  2465. mask |= ADVERTISED_1000baseT_Full;
  2466. if ((ecmd->advertising & mask) == 0)
  2467. return -EINVAL;
  2468. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2469. /* Note: autonegotiation disable, speed 1000 intentionally
  2470. * forbidden - noone should need that. */
  2471. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2472. return -EINVAL;
  2473. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2474. return -EINVAL;
  2475. } else {
  2476. return -EINVAL;
  2477. }
  2478. netif_carrier_off(dev);
  2479. if (netif_running(dev)) {
  2480. nv_disable_irq(dev);
  2481. spin_lock_bh(&dev->xmit_lock);
  2482. spin_lock(&np->lock);
  2483. /* stop engines */
  2484. nv_stop_rx(dev);
  2485. nv_stop_tx(dev);
  2486. spin_unlock(&np->lock);
  2487. spin_unlock_bh(&dev->xmit_lock);
  2488. }
  2489. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2490. int adv, bmcr;
  2491. np->autoneg = 1;
  2492. /* advertise only what has been requested */
  2493. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2494. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2495. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2496. adv |= ADVERTISE_10HALF;
  2497. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2498. adv |= ADVERTISE_10FULL;
  2499. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2500. adv |= ADVERTISE_100HALF;
  2501. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2502. adv |= ADVERTISE_100FULL;
  2503. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2504. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2505. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2506. adv |= ADVERTISE_PAUSE_ASYM;
  2507. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2508. if (np->gigabit == PHY_GIGABIT) {
  2509. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2510. adv &= ~ADVERTISE_1000FULL;
  2511. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2512. adv |= ADVERTISE_1000FULL;
  2513. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2514. }
  2515. if (netif_running(dev))
  2516. printk(KERN_INFO "%s: link down.\n", dev->name);
  2517. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2518. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2519. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2520. } else {
  2521. int adv, bmcr;
  2522. np->autoneg = 0;
  2523. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2524. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2525. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2526. adv |= ADVERTISE_10HALF;
  2527. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2528. adv |= ADVERTISE_10FULL;
  2529. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2530. adv |= ADVERTISE_100HALF;
  2531. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2532. adv |= ADVERTISE_100FULL;
  2533. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2534. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2535. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2536. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2537. }
  2538. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2539. adv |= ADVERTISE_PAUSE_ASYM;
  2540. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2541. }
  2542. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2543. np->fixed_mode = adv;
  2544. if (np->gigabit == PHY_GIGABIT) {
  2545. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2546. adv &= ~ADVERTISE_1000FULL;
  2547. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2548. }
  2549. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2550. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2551. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2552. bmcr |= BMCR_FULLDPLX;
  2553. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2554. bmcr |= BMCR_SPEED100;
  2555. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2556. if (np->phy_oui == PHY_OUI_MARVELL) {
  2557. /* reset the phy */
  2558. if (phy_reset(dev)) {
  2559. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2560. return -EINVAL;
  2561. }
  2562. } else if (netif_running(dev)) {
  2563. /* Wait a bit and then reconfigure the nic. */
  2564. udelay(10);
  2565. nv_linkchange(dev);
  2566. }
  2567. }
  2568. if (netif_running(dev)) {
  2569. nv_start_rx(dev);
  2570. nv_start_tx(dev);
  2571. nv_enable_irq(dev);
  2572. }
  2573. return 0;
  2574. }
  2575. #define FORCEDETH_REGS_VER 1
  2576. static int nv_get_regs_len(struct net_device *dev)
  2577. {
  2578. struct fe_priv *np = netdev_priv(dev);
  2579. return np->register_size;
  2580. }
  2581. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2582. {
  2583. struct fe_priv *np = netdev_priv(dev);
  2584. u8 __iomem *base = get_hwbase(dev);
  2585. u32 *rbuf = buf;
  2586. int i;
  2587. regs->version = FORCEDETH_REGS_VER;
  2588. spin_lock_irq(&np->lock);
  2589. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2590. rbuf[i] = readl(base + i*sizeof(u32));
  2591. spin_unlock_irq(&np->lock);
  2592. }
  2593. static int nv_nway_reset(struct net_device *dev)
  2594. {
  2595. struct fe_priv *np = netdev_priv(dev);
  2596. int ret;
  2597. if (np->autoneg) {
  2598. int bmcr;
  2599. netif_carrier_off(dev);
  2600. if (netif_running(dev)) {
  2601. nv_disable_irq(dev);
  2602. spin_lock_bh(&dev->xmit_lock);
  2603. spin_lock(&np->lock);
  2604. /* stop engines */
  2605. nv_stop_rx(dev);
  2606. nv_stop_tx(dev);
  2607. spin_unlock(&np->lock);
  2608. spin_unlock_bh(&dev->xmit_lock);
  2609. printk(KERN_INFO "%s: link down.\n", dev->name);
  2610. }
  2611. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2612. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2613. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2614. if (netif_running(dev)) {
  2615. nv_start_rx(dev);
  2616. nv_start_tx(dev);
  2617. nv_enable_irq(dev);
  2618. }
  2619. ret = 0;
  2620. } else {
  2621. ret = -EINVAL;
  2622. }
  2623. return ret;
  2624. }
  2625. static int nv_set_tso(struct net_device *dev, u32 value)
  2626. {
  2627. struct fe_priv *np = netdev_priv(dev);
  2628. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2629. return ethtool_op_set_tso(dev, value);
  2630. else
  2631. return -EOPNOTSUPP;
  2632. }
  2633. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2634. {
  2635. struct fe_priv *np = netdev_priv(dev);
  2636. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2637. ring->rx_mini_max_pending = 0;
  2638. ring->rx_jumbo_max_pending = 0;
  2639. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2640. ring->rx_pending = np->rx_ring_size;
  2641. ring->rx_mini_pending = 0;
  2642. ring->rx_jumbo_pending = 0;
  2643. ring->tx_pending = np->tx_ring_size;
  2644. }
  2645. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2646. {
  2647. struct fe_priv *np = netdev_priv(dev);
  2648. u8 __iomem *base = get_hwbase(dev);
  2649. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  2650. dma_addr_t ring_addr;
  2651. if (ring->rx_pending < RX_RING_MIN ||
  2652. ring->tx_pending < TX_RING_MIN ||
  2653. ring->rx_mini_pending != 0 ||
  2654. ring->rx_jumbo_pending != 0 ||
  2655. (np->desc_ver == DESC_VER_1 &&
  2656. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  2657. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  2658. (np->desc_ver != DESC_VER_1 &&
  2659. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  2660. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  2661. return -EINVAL;
  2662. }
  2663. /* allocate new rings */
  2664. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2665. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2666. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2667. &ring_addr);
  2668. } else {
  2669. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2670. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2671. &ring_addr);
  2672. }
  2673. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  2674. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  2675. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  2676. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  2677. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  2678. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  2679. /* fall back to old rings */
  2680. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2681. if(rxtx_ring)
  2682. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2683. rxtx_ring, ring_addr);
  2684. } else {
  2685. if (rxtx_ring)
  2686. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2687. rxtx_ring, ring_addr);
  2688. }
  2689. if (rx_skbuff)
  2690. kfree(rx_skbuff);
  2691. if (rx_dma)
  2692. kfree(rx_dma);
  2693. if (tx_skbuff)
  2694. kfree(tx_skbuff);
  2695. if (tx_dma)
  2696. kfree(tx_dma);
  2697. if (tx_dma_len)
  2698. kfree(tx_dma_len);
  2699. goto exit;
  2700. }
  2701. if (netif_running(dev)) {
  2702. nv_disable_irq(dev);
  2703. spin_lock_bh(&dev->xmit_lock);
  2704. spin_lock(&np->lock);
  2705. /* stop engines */
  2706. nv_stop_rx(dev);
  2707. nv_stop_tx(dev);
  2708. nv_txrx_reset(dev);
  2709. /* drain queues */
  2710. nv_drain_rx(dev);
  2711. nv_drain_tx(dev);
  2712. /* delete queues */
  2713. free_rings(dev);
  2714. }
  2715. /* set new values */
  2716. np->rx_ring_size = ring->rx_pending;
  2717. np->tx_ring_size = ring->tx_pending;
  2718. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  2719. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  2720. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2721. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  2722. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  2723. } else {
  2724. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  2725. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  2726. }
  2727. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  2728. np->rx_dma = (dma_addr_t*)rx_dma;
  2729. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  2730. np->tx_dma = (dma_addr_t*)tx_dma;
  2731. np->tx_dma_len = (unsigned int*)tx_dma_len;
  2732. np->ring_addr = ring_addr;
  2733. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  2734. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  2735. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  2736. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  2737. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  2738. if (netif_running(dev)) {
  2739. /* reinit driver view of the queues */
  2740. set_bufsize(dev);
  2741. if (nv_init_ring(dev)) {
  2742. if (!np->in_shutdown)
  2743. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2744. }
  2745. /* reinit nic view of the queues */
  2746. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2747. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2748. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2749. base + NvRegRingSizes);
  2750. pci_push(base);
  2751. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2752. pci_push(base);
  2753. /* restart engines */
  2754. nv_start_rx(dev);
  2755. nv_start_tx(dev);
  2756. spin_unlock(&np->lock);
  2757. spin_unlock_bh(&dev->xmit_lock);
  2758. nv_enable_irq(dev);
  2759. }
  2760. return 0;
  2761. exit:
  2762. return -ENOMEM;
  2763. }
  2764. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  2765. {
  2766. struct fe_priv *np = netdev_priv(dev);
  2767. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  2768. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  2769. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  2770. }
  2771. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  2772. {
  2773. struct fe_priv *np = netdev_priv(dev);
  2774. int adv, bmcr;
  2775. if ((!np->autoneg && np->duplex == 0) ||
  2776. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  2777. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  2778. dev->name);
  2779. return -EINVAL;
  2780. }
  2781. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  2782. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  2783. return -EINVAL;
  2784. }
  2785. netif_carrier_off(dev);
  2786. if (netif_running(dev)) {
  2787. nv_disable_irq(dev);
  2788. spin_lock_bh(&dev->xmit_lock);
  2789. spin_lock(&np->lock);
  2790. /* stop engines */
  2791. nv_stop_rx(dev);
  2792. nv_stop_tx(dev);
  2793. spin_unlock(&np->lock);
  2794. spin_unlock_bh(&dev->xmit_lock);
  2795. }
  2796. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  2797. if (pause->rx_pause)
  2798. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  2799. if (pause->tx_pause)
  2800. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  2801. if (np->autoneg && pause->autoneg) {
  2802. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  2803. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2804. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2805. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2806. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2807. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2808. adv |= ADVERTISE_PAUSE_ASYM;
  2809. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2810. if (netif_running(dev))
  2811. printk(KERN_INFO "%s: link down.\n", dev->name);
  2812. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2813. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2814. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2815. } else {
  2816. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2817. if (pause->rx_pause)
  2818. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2819. if (pause->tx_pause)
  2820. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2821. if (!netif_running(dev))
  2822. nv_update_linkspeed(dev);
  2823. else
  2824. nv_update_pause(dev, np->pause_flags);
  2825. }
  2826. if (netif_running(dev)) {
  2827. nv_start_rx(dev);
  2828. nv_start_tx(dev);
  2829. nv_enable_irq(dev);
  2830. }
  2831. return 0;
  2832. }
  2833. static u32 nv_get_rx_csum(struct net_device *dev)
  2834. {
  2835. struct fe_priv *np = netdev_priv(dev);
  2836. return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
  2837. }
  2838. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  2839. {
  2840. struct fe_priv *np = netdev_priv(dev);
  2841. u8 __iomem *base = get_hwbase(dev);
  2842. int retcode = 0;
  2843. if (np->driver_data & DEV_HAS_CHECKSUM) {
  2844. if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
  2845. (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
  2846. /* already set or unset */
  2847. return 0;
  2848. }
  2849. if (data) {
  2850. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2851. } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
  2852. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  2853. } else {
  2854. printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
  2855. return -EINVAL;
  2856. }
  2857. if (netif_running(dev)) {
  2858. spin_lock_irq(&np->lock);
  2859. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2860. spin_unlock_irq(&np->lock);
  2861. }
  2862. } else {
  2863. return -EINVAL;
  2864. }
  2865. return retcode;
  2866. }
  2867. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  2868. {
  2869. struct fe_priv *np = netdev_priv(dev);
  2870. if (np->driver_data & DEV_HAS_CHECKSUM)
  2871. return ethtool_op_set_tx_hw_csum(dev, data);
  2872. else
  2873. return -EOPNOTSUPP;
  2874. }
  2875. static int nv_set_sg(struct net_device *dev, u32 data)
  2876. {
  2877. struct fe_priv *np = netdev_priv(dev);
  2878. if (np->driver_data & DEV_HAS_CHECKSUM)
  2879. return ethtool_op_set_sg(dev, data);
  2880. else
  2881. return -EOPNOTSUPP;
  2882. }
  2883. static int nv_get_stats_count(struct net_device *dev)
  2884. {
  2885. struct fe_priv *np = netdev_priv(dev);
  2886. if (np->driver_data & DEV_HAS_STATISTICS)
  2887. return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
  2888. else
  2889. return 0;
  2890. }
  2891. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  2892. {
  2893. struct fe_priv *np = netdev_priv(dev);
  2894. /* update stats */
  2895. nv_do_stats_poll((unsigned long)dev);
  2896. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  2897. }
  2898. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  2899. {
  2900. switch (stringset) {
  2901. case ETH_SS_STATS:
  2902. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  2903. break;
  2904. }
  2905. }
  2906. static struct ethtool_ops ops = {
  2907. .get_drvinfo = nv_get_drvinfo,
  2908. .get_link = ethtool_op_get_link,
  2909. .get_wol = nv_get_wol,
  2910. .set_wol = nv_set_wol,
  2911. .get_settings = nv_get_settings,
  2912. .set_settings = nv_set_settings,
  2913. .get_regs_len = nv_get_regs_len,
  2914. .get_regs = nv_get_regs,
  2915. .nway_reset = nv_nway_reset,
  2916. .get_perm_addr = ethtool_op_get_perm_addr,
  2917. .get_tso = ethtool_op_get_tso,
  2918. .set_tso = nv_set_tso,
  2919. .get_ringparam = nv_get_ringparam,
  2920. .set_ringparam = nv_set_ringparam,
  2921. .get_pauseparam = nv_get_pauseparam,
  2922. .set_pauseparam = nv_set_pauseparam,
  2923. .get_rx_csum = nv_get_rx_csum,
  2924. .set_rx_csum = nv_set_rx_csum,
  2925. .get_tx_csum = ethtool_op_get_tx_csum,
  2926. .set_tx_csum = nv_set_tx_csum,
  2927. .get_sg = ethtool_op_get_sg,
  2928. .set_sg = nv_set_sg,
  2929. .get_strings = nv_get_strings,
  2930. .get_stats_count = nv_get_stats_count,
  2931. .get_ethtool_stats = nv_get_ethtool_stats,
  2932. };
  2933. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2934. {
  2935. struct fe_priv *np = get_nvpriv(dev);
  2936. spin_lock_irq(&np->lock);
  2937. /* save vlan group */
  2938. np->vlangrp = grp;
  2939. if (grp) {
  2940. /* enable vlan on MAC */
  2941. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2942. } else {
  2943. /* disable vlan on MAC */
  2944. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2945. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2946. }
  2947. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2948. spin_unlock_irq(&np->lock);
  2949. };
  2950. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2951. {
  2952. /* nothing to do */
  2953. };
  2954. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2955. {
  2956. u8 __iomem *base = get_hwbase(dev);
  2957. int i;
  2958. u32 msixmap = 0;
  2959. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2960. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2961. * the remaining 8 interrupts.
  2962. */
  2963. for (i = 0; i < 8; i++) {
  2964. if ((irqmask >> i) & 0x1) {
  2965. msixmap |= vector << (i << 2);
  2966. }
  2967. }
  2968. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2969. msixmap = 0;
  2970. for (i = 0; i < 8; i++) {
  2971. if ((irqmask >> (i + 8)) & 0x1) {
  2972. msixmap |= vector << (i << 2);
  2973. }
  2974. }
  2975. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2976. }
  2977. static int nv_request_irq(struct net_device *dev)
  2978. {
  2979. struct fe_priv *np = get_nvpriv(dev);
  2980. u8 __iomem *base = get_hwbase(dev);
  2981. int ret = 1;
  2982. int i;
  2983. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2984. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2985. np->msi_x_entry[i].entry = i;
  2986. }
  2987. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2988. np->msi_flags |= NV_MSI_X_ENABLED;
  2989. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2990. /* Request irq for rx handling */
  2991. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2992. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2993. pci_disable_msix(np->pci_dev);
  2994. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2995. goto out_err;
  2996. }
  2997. /* Request irq for tx handling */
  2998. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2999. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3000. pci_disable_msix(np->pci_dev);
  3001. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3002. goto out_free_rx;
  3003. }
  3004. /* Request irq for link and timer handling */
  3005. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  3006. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3007. pci_disable_msix(np->pci_dev);
  3008. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3009. goto out_free_tx;
  3010. }
  3011. /* map interrupts to their respective vector */
  3012. writel(0, base + NvRegMSIXMap0);
  3013. writel(0, base + NvRegMSIXMap1);
  3014. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3015. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3016. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3017. } else {
  3018. /* Request irq for all interrupts */
  3019. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  3020. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3021. pci_disable_msix(np->pci_dev);
  3022. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3023. goto out_err;
  3024. }
  3025. /* map interrupts to vector 0 */
  3026. writel(0, base + NvRegMSIXMap0);
  3027. writel(0, base + NvRegMSIXMap1);
  3028. }
  3029. }
  3030. }
  3031. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3032. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3033. np->msi_flags |= NV_MSI_ENABLED;
  3034. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  3035. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3036. pci_disable_msi(np->pci_dev);
  3037. np->msi_flags &= ~NV_MSI_ENABLED;
  3038. goto out_err;
  3039. }
  3040. /* map interrupts to vector 0 */
  3041. writel(0, base + NvRegMSIMap0);
  3042. writel(0, base + NvRegMSIMap1);
  3043. /* enable msi vector 0 */
  3044. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3045. }
  3046. }
  3047. if (ret != 0) {
  3048. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  3049. goto out_err;
  3050. }
  3051. return 0;
  3052. out_free_tx:
  3053. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3054. out_free_rx:
  3055. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3056. out_err:
  3057. return 1;
  3058. }
  3059. static void nv_free_irq(struct net_device *dev)
  3060. {
  3061. struct fe_priv *np = get_nvpriv(dev);
  3062. int i;
  3063. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3064. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3065. free_irq(np->msi_x_entry[i].vector, dev);
  3066. }
  3067. pci_disable_msix(np->pci_dev);
  3068. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3069. } else {
  3070. free_irq(np->pci_dev->irq, dev);
  3071. if (np->msi_flags & NV_MSI_ENABLED) {
  3072. pci_disable_msi(np->pci_dev);
  3073. np->msi_flags &= ~NV_MSI_ENABLED;
  3074. }
  3075. }
  3076. }
  3077. static int nv_open(struct net_device *dev)
  3078. {
  3079. struct fe_priv *np = netdev_priv(dev);
  3080. u8 __iomem *base = get_hwbase(dev);
  3081. int ret = 1;
  3082. int oom, i;
  3083. dprintk(KERN_DEBUG "nv_open: begin\n");
  3084. /* 1) erase previous misconfiguration */
  3085. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3086. nv_mac_reset(dev);
  3087. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  3088. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3089. writel(0, base + NvRegMulticastAddrB);
  3090. writel(0, base + NvRegMulticastMaskA);
  3091. writel(0, base + NvRegMulticastMaskB);
  3092. writel(0, base + NvRegPacketFilterFlags);
  3093. writel(0, base + NvRegTransmitterControl);
  3094. writel(0, base + NvRegReceiverControl);
  3095. writel(0, base + NvRegAdapterControl);
  3096. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3097. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3098. /* 2) initialize descriptor rings */
  3099. set_bufsize(dev);
  3100. oom = nv_init_ring(dev);
  3101. writel(0, base + NvRegLinkSpeed);
  3102. writel(0, base + NvRegUnknownTransmitterReg);
  3103. nv_txrx_reset(dev);
  3104. writel(0, base + NvRegUnknownSetupReg6);
  3105. np->in_shutdown = 0;
  3106. /* 3) set mac address */
  3107. nv_copy_mac_to_hw(dev);
  3108. /* 4) give hw rings */
  3109. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3110. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3111. base + NvRegRingSizes);
  3112. /* 5) continue setup */
  3113. writel(np->linkspeed, base + NvRegLinkSpeed);
  3114. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  3115. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3116. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3117. pci_push(base);
  3118. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3119. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3120. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3121. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3122. writel(0, base + NvRegUnknownSetupReg4);
  3123. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3124. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3125. /* 6) continue setup */
  3126. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3127. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3128. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3129. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3130. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3131. get_random_bytes(&i, sizeof(i));
  3132. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3133. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  3134. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  3135. if (poll_interval == -1) {
  3136. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3137. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3138. else
  3139. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3140. }
  3141. else
  3142. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3143. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3144. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3145. base + NvRegAdapterControl);
  3146. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3147. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  3148. if (np->wolenabled)
  3149. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3150. i = readl(base + NvRegPowerState);
  3151. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3152. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3153. pci_push(base);
  3154. udelay(10);
  3155. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3156. nv_disable_hw_interrupts(dev, np->irqmask);
  3157. pci_push(base);
  3158. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3159. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3160. pci_push(base);
  3161. if (nv_request_irq(dev)) {
  3162. goto out_drain;
  3163. }
  3164. /* ask for interrupts */
  3165. nv_enable_hw_interrupts(dev, np->irqmask);
  3166. spin_lock_irq(&np->lock);
  3167. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3168. writel(0, base + NvRegMulticastAddrB);
  3169. writel(0, base + NvRegMulticastMaskA);
  3170. writel(0, base + NvRegMulticastMaskB);
  3171. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3172. /* One manual link speed update: Interrupts are enabled, future link
  3173. * speed changes cause interrupts and are handled by nv_link_irq().
  3174. */
  3175. {
  3176. u32 miistat;
  3177. miistat = readl(base + NvRegMIIStatus);
  3178. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3179. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3180. }
  3181. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3182. * to init hw */
  3183. np->linkspeed = 0;
  3184. ret = nv_update_linkspeed(dev);
  3185. nv_start_rx(dev);
  3186. nv_start_tx(dev);
  3187. netif_start_queue(dev);
  3188. if (ret) {
  3189. netif_carrier_on(dev);
  3190. } else {
  3191. printk("%s: no link during initialization.\n", dev->name);
  3192. netif_carrier_off(dev);
  3193. }
  3194. if (oom)
  3195. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3196. /* start statistics timer */
  3197. if (np->driver_data & DEV_HAS_STATISTICS)
  3198. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3199. spin_unlock_irq(&np->lock);
  3200. return 0;
  3201. out_drain:
  3202. drain_ring(dev);
  3203. return ret;
  3204. }
  3205. static int nv_close(struct net_device *dev)
  3206. {
  3207. struct fe_priv *np = netdev_priv(dev);
  3208. u8 __iomem *base;
  3209. spin_lock_irq(&np->lock);
  3210. np->in_shutdown = 1;
  3211. spin_unlock_irq(&np->lock);
  3212. synchronize_irq(dev->irq);
  3213. del_timer_sync(&np->oom_kick);
  3214. del_timer_sync(&np->nic_poll);
  3215. del_timer_sync(&np->stats_poll);
  3216. netif_stop_queue(dev);
  3217. spin_lock_irq(&np->lock);
  3218. nv_stop_tx(dev);
  3219. nv_stop_rx(dev);
  3220. nv_txrx_reset(dev);
  3221. /* disable interrupts on the nic or we will lock up */
  3222. base = get_hwbase(dev);
  3223. nv_disable_hw_interrupts(dev, np->irqmask);
  3224. pci_push(base);
  3225. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3226. spin_unlock_irq(&np->lock);
  3227. nv_free_irq(dev);
  3228. drain_ring(dev);
  3229. if (np->wolenabled)
  3230. nv_start_rx(dev);
  3231. /* special op: write back the misordered MAC address - otherwise
  3232. * the next nv_probe would see a wrong address.
  3233. */
  3234. writel(np->orig_mac[0], base + NvRegMacAddrA);
  3235. writel(np->orig_mac[1], base + NvRegMacAddrB);
  3236. /* FIXME: power down nic */
  3237. return 0;
  3238. }
  3239. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3240. {
  3241. struct net_device *dev;
  3242. struct fe_priv *np;
  3243. unsigned long addr;
  3244. u8 __iomem *base;
  3245. int err, i;
  3246. u32 powerstate;
  3247. dev = alloc_etherdev(sizeof(struct fe_priv));
  3248. err = -ENOMEM;
  3249. if (!dev)
  3250. goto out;
  3251. np = netdev_priv(dev);
  3252. np->pci_dev = pci_dev;
  3253. spin_lock_init(&np->lock);
  3254. SET_MODULE_OWNER(dev);
  3255. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3256. init_timer(&np->oom_kick);
  3257. np->oom_kick.data = (unsigned long) dev;
  3258. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3259. init_timer(&np->nic_poll);
  3260. np->nic_poll.data = (unsigned long) dev;
  3261. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3262. init_timer(&np->stats_poll);
  3263. np->stats_poll.data = (unsigned long) dev;
  3264. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3265. err = pci_enable_device(pci_dev);
  3266. if (err) {
  3267. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3268. err, pci_name(pci_dev));
  3269. goto out_free;
  3270. }
  3271. pci_set_master(pci_dev);
  3272. err = pci_request_regions(pci_dev, DRV_NAME);
  3273. if (err < 0)
  3274. goto out_disable;
  3275. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3276. np->register_size = NV_PCI_REGSZ_VER2;
  3277. else
  3278. np->register_size = NV_PCI_REGSZ_VER1;
  3279. err = -EINVAL;
  3280. addr = 0;
  3281. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3282. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3283. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3284. pci_resource_len(pci_dev, i),
  3285. pci_resource_flags(pci_dev, i));
  3286. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3287. pci_resource_len(pci_dev, i) >= np->register_size) {
  3288. addr = pci_resource_start(pci_dev, i);
  3289. break;
  3290. }
  3291. }
  3292. if (i == DEVICE_COUNT_RESOURCE) {
  3293. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3294. pci_name(pci_dev));
  3295. goto out_relreg;
  3296. }
  3297. /* copy of driver data */
  3298. np->driver_data = id->driver_data;
  3299. /* handle different descriptor versions */
  3300. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3301. /* packet format 3: supports 40-bit addressing */
  3302. np->desc_ver = DESC_VER_3;
  3303. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3304. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3305. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3306. pci_name(pci_dev));
  3307. } else {
  3308. dev->features |= NETIF_F_HIGHDMA;
  3309. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3310. }
  3311. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  3312. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  3313. pci_name(pci_dev));
  3314. }
  3315. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3316. /* packet format 2: supports jumbo frames */
  3317. np->desc_ver = DESC_VER_2;
  3318. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3319. } else {
  3320. /* original packet format */
  3321. np->desc_ver = DESC_VER_1;
  3322. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3323. }
  3324. np->pkt_limit = NV_PKTLIMIT_1;
  3325. if (id->driver_data & DEV_HAS_LARGEDESC)
  3326. np->pkt_limit = NV_PKTLIMIT_2;
  3327. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3328. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3329. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3330. #ifdef NETIF_F_TSO
  3331. dev->features |= NETIF_F_TSO;
  3332. #endif
  3333. }
  3334. np->vlanctl_bits = 0;
  3335. if (id->driver_data & DEV_HAS_VLAN) {
  3336. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3337. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3338. dev->vlan_rx_register = nv_vlan_rx_register;
  3339. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3340. }
  3341. np->msi_flags = 0;
  3342. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  3343. np->msi_flags |= NV_MSI_CAPABLE;
  3344. }
  3345. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  3346. np->msi_flags |= NV_MSI_X_CAPABLE;
  3347. }
  3348. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3349. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3350. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3351. }
  3352. err = -ENOMEM;
  3353. np->base = ioremap(addr, np->register_size);
  3354. if (!np->base)
  3355. goto out_relreg;
  3356. dev->base_addr = (unsigned long)np->base;
  3357. dev->irq = pci_dev->irq;
  3358. np->rx_ring_size = RX_RING_DEFAULT;
  3359. np->tx_ring_size = TX_RING_DEFAULT;
  3360. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3361. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3362. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3363. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3364. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3365. &np->ring_addr);
  3366. if (!np->rx_ring.orig)
  3367. goto out_unmap;
  3368. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3369. } else {
  3370. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3371. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3372. &np->ring_addr);
  3373. if (!np->rx_ring.ex)
  3374. goto out_unmap;
  3375. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3376. }
  3377. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  3378. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  3379. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  3380. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  3381. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  3382. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  3383. goto out_freering;
  3384. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3385. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3386. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3387. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3388. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3389. dev->open = nv_open;
  3390. dev->stop = nv_close;
  3391. dev->hard_start_xmit = nv_start_xmit;
  3392. dev->get_stats = nv_get_stats;
  3393. dev->change_mtu = nv_change_mtu;
  3394. dev->set_mac_address = nv_set_mac_address;
  3395. dev->set_multicast_list = nv_set_multicast;
  3396. #ifdef CONFIG_NET_POLL_CONTROLLER
  3397. dev->poll_controller = nv_poll_controller;
  3398. #endif
  3399. SET_ETHTOOL_OPS(dev, &ops);
  3400. dev->tx_timeout = nv_tx_timeout;
  3401. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  3402. pci_set_drvdata(pci_dev, dev);
  3403. /* read the mac address */
  3404. base = get_hwbase(dev);
  3405. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  3406. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  3407. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  3408. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  3409. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  3410. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  3411. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  3412. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  3413. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3414. if (!is_valid_ether_addr(dev->perm_addr)) {
  3415. /*
  3416. * Bad mac address. At least one bios sets the mac address
  3417. * to 01:23:45:67:89:ab
  3418. */
  3419. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  3420. pci_name(pci_dev),
  3421. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3422. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3423. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  3424. dev->dev_addr[0] = 0x00;
  3425. dev->dev_addr[1] = 0x00;
  3426. dev->dev_addr[2] = 0x6c;
  3427. get_random_bytes(&dev->dev_addr[3], 3);
  3428. }
  3429. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  3430. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3431. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3432. /* disable WOL */
  3433. writel(0, base + NvRegWakeUpFlags);
  3434. np->wolenabled = 0;
  3435. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  3436. u8 revision_id;
  3437. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  3438. /* take phy and nic out of low power mode */
  3439. powerstate = readl(base + NvRegPowerState2);
  3440. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  3441. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  3442. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  3443. revision_id >= 0xA3)
  3444. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  3445. writel(powerstate, base + NvRegPowerState2);
  3446. }
  3447. if (np->desc_ver == DESC_VER_1) {
  3448. np->tx_flags = NV_TX_VALID;
  3449. } else {
  3450. np->tx_flags = NV_TX2_VALID;
  3451. }
  3452. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  3453. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3454. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3455. np->msi_flags |= 0x0003;
  3456. } else {
  3457. np->irqmask = NVREG_IRQMASK_CPU;
  3458. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3459. np->msi_flags |= 0x0001;
  3460. }
  3461. if (id->driver_data & DEV_NEED_TIMERIRQ)
  3462. np->irqmask |= NVREG_IRQ_TIMER;
  3463. if (id->driver_data & DEV_NEED_LINKTIMER) {
  3464. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  3465. np->need_linktimer = 1;
  3466. np->link_timeout = jiffies + LINK_TIMEOUT;
  3467. } else {
  3468. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  3469. np->need_linktimer = 0;
  3470. }
  3471. /* find a suitable phy */
  3472. for (i = 1; i <= 32; i++) {
  3473. int id1, id2;
  3474. int phyaddr = i & 0x1F;
  3475. spin_lock_irq(&np->lock);
  3476. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  3477. spin_unlock_irq(&np->lock);
  3478. if (id1 < 0 || id1 == 0xffff)
  3479. continue;
  3480. spin_lock_irq(&np->lock);
  3481. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  3482. spin_unlock_irq(&np->lock);
  3483. if (id2 < 0 || id2 == 0xffff)
  3484. continue;
  3485. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  3486. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  3487. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  3488. pci_name(pci_dev), id1, id2, phyaddr);
  3489. np->phyaddr = phyaddr;
  3490. np->phy_oui = id1 | id2;
  3491. break;
  3492. }
  3493. if (i == 33) {
  3494. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  3495. pci_name(pci_dev));
  3496. goto out_error;
  3497. }
  3498. /* reset it */
  3499. phy_init(dev);
  3500. /* set default link speed settings */
  3501. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3502. np->duplex = 0;
  3503. np->autoneg = 1;
  3504. err = register_netdev(dev);
  3505. if (err) {
  3506. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  3507. goto out_error;
  3508. }
  3509. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  3510. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  3511. pci_name(pci_dev));
  3512. return 0;
  3513. out_error:
  3514. pci_set_drvdata(pci_dev, NULL);
  3515. out_freering:
  3516. free_rings(dev);
  3517. out_unmap:
  3518. iounmap(get_hwbase(dev));
  3519. out_relreg:
  3520. pci_release_regions(pci_dev);
  3521. out_disable:
  3522. pci_disable_device(pci_dev);
  3523. out_free:
  3524. free_netdev(dev);
  3525. out:
  3526. return err;
  3527. }
  3528. static void __devexit nv_remove(struct pci_dev *pci_dev)
  3529. {
  3530. struct net_device *dev = pci_get_drvdata(pci_dev);
  3531. unregister_netdev(dev);
  3532. /* free all structures */
  3533. free_rings(dev);
  3534. iounmap(get_hwbase(dev));
  3535. pci_release_regions(pci_dev);
  3536. pci_disable_device(pci_dev);
  3537. free_netdev(dev);
  3538. pci_set_drvdata(pci_dev, NULL);
  3539. }
  3540. static struct pci_device_id pci_tbl[] = {
  3541. { /* nForce Ethernet Controller */
  3542. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  3543. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3544. },
  3545. { /* nForce2 Ethernet Controller */
  3546. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  3547. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3548. },
  3549. { /* nForce3 Ethernet Controller */
  3550. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  3551. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3552. },
  3553. { /* nForce3 Ethernet Controller */
  3554. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  3555. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3556. },
  3557. { /* nForce3 Ethernet Controller */
  3558. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  3559. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3560. },
  3561. { /* nForce3 Ethernet Controller */
  3562. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  3563. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3564. },
  3565. { /* nForce3 Ethernet Controller */
  3566. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  3567. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3568. },
  3569. { /* CK804 Ethernet Controller */
  3570. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  3571. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3572. },
  3573. { /* CK804 Ethernet Controller */
  3574. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  3575. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3576. },
  3577. { /* MCP04 Ethernet Controller */
  3578. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  3579. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3580. },
  3581. { /* MCP04 Ethernet Controller */
  3582. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  3583. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3584. },
  3585. { /* MCP51 Ethernet Controller */
  3586. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  3587. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  3588. },
  3589. { /* MCP51 Ethernet Controller */
  3590. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  3591. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  3592. },
  3593. { /* MCP55 Ethernet Controller */
  3594. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  3595. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS,
  3596. },
  3597. { /* MCP55 Ethernet Controller */
  3598. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  3599. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS,
  3600. },
  3601. {0,},
  3602. };
  3603. static struct pci_driver driver = {
  3604. .name = "forcedeth",
  3605. .id_table = pci_tbl,
  3606. .probe = nv_probe,
  3607. .remove = __devexit_p(nv_remove),
  3608. };
  3609. static int __init init_nic(void)
  3610. {
  3611. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  3612. return pci_module_init(&driver);
  3613. }
  3614. static void __exit exit_nic(void)
  3615. {
  3616. pci_unregister_driver(&driver);
  3617. }
  3618. module_param(max_interrupt_work, int, 0);
  3619. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  3620. module_param(optimization_mode, int, 0);
  3621. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  3622. module_param(poll_interval, int, 0);
  3623. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  3624. module_param(disable_msi, int, 0);
  3625. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  3626. module_param(disable_msix, int, 0);
  3627. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  3628. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  3629. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  3630. MODULE_LICENSE("GPL");
  3631. MODULE_DEVICE_TABLE(pci, pci_tbl);
  3632. module_init(init_nic);
  3633. module_exit(exit_nic);