forcedeth.c 174 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.61"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. #define TX_WORK_PER_LOOP 64
  159. #define RX_WORK_PER_LOOP 64
  160. /*
  161. * Hardware access:
  162. */
  163. #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
  164. #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
  165. #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
  166. #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
  167. #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
  168. #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
  169. #define DEV_HAS_MSI 0x00040 /* device supports MSI */
  170. #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
  171. #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
  172. #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
  173. #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
  174. #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
  175. #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
  176. #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
  177. #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
  178. #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
  179. #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
  180. #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
  181. enum {
  182. NvRegIrqStatus = 0x000,
  183. #define NVREG_IRQSTAT_MIIEVENT 0x040
  184. #define NVREG_IRQSTAT_MASK 0x81ff
  185. NvRegIrqMask = 0x004,
  186. #define NVREG_IRQ_RX_ERROR 0x0001
  187. #define NVREG_IRQ_RX 0x0002
  188. #define NVREG_IRQ_RX_NOBUF 0x0004
  189. #define NVREG_IRQ_TX_ERR 0x0008
  190. #define NVREG_IRQ_TX_OK 0x0010
  191. #define NVREG_IRQ_TIMER 0x0020
  192. #define NVREG_IRQ_LINK 0x0040
  193. #define NVREG_IRQ_RX_FORCED 0x0080
  194. #define NVREG_IRQ_TX_FORCED 0x0100
  195. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  196. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  197. #define NVREG_IRQMASK_CPU 0x0060
  198. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  199. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  200. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  201. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  202. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  203. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  204. NvRegUnknownSetupReg6 = 0x008,
  205. #define NVREG_UNKSETUP6_VAL 3
  206. /*
  207. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  208. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  209. */
  210. NvRegPollingInterval = 0x00c,
  211. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  212. #define NVREG_POLL_DEFAULT_CPU 13
  213. NvRegMSIMap0 = 0x020,
  214. NvRegMSIMap1 = 0x024,
  215. NvRegMSIIrqMask = 0x030,
  216. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  217. NvRegMisc1 = 0x080,
  218. #define NVREG_MISC1_PAUSE_TX 0x01
  219. #define NVREG_MISC1_HD 0x02
  220. #define NVREG_MISC1_FORCE 0x3b0f3c
  221. NvRegMacReset = 0x34,
  222. #define NVREG_MAC_RESET_ASSERT 0x0F3
  223. NvRegTransmitterControl = 0x084,
  224. #define NVREG_XMITCTL_START 0x01
  225. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  226. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  227. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  228. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  229. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  230. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  231. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  232. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  233. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  234. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  235. NvRegTransmitterStatus = 0x088,
  236. #define NVREG_XMITSTAT_BUSY 0x01
  237. NvRegPacketFilterFlags = 0x8c,
  238. #define NVREG_PFF_PAUSE_RX 0x08
  239. #define NVREG_PFF_ALWAYS 0x7F0000
  240. #define NVREG_PFF_PROMISC 0x80
  241. #define NVREG_PFF_MYADDR 0x20
  242. #define NVREG_PFF_LOOPBACK 0x10
  243. NvRegOffloadConfig = 0x90,
  244. #define NVREG_OFFLOAD_HOMEPHY 0x601
  245. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  246. NvRegReceiverControl = 0x094,
  247. #define NVREG_RCVCTL_START 0x01
  248. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  249. NvRegReceiverStatus = 0x98,
  250. #define NVREG_RCVSTAT_BUSY 0x01
  251. NvRegRandomSeed = 0x9c,
  252. #define NVREG_RNDSEED_MASK 0x00ff
  253. #define NVREG_RNDSEED_FORCE 0x7f00
  254. #define NVREG_RNDSEED_FORCE2 0x2d00
  255. #define NVREG_RNDSEED_FORCE3 0x7400
  256. NvRegTxDeferral = 0xA0,
  257. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  258. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  259. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  260. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  261. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  262. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  263. NvRegRxDeferral = 0xA4,
  264. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  265. NvRegMacAddrA = 0xA8,
  266. NvRegMacAddrB = 0xAC,
  267. NvRegMulticastAddrA = 0xB0,
  268. #define NVREG_MCASTADDRA_FORCE 0x01
  269. NvRegMulticastAddrB = 0xB4,
  270. NvRegMulticastMaskA = 0xB8,
  271. #define NVREG_MCASTMASKA_NONE 0xffffffff
  272. NvRegMulticastMaskB = 0xBC,
  273. #define NVREG_MCASTMASKB_NONE 0xffff
  274. NvRegPhyInterface = 0xC0,
  275. #define PHY_RGMII 0x10000000
  276. NvRegTxRingPhysAddr = 0x100,
  277. NvRegRxRingPhysAddr = 0x104,
  278. NvRegRingSizes = 0x108,
  279. #define NVREG_RINGSZ_TXSHIFT 0
  280. #define NVREG_RINGSZ_RXSHIFT 16
  281. NvRegTransmitPoll = 0x10c,
  282. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  283. NvRegLinkSpeed = 0x110,
  284. #define NVREG_LINKSPEED_FORCE 0x10000
  285. #define NVREG_LINKSPEED_10 1000
  286. #define NVREG_LINKSPEED_100 100
  287. #define NVREG_LINKSPEED_1000 50
  288. #define NVREG_LINKSPEED_MASK (0xFFF)
  289. NvRegUnknownSetupReg5 = 0x130,
  290. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  291. NvRegTxWatermark = 0x13c,
  292. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  293. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  294. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  295. NvRegTxRxControl = 0x144,
  296. #define NVREG_TXRXCTL_KICK 0x0001
  297. #define NVREG_TXRXCTL_BIT1 0x0002
  298. #define NVREG_TXRXCTL_BIT2 0x0004
  299. #define NVREG_TXRXCTL_IDLE 0x0008
  300. #define NVREG_TXRXCTL_RESET 0x0010
  301. #define NVREG_TXRXCTL_RXCHECK 0x0400
  302. #define NVREG_TXRXCTL_DESC_1 0
  303. #define NVREG_TXRXCTL_DESC_2 0x002100
  304. #define NVREG_TXRXCTL_DESC_3 0xc02200
  305. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  306. #define NVREG_TXRXCTL_VLANINS 0x00080
  307. NvRegTxRingPhysAddrHigh = 0x148,
  308. NvRegRxRingPhysAddrHigh = 0x14C,
  309. NvRegTxPauseFrame = 0x170,
  310. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  311. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  312. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  313. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  314. NvRegMIIStatus = 0x180,
  315. #define NVREG_MIISTAT_ERROR 0x0001
  316. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  317. #define NVREG_MIISTAT_MASK_RW 0x0007
  318. #define NVREG_MIISTAT_MASK_ALL 0x000f
  319. NvRegMIIMask = 0x184,
  320. #define NVREG_MII_LINKCHANGE 0x0008
  321. NvRegAdapterControl = 0x188,
  322. #define NVREG_ADAPTCTL_START 0x02
  323. #define NVREG_ADAPTCTL_LINKUP 0x04
  324. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  325. #define NVREG_ADAPTCTL_RUNNING 0x100000
  326. #define NVREG_ADAPTCTL_PHYSHIFT 24
  327. NvRegMIISpeed = 0x18c,
  328. #define NVREG_MIISPEED_BIT8 (1<<8)
  329. #define NVREG_MIIDELAY 5
  330. NvRegMIIControl = 0x190,
  331. #define NVREG_MIICTL_INUSE 0x08000
  332. #define NVREG_MIICTL_WRITE 0x00400
  333. #define NVREG_MIICTL_ADDRSHIFT 5
  334. NvRegMIIData = 0x194,
  335. NvRegWakeUpFlags = 0x200,
  336. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  337. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  338. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  339. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  340. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  341. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  342. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  343. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  344. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  345. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  346. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  347. NvRegPatternCRC = 0x204,
  348. NvRegPatternMask = 0x208,
  349. NvRegPowerCap = 0x268,
  350. #define NVREG_POWERCAP_D3SUPP (1<<30)
  351. #define NVREG_POWERCAP_D2SUPP (1<<26)
  352. #define NVREG_POWERCAP_D1SUPP (1<<25)
  353. NvRegPowerState = 0x26c,
  354. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  355. #define NVREG_POWERSTATE_VALID 0x0100
  356. #define NVREG_POWERSTATE_MASK 0x0003
  357. #define NVREG_POWERSTATE_D0 0x0000
  358. #define NVREG_POWERSTATE_D1 0x0001
  359. #define NVREG_POWERSTATE_D2 0x0002
  360. #define NVREG_POWERSTATE_D3 0x0003
  361. NvRegTxCnt = 0x280,
  362. NvRegTxZeroReXmt = 0x284,
  363. NvRegTxOneReXmt = 0x288,
  364. NvRegTxManyReXmt = 0x28c,
  365. NvRegTxLateCol = 0x290,
  366. NvRegTxUnderflow = 0x294,
  367. NvRegTxLossCarrier = 0x298,
  368. NvRegTxExcessDef = 0x29c,
  369. NvRegTxRetryErr = 0x2a0,
  370. NvRegRxFrameErr = 0x2a4,
  371. NvRegRxExtraByte = 0x2a8,
  372. NvRegRxLateCol = 0x2ac,
  373. NvRegRxRunt = 0x2b0,
  374. NvRegRxFrameTooLong = 0x2b4,
  375. NvRegRxOverflow = 0x2b8,
  376. NvRegRxFCSErr = 0x2bc,
  377. NvRegRxFrameAlignErr = 0x2c0,
  378. NvRegRxLenErr = 0x2c4,
  379. NvRegRxUnicast = 0x2c8,
  380. NvRegRxMulticast = 0x2cc,
  381. NvRegRxBroadcast = 0x2d0,
  382. NvRegTxDef = 0x2d4,
  383. NvRegTxFrame = 0x2d8,
  384. NvRegRxCnt = 0x2dc,
  385. NvRegTxPause = 0x2e0,
  386. NvRegRxPause = 0x2e4,
  387. NvRegRxDropFrame = 0x2e8,
  388. NvRegVlanControl = 0x300,
  389. #define NVREG_VLANCONTROL_ENABLE 0x2000
  390. NvRegMSIXMap0 = 0x3e0,
  391. NvRegMSIXMap1 = 0x3e4,
  392. NvRegMSIXIrqStatus = 0x3f0,
  393. NvRegPowerState2 = 0x600,
  394. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  395. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  396. };
  397. /* Big endian: should work, but is untested */
  398. struct ring_desc {
  399. __le32 buf;
  400. __le32 flaglen;
  401. };
  402. struct ring_desc_ex {
  403. __le32 bufhigh;
  404. __le32 buflow;
  405. __le32 txvlan;
  406. __le32 flaglen;
  407. };
  408. union ring_type {
  409. struct ring_desc* orig;
  410. struct ring_desc_ex* ex;
  411. };
  412. #define FLAG_MASK_V1 0xffff0000
  413. #define FLAG_MASK_V2 0xffffc000
  414. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  415. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  416. #define NV_TX_LASTPACKET (1<<16)
  417. #define NV_TX_RETRYERROR (1<<19)
  418. #define NV_TX_FORCED_INTERRUPT (1<<24)
  419. #define NV_TX_DEFERRED (1<<26)
  420. #define NV_TX_CARRIERLOST (1<<27)
  421. #define NV_TX_LATECOLLISION (1<<28)
  422. #define NV_TX_UNDERFLOW (1<<29)
  423. #define NV_TX_ERROR (1<<30)
  424. #define NV_TX_VALID (1<<31)
  425. #define NV_TX2_LASTPACKET (1<<29)
  426. #define NV_TX2_RETRYERROR (1<<18)
  427. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  428. #define NV_TX2_DEFERRED (1<<25)
  429. #define NV_TX2_CARRIERLOST (1<<26)
  430. #define NV_TX2_LATECOLLISION (1<<27)
  431. #define NV_TX2_UNDERFLOW (1<<28)
  432. /* error and valid are the same for both */
  433. #define NV_TX2_ERROR (1<<30)
  434. #define NV_TX2_VALID (1<<31)
  435. #define NV_TX2_TSO (1<<28)
  436. #define NV_TX2_TSO_SHIFT 14
  437. #define NV_TX2_TSO_MAX_SHIFT 14
  438. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  439. #define NV_TX2_CHECKSUM_L3 (1<<27)
  440. #define NV_TX2_CHECKSUM_L4 (1<<26)
  441. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  442. #define NV_RX_DESCRIPTORVALID (1<<16)
  443. #define NV_RX_MISSEDFRAME (1<<17)
  444. #define NV_RX_SUBSTRACT1 (1<<18)
  445. #define NV_RX_ERROR1 (1<<23)
  446. #define NV_RX_ERROR2 (1<<24)
  447. #define NV_RX_ERROR3 (1<<25)
  448. #define NV_RX_ERROR4 (1<<26)
  449. #define NV_RX_CRCERR (1<<27)
  450. #define NV_RX_OVERFLOW (1<<28)
  451. #define NV_RX_FRAMINGERR (1<<29)
  452. #define NV_RX_ERROR (1<<30)
  453. #define NV_RX_AVAIL (1<<31)
  454. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  455. #define NV_RX2_CHECKSUM_IP (0x10000000)
  456. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  457. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  458. #define NV_RX2_DESCRIPTORVALID (1<<29)
  459. #define NV_RX2_SUBSTRACT1 (1<<25)
  460. #define NV_RX2_ERROR1 (1<<18)
  461. #define NV_RX2_ERROR2 (1<<19)
  462. #define NV_RX2_ERROR3 (1<<20)
  463. #define NV_RX2_ERROR4 (1<<21)
  464. #define NV_RX2_CRCERR (1<<22)
  465. #define NV_RX2_OVERFLOW (1<<23)
  466. #define NV_RX2_FRAMINGERR (1<<24)
  467. /* error and avail are the same for both */
  468. #define NV_RX2_ERROR (1<<30)
  469. #define NV_RX2_AVAIL (1<<31)
  470. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  471. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  472. /* Miscelaneous hardware related defines: */
  473. #define NV_PCI_REGSZ_VER1 0x270
  474. #define NV_PCI_REGSZ_VER2 0x2d4
  475. #define NV_PCI_REGSZ_VER3 0x604
  476. /* various timeout delays: all in usec */
  477. #define NV_TXRX_RESET_DELAY 4
  478. #define NV_TXSTOP_DELAY1 10
  479. #define NV_TXSTOP_DELAY1MAX 500000
  480. #define NV_TXSTOP_DELAY2 100
  481. #define NV_RXSTOP_DELAY1 10
  482. #define NV_RXSTOP_DELAY1MAX 500000
  483. #define NV_RXSTOP_DELAY2 100
  484. #define NV_SETUP5_DELAY 5
  485. #define NV_SETUP5_DELAYMAX 50000
  486. #define NV_POWERUP_DELAY 5
  487. #define NV_POWERUP_DELAYMAX 5000
  488. #define NV_MIIBUSY_DELAY 50
  489. #define NV_MIIPHY_DELAY 10
  490. #define NV_MIIPHY_DELAYMAX 10000
  491. #define NV_MAC_RESET_DELAY 64
  492. #define NV_WAKEUPPATTERNS 5
  493. #define NV_WAKEUPMASKENTRIES 4
  494. /* General driver defaults */
  495. #define NV_WATCHDOG_TIMEO (5*HZ)
  496. #define RX_RING_DEFAULT 128
  497. #define TX_RING_DEFAULT 256
  498. #define RX_RING_MIN 128
  499. #define TX_RING_MIN 64
  500. #define RING_MAX_DESC_VER_1 1024
  501. #define RING_MAX_DESC_VER_2_3 16384
  502. /* rx/tx mac addr + type + vlan + align + slack*/
  503. #define NV_RX_HEADERS (64)
  504. /* even more slack. */
  505. #define NV_RX_ALLOC_PAD (64)
  506. /* maximum mtu size */
  507. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  508. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  509. #define OOM_REFILL (1+HZ/20)
  510. #define POLL_WAIT (1+HZ/100)
  511. #define LINK_TIMEOUT (3*HZ)
  512. #define STATS_INTERVAL (10*HZ)
  513. /*
  514. * desc_ver values:
  515. * The nic supports three different descriptor types:
  516. * - DESC_VER_1: Original
  517. * - DESC_VER_2: support for jumbo frames.
  518. * - DESC_VER_3: 64-bit format.
  519. */
  520. #define DESC_VER_1 1
  521. #define DESC_VER_2 2
  522. #define DESC_VER_3 3
  523. /* PHY defines */
  524. #define PHY_OUI_MARVELL 0x5043
  525. #define PHY_OUI_CICADA 0x03f1
  526. #define PHY_OUI_VITESSE 0x01c1
  527. #define PHY_OUI_REALTEK 0x0732
  528. #define PHYID1_OUI_MASK 0x03ff
  529. #define PHYID1_OUI_SHFT 6
  530. #define PHYID2_OUI_MASK 0xfc00
  531. #define PHYID2_OUI_SHFT 10
  532. #define PHYID2_MODEL_MASK 0x03f0
  533. #define PHY_MODEL_MARVELL_E3016 0x220
  534. #define PHY_MARVELL_E3016_INITMASK 0x0300
  535. #define PHY_CICADA_INIT1 0x0f000
  536. #define PHY_CICADA_INIT2 0x0e00
  537. #define PHY_CICADA_INIT3 0x01000
  538. #define PHY_CICADA_INIT4 0x0200
  539. #define PHY_CICADA_INIT5 0x0004
  540. #define PHY_CICADA_INIT6 0x02000
  541. #define PHY_VITESSE_INIT_REG1 0x1f
  542. #define PHY_VITESSE_INIT_REG2 0x10
  543. #define PHY_VITESSE_INIT_REG3 0x11
  544. #define PHY_VITESSE_INIT_REG4 0x12
  545. #define PHY_VITESSE_INIT_MSK1 0xc
  546. #define PHY_VITESSE_INIT_MSK2 0x0180
  547. #define PHY_VITESSE_INIT1 0x52b5
  548. #define PHY_VITESSE_INIT2 0xaf8a
  549. #define PHY_VITESSE_INIT3 0x8
  550. #define PHY_VITESSE_INIT4 0x8f8a
  551. #define PHY_VITESSE_INIT5 0xaf86
  552. #define PHY_VITESSE_INIT6 0x8f86
  553. #define PHY_VITESSE_INIT7 0xaf82
  554. #define PHY_VITESSE_INIT8 0x0100
  555. #define PHY_VITESSE_INIT9 0x8f82
  556. #define PHY_VITESSE_INIT10 0x0
  557. #define PHY_REALTEK_INIT_REG1 0x1f
  558. #define PHY_REALTEK_INIT_REG2 0x19
  559. #define PHY_REALTEK_INIT_REG3 0x13
  560. #define PHY_REALTEK_INIT1 0x0000
  561. #define PHY_REALTEK_INIT2 0x8e00
  562. #define PHY_REALTEK_INIT3 0x0001
  563. #define PHY_REALTEK_INIT4 0xad17
  564. #define PHY_GIGABIT 0x0100
  565. #define PHY_TIMEOUT 0x1
  566. #define PHY_ERROR 0x2
  567. #define PHY_100 0x1
  568. #define PHY_1000 0x2
  569. #define PHY_HALF 0x100
  570. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  571. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  572. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  573. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  574. #define NV_PAUSEFRAME_RX_REQ 0x0010
  575. #define NV_PAUSEFRAME_TX_REQ 0x0020
  576. #define NV_PAUSEFRAME_AUTONEG 0x0040
  577. /* MSI/MSI-X defines */
  578. #define NV_MSI_X_MAX_VECTORS 8
  579. #define NV_MSI_X_VECTORS_MASK 0x000f
  580. #define NV_MSI_CAPABLE 0x0010
  581. #define NV_MSI_X_CAPABLE 0x0020
  582. #define NV_MSI_ENABLED 0x0040
  583. #define NV_MSI_X_ENABLED 0x0080
  584. #define NV_MSI_X_VECTOR_ALL 0x0
  585. #define NV_MSI_X_VECTOR_RX 0x0
  586. #define NV_MSI_X_VECTOR_TX 0x1
  587. #define NV_MSI_X_VECTOR_OTHER 0x2
  588. #define NV_RESTART_TX 0x1
  589. #define NV_RESTART_RX 0x2
  590. /* statistics */
  591. struct nv_ethtool_str {
  592. char name[ETH_GSTRING_LEN];
  593. };
  594. static const struct nv_ethtool_str nv_estats_str[] = {
  595. { "tx_bytes" },
  596. { "tx_zero_rexmt" },
  597. { "tx_one_rexmt" },
  598. { "tx_many_rexmt" },
  599. { "tx_late_collision" },
  600. { "tx_fifo_errors" },
  601. { "tx_carrier_errors" },
  602. { "tx_excess_deferral" },
  603. { "tx_retry_error" },
  604. { "rx_frame_error" },
  605. { "rx_extra_byte" },
  606. { "rx_late_collision" },
  607. { "rx_runt" },
  608. { "rx_frame_too_long" },
  609. { "rx_over_errors" },
  610. { "rx_crc_errors" },
  611. { "rx_frame_align_error" },
  612. { "rx_length_error" },
  613. { "rx_unicast" },
  614. { "rx_multicast" },
  615. { "rx_broadcast" },
  616. { "rx_packets" },
  617. { "rx_errors_total" },
  618. { "tx_errors_total" },
  619. /* version 2 stats */
  620. { "tx_deferral" },
  621. { "tx_packets" },
  622. { "rx_bytes" },
  623. { "tx_pause" },
  624. { "rx_pause" },
  625. { "rx_drop_frame" }
  626. };
  627. struct nv_ethtool_stats {
  628. u64 tx_bytes;
  629. u64 tx_zero_rexmt;
  630. u64 tx_one_rexmt;
  631. u64 tx_many_rexmt;
  632. u64 tx_late_collision;
  633. u64 tx_fifo_errors;
  634. u64 tx_carrier_errors;
  635. u64 tx_excess_deferral;
  636. u64 tx_retry_error;
  637. u64 rx_frame_error;
  638. u64 rx_extra_byte;
  639. u64 rx_late_collision;
  640. u64 rx_runt;
  641. u64 rx_frame_too_long;
  642. u64 rx_over_errors;
  643. u64 rx_crc_errors;
  644. u64 rx_frame_align_error;
  645. u64 rx_length_error;
  646. u64 rx_unicast;
  647. u64 rx_multicast;
  648. u64 rx_broadcast;
  649. u64 rx_packets;
  650. u64 rx_errors_total;
  651. u64 tx_errors_total;
  652. /* version 2 stats */
  653. u64 tx_deferral;
  654. u64 tx_packets;
  655. u64 rx_bytes;
  656. u64 tx_pause;
  657. u64 rx_pause;
  658. u64 rx_drop_frame;
  659. };
  660. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  661. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  662. /* diagnostics */
  663. #define NV_TEST_COUNT_BASE 3
  664. #define NV_TEST_COUNT_EXTENDED 4
  665. static const struct nv_ethtool_str nv_etests_str[] = {
  666. { "link (online/offline)" },
  667. { "register (offline) " },
  668. { "interrupt (offline) " },
  669. { "loopback (offline) " }
  670. };
  671. struct register_test {
  672. __u32 reg;
  673. __u32 mask;
  674. };
  675. static const struct register_test nv_registers_test[] = {
  676. { NvRegUnknownSetupReg6, 0x01 },
  677. { NvRegMisc1, 0x03c },
  678. { NvRegOffloadConfig, 0x03ff },
  679. { NvRegMulticastAddrA, 0xffffffff },
  680. { NvRegTxWatermark, 0x0ff },
  681. { NvRegWakeUpFlags, 0x07777 },
  682. { 0,0 }
  683. };
  684. struct nv_skb_map {
  685. struct sk_buff *skb;
  686. dma_addr_t dma;
  687. unsigned int dma_len;
  688. };
  689. /*
  690. * SMP locking:
  691. * All hardware access under dev->priv->lock, except the performance
  692. * critical parts:
  693. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  694. * by the arch code for interrupts.
  695. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  696. * needs dev->priv->lock :-(
  697. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  698. */
  699. /* in dev: base, irq */
  700. struct fe_priv {
  701. spinlock_t lock;
  702. struct net_device *dev;
  703. struct napi_struct napi;
  704. /* General data:
  705. * Locking: spin_lock(&np->lock); */
  706. struct nv_ethtool_stats estats;
  707. int in_shutdown;
  708. u32 linkspeed;
  709. int duplex;
  710. int autoneg;
  711. int fixed_mode;
  712. int phyaddr;
  713. int wolenabled;
  714. unsigned int phy_oui;
  715. unsigned int phy_model;
  716. u16 gigabit;
  717. int intr_test;
  718. int recover_error;
  719. /* General data: RO fields */
  720. dma_addr_t ring_addr;
  721. struct pci_dev *pci_dev;
  722. u32 orig_mac[2];
  723. u32 irqmask;
  724. u32 desc_ver;
  725. u32 txrxctl_bits;
  726. u32 vlanctl_bits;
  727. u32 driver_data;
  728. u32 register_size;
  729. int rx_csum;
  730. u32 mac_in_use;
  731. void __iomem *base;
  732. /* rx specific fields.
  733. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  734. */
  735. union ring_type get_rx, put_rx, first_rx, last_rx;
  736. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  737. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  738. struct nv_skb_map *rx_skb;
  739. union ring_type rx_ring;
  740. unsigned int rx_buf_sz;
  741. unsigned int pkt_limit;
  742. struct timer_list oom_kick;
  743. struct timer_list nic_poll;
  744. struct timer_list stats_poll;
  745. u32 nic_poll_irq;
  746. int rx_ring_size;
  747. /* media detection workaround.
  748. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  749. */
  750. int need_linktimer;
  751. unsigned long link_timeout;
  752. /*
  753. * tx specific fields.
  754. */
  755. union ring_type get_tx, put_tx, first_tx, last_tx;
  756. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  757. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  758. struct nv_skb_map *tx_skb;
  759. union ring_type tx_ring;
  760. u32 tx_flags;
  761. int tx_ring_size;
  762. int tx_stop;
  763. /* vlan fields */
  764. struct vlan_group *vlangrp;
  765. /* msi/msi-x fields */
  766. u32 msi_flags;
  767. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  768. /* flow control */
  769. u32 pause_flags;
  770. };
  771. /*
  772. * Maximum number of loops until we assume that a bit in the irq mask
  773. * is stuck. Overridable with module param.
  774. */
  775. static int max_interrupt_work = 5;
  776. /*
  777. * Optimization can be either throuput mode or cpu mode
  778. *
  779. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  780. * CPU Mode: Interrupts are controlled by a timer.
  781. */
  782. enum {
  783. NV_OPTIMIZATION_MODE_THROUGHPUT,
  784. NV_OPTIMIZATION_MODE_CPU
  785. };
  786. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  787. /*
  788. * Poll interval for timer irq
  789. *
  790. * This interval determines how frequent an interrupt is generated.
  791. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  792. * Min = 0, and Max = 65535
  793. */
  794. static int poll_interval = -1;
  795. /*
  796. * MSI interrupts
  797. */
  798. enum {
  799. NV_MSI_INT_DISABLED,
  800. NV_MSI_INT_ENABLED
  801. };
  802. static int msi = NV_MSI_INT_ENABLED;
  803. /*
  804. * MSIX interrupts
  805. */
  806. enum {
  807. NV_MSIX_INT_DISABLED,
  808. NV_MSIX_INT_ENABLED
  809. };
  810. static int msix = NV_MSIX_INT_DISABLED;
  811. /*
  812. * DMA 64bit
  813. */
  814. enum {
  815. NV_DMA_64BIT_DISABLED,
  816. NV_DMA_64BIT_ENABLED
  817. };
  818. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  819. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  820. {
  821. return netdev_priv(dev);
  822. }
  823. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  824. {
  825. return ((struct fe_priv *)netdev_priv(dev))->base;
  826. }
  827. static inline void pci_push(u8 __iomem *base)
  828. {
  829. /* force out pending posted writes */
  830. readl(base);
  831. }
  832. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  833. {
  834. return le32_to_cpu(prd->flaglen)
  835. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  836. }
  837. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  838. {
  839. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  840. }
  841. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  842. int delay, int delaymax, const char *msg)
  843. {
  844. u8 __iomem *base = get_hwbase(dev);
  845. pci_push(base);
  846. do {
  847. udelay(delay);
  848. delaymax -= delay;
  849. if (delaymax < 0) {
  850. if (msg)
  851. printk(msg);
  852. return 1;
  853. }
  854. } while ((readl(base + offset) & mask) != target);
  855. return 0;
  856. }
  857. #define NV_SETUP_RX_RING 0x01
  858. #define NV_SETUP_TX_RING 0x02
  859. static inline u32 dma_low(dma_addr_t addr)
  860. {
  861. return addr;
  862. }
  863. static inline u32 dma_high(dma_addr_t addr)
  864. {
  865. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  866. }
  867. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  868. {
  869. struct fe_priv *np = get_nvpriv(dev);
  870. u8 __iomem *base = get_hwbase(dev);
  871. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  872. if (rxtx_flags & NV_SETUP_RX_RING) {
  873. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  874. }
  875. if (rxtx_flags & NV_SETUP_TX_RING) {
  876. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  877. }
  878. } else {
  879. if (rxtx_flags & NV_SETUP_RX_RING) {
  880. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  881. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  882. }
  883. if (rxtx_flags & NV_SETUP_TX_RING) {
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  885. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  886. }
  887. }
  888. }
  889. static void free_rings(struct net_device *dev)
  890. {
  891. struct fe_priv *np = get_nvpriv(dev);
  892. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  893. if (np->rx_ring.orig)
  894. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  895. np->rx_ring.orig, np->ring_addr);
  896. } else {
  897. if (np->rx_ring.ex)
  898. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  899. np->rx_ring.ex, np->ring_addr);
  900. }
  901. if (np->rx_skb)
  902. kfree(np->rx_skb);
  903. if (np->tx_skb)
  904. kfree(np->tx_skb);
  905. }
  906. static int using_multi_irqs(struct net_device *dev)
  907. {
  908. struct fe_priv *np = get_nvpriv(dev);
  909. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  910. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  911. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  912. return 0;
  913. else
  914. return 1;
  915. }
  916. static void nv_enable_irq(struct net_device *dev)
  917. {
  918. struct fe_priv *np = get_nvpriv(dev);
  919. if (!using_multi_irqs(dev)) {
  920. if (np->msi_flags & NV_MSI_X_ENABLED)
  921. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  922. else
  923. enable_irq(np->pci_dev->irq);
  924. } else {
  925. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  926. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  927. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  928. }
  929. }
  930. static void nv_disable_irq(struct net_device *dev)
  931. {
  932. struct fe_priv *np = get_nvpriv(dev);
  933. if (!using_multi_irqs(dev)) {
  934. if (np->msi_flags & NV_MSI_X_ENABLED)
  935. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  936. else
  937. disable_irq(np->pci_dev->irq);
  938. } else {
  939. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  940. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  941. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  942. }
  943. }
  944. /* In MSIX mode, a write to irqmask behaves as XOR */
  945. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  946. {
  947. u8 __iomem *base = get_hwbase(dev);
  948. writel(mask, base + NvRegIrqMask);
  949. }
  950. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  951. {
  952. struct fe_priv *np = get_nvpriv(dev);
  953. u8 __iomem *base = get_hwbase(dev);
  954. if (np->msi_flags & NV_MSI_X_ENABLED) {
  955. writel(mask, base + NvRegIrqMask);
  956. } else {
  957. if (np->msi_flags & NV_MSI_ENABLED)
  958. writel(0, base + NvRegMSIIrqMask);
  959. writel(0, base + NvRegIrqMask);
  960. }
  961. }
  962. #define MII_READ (-1)
  963. /* mii_rw: read/write a register on the PHY.
  964. *
  965. * Caller must guarantee serialization
  966. */
  967. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  968. {
  969. u8 __iomem *base = get_hwbase(dev);
  970. u32 reg;
  971. int retval;
  972. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  973. reg = readl(base + NvRegMIIControl);
  974. if (reg & NVREG_MIICTL_INUSE) {
  975. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  976. udelay(NV_MIIBUSY_DELAY);
  977. }
  978. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  979. if (value != MII_READ) {
  980. writel(value, base + NvRegMIIData);
  981. reg |= NVREG_MIICTL_WRITE;
  982. }
  983. writel(reg, base + NvRegMIIControl);
  984. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  985. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  986. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  987. dev->name, miireg, addr);
  988. retval = -1;
  989. } else if (value != MII_READ) {
  990. /* it was a write operation - fewer failures are detectable */
  991. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  992. dev->name, value, miireg, addr);
  993. retval = 0;
  994. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  995. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  996. dev->name, miireg, addr);
  997. retval = -1;
  998. } else {
  999. retval = readl(base + NvRegMIIData);
  1000. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1001. dev->name, miireg, addr, retval);
  1002. }
  1003. return retval;
  1004. }
  1005. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1006. {
  1007. struct fe_priv *np = netdev_priv(dev);
  1008. u32 miicontrol;
  1009. unsigned int tries = 0;
  1010. miicontrol = BMCR_RESET | bmcr_setup;
  1011. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1012. return -1;
  1013. }
  1014. /* wait for 500ms */
  1015. msleep(500);
  1016. /* must wait till reset is deasserted */
  1017. while (miicontrol & BMCR_RESET) {
  1018. msleep(10);
  1019. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1020. /* FIXME: 100 tries seem excessive */
  1021. if (tries++ > 100)
  1022. return -1;
  1023. }
  1024. return 0;
  1025. }
  1026. static int phy_init(struct net_device *dev)
  1027. {
  1028. struct fe_priv *np = get_nvpriv(dev);
  1029. u8 __iomem *base = get_hwbase(dev);
  1030. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1031. /* phy errata for E3016 phy */
  1032. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1033. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1034. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1035. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1036. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1037. return PHY_ERROR;
  1038. }
  1039. }
  1040. if (np->phy_oui == PHY_OUI_REALTEK) {
  1041. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1042. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1043. return PHY_ERROR;
  1044. }
  1045. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1046. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1047. return PHY_ERROR;
  1048. }
  1049. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1050. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1051. return PHY_ERROR;
  1052. }
  1053. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1054. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1055. return PHY_ERROR;
  1056. }
  1057. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1058. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1059. return PHY_ERROR;
  1060. }
  1061. }
  1062. /* set advertise register */
  1063. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1064. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1065. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1066. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1067. return PHY_ERROR;
  1068. }
  1069. /* get phy interface type */
  1070. phyinterface = readl(base + NvRegPhyInterface);
  1071. /* see if gigabit phy */
  1072. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1073. if (mii_status & PHY_GIGABIT) {
  1074. np->gigabit = PHY_GIGABIT;
  1075. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1076. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1077. if (phyinterface & PHY_RGMII)
  1078. mii_control_1000 |= ADVERTISE_1000FULL;
  1079. else
  1080. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1081. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1082. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1083. return PHY_ERROR;
  1084. }
  1085. }
  1086. else
  1087. np->gigabit = 0;
  1088. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1089. mii_control |= BMCR_ANENABLE;
  1090. /* reset the phy
  1091. * (certain phys need bmcr to be setup with reset)
  1092. */
  1093. if (phy_reset(dev, mii_control)) {
  1094. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1095. return PHY_ERROR;
  1096. }
  1097. /* phy vendor specific configuration */
  1098. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1099. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1100. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1101. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1102. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1103. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1104. return PHY_ERROR;
  1105. }
  1106. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1107. phy_reserved |= PHY_CICADA_INIT5;
  1108. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1109. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1110. return PHY_ERROR;
  1111. }
  1112. }
  1113. if (np->phy_oui == PHY_OUI_CICADA) {
  1114. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1115. phy_reserved |= PHY_CICADA_INIT6;
  1116. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. if (np->phy_oui == PHY_OUI_VITESSE) {
  1122. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1123. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1124. return PHY_ERROR;
  1125. }
  1126. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1131. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1132. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1133. return PHY_ERROR;
  1134. }
  1135. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1136. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1137. phy_reserved |= PHY_VITESSE_INIT3;
  1138. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1139. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1143. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1151. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1152. phy_reserved |= PHY_VITESSE_INIT3;
  1153. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1154. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1155. return PHY_ERROR;
  1156. }
  1157. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1158. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1159. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1160. return PHY_ERROR;
  1161. }
  1162. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1163. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1164. return PHY_ERROR;
  1165. }
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1171. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1172. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1173. return PHY_ERROR;
  1174. }
  1175. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1176. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1177. phy_reserved |= PHY_VITESSE_INIT8;
  1178. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1179. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1180. return PHY_ERROR;
  1181. }
  1182. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1183. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1184. return PHY_ERROR;
  1185. }
  1186. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. }
  1191. if (np->phy_oui == PHY_OUI_REALTEK) {
  1192. /* reset could have cleared these out, set them back */
  1193. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1194. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1195. return PHY_ERROR;
  1196. }
  1197. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1198. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1199. return PHY_ERROR;
  1200. }
  1201. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1202. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1206. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1207. return PHY_ERROR;
  1208. }
  1209. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1210. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1211. return PHY_ERROR;
  1212. }
  1213. }
  1214. /* some phys clear out pause advertisment on reset, set it back */
  1215. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1216. /* restart auto negotiation */
  1217. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1218. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1219. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1220. return PHY_ERROR;
  1221. }
  1222. return 0;
  1223. }
  1224. static void nv_start_rx(struct net_device *dev)
  1225. {
  1226. struct fe_priv *np = netdev_priv(dev);
  1227. u8 __iomem *base = get_hwbase(dev);
  1228. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1229. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1230. /* Already running? Stop it. */
  1231. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1232. rx_ctrl &= ~NVREG_RCVCTL_START;
  1233. writel(rx_ctrl, base + NvRegReceiverControl);
  1234. pci_push(base);
  1235. }
  1236. writel(np->linkspeed, base + NvRegLinkSpeed);
  1237. pci_push(base);
  1238. rx_ctrl |= NVREG_RCVCTL_START;
  1239. if (np->mac_in_use)
  1240. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1241. writel(rx_ctrl, base + NvRegReceiverControl);
  1242. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1243. dev->name, np->duplex, np->linkspeed);
  1244. pci_push(base);
  1245. }
  1246. static void nv_stop_rx(struct net_device *dev)
  1247. {
  1248. struct fe_priv *np = netdev_priv(dev);
  1249. u8 __iomem *base = get_hwbase(dev);
  1250. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1251. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1252. if (!np->mac_in_use)
  1253. rx_ctrl &= ~NVREG_RCVCTL_START;
  1254. else
  1255. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1256. writel(rx_ctrl, base + NvRegReceiverControl);
  1257. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1258. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1259. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1260. udelay(NV_RXSTOP_DELAY2);
  1261. if (!np->mac_in_use)
  1262. writel(0, base + NvRegLinkSpeed);
  1263. }
  1264. static void nv_start_tx(struct net_device *dev)
  1265. {
  1266. struct fe_priv *np = netdev_priv(dev);
  1267. u8 __iomem *base = get_hwbase(dev);
  1268. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1269. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1270. tx_ctrl |= NVREG_XMITCTL_START;
  1271. if (np->mac_in_use)
  1272. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1273. writel(tx_ctrl, base + NvRegTransmitterControl);
  1274. pci_push(base);
  1275. }
  1276. static void nv_stop_tx(struct net_device *dev)
  1277. {
  1278. struct fe_priv *np = netdev_priv(dev);
  1279. u8 __iomem *base = get_hwbase(dev);
  1280. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1281. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1282. if (!np->mac_in_use)
  1283. tx_ctrl &= ~NVREG_XMITCTL_START;
  1284. else
  1285. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1286. writel(tx_ctrl, base + NvRegTransmitterControl);
  1287. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1288. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1289. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1290. udelay(NV_TXSTOP_DELAY2);
  1291. if (!np->mac_in_use)
  1292. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1293. base + NvRegTransmitPoll);
  1294. }
  1295. static void nv_txrx_reset(struct net_device *dev)
  1296. {
  1297. struct fe_priv *np = netdev_priv(dev);
  1298. u8 __iomem *base = get_hwbase(dev);
  1299. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1300. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1301. pci_push(base);
  1302. udelay(NV_TXRX_RESET_DELAY);
  1303. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1304. pci_push(base);
  1305. }
  1306. static void nv_mac_reset(struct net_device *dev)
  1307. {
  1308. struct fe_priv *np = netdev_priv(dev);
  1309. u8 __iomem *base = get_hwbase(dev);
  1310. u32 temp1, temp2, temp3;
  1311. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1312. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1313. pci_push(base);
  1314. /* save registers since they will be cleared on reset */
  1315. temp1 = readl(base + NvRegMacAddrA);
  1316. temp2 = readl(base + NvRegMacAddrB);
  1317. temp3 = readl(base + NvRegTransmitPoll);
  1318. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1319. pci_push(base);
  1320. udelay(NV_MAC_RESET_DELAY);
  1321. writel(0, base + NvRegMacReset);
  1322. pci_push(base);
  1323. udelay(NV_MAC_RESET_DELAY);
  1324. /* restore saved registers */
  1325. writel(temp1, base + NvRegMacAddrA);
  1326. writel(temp2, base + NvRegMacAddrB);
  1327. writel(temp3, base + NvRegTransmitPoll);
  1328. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1329. pci_push(base);
  1330. }
  1331. static void nv_get_hw_stats(struct net_device *dev)
  1332. {
  1333. struct fe_priv *np = netdev_priv(dev);
  1334. u8 __iomem *base = get_hwbase(dev);
  1335. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1336. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1337. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1338. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1339. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1340. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1341. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1342. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1343. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1344. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1345. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1346. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1347. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1348. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1349. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1350. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1351. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1352. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1353. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1354. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1355. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1356. np->estats.rx_packets =
  1357. np->estats.rx_unicast +
  1358. np->estats.rx_multicast +
  1359. np->estats.rx_broadcast;
  1360. np->estats.rx_errors_total =
  1361. np->estats.rx_crc_errors +
  1362. np->estats.rx_over_errors +
  1363. np->estats.rx_frame_error +
  1364. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1365. np->estats.rx_late_collision +
  1366. np->estats.rx_runt +
  1367. np->estats.rx_frame_too_long;
  1368. np->estats.tx_errors_total =
  1369. np->estats.tx_late_collision +
  1370. np->estats.tx_fifo_errors +
  1371. np->estats.tx_carrier_errors +
  1372. np->estats.tx_excess_deferral +
  1373. np->estats.tx_retry_error;
  1374. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1375. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1376. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1377. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1378. np->estats.tx_pause += readl(base + NvRegTxPause);
  1379. np->estats.rx_pause += readl(base + NvRegRxPause);
  1380. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1381. }
  1382. }
  1383. /*
  1384. * nv_get_stats: dev->get_stats function
  1385. * Get latest stats value from the nic.
  1386. * Called with read_lock(&dev_base_lock) held for read -
  1387. * only synchronized against unregister_netdevice.
  1388. */
  1389. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1390. {
  1391. struct fe_priv *np = netdev_priv(dev);
  1392. /* If the nic supports hw counters then retrieve latest values */
  1393. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1394. nv_get_hw_stats(dev);
  1395. /* copy to net_device stats */
  1396. dev->stats.tx_bytes = np->estats.tx_bytes;
  1397. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1398. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1399. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1400. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1401. dev->stats.rx_errors = np->estats.rx_errors_total;
  1402. dev->stats.tx_errors = np->estats.tx_errors_total;
  1403. }
  1404. return &dev->stats;
  1405. }
  1406. /*
  1407. * nv_alloc_rx: fill rx ring entries.
  1408. * Return 1 if the allocations for the skbs failed and the
  1409. * rx engine is without Available descriptors
  1410. */
  1411. static int nv_alloc_rx(struct net_device *dev)
  1412. {
  1413. struct fe_priv *np = netdev_priv(dev);
  1414. struct ring_desc* less_rx;
  1415. less_rx = np->get_rx.orig;
  1416. if (less_rx-- == np->first_rx.orig)
  1417. less_rx = np->last_rx.orig;
  1418. while (np->put_rx.orig != less_rx) {
  1419. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1420. if (skb) {
  1421. np->put_rx_ctx->skb = skb;
  1422. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1423. skb->data,
  1424. skb_tailroom(skb),
  1425. PCI_DMA_FROMDEVICE);
  1426. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1427. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1428. wmb();
  1429. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1430. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1431. np->put_rx.orig = np->first_rx.orig;
  1432. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1433. np->put_rx_ctx = np->first_rx_ctx;
  1434. } else {
  1435. return 1;
  1436. }
  1437. }
  1438. return 0;
  1439. }
  1440. static int nv_alloc_rx_optimized(struct net_device *dev)
  1441. {
  1442. struct fe_priv *np = netdev_priv(dev);
  1443. struct ring_desc_ex* less_rx;
  1444. less_rx = np->get_rx.ex;
  1445. if (less_rx-- == np->first_rx.ex)
  1446. less_rx = np->last_rx.ex;
  1447. while (np->put_rx.ex != less_rx) {
  1448. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1449. if (skb) {
  1450. np->put_rx_ctx->skb = skb;
  1451. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1452. skb->data,
  1453. skb_tailroom(skb),
  1454. PCI_DMA_FROMDEVICE);
  1455. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1456. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1457. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1458. wmb();
  1459. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1460. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1461. np->put_rx.ex = np->first_rx.ex;
  1462. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1463. np->put_rx_ctx = np->first_rx_ctx;
  1464. } else {
  1465. return 1;
  1466. }
  1467. }
  1468. return 0;
  1469. }
  1470. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1471. #ifdef CONFIG_FORCEDETH_NAPI
  1472. static void nv_do_rx_refill(unsigned long data)
  1473. {
  1474. struct net_device *dev = (struct net_device *) data;
  1475. struct fe_priv *np = netdev_priv(dev);
  1476. /* Just reschedule NAPI rx processing */
  1477. netif_rx_schedule(dev, &np->napi);
  1478. }
  1479. #else
  1480. static void nv_do_rx_refill(unsigned long data)
  1481. {
  1482. struct net_device *dev = (struct net_device *) data;
  1483. struct fe_priv *np = netdev_priv(dev);
  1484. int retcode;
  1485. if (!using_multi_irqs(dev)) {
  1486. if (np->msi_flags & NV_MSI_X_ENABLED)
  1487. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1488. else
  1489. disable_irq(np->pci_dev->irq);
  1490. } else {
  1491. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1492. }
  1493. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1494. retcode = nv_alloc_rx(dev);
  1495. else
  1496. retcode = nv_alloc_rx_optimized(dev);
  1497. if (retcode) {
  1498. spin_lock_irq(&np->lock);
  1499. if (!np->in_shutdown)
  1500. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1501. spin_unlock_irq(&np->lock);
  1502. }
  1503. if (!using_multi_irqs(dev)) {
  1504. if (np->msi_flags & NV_MSI_X_ENABLED)
  1505. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1506. else
  1507. enable_irq(np->pci_dev->irq);
  1508. } else {
  1509. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1510. }
  1511. }
  1512. #endif
  1513. static void nv_init_rx(struct net_device *dev)
  1514. {
  1515. struct fe_priv *np = netdev_priv(dev);
  1516. int i;
  1517. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1518. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1519. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1520. else
  1521. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1522. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1523. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1524. for (i = 0; i < np->rx_ring_size; i++) {
  1525. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1526. np->rx_ring.orig[i].flaglen = 0;
  1527. np->rx_ring.orig[i].buf = 0;
  1528. } else {
  1529. np->rx_ring.ex[i].flaglen = 0;
  1530. np->rx_ring.ex[i].txvlan = 0;
  1531. np->rx_ring.ex[i].bufhigh = 0;
  1532. np->rx_ring.ex[i].buflow = 0;
  1533. }
  1534. np->rx_skb[i].skb = NULL;
  1535. np->rx_skb[i].dma = 0;
  1536. }
  1537. }
  1538. static void nv_init_tx(struct net_device *dev)
  1539. {
  1540. struct fe_priv *np = netdev_priv(dev);
  1541. int i;
  1542. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1543. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1544. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1545. else
  1546. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1547. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1548. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1549. for (i = 0; i < np->tx_ring_size; i++) {
  1550. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1551. np->tx_ring.orig[i].flaglen = 0;
  1552. np->tx_ring.orig[i].buf = 0;
  1553. } else {
  1554. np->tx_ring.ex[i].flaglen = 0;
  1555. np->tx_ring.ex[i].txvlan = 0;
  1556. np->tx_ring.ex[i].bufhigh = 0;
  1557. np->tx_ring.ex[i].buflow = 0;
  1558. }
  1559. np->tx_skb[i].skb = NULL;
  1560. np->tx_skb[i].dma = 0;
  1561. }
  1562. }
  1563. static int nv_init_ring(struct net_device *dev)
  1564. {
  1565. struct fe_priv *np = netdev_priv(dev);
  1566. nv_init_tx(dev);
  1567. nv_init_rx(dev);
  1568. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1569. return nv_alloc_rx(dev);
  1570. else
  1571. return nv_alloc_rx_optimized(dev);
  1572. }
  1573. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1574. {
  1575. struct fe_priv *np = netdev_priv(dev);
  1576. if (tx_skb->dma) {
  1577. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1578. tx_skb->dma_len,
  1579. PCI_DMA_TODEVICE);
  1580. tx_skb->dma = 0;
  1581. }
  1582. if (tx_skb->skb) {
  1583. dev_kfree_skb_any(tx_skb->skb);
  1584. tx_skb->skb = NULL;
  1585. return 1;
  1586. } else {
  1587. return 0;
  1588. }
  1589. }
  1590. static void nv_drain_tx(struct net_device *dev)
  1591. {
  1592. struct fe_priv *np = netdev_priv(dev);
  1593. unsigned int i;
  1594. for (i = 0; i < np->tx_ring_size; i++) {
  1595. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1596. np->tx_ring.orig[i].flaglen = 0;
  1597. np->tx_ring.orig[i].buf = 0;
  1598. } else {
  1599. np->tx_ring.ex[i].flaglen = 0;
  1600. np->tx_ring.ex[i].txvlan = 0;
  1601. np->tx_ring.ex[i].bufhigh = 0;
  1602. np->tx_ring.ex[i].buflow = 0;
  1603. }
  1604. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1605. dev->stats.tx_dropped++;
  1606. }
  1607. }
  1608. static void nv_drain_rx(struct net_device *dev)
  1609. {
  1610. struct fe_priv *np = netdev_priv(dev);
  1611. int i;
  1612. for (i = 0; i < np->rx_ring_size; i++) {
  1613. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1614. np->rx_ring.orig[i].flaglen = 0;
  1615. np->rx_ring.orig[i].buf = 0;
  1616. } else {
  1617. np->rx_ring.ex[i].flaglen = 0;
  1618. np->rx_ring.ex[i].txvlan = 0;
  1619. np->rx_ring.ex[i].bufhigh = 0;
  1620. np->rx_ring.ex[i].buflow = 0;
  1621. }
  1622. wmb();
  1623. if (np->rx_skb[i].skb) {
  1624. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1625. (skb_end_pointer(np->rx_skb[i].skb) -
  1626. np->rx_skb[i].skb->data),
  1627. PCI_DMA_FROMDEVICE);
  1628. dev_kfree_skb(np->rx_skb[i].skb);
  1629. np->rx_skb[i].skb = NULL;
  1630. }
  1631. }
  1632. }
  1633. static void drain_ring(struct net_device *dev)
  1634. {
  1635. nv_drain_tx(dev);
  1636. nv_drain_rx(dev);
  1637. }
  1638. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1639. {
  1640. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1641. }
  1642. /*
  1643. * nv_start_xmit: dev->hard_start_xmit function
  1644. * Called with netif_tx_lock held.
  1645. */
  1646. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1647. {
  1648. struct fe_priv *np = netdev_priv(dev);
  1649. u32 tx_flags = 0;
  1650. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1651. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1652. unsigned int i;
  1653. u32 offset = 0;
  1654. u32 bcnt;
  1655. u32 size = skb->len-skb->data_len;
  1656. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1657. u32 empty_slots;
  1658. struct ring_desc* put_tx;
  1659. struct ring_desc* start_tx;
  1660. struct ring_desc* prev_tx;
  1661. struct nv_skb_map* prev_tx_ctx;
  1662. /* add fragments to entries count */
  1663. for (i = 0; i < fragments; i++) {
  1664. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1665. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1666. }
  1667. empty_slots = nv_get_empty_tx_slots(np);
  1668. if (unlikely(empty_slots <= entries)) {
  1669. spin_lock_irq(&np->lock);
  1670. netif_stop_queue(dev);
  1671. np->tx_stop = 1;
  1672. spin_unlock_irq(&np->lock);
  1673. return NETDEV_TX_BUSY;
  1674. }
  1675. start_tx = put_tx = np->put_tx.orig;
  1676. /* setup the header buffer */
  1677. do {
  1678. prev_tx = put_tx;
  1679. prev_tx_ctx = np->put_tx_ctx;
  1680. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1681. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1682. PCI_DMA_TODEVICE);
  1683. np->put_tx_ctx->dma_len = bcnt;
  1684. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1685. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1686. tx_flags = np->tx_flags;
  1687. offset += bcnt;
  1688. size -= bcnt;
  1689. if (unlikely(put_tx++ == np->last_tx.orig))
  1690. put_tx = np->first_tx.orig;
  1691. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1692. np->put_tx_ctx = np->first_tx_ctx;
  1693. } while (size);
  1694. /* setup the fragments */
  1695. for (i = 0; i < fragments; i++) {
  1696. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1697. u32 size = frag->size;
  1698. offset = 0;
  1699. do {
  1700. prev_tx = put_tx;
  1701. prev_tx_ctx = np->put_tx_ctx;
  1702. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1703. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1704. PCI_DMA_TODEVICE);
  1705. np->put_tx_ctx->dma_len = bcnt;
  1706. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1707. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1708. offset += bcnt;
  1709. size -= bcnt;
  1710. if (unlikely(put_tx++ == np->last_tx.orig))
  1711. put_tx = np->first_tx.orig;
  1712. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1713. np->put_tx_ctx = np->first_tx_ctx;
  1714. } while (size);
  1715. }
  1716. /* set last fragment flag */
  1717. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1718. /* save skb in this slot's context area */
  1719. prev_tx_ctx->skb = skb;
  1720. if (skb_is_gso(skb))
  1721. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1722. else
  1723. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1724. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1725. spin_lock_irq(&np->lock);
  1726. /* set tx flags */
  1727. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1728. np->put_tx.orig = put_tx;
  1729. spin_unlock_irq(&np->lock);
  1730. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1731. dev->name, entries, tx_flags_extra);
  1732. {
  1733. int j;
  1734. for (j=0; j<64; j++) {
  1735. if ((j%16) == 0)
  1736. dprintk("\n%03x:", j);
  1737. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1738. }
  1739. dprintk("\n");
  1740. }
  1741. dev->trans_start = jiffies;
  1742. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1743. return NETDEV_TX_OK;
  1744. }
  1745. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1746. {
  1747. struct fe_priv *np = netdev_priv(dev);
  1748. u32 tx_flags = 0;
  1749. u32 tx_flags_extra;
  1750. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1751. unsigned int i;
  1752. u32 offset = 0;
  1753. u32 bcnt;
  1754. u32 size = skb->len-skb->data_len;
  1755. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1756. u32 empty_slots;
  1757. struct ring_desc_ex* put_tx;
  1758. struct ring_desc_ex* start_tx;
  1759. struct ring_desc_ex* prev_tx;
  1760. struct nv_skb_map* prev_tx_ctx;
  1761. /* add fragments to entries count */
  1762. for (i = 0; i < fragments; i++) {
  1763. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1764. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1765. }
  1766. empty_slots = nv_get_empty_tx_slots(np);
  1767. if (unlikely(empty_slots <= entries)) {
  1768. spin_lock_irq(&np->lock);
  1769. netif_stop_queue(dev);
  1770. np->tx_stop = 1;
  1771. spin_unlock_irq(&np->lock);
  1772. return NETDEV_TX_BUSY;
  1773. }
  1774. start_tx = put_tx = np->put_tx.ex;
  1775. /* setup the header buffer */
  1776. do {
  1777. prev_tx = put_tx;
  1778. prev_tx_ctx = np->put_tx_ctx;
  1779. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1780. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1781. PCI_DMA_TODEVICE);
  1782. np->put_tx_ctx->dma_len = bcnt;
  1783. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1784. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1785. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1786. tx_flags = NV_TX2_VALID;
  1787. offset += bcnt;
  1788. size -= bcnt;
  1789. if (unlikely(put_tx++ == np->last_tx.ex))
  1790. put_tx = np->first_tx.ex;
  1791. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1792. np->put_tx_ctx = np->first_tx_ctx;
  1793. } while (size);
  1794. /* setup the fragments */
  1795. for (i = 0; i < fragments; i++) {
  1796. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1797. u32 size = frag->size;
  1798. offset = 0;
  1799. do {
  1800. prev_tx = put_tx;
  1801. prev_tx_ctx = np->put_tx_ctx;
  1802. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1803. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1804. PCI_DMA_TODEVICE);
  1805. np->put_tx_ctx->dma_len = bcnt;
  1806. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1807. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1808. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1809. offset += bcnt;
  1810. size -= bcnt;
  1811. if (unlikely(put_tx++ == np->last_tx.ex))
  1812. put_tx = np->first_tx.ex;
  1813. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1814. np->put_tx_ctx = np->first_tx_ctx;
  1815. } while (size);
  1816. }
  1817. /* set last fragment flag */
  1818. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1819. /* save skb in this slot's context area */
  1820. prev_tx_ctx->skb = skb;
  1821. if (skb_is_gso(skb))
  1822. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1823. else
  1824. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1825. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1826. /* vlan tag */
  1827. if (likely(!np->vlangrp)) {
  1828. start_tx->txvlan = 0;
  1829. } else {
  1830. if (vlan_tx_tag_present(skb))
  1831. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1832. else
  1833. start_tx->txvlan = 0;
  1834. }
  1835. spin_lock_irq(&np->lock);
  1836. /* set tx flags */
  1837. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1838. np->put_tx.ex = put_tx;
  1839. spin_unlock_irq(&np->lock);
  1840. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1841. dev->name, entries, tx_flags_extra);
  1842. {
  1843. int j;
  1844. for (j=0; j<64; j++) {
  1845. if ((j%16) == 0)
  1846. dprintk("\n%03x:", j);
  1847. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1848. }
  1849. dprintk("\n");
  1850. }
  1851. dev->trans_start = jiffies;
  1852. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1853. return NETDEV_TX_OK;
  1854. }
  1855. /*
  1856. * nv_tx_done: check for completed packets, release the skbs.
  1857. *
  1858. * Caller must own np->lock.
  1859. */
  1860. static void nv_tx_done(struct net_device *dev)
  1861. {
  1862. struct fe_priv *np = netdev_priv(dev);
  1863. u32 flags;
  1864. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1865. while ((np->get_tx.orig != np->put_tx.orig) &&
  1866. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1867. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1868. dev->name, flags);
  1869. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1870. np->get_tx_ctx->dma_len,
  1871. PCI_DMA_TODEVICE);
  1872. np->get_tx_ctx->dma = 0;
  1873. if (np->desc_ver == DESC_VER_1) {
  1874. if (flags & NV_TX_LASTPACKET) {
  1875. if (flags & NV_TX_ERROR) {
  1876. if (flags & NV_TX_UNDERFLOW)
  1877. dev->stats.tx_fifo_errors++;
  1878. if (flags & NV_TX_CARRIERLOST)
  1879. dev->stats.tx_carrier_errors++;
  1880. dev->stats.tx_errors++;
  1881. } else {
  1882. dev->stats.tx_packets++;
  1883. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1884. }
  1885. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1886. np->get_tx_ctx->skb = NULL;
  1887. }
  1888. } else {
  1889. if (flags & NV_TX2_LASTPACKET) {
  1890. if (flags & NV_TX2_ERROR) {
  1891. if (flags & NV_TX2_UNDERFLOW)
  1892. dev->stats.tx_fifo_errors++;
  1893. if (flags & NV_TX2_CARRIERLOST)
  1894. dev->stats.tx_carrier_errors++;
  1895. dev->stats.tx_errors++;
  1896. } else {
  1897. dev->stats.tx_packets++;
  1898. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1899. }
  1900. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1901. np->get_tx_ctx->skb = NULL;
  1902. }
  1903. }
  1904. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1905. np->get_tx.orig = np->first_tx.orig;
  1906. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1907. np->get_tx_ctx = np->first_tx_ctx;
  1908. }
  1909. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1910. np->tx_stop = 0;
  1911. netif_wake_queue(dev);
  1912. }
  1913. }
  1914. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1915. {
  1916. struct fe_priv *np = netdev_priv(dev);
  1917. u32 flags;
  1918. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1919. while ((np->get_tx.ex != np->put_tx.ex) &&
  1920. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1921. (limit-- > 0)) {
  1922. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1923. dev->name, flags);
  1924. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1925. np->get_tx_ctx->dma_len,
  1926. PCI_DMA_TODEVICE);
  1927. np->get_tx_ctx->dma = 0;
  1928. if (flags & NV_TX2_LASTPACKET) {
  1929. if (!(flags & NV_TX2_ERROR))
  1930. dev->stats.tx_packets++;
  1931. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1932. np->get_tx_ctx->skb = NULL;
  1933. }
  1934. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1935. np->get_tx.ex = np->first_tx.ex;
  1936. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1937. np->get_tx_ctx = np->first_tx_ctx;
  1938. }
  1939. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1940. np->tx_stop = 0;
  1941. netif_wake_queue(dev);
  1942. }
  1943. }
  1944. /*
  1945. * nv_tx_timeout: dev->tx_timeout function
  1946. * Called with netif_tx_lock held.
  1947. */
  1948. static void nv_tx_timeout(struct net_device *dev)
  1949. {
  1950. struct fe_priv *np = netdev_priv(dev);
  1951. u8 __iomem *base = get_hwbase(dev);
  1952. u32 status;
  1953. if (np->msi_flags & NV_MSI_X_ENABLED)
  1954. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1955. else
  1956. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1957. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1958. {
  1959. int i;
  1960. printk(KERN_INFO "%s: Ring at %lx\n",
  1961. dev->name, (unsigned long)np->ring_addr);
  1962. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1963. for (i=0;i<=np->register_size;i+= 32) {
  1964. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1965. i,
  1966. readl(base + i + 0), readl(base + i + 4),
  1967. readl(base + i + 8), readl(base + i + 12),
  1968. readl(base + i + 16), readl(base + i + 20),
  1969. readl(base + i + 24), readl(base + i + 28));
  1970. }
  1971. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1972. for (i=0;i<np->tx_ring_size;i+= 4) {
  1973. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1974. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1975. i,
  1976. le32_to_cpu(np->tx_ring.orig[i].buf),
  1977. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1978. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1979. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1980. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1981. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1982. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1983. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1984. } else {
  1985. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1986. i,
  1987. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1988. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1989. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1990. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1991. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1992. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1993. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1994. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1995. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1996. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1997. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1998. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1999. }
  2000. }
  2001. }
  2002. spin_lock_irq(&np->lock);
  2003. /* 1) stop tx engine */
  2004. nv_stop_tx(dev);
  2005. /* 2) check that the packets were not sent already: */
  2006. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2007. nv_tx_done(dev);
  2008. else
  2009. nv_tx_done_optimized(dev, np->tx_ring_size);
  2010. /* 3) if there are dead entries: clear everything */
  2011. if (np->get_tx_ctx != np->put_tx_ctx) {
  2012. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2013. nv_drain_tx(dev);
  2014. nv_init_tx(dev);
  2015. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2016. }
  2017. netif_wake_queue(dev);
  2018. /* 4) restart tx engine */
  2019. nv_start_tx(dev);
  2020. spin_unlock_irq(&np->lock);
  2021. }
  2022. /*
  2023. * Called when the nic notices a mismatch between the actual data len on the
  2024. * wire and the len indicated in the 802 header
  2025. */
  2026. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2027. {
  2028. int hdrlen; /* length of the 802 header */
  2029. int protolen; /* length as stored in the proto field */
  2030. /* 1) calculate len according to header */
  2031. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2032. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2033. hdrlen = VLAN_HLEN;
  2034. } else {
  2035. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2036. hdrlen = ETH_HLEN;
  2037. }
  2038. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2039. dev->name, datalen, protolen, hdrlen);
  2040. if (protolen > ETH_DATA_LEN)
  2041. return datalen; /* Value in proto field not a len, no checks possible */
  2042. protolen += hdrlen;
  2043. /* consistency checks: */
  2044. if (datalen > ETH_ZLEN) {
  2045. if (datalen >= protolen) {
  2046. /* more data on wire than in 802 header, trim of
  2047. * additional data.
  2048. */
  2049. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2050. dev->name, protolen);
  2051. return protolen;
  2052. } else {
  2053. /* less data on wire than mentioned in header.
  2054. * Discard the packet.
  2055. */
  2056. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2057. dev->name);
  2058. return -1;
  2059. }
  2060. } else {
  2061. /* short packet. Accept only if 802 values are also short */
  2062. if (protolen > ETH_ZLEN) {
  2063. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2064. dev->name);
  2065. return -1;
  2066. }
  2067. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2068. dev->name, datalen);
  2069. return datalen;
  2070. }
  2071. }
  2072. static int nv_rx_process(struct net_device *dev, int limit)
  2073. {
  2074. struct fe_priv *np = netdev_priv(dev);
  2075. u32 flags;
  2076. int rx_work = 0;
  2077. struct sk_buff *skb;
  2078. int len;
  2079. while((np->get_rx.orig != np->put_rx.orig) &&
  2080. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2081. (rx_work < limit)) {
  2082. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2083. dev->name, flags);
  2084. /*
  2085. * the packet is for us - immediately tear down the pci mapping.
  2086. * TODO: check if a prefetch of the first cacheline improves
  2087. * the performance.
  2088. */
  2089. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2090. np->get_rx_ctx->dma_len,
  2091. PCI_DMA_FROMDEVICE);
  2092. skb = np->get_rx_ctx->skb;
  2093. np->get_rx_ctx->skb = NULL;
  2094. {
  2095. int j;
  2096. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2097. for (j=0; j<64; j++) {
  2098. if ((j%16) == 0)
  2099. dprintk("\n%03x:", j);
  2100. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2101. }
  2102. dprintk("\n");
  2103. }
  2104. /* look at what we actually got: */
  2105. if (np->desc_ver == DESC_VER_1) {
  2106. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2107. len = flags & LEN_MASK_V1;
  2108. if (unlikely(flags & NV_RX_ERROR)) {
  2109. if (flags & NV_RX_ERROR4) {
  2110. len = nv_getlen(dev, skb->data, len);
  2111. if (len < 0) {
  2112. dev->stats.rx_errors++;
  2113. dev_kfree_skb(skb);
  2114. goto next_pkt;
  2115. }
  2116. }
  2117. /* framing errors are soft errors */
  2118. else if (flags & NV_RX_FRAMINGERR) {
  2119. if (flags & NV_RX_SUBSTRACT1) {
  2120. len--;
  2121. }
  2122. }
  2123. /* the rest are hard errors */
  2124. else {
  2125. if (flags & NV_RX_MISSEDFRAME)
  2126. dev->stats.rx_missed_errors++;
  2127. if (flags & NV_RX_CRCERR)
  2128. dev->stats.rx_crc_errors++;
  2129. if (flags & NV_RX_OVERFLOW)
  2130. dev->stats.rx_over_errors++;
  2131. dev->stats.rx_errors++;
  2132. dev_kfree_skb(skb);
  2133. goto next_pkt;
  2134. }
  2135. }
  2136. } else {
  2137. dev_kfree_skb(skb);
  2138. goto next_pkt;
  2139. }
  2140. } else {
  2141. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2142. len = flags & LEN_MASK_V2;
  2143. if (unlikely(flags & NV_RX2_ERROR)) {
  2144. if (flags & NV_RX2_ERROR4) {
  2145. len = nv_getlen(dev, skb->data, len);
  2146. if (len < 0) {
  2147. dev->stats.rx_errors++;
  2148. dev_kfree_skb(skb);
  2149. goto next_pkt;
  2150. }
  2151. }
  2152. /* framing errors are soft errors */
  2153. else if (flags & NV_RX2_FRAMINGERR) {
  2154. if (flags & NV_RX2_SUBSTRACT1) {
  2155. len--;
  2156. }
  2157. }
  2158. /* the rest are hard errors */
  2159. else {
  2160. if (flags & NV_RX2_CRCERR)
  2161. dev->stats.rx_crc_errors++;
  2162. if (flags & NV_RX2_OVERFLOW)
  2163. dev->stats.rx_over_errors++;
  2164. dev->stats.rx_errors++;
  2165. dev_kfree_skb(skb);
  2166. goto next_pkt;
  2167. }
  2168. }
  2169. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2170. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2171. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2172. } else {
  2173. dev_kfree_skb(skb);
  2174. goto next_pkt;
  2175. }
  2176. }
  2177. /* got a valid packet - forward it to the network core */
  2178. skb_put(skb, len);
  2179. skb->protocol = eth_type_trans(skb, dev);
  2180. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2181. dev->name, len, skb->protocol);
  2182. #ifdef CONFIG_FORCEDETH_NAPI
  2183. netif_receive_skb(skb);
  2184. #else
  2185. netif_rx(skb);
  2186. #endif
  2187. dev->last_rx = jiffies;
  2188. dev->stats.rx_packets++;
  2189. dev->stats.rx_bytes += len;
  2190. next_pkt:
  2191. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2192. np->get_rx.orig = np->first_rx.orig;
  2193. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2194. np->get_rx_ctx = np->first_rx_ctx;
  2195. rx_work++;
  2196. }
  2197. return rx_work;
  2198. }
  2199. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2200. {
  2201. struct fe_priv *np = netdev_priv(dev);
  2202. u32 flags;
  2203. u32 vlanflags = 0;
  2204. int rx_work = 0;
  2205. struct sk_buff *skb;
  2206. int len;
  2207. while((np->get_rx.ex != np->put_rx.ex) &&
  2208. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2209. (rx_work < limit)) {
  2210. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2211. dev->name, flags);
  2212. /*
  2213. * the packet is for us - immediately tear down the pci mapping.
  2214. * TODO: check if a prefetch of the first cacheline improves
  2215. * the performance.
  2216. */
  2217. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2218. np->get_rx_ctx->dma_len,
  2219. PCI_DMA_FROMDEVICE);
  2220. skb = np->get_rx_ctx->skb;
  2221. np->get_rx_ctx->skb = NULL;
  2222. {
  2223. int j;
  2224. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2225. for (j=0; j<64; j++) {
  2226. if ((j%16) == 0)
  2227. dprintk("\n%03x:", j);
  2228. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2229. }
  2230. dprintk("\n");
  2231. }
  2232. /* look at what we actually got: */
  2233. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2234. len = flags & LEN_MASK_V2;
  2235. if (unlikely(flags & NV_RX2_ERROR)) {
  2236. if (flags & NV_RX2_ERROR4) {
  2237. len = nv_getlen(dev, skb->data, len);
  2238. if (len < 0) {
  2239. dev_kfree_skb(skb);
  2240. goto next_pkt;
  2241. }
  2242. }
  2243. /* framing errors are soft errors */
  2244. else if (flags & NV_RX2_FRAMINGERR) {
  2245. if (flags & NV_RX2_SUBSTRACT1) {
  2246. len--;
  2247. }
  2248. }
  2249. /* the rest are hard errors */
  2250. else {
  2251. dev_kfree_skb(skb);
  2252. goto next_pkt;
  2253. }
  2254. }
  2255. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2256. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2257. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2258. /* got a valid packet - forward it to the network core */
  2259. skb_put(skb, len);
  2260. skb->protocol = eth_type_trans(skb, dev);
  2261. prefetch(skb->data);
  2262. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2263. dev->name, len, skb->protocol);
  2264. if (likely(!np->vlangrp)) {
  2265. #ifdef CONFIG_FORCEDETH_NAPI
  2266. netif_receive_skb(skb);
  2267. #else
  2268. netif_rx(skb);
  2269. #endif
  2270. } else {
  2271. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2272. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2273. #ifdef CONFIG_FORCEDETH_NAPI
  2274. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2275. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2276. #else
  2277. vlan_hwaccel_rx(skb, np->vlangrp,
  2278. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2279. #endif
  2280. } else {
  2281. #ifdef CONFIG_FORCEDETH_NAPI
  2282. netif_receive_skb(skb);
  2283. #else
  2284. netif_rx(skb);
  2285. #endif
  2286. }
  2287. }
  2288. dev->last_rx = jiffies;
  2289. dev->stats.rx_packets++;
  2290. dev->stats.rx_bytes += len;
  2291. } else {
  2292. dev_kfree_skb(skb);
  2293. }
  2294. next_pkt:
  2295. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2296. np->get_rx.ex = np->first_rx.ex;
  2297. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2298. np->get_rx_ctx = np->first_rx_ctx;
  2299. rx_work++;
  2300. }
  2301. return rx_work;
  2302. }
  2303. static void set_bufsize(struct net_device *dev)
  2304. {
  2305. struct fe_priv *np = netdev_priv(dev);
  2306. if (dev->mtu <= ETH_DATA_LEN)
  2307. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2308. else
  2309. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2310. }
  2311. /*
  2312. * nv_change_mtu: dev->change_mtu function
  2313. * Called with dev_base_lock held for read.
  2314. */
  2315. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2316. {
  2317. struct fe_priv *np = netdev_priv(dev);
  2318. int old_mtu;
  2319. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2320. return -EINVAL;
  2321. old_mtu = dev->mtu;
  2322. dev->mtu = new_mtu;
  2323. /* return early if the buffer sizes will not change */
  2324. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2325. return 0;
  2326. if (old_mtu == new_mtu)
  2327. return 0;
  2328. /* synchronized against open : rtnl_lock() held by caller */
  2329. if (netif_running(dev)) {
  2330. u8 __iomem *base = get_hwbase(dev);
  2331. /*
  2332. * It seems that the nic preloads valid ring entries into an
  2333. * internal buffer. The procedure for flushing everything is
  2334. * guessed, there is probably a simpler approach.
  2335. * Changing the MTU is a rare event, it shouldn't matter.
  2336. */
  2337. nv_disable_irq(dev);
  2338. netif_tx_lock_bh(dev);
  2339. spin_lock(&np->lock);
  2340. /* stop engines */
  2341. nv_stop_rx(dev);
  2342. nv_stop_tx(dev);
  2343. nv_txrx_reset(dev);
  2344. /* drain rx queue */
  2345. nv_drain_rx(dev);
  2346. nv_drain_tx(dev);
  2347. /* reinit driver view of the rx queue */
  2348. set_bufsize(dev);
  2349. if (nv_init_ring(dev)) {
  2350. if (!np->in_shutdown)
  2351. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2352. }
  2353. /* reinit nic view of the rx queue */
  2354. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2355. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2356. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2357. base + NvRegRingSizes);
  2358. pci_push(base);
  2359. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2360. pci_push(base);
  2361. /* restart rx engine */
  2362. nv_start_rx(dev);
  2363. nv_start_tx(dev);
  2364. spin_unlock(&np->lock);
  2365. netif_tx_unlock_bh(dev);
  2366. nv_enable_irq(dev);
  2367. }
  2368. return 0;
  2369. }
  2370. static void nv_copy_mac_to_hw(struct net_device *dev)
  2371. {
  2372. u8 __iomem *base = get_hwbase(dev);
  2373. u32 mac[2];
  2374. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2375. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2376. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2377. writel(mac[0], base + NvRegMacAddrA);
  2378. writel(mac[1], base + NvRegMacAddrB);
  2379. }
  2380. /*
  2381. * nv_set_mac_address: dev->set_mac_address function
  2382. * Called with rtnl_lock() held.
  2383. */
  2384. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2385. {
  2386. struct fe_priv *np = netdev_priv(dev);
  2387. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2388. if (!is_valid_ether_addr(macaddr->sa_data))
  2389. return -EADDRNOTAVAIL;
  2390. /* synchronized against open : rtnl_lock() held by caller */
  2391. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2392. if (netif_running(dev)) {
  2393. netif_tx_lock_bh(dev);
  2394. spin_lock_irq(&np->lock);
  2395. /* stop rx engine */
  2396. nv_stop_rx(dev);
  2397. /* set mac address */
  2398. nv_copy_mac_to_hw(dev);
  2399. /* restart rx engine */
  2400. nv_start_rx(dev);
  2401. spin_unlock_irq(&np->lock);
  2402. netif_tx_unlock_bh(dev);
  2403. } else {
  2404. nv_copy_mac_to_hw(dev);
  2405. }
  2406. return 0;
  2407. }
  2408. /*
  2409. * nv_set_multicast: dev->set_multicast function
  2410. * Called with netif_tx_lock held.
  2411. */
  2412. static void nv_set_multicast(struct net_device *dev)
  2413. {
  2414. struct fe_priv *np = netdev_priv(dev);
  2415. u8 __iomem *base = get_hwbase(dev);
  2416. u32 addr[2];
  2417. u32 mask[2];
  2418. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2419. memset(addr, 0, sizeof(addr));
  2420. memset(mask, 0, sizeof(mask));
  2421. if (dev->flags & IFF_PROMISC) {
  2422. pff |= NVREG_PFF_PROMISC;
  2423. } else {
  2424. pff |= NVREG_PFF_MYADDR;
  2425. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2426. u32 alwaysOff[2];
  2427. u32 alwaysOn[2];
  2428. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2429. if (dev->flags & IFF_ALLMULTI) {
  2430. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2431. } else {
  2432. struct dev_mc_list *walk;
  2433. walk = dev->mc_list;
  2434. while (walk != NULL) {
  2435. u32 a, b;
  2436. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2437. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2438. alwaysOn[0] &= a;
  2439. alwaysOff[0] &= ~a;
  2440. alwaysOn[1] &= b;
  2441. alwaysOff[1] &= ~b;
  2442. walk = walk->next;
  2443. }
  2444. }
  2445. addr[0] = alwaysOn[0];
  2446. addr[1] = alwaysOn[1];
  2447. mask[0] = alwaysOn[0] | alwaysOff[0];
  2448. mask[1] = alwaysOn[1] | alwaysOff[1];
  2449. } else {
  2450. mask[0] = NVREG_MCASTMASKA_NONE;
  2451. mask[1] = NVREG_MCASTMASKB_NONE;
  2452. }
  2453. }
  2454. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2455. pff |= NVREG_PFF_ALWAYS;
  2456. spin_lock_irq(&np->lock);
  2457. nv_stop_rx(dev);
  2458. writel(addr[0], base + NvRegMulticastAddrA);
  2459. writel(addr[1], base + NvRegMulticastAddrB);
  2460. writel(mask[0], base + NvRegMulticastMaskA);
  2461. writel(mask[1], base + NvRegMulticastMaskB);
  2462. writel(pff, base + NvRegPacketFilterFlags);
  2463. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2464. dev->name);
  2465. nv_start_rx(dev);
  2466. spin_unlock_irq(&np->lock);
  2467. }
  2468. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2469. {
  2470. struct fe_priv *np = netdev_priv(dev);
  2471. u8 __iomem *base = get_hwbase(dev);
  2472. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2473. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2474. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2475. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2476. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2477. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2478. } else {
  2479. writel(pff, base + NvRegPacketFilterFlags);
  2480. }
  2481. }
  2482. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2483. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2484. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2485. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2486. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2487. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2488. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2489. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2490. writel(pause_enable, base + NvRegTxPauseFrame);
  2491. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2492. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2493. } else {
  2494. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2495. writel(regmisc, base + NvRegMisc1);
  2496. }
  2497. }
  2498. }
  2499. /**
  2500. * nv_update_linkspeed: Setup the MAC according to the link partner
  2501. * @dev: Network device to be configured
  2502. *
  2503. * The function queries the PHY and checks if there is a link partner.
  2504. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2505. * set to 10 MBit HD.
  2506. *
  2507. * The function returns 0 if there is no link partner and 1 if there is
  2508. * a good link partner.
  2509. */
  2510. static int nv_update_linkspeed(struct net_device *dev)
  2511. {
  2512. struct fe_priv *np = netdev_priv(dev);
  2513. u8 __iomem *base = get_hwbase(dev);
  2514. int adv = 0;
  2515. int lpa = 0;
  2516. int adv_lpa, adv_pause, lpa_pause;
  2517. int newls = np->linkspeed;
  2518. int newdup = np->duplex;
  2519. int mii_status;
  2520. int retval = 0;
  2521. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2522. u32 txrxFlags = 0;
  2523. u32 phy_exp;
  2524. /* BMSR_LSTATUS is latched, read it twice:
  2525. * we want the current value.
  2526. */
  2527. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2528. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2529. if (!(mii_status & BMSR_LSTATUS)) {
  2530. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2531. dev->name);
  2532. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2533. newdup = 0;
  2534. retval = 0;
  2535. goto set_speed;
  2536. }
  2537. if (np->autoneg == 0) {
  2538. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2539. dev->name, np->fixed_mode);
  2540. if (np->fixed_mode & LPA_100FULL) {
  2541. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2542. newdup = 1;
  2543. } else if (np->fixed_mode & LPA_100HALF) {
  2544. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2545. newdup = 0;
  2546. } else if (np->fixed_mode & LPA_10FULL) {
  2547. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2548. newdup = 1;
  2549. } else {
  2550. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2551. newdup = 0;
  2552. }
  2553. retval = 1;
  2554. goto set_speed;
  2555. }
  2556. /* check auto negotiation is complete */
  2557. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2558. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2559. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2560. newdup = 0;
  2561. retval = 0;
  2562. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2563. goto set_speed;
  2564. }
  2565. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2566. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2567. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2568. dev->name, adv, lpa);
  2569. retval = 1;
  2570. if (np->gigabit == PHY_GIGABIT) {
  2571. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2572. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2573. if ((control_1000 & ADVERTISE_1000FULL) &&
  2574. (status_1000 & LPA_1000FULL)) {
  2575. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2576. dev->name);
  2577. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2578. newdup = 1;
  2579. goto set_speed;
  2580. }
  2581. }
  2582. /* FIXME: handle parallel detection properly */
  2583. adv_lpa = lpa & adv;
  2584. if (adv_lpa & LPA_100FULL) {
  2585. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2586. newdup = 1;
  2587. } else if (adv_lpa & LPA_100HALF) {
  2588. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2589. newdup = 0;
  2590. } else if (adv_lpa & LPA_10FULL) {
  2591. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2592. newdup = 1;
  2593. } else if (adv_lpa & LPA_10HALF) {
  2594. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2595. newdup = 0;
  2596. } else {
  2597. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2598. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2599. newdup = 0;
  2600. }
  2601. set_speed:
  2602. if (np->duplex == newdup && np->linkspeed == newls)
  2603. return retval;
  2604. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2605. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2606. np->duplex = newdup;
  2607. np->linkspeed = newls;
  2608. /* The transmitter and receiver must be restarted for safe update */
  2609. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2610. txrxFlags |= NV_RESTART_TX;
  2611. nv_stop_tx(dev);
  2612. }
  2613. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2614. txrxFlags |= NV_RESTART_RX;
  2615. nv_stop_rx(dev);
  2616. }
  2617. if (np->gigabit == PHY_GIGABIT) {
  2618. phyreg = readl(base + NvRegRandomSeed);
  2619. phyreg &= ~(0x3FF00);
  2620. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2621. phyreg |= NVREG_RNDSEED_FORCE3;
  2622. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2623. phyreg |= NVREG_RNDSEED_FORCE2;
  2624. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2625. phyreg |= NVREG_RNDSEED_FORCE;
  2626. writel(phyreg, base + NvRegRandomSeed);
  2627. }
  2628. phyreg = readl(base + NvRegPhyInterface);
  2629. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2630. if (np->duplex == 0)
  2631. phyreg |= PHY_HALF;
  2632. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2633. phyreg |= PHY_100;
  2634. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2635. phyreg |= PHY_1000;
  2636. writel(phyreg, base + NvRegPhyInterface);
  2637. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2638. if (phyreg & PHY_RGMII) {
  2639. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2640. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2641. } else {
  2642. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2643. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2644. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2645. else
  2646. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2647. } else {
  2648. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2649. }
  2650. }
  2651. } else {
  2652. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2653. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2654. else
  2655. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2656. }
  2657. writel(txreg, base + NvRegTxDeferral);
  2658. if (np->desc_ver == DESC_VER_1) {
  2659. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2660. } else {
  2661. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2662. txreg = NVREG_TX_WM_DESC2_3_1000;
  2663. else
  2664. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2665. }
  2666. writel(txreg, base + NvRegTxWatermark);
  2667. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2668. base + NvRegMisc1);
  2669. pci_push(base);
  2670. writel(np->linkspeed, base + NvRegLinkSpeed);
  2671. pci_push(base);
  2672. pause_flags = 0;
  2673. /* setup pause frame */
  2674. if (np->duplex != 0) {
  2675. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2676. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2677. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2678. switch (adv_pause) {
  2679. case ADVERTISE_PAUSE_CAP:
  2680. if (lpa_pause & LPA_PAUSE_CAP) {
  2681. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2682. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2683. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2684. }
  2685. break;
  2686. case ADVERTISE_PAUSE_ASYM:
  2687. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2688. {
  2689. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2690. }
  2691. break;
  2692. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2693. if (lpa_pause & LPA_PAUSE_CAP)
  2694. {
  2695. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2696. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2697. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2698. }
  2699. if (lpa_pause == LPA_PAUSE_ASYM)
  2700. {
  2701. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2702. }
  2703. break;
  2704. }
  2705. } else {
  2706. pause_flags = np->pause_flags;
  2707. }
  2708. }
  2709. nv_update_pause(dev, pause_flags);
  2710. if (txrxFlags & NV_RESTART_TX)
  2711. nv_start_tx(dev);
  2712. if (txrxFlags & NV_RESTART_RX)
  2713. nv_start_rx(dev);
  2714. return retval;
  2715. }
  2716. static void nv_linkchange(struct net_device *dev)
  2717. {
  2718. if (nv_update_linkspeed(dev)) {
  2719. if (!netif_carrier_ok(dev)) {
  2720. netif_carrier_on(dev);
  2721. printk(KERN_INFO "%s: link up.\n", dev->name);
  2722. nv_start_rx(dev);
  2723. }
  2724. } else {
  2725. if (netif_carrier_ok(dev)) {
  2726. netif_carrier_off(dev);
  2727. printk(KERN_INFO "%s: link down.\n", dev->name);
  2728. nv_stop_rx(dev);
  2729. }
  2730. }
  2731. }
  2732. static void nv_link_irq(struct net_device *dev)
  2733. {
  2734. u8 __iomem *base = get_hwbase(dev);
  2735. u32 miistat;
  2736. miistat = readl(base + NvRegMIIStatus);
  2737. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2738. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2739. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2740. nv_linkchange(dev);
  2741. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2742. }
  2743. static irqreturn_t nv_nic_irq(int foo, void *data)
  2744. {
  2745. struct net_device *dev = (struct net_device *) data;
  2746. struct fe_priv *np = netdev_priv(dev);
  2747. u8 __iomem *base = get_hwbase(dev);
  2748. u32 events;
  2749. int i;
  2750. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2751. for (i=0; ; i++) {
  2752. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2753. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2754. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2755. } else {
  2756. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2757. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2758. }
  2759. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2760. if (!(events & np->irqmask))
  2761. break;
  2762. spin_lock(&np->lock);
  2763. nv_tx_done(dev);
  2764. spin_unlock(&np->lock);
  2765. #ifdef CONFIG_FORCEDETH_NAPI
  2766. if (events & NVREG_IRQ_RX_ALL) {
  2767. netif_rx_schedule(dev, &np->napi);
  2768. /* Disable furthur receive irq's */
  2769. spin_lock(&np->lock);
  2770. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2771. if (np->msi_flags & NV_MSI_X_ENABLED)
  2772. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2773. else
  2774. writel(np->irqmask, base + NvRegIrqMask);
  2775. spin_unlock(&np->lock);
  2776. }
  2777. #else
  2778. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2779. if (unlikely(nv_alloc_rx(dev))) {
  2780. spin_lock(&np->lock);
  2781. if (!np->in_shutdown)
  2782. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2783. spin_unlock(&np->lock);
  2784. }
  2785. }
  2786. #endif
  2787. if (unlikely(events & NVREG_IRQ_LINK)) {
  2788. spin_lock(&np->lock);
  2789. nv_link_irq(dev);
  2790. spin_unlock(&np->lock);
  2791. }
  2792. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2793. spin_lock(&np->lock);
  2794. nv_linkchange(dev);
  2795. spin_unlock(&np->lock);
  2796. np->link_timeout = jiffies + LINK_TIMEOUT;
  2797. }
  2798. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2799. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2800. dev->name, events);
  2801. }
  2802. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2803. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2804. dev->name, events);
  2805. }
  2806. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2807. spin_lock(&np->lock);
  2808. /* disable interrupts on the nic */
  2809. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2810. writel(0, base + NvRegIrqMask);
  2811. else
  2812. writel(np->irqmask, base + NvRegIrqMask);
  2813. pci_push(base);
  2814. if (!np->in_shutdown) {
  2815. np->nic_poll_irq = np->irqmask;
  2816. np->recover_error = 1;
  2817. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2818. }
  2819. spin_unlock(&np->lock);
  2820. break;
  2821. }
  2822. if (unlikely(i > max_interrupt_work)) {
  2823. spin_lock(&np->lock);
  2824. /* disable interrupts on the nic */
  2825. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2826. writel(0, base + NvRegIrqMask);
  2827. else
  2828. writel(np->irqmask, base + NvRegIrqMask);
  2829. pci_push(base);
  2830. if (!np->in_shutdown) {
  2831. np->nic_poll_irq = np->irqmask;
  2832. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2833. }
  2834. spin_unlock(&np->lock);
  2835. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2836. break;
  2837. }
  2838. }
  2839. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2840. return IRQ_RETVAL(i);
  2841. }
  2842. /**
  2843. * All _optimized functions are used to help increase performance
  2844. * (reduce CPU and increase throughput). They use descripter version 3,
  2845. * compiler directives, and reduce memory accesses.
  2846. */
  2847. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2848. {
  2849. struct net_device *dev = (struct net_device *) data;
  2850. struct fe_priv *np = netdev_priv(dev);
  2851. u8 __iomem *base = get_hwbase(dev);
  2852. u32 events;
  2853. int i;
  2854. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2855. for (i=0; ; i++) {
  2856. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2857. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2858. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2859. } else {
  2860. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2861. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2862. }
  2863. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2864. if (!(events & np->irqmask))
  2865. break;
  2866. spin_lock(&np->lock);
  2867. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2868. spin_unlock(&np->lock);
  2869. #ifdef CONFIG_FORCEDETH_NAPI
  2870. if (events & NVREG_IRQ_RX_ALL) {
  2871. netif_rx_schedule(dev, &np->napi);
  2872. /* Disable furthur receive irq's */
  2873. spin_lock(&np->lock);
  2874. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2875. if (np->msi_flags & NV_MSI_X_ENABLED)
  2876. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2877. else
  2878. writel(np->irqmask, base + NvRegIrqMask);
  2879. spin_unlock(&np->lock);
  2880. }
  2881. #else
  2882. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2883. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2884. spin_lock(&np->lock);
  2885. if (!np->in_shutdown)
  2886. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2887. spin_unlock(&np->lock);
  2888. }
  2889. }
  2890. #endif
  2891. if (unlikely(events & NVREG_IRQ_LINK)) {
  2892. spin_lock(&np->lock);
  2893. nv_link_irq(dev);
  2894. spin_unlock(&np->lock);
  2895. }
  2896. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2897. spin_lock(&np->lock);
  2898. nv_linkchange(dev);
  2899. spin_unlock(&np->lock);
  2900. np->link_timeout = jiffies + LINK_TIMEOUT;
  2901. }
  2902. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2903. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2904. dev->name, events);
  2905. }
  2906. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2907. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2908. dev->name, events);
  2909. }
  2910. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2911. spin_lock(&np->lock);
  2912. /* disable interrupts on the nic */
  2913. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2914. writel(0, base + NvRegIrqMask);
  2915. else
  2916. writel(np->irqmask, base + NvRegIrqMask);
  2917. pci_push(base);
  2918. if (!np->in_shutdown) {
  2919. np->nic_poll_irq = np->irqmask;
  2920. np->recover_error = 1;
  2921. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2922. }
  2923. spin_unlock(&np->lock);
  2924. break;
  2925. }
  2926. if (unlikely(i > max_interrupt_work)) {
  2927. spin_lock(&np->lock);
  2928. /* disable interrupts on the nic */
  2929. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2930. writel(0, base + NvRegIrqMask);
  2931. else
  2932. writel(np->irqmask, base + NvRegIrqMask);
  2933. pci_push(base);
  2934. if (!np->in_shutdown) {
  2935. np->nic_poll_irq = np->irqmask;
  2936. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2937. }
  2938. spin_unlock(&np->lock);
  2939. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2940. break;
  2941. }
  2942. }
  2943. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2944. return IRQ_RETVAL(i);
  2945. }
  2946. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2947. {
  2948. struct net_device *dev = (struct net_device *) data;
  2949. struct fe_priv *np = netdev_priv(dev);
  2950. u8 __iomem *base = get_hwbase(dev);
  2951. u32 events;
  2952. int i;
  2953. unsigned long flags;
  2954. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2955. for (i=0; ; i++) {
  2956. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2957. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2958. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2959. if (!(events & np->irqmask))
  2960. break;
  2961. spin_lock_irqsave(&np->lock, flags);
  2962. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2963. spin_unlock_irqrestore(&np->lock, flags);
  2964. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2965. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2966. dev->name, events);
  2967. }
  2968. if (unlikely(i > max_interrupt_work)) {
  2969. spin_lock_irqsave(&np->lock, flags);
  2970. /* disable interrupts on the nic */
  2971. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2972. pci_push(base);
  2973. if (!np->in_shutdown) {
  2974. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2975. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2976. }
  2977. spin_unlock_irqrestore(&np->lock, flags);
  2978. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2979. break;
  2980. }
  2981. }
  2982. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2983. return IRQ_RETVAL(i);
  2984. }
  2985. #ifdef CONFIG_FORCEDETH_NAPI
  2986. static int nv_napi_poll(struct napi_struct *napi, int budget)
  2987. {
  2988. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  2989. struct net_device *dev = np->dev;
  2990. u8 __iomem *base = get_hwbase(dev);
  2991. unsigned long flags;
  2992. int pkts, retcode;
  2993. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2994. pkts = nv_rx_process(dev, budget);
  2995. retcode = nv_alloc_rx(dev);
  2996. } else {
  2997. pkts = nv_rx_process_optimized(dev, budget);
  2998. retcode = nv_alloc_rx_optimized(dev);
  2999. }
  3000. if (retcode) {
  3001. spin_lock_irqsave(&np->lock, flags);
  3002. if (!np->in_shutdown)
  3003. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3004. spin_unlock_irqrestore(&np->lock, flags);
  3005. }
  3006. if (pkts < budget) {
  3007. /* re-enable receive interrupts */
  3008. spin_lock_irqsave(&np->lock, flags);
  3009. __netif_rx_complete(dev, napi);
  3010. np->irqmask |= NVREG_IRQ_RX_ALL;
  3011. if (np->msi_flags & NV_MSI_X_ENABLED)
  3012. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3013. else
  3014. writel(np->irqmask, base + NvRegIrqMask);
  3015. spin_unlock_irqrestore(&np->lock, flags);
  3016. }
  3017. return pkts;
  3018. }
  3019. #endif
  3020. #ifdef CONFIG_FORCEDETH_NAPI
  3021. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3022. {
  3023. struct net_device *dev = (struct net_device *) data;
  3024. struct fe_priv *np = netdev_priv(dev);
  3025. u8 __iomem *base = get_hwbase(dev);
  3026. u32 events;
  3027. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3028. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3029. if (events) {
  3030. netif_rx_schedule(dev, &np->napi);
  3031. /* disable receive interrupts on the nic */
  3032. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3033. pci_push(base);
  3034. }
  3035. return IRQ_HANDLED;
  3036. }
  3037. #else
  3038. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3039. {
  3040. struct net_device *dev = (struct net_device *) data;
  3041. struct fe_priv *np = netdev_priv(dev);
  3042. u8 __iomem *base = get_hwbase(dev);
  3043. u32 events;
  3044. int i;
  3045. unsigned long flags;
  3046. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3047. for (i=0; ; i++) {
  3048. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3049. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3050. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3051. if (!(events & np->irqmask))
  3052. break;
  3053. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3054. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3055. spin_lock_irqsave(&np->lock, flags);
  3056. if (!np->in_shutdown)
  3057. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3058. spin_unlock_irqrestore(&np->lock, flags);
  3059. }
  3060. }
  3061. if (unlikely(i > max_interrupt_work)) {
  3062. spin_lock_irqsave(&np->lock, flags);
  3063. /* disable interrupts on the nic */
  3064. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3065. pci_push(base);
  3066. if (!np->in_shutdown) {
  3067. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3068. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3069. }
  3070. spin_unlock_irqrestore(&np->lock, flags);
  3071. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3072. break;
  3073. }
  3074. }
  3075. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3076. return IRQ_RETVAL(i);
  3077. }
  3078. #endif
  3079. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3080. {
  3081. struct net_device *dev = (struct net_device *) data;
  3082. struct fe_priv *np = netdev_priv(dev);
  3083. u8 __iomem *base = get_hwbase(dev);
  3084. u32 events;
  3085. int i;
  3086. unsigned long flags;
  3087. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3088. for (i=0; ; i++) {
  3089. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3090. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3091. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3092. if (!(events & np->irqmask))
  3093. break;
  3094. /* check tx in case we reached max loop limit in tx isr */
  3095. spin_lock_irqsave(&np->lock, flags);
  3096. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3097. spin_unlock_irqrestore(&np->lock, flags);
  3098. if (events & NVREG_IRQ_LINK) {
  3099. spin_lock_irqsave(&np->lock, flags);
  3100. nv_link_irq(dev);
  3101. spin_unlock_irqrestore(&np->lock, flags);
  3102. }
  3103. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3104. spin_lock_irqsave(&np->lock, flags);
  3105. nv_linkchange(dev);
  3106. spin_unlock_irqrestore(&np->lock, flags);
  3107. np->link_timeout = jiffies + LINK_TIMEOUT;
  3108. }
  3109. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3110. spin_lock_irq(&np->lock);
  3111. /* disable interrupts on the nic */
  3112. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3113. pci_push(base);
  3114. if (!np->in_shutdown) {
  3115. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3116. np->recover_error = 1;
  3117. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3118. }
  3119. spin_unlock_irq(&np->lock);
  3120. break;
  3121. }
  3122. if (events & (NVREG_IRQ_UNKNOWN)) {
  3123. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3124. dev->name, events);
  3125. }
  3126. if (unlikely(i > max_interrupt_work)) {
  3127. spin_lock_irqsave(&np->lock, flags);
  3128. /* disable interrupts on the nic */
  3129. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3130. pci_push(base);
  3131. if (!np->in_shutdown) {
  3132. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3133. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3134. }
  3135. spin_unlock_irqrestore(&np->lock, flags);
  3136. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3137. break;
  3138. }
  3139. }
  3140. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3141. return IRQ_RETVAL(i);
  3142. }
  3143. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3144. {
  3145. struct net_device *dev = (struct net_device *) data;
  3146. struct fe_priv *np = netdev_priv(dev);
  3147. u8 __iomem *base = get_hwbase(dev);
  3148. u32 events;
  3149. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3150. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3151. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3152. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3153. } else {
  3154. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3155. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3156. }
  3157. pci_push(base);
  3158. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3159. if (!(events & NVREG_IRQ_TIMER))
  3160. return IRQ_RETVAL(0);
  3161. spin_lock(&np->lock);
  3162. np->intr_test = 1;
  3163. spin_unlock(&np->lock);
  3164. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3165. return IRQ_RETVAL(1);
  3166. }
  3167. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3168. {
  3169. u8 __iomem *base = get_hwbase(dev);
  3170. int i;
  3171. u32 msixmap = 0;
  3172. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3173. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3174. * the remaining 8 interrupts.
  3175. */
  3176. for (i = 0; i < 8; i++) {
  3177. if ((irqmask >> i) & 0x1) {
  3178. msixmap |= vector << (i << 2);
  3179. }
  3180. }
  3181. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3182. msixmap = 0;
  3183. for (i = 0; i < 8; i++) {
  3184. if ((irqmask >> (i + 8)) & 0x1) {
  3185. msixmap |= vector << (i << 2);
  3186. }
  3187. }
  3188. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3189. }
  3190. static int nv_request_irq(struct net_device *dev, int intr_test)
  3191. {
  3192. struct fe_priv *np = get_nvpriv(dev);
  3193. u8 __iomem *base = get_hwbase(dev);
  3194. int ret = 1;
  3195. int i;
  3196. irqreturn_t (*handler)(int foo, void *data);
  3197. if (intr_test) {
  3198. handler = nv_nic_irq_test;
  3199. } else {
  3200. if (np->desc_ver == DESC_VER_3)
  3201. handler = nv_nic_irq_optimized;
  3202. else
  3203. handler = nv_nic_irq;
  3204. }
  3205. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3206. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3207. np->msi_x_entry[i].entry = i;
  3208. }
  3209. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3210. np->msi_flags |= NV_MSI_X_ENABLED;
  3211. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3212. /* Request irq for rx handling */
  3213. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3214. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3215. pci_disable_msix(np->pci_dev);
  3216. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3217. goto out_err;
  3218. }
  3219. /* Request irq for tx handling */
  3220. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3221. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3222. pci_disable_msix(np->pci_dev);
  3223. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3224. goto out_free_rx;
  3225. }
  3226. /* Request irq for link and timer handling */
  3227. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3228. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3229. pci_disable_msix(np->pci_dev);
  3230. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3231. goto out_free_tx;
  3232. }
  3233. /* map interrupts to their respective vector */
  3234. writel(0, base + NvRegMSIXMap0);
  3235. writel(0, base + NvRegMSIXMap1);
  3236. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3237. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3238. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3239. } else {
  3240. /* Request irq for all interrupts */
  3241. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3242. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3243. pci_disable_msix(np->pci_dev);
  3244. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3245. goto out_err;
  3246. }
  3247. /* map interrupts to vector 0 */
  3248. writel(0, base + NvRegMSIXMap0);
  3249. writel(0, base + NvRegMSIXMap1);
  3250. }
  3251. }
  3252. }
  3253. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3254. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3255. np->msi_flags |= NV_MSI_ENABLED;
  3256. dev->irq = np->pci_dev->irq;
  3257. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3258. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3259. pci_disable_msi(np->pci_dev);
  3260. np->msi_flags &= ~NV_MSI_ENABLED;
  3261. dev->irq = np->pci_dev->irq;
  3262. goto out_err;
  3263. }
  3264. /* map interrupts to vector 0 */
  3265. writel(0, base + NvRegMSIMap0);
  3266. writel(0, base + NvRegMSIMap1);
  3267. /* enable msi vector 0 */
  3268. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3269. }
  3270. }
  3271. if (ret != 0) {
  3272. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3273. goto out_err;
  3274. }
  3275. return 0;
  3276. out_free_tx:
  3277. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3278. out_free_rx:
  3279. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3280. out_err:
  3281. return 1;
  3282. }
  3283. static void nv_free_irq(struct net_device *dev)
  3284. {
  3285. struct fe_priv *np = get_nvpriv(dev);
  3286. int i;
  3287. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3288. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3289. free_irq(np->msi_x_entry[i].vector, dev);
  3290. }
  3291. pci_disable_msix(np->pci_dev);
  3292. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3293. } else {
  3294. free_irq(np->pci_dev->irq, dev);
  3295. if (np->msi_flags & NV_MSI_ENABLED) {
  3296. pci_disable_msi(np->pci_dev);
  3297. np->msi_flags &= ~NV_MSI_ENABLED;
  3298. }
  3299. }
  3300. }
  3301. static void nv_do_nic_poll(unsigned long data)
  3302. {
  3303. struct net_device *dev = (struct net_device *) data;
  3304. struct fe_priv *np = netdev_priv(dev);
  3305. u8 __iomem *base = get_hwbase(dev);
  3306. u32 mask = 0;
  3307. /*
  3308. * First disable irq(s) and then
  3309. * reenable interrupts on the nic, we have to do this before calling
  3310. * nv_nic_irq because that may decide to do otherwise
  3311. */
  3312. if (!using_multi_irqs(dev)) {
  3313. if (np->msi_flags & NV_MSI_X_ENABLED)
  3314. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3315. else
  3316. disable_irq_lockdep(np->pci_dev->irq);
  3317. mask = np->irqmask;
  3318. } else {
  3319. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3320. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3321. mask |= NVREG_IRQ_RX_ALL;
  3322. }
  3323. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3324. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3325. mask |= NVREG_IRQ_TX_ALL;
  3326. }
  3327. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3328. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3329. mask |= NVREG_IRQ_OTHER;
  3330. }
  3331. }
  3332. np->nic_poll_irq = 0;
  3333. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3334. if (np->recover_error) {
  3335. np->recover_error = 0;
  3336. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3337. if (netif_running(dev)) {
  3338. netif_tx_lock_bh(dev);
  3339. spin_lock(&np->lock);
  3340. /* stop engines */
  3341. nv_stop_rx(dev);
  3342. nv_stop_tx(dev);
  3343. nv_txrx_reset(dev);
  3344. /* drain rx queue */
  3345. nv_drain_rx(dev);
  3346. nv_drain_tx(dev);
  3347. /* reinit driver view of the rx queue */
  3348. set_bufsize(dev);
  3349. if (nv_init_ring(dev)) {
  3350. if (!np->in_shutdown)
  3351. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3352. }
  3353. /* reinit nic view of the rx queue */
  3354. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3355. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3356. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3357. base + NvRegRingSizes);
  3358. pci_push(base);
  3359. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3360. pci_push(base);
  3361. /* restart rx engine */
  3362. nv_start_rx(dev);
  3363. nv_start_tx(dev);
  3364. spin_unlock(&np->lock);
  3365. netif_tx_unlock_bh(dev);
  3366. }
  3367. }
  3368. writel(mask, base + NvRegIrqMask);
  3369. pci_push(base);
  3370. if (!using_multi_irqs(dev)) {
  3371. if (np->desc_ver == DESC_VER_3)
  3372. nv_nic_irq_optimized(0, dev);
  3373. else
  3374. nv_nic_irq(0, dev);
  3375. if (np->msi_flags & NV_MSI_X_ENABLED)
  3376. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3377. else
  3378. enable_irq_lockdep(np->pci_dev->irq);
  3379. } else {
  3380. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3381. nv_nic_irq_rx(0, dev);
  3382. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3383. }
  3384. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3385. nv_nic_irq_tx(0, dev);
  3386. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3387. }
  3388. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3389. nv_nic_irq_other(0, dev);
  3390. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3391. }
  3392. }
  3393. }
  3394. #ifdef CONFIG_NET_POLL_CONTROLLER
  3395. static void nv_poll_controller(struct net_device *dev)
  3396. {
  3397. nv_do_nic_poll((unsigned long) dev);
  3398. }
  3399. #endif
  3400. static void nv_do_stats_poll(unsigned long data)
  3401. {
  3402. struct net_device *dev = (struct net_device *) data;
  3403. struct fe_priv *np = netdev_priv(dev);
  3404. nv_get_hw_stats(dev);
  3405. if (!np->in_shutdown)
  3406. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3407. }
  3408. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3409. {
  3410. struct fe_priv *np = netdev_priv(dev);
  3411. strcpy(info->driver, DRV_NAME);
  3412. strcpy(info->version, FORCEDETH_VERSION);
  3413. strcpy(info->bus_info, pci_name(np->pci_dev));
  3414. }
  3415. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3416. {
  3417. struct fe_priv *np = netdev_priv(dev);
  3418. wolinfo->supported = WAKE_MAGIC;
  3419. spin_lock_irq(&np->lock);
  3420. if (np->wolenabled)
  3421. wolinfo->wolopts = WAKE_MAGIC;
  3422. spin_unlock_irq(&np->lock);
  3423. }
  3424. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3425. {
  3426. struct fe_priv *np = netdev_priv(dev);
  3427. u8 __iomem *base = get_hwbase(dev);
  3428. u32 flags = 0;
  3429. if (wolinfo->wolopts == 0) {
  3430. np->wolenabled = 0;
  3431. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3432. np->wolenabled = 1;
  3433. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3434. }
  3435. if (netif_running(dev)) {
  3436. spin_lock_irq(&np->lock);
  3437. writel(flags, base + NvRegWakeUpFlags);
  3438. spin_unlock_irq(&np->lock);
  3439. }
  3440. return 0;
  3441. }
  3442. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3443. {
  3444. struct fe_priv *np = netdev_priv(dev);
  3445. int adv;
  3446. spin_lock_irq(&np->lock);
  3447. ecmd->port = PORT_MII;
  3448. if (!netif_running(dev)) {
  3449. /* We do not track link speed / duplex setting if the
  3450. * interface is disabled. Force a link check */
  3451. if (nv_update_linkspeed(dev)) {
  3452. if (!netif_carrier_ok(dev))
  3453. netif_carrier_on(dev);
  3454. } else {
  3455. if (netif_carrier_ok(dev))
  3456. netif_carrier_off(dev);
  3457. }
  3458. }
  3459. if (netif_carrier_ok(dev)) {
  3460. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3461. case NVREG_LINKSPEED_10:
  3462. ecmd->speed = SPEED_10;
  3463. break;
  3464. case NVREG_LINKSPEED_100:
  3465. ecmd->speed = SPEED_100;
  3466. break;
  3467. case NVREG_LINKSPEED_1000:
  3468. ecmd->speed = SPEED_1000;
  3469. break;
  3470. }
  3471. ecmd->duplex = DUPLEX_HALF;
  3472. if (np->duplex)
  3473. ecmd->duplex = DUPLEX_FULL;
  3474. } else {
  3475. ecmd->speed = -1;
  3476. ecmd->duplex = -1;
  3477. }
  3478. ecmd->autoneg = np->autoneg;
  3479. ecmd->advertising = ADVERTISED_MII;
  3480. if (np->autoneg) {
  3481. ecmd->advertising |= ADVERTISED_Autoneg;
  3482. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3483. if (adv & ADVERTISE_10HALF)
  3484. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3485. if (adv & ADVERTISE_10FULL)
  3486. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3487. if (adv & ADVERTISE_100HALF)
  3488. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3489. if (adv & ADVERTISE_100FULL)
  3490. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3491. if (np->gigabit == PHY_GIGABIT) {
  3492. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3493. if (adv & ADVERTISE_1000FULL)
  3494. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3495. }
  3496. }
  3497. ecmd->supported = (SUPPORTED_Autoneg |
  3498. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3499. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3500. SUPPORTED_MII);
  3501. if (np->gigabit == PHY_GIGABIT)
  3502. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3503. ecmd->phy_address = np->phyaddr;
  3504. ecmd->transceiver = XCVR_EXTERNAL;
  3505. /* ignore maxtxpkt, maxrxpkt for now */
  3506. spin_unlock_irq(&np->lock);
  3507. return 0;
  3508. }
  3509. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3510. {
  3511. struct fe_priv *np = netdev_priv(dev);
  3512. if (ecmd->port != PORT_MII)
  3513. return -EINVAL;
  3514. if (ecmd->transceiver != XCVR_EXTERNAL)
  3515. return -EINVAL;
  3516. if (ecmd->phy_address != np->phyaddr) {
  3517. /* TODO: support switching between multiple phys. Should be
  3518. * trivial, but not enabled due to lack of test hardware. */
  3519. return -EINVAL;
  3520. }
  3521. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3522. u32 mask;
  3523. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3524. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3525. if (np->gigabit == PHY_GIGABIT)
  3526. mask |= ADVERTISED_1000baseT_Full;
  3527. if ((ecmd->advertising & mask) == 0)
  3528. return -EINVAL;
  3529. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3530. /* Note: autonegotiation disable, speed 1000 intentionally
  3531. * forbidden - noone should need that. */
  3532. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3533. return -EINVAL;
  3534. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3535. return -EINVAL;
  3536. } else {
  3537. return -EINVAL;
  3538. }
  3539. netif_carrier_off(dev);
  3540. if (netif_running(dev)) {
  3541. nv_disable_irq(dev);
  3542. netif_tx_lock_bh(dev);
  3543. spin_lock(&np->lock);
  3544. /* stop engines */
  3545. nv_stop_rx(dev);
  3546. nv_stop_tx(dev);
  3547. spin_unlock(&np->lock);
  3548. netif_tx_unlock_bh(dev);
  3549. }
  3550. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3551. int adv, bmcr;
  3552. np->autoneg = 1;
  3553. /* advertise only what has been requested */
  3554. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3555. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3556. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3557. adv |= ADVERTISE_10HALF;
  3558. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3559. adv |= ADVERTISE_10FULL;
  3560. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3561. adv |= ADVERTISE_100HALF;
  3562. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3563. adv |= ADVERTISE_100FULL;
  3564. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3565. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3566. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3567. adv |= ADVERTISE_PAUSE_ASYM;
  3568. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3569. if (np->gigabit == PHY_GIGABIT) {
  3570. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3571. adv &= ~ADVERTISE_1000FULL;
  3572. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3573. adv |= ADVERTISE_1000FULL;
  3574. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3575. }
  3576. if (netif_running(dev))
  3577. printk(KERN_INFO "%s: link down.\n", dev->name);
  3578. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3579. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3580. bmcr |= BMCR_ANENABLE;
  3581. /* reset the phy in order for settings to stick,
  3582. * and cause autoneg to start */
  3583. if (phy_reset(dev, bmcr)) {
  3584. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3585. return -EINVAL;
  3586. }
  3587. } else {
  3588. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3589. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3590. }
  3591. } else {
  3592. int adv, bmcr;
  3593. np->autoneg = 0;
  3594. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3595. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3596. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3597. adv |= ADVERTISE_10HALF;
  3598. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3599. adv |= ADVERTISE_10FULL;
  3600. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3601. adv |= ADVERTISE_100HALF;
  3602. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3603. adv |= ADVERTISE_100FULL;
  3604. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3605. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3606. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3607. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3608. }
  3609. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3610. adv |= ADVERTISE_PAUSE_ASYM;
  3611. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3612. }
  3613. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3614. np->fixed_mode = adv;
  3615. if (np->gigabit == PHY_GIGABIT) {
  3616. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3617. adv &= ~ADVERTISE_1000FULL;
  3618. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3619. }
  3620. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3621. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3622. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3623. bmcr |= BMCR_FULLDPLX;
  3624. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3625. bmcr |= BMCR_SPEED100;
  3626. if (np->phy_oui == PHY_OUI_MARVELL) {
  3627. /* reset the phy in order for forced mode settings to stick */
  3628. if (phy_reset(dev, bmcr)) {
  3629. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3630. return -EINVAL;
  3631. }
  3632. } else {
  3633. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3634. if (netif_running(dev)) {
  3635. /* Wait a bit and then reconfigure the nic. */
  3636. udelay(10);
  3637. nv_linkchange(dev);
  3638. }
  3639. }
  3640. }
  3641. if (netif_running(dev)) {
  3642. nv_start_rx(dev);
  3643. nv_start_tx(dev);
  3644. nv_enable_irq(dev);
  3645. }
  3646. return 0;
  3647. }
  3648. #define FORCEDETH_REGS_VER 1
  3649. static int nv_get_regs_len(struct net_device *dev)
  3650. {
  3651. struct fe_priv *np = netdev_priv(dev);
  3652. return np->register_size;
  3653. }
  3654. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3655. {
  3656. struct fe_priv *np = netdev_priv(dev);
  3657. u8 __iomem *base = get_hwbase(dev);
  3658. u32 *rbuf = buf;
  3659. int i;
  3660. regs->version = FORCEDETH_REGS_VER;
  3661. spin_lock_irq(&np->lock);
  3662. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3663. rbuf[i] = readl(base + i*sizeof(u32));
  3664. spin_unlock_irq(&np->lock);
  3665. }
  3666. static int nv_nway_reset(struct net_device *dev)
  3667. {
  3668. struct fe_priv *np = netdev_priv(dev);
  3669. int ret;
  3670. if (np->autoneg) {
  3671. int bmcr;
  3672. netif_carrier_off(dev);
  3673. if (netif_running(dev)) {
  3674. nv_disable_irq(dev);
  3675. netif_tx_lock_bh(dev);
  3676. spin_lock(&np->lock);
  3677. /* stop engines */
  3678. nv_stop_rx(dev);
  3679. nv_stop_tx(dev);
  3680. spin_unlock(&np->lock);
  3681. netif_tx_unlock_bh(dev);
  3682. printk(KERN_INFO "%s: link down.\n", dev->name);
  3683. }
  3684. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3685. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3686. bmcr |= BMCR_ANENABLE;
  3687. /* reset the phy in order for settings to stick*/
  3688. if (phy_reset(dev, bmcr)) {
  3689. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3690. return -EINVAL;
  3691. }
  3692. } else {
  3693. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3694. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3695. }
  3696. if (netif_running(dev)) {
  3697. nv_start_rx(dev);
  3698. nv_start_tx(dev);
  3699. nv_enable_irq(dev);
  3700. }
  3701. ret = 0;
  3702. } else {
  3703. ret = -EINVAL;
  3704. }
  3705. return ret;
  3706. }
  3707. static int nv_set_tso(struct net_device *dev, u32 value)
  3708. {
  3709. struct fe_priv *np = netdev_priv(dev);
  3710. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3711. return ethtool_op_set_tso(dev, value);
  3712. else
  3713. return -EOPNOTSUPP;
  3714. }
  3715. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3716. {
  3717. struct fe_priv *np = netdev_priv(dev);
  3718. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3719. ring->rx_mini_max_pending = 0;
  3720. ring->rx_jumbo_max_pending = 0;
  3721. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3722. ring->rx_pending = np->rx_ring_size;
  3723. ring->rx_mini_pending = 0;
  3724. ring->rx_jumbo_pending = 0;
  3725. ring->tx_pending = np->tx_ring_size;
  3726. }
  3727. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3728. {
  3729. struct fe_priv *np = netdev_priv(dev);
  3730. u8 __iomem *base = get_hwbase(dev);
  3731. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3732. dma_addr_t ring_addr;
  3733. if (ring->rx_pending < RX_RING_MIN ||
  3734. ring->tx_pending < TX_RING_MIN ||
  3735. ring->rx_mini_pending != 0 ||
  3736. ring->rx_jumbo_pending != 0 ||
  3737. (np->desc_ver == DESC_VER_1 &&
  3738. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3739. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3740. (np->desc_ver != DESC_VER_1 &&
  3741. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3742. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3743. return -EINVAL;
  3744. }
  3745. /* allocate new rings */
  3746. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3747. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3748. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3749. &ring_addr);
  3750. } else {
  3751. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3752. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3753. &ring_addr);
  3754. }
  3755. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3756. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3757. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3758. /* fall back to old rings */
  3759. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3760. if (rxtx_ring)
  3761. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3762. rxtx_ring, ring_addr);
  3763. } else {
  3764. if (rxtx_ring)
  3765. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3766. rxtx_ring, ring_addr);
  3767. }
  3768. if (rx_skbuff)
  3769. kfree(rx_skbuff);
  3770. if (tx_skbuff)
  3771. kfree(tx_skbuff);
  3772. goto exit;
  3773. }
  3774. if (netif_running(dev)) {
  3775. nv_disable_irq(dev);
  3776. netif_tx_lock_bh(dev);
  3777. spin_lock(&np->lock);
  3778. /* stop engines */
  3779. nv_stop_rx(dev);
  3780. nv_stop_tx(dev);
  3781. nv_txrx_reset(dev);
  3782. /* drain queues */
  3783. nv_drain_rx(dev);
  3784. nv_drain_tx(dev);
  3785. /* delete queues */
  3786. free_rings(dev);
  3787. }
  3788. /* set new values */
  3789. np->rx_ring_size = ring->rx_pending;
  3790. np->tx_ring_size = ring->tx_pending;
  3791. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3792. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3793. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3794. } else {
  3795. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3796. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3797. }
  3798. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3799. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3800. np->ring_addr = ring_addr;
  3801. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3802. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3803. if (netif_running(dev)) {
  3804. /* reinit driver view of the queues */
  3805. set_bufsize(dev);
  3806. if (nv_init_ring(dev)) {
  3807. if (!np->in_shutdown)
  3808. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3809. }
  3810. /* reinit nic view of the queues */
  3811. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3812. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3813. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3814. base + NvRegRingSizes);
  3815. pci_push(base);
  3816. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3817. pci_push(base);
  3818. /* restart engines */
  3819. nv_start_rx(dev);
  3820. nv_start_tx(dev);
  3821. spin_unlock(&np->lock);
  3822. netif_tx_unlock_bh(dev);
  3823. nv_enable_irq(dev);
  3824. }
  3825. return 0;
  3826. exit:
  3827. return -ENOMEM;
  3828. }
  3829. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3830. {
  3831. struct fe_priv *np = netdev_priv(dev);
  3832. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3833. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3834. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3835. }
  3836. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3837. {
  3838. struct fe_priv *np = netdev_priv(dev);
  3839. int adv, bmcr;
  3840. if ((!np->autoneg && np->duplex == 0) ||
  3841. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3842. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3843. dev->name);
  3844. return -EINVAL;
  3845. }
  3846. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3847. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3848. return -EINVAL;
  3849. }
  3850. netif_carrier_off(dev);
  3851. if (netif_running(dev)) {
  3852. nv_disable_irq(dev);
  3853. netif_tx_lock_bh(dev);
  3854. spin_lock(&np->lock);
  3855. /* stop engines */
  3856. nv_stop_rx(dev);
  3857. nv_stop_tx(dev);
  3858. spin_unlock(&np->lock);
  3859. netif_tx_unlock_bh(dev);
  3860. }
  3861. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3862. if (pause->rx_pause)
  3863. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3864. if (pause->tx_pause)
  3865. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3866. if (np->autoneg && pause->autoneg) {
  3867. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3868. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3869. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3870. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3871. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3872. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3873. adv |= ADVERTISE_PAUSE_ASYM;
  3874. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3875. if (netif_running(dev))
  3876. printk(KERN_INFO "%s: link down.\n", dev->name);
  3877. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3878. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3879. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3880. } else {
  3881. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3882. if (pause->rx_pause)
  3883. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3884. if (pause->tx_pause)
  3885. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3886. if (!netif_running(dev))
  3887. nv_update_linkspeed(dev);
  3888. else
  3889. nv_update_pause(dev, np->pause_flags);
  3890. }
  3891. if (netif_running(dev)) {
  3892. nv_start_rx(dev);
  3893. nv_start_tx(dev);
  3894. nv_enable_irq(dev);
  3895. }
  3896. return 0;
  3897. }
  3898. static u32 nv_get_rx_csum(struct net_device *dev)
  3899. {
  3900. struct fe_priv *np = netdev_priv(dev);
  3901. return (np->rx_csum) != 0;
  3902. }
  3903. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3904. {
  3905. struct fe_priv *np = netdev_priv(dev);
  3906. u8 __iomem *base = get_hwbase(dev);
  3907. int retcode = 0;
  3908. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3909. if (data) {
  3910. np->rx_csum = 1;
  3911. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3912. } else {
  3913. np->rx_csum = 0;
  3914. /* vlan is dependent on rx checksum offload */
  3915. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3916. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3917. }
  3918. if (netif_running(dev)) {
  3919. spin_lock_irq(&np->lock);
  3920. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3921. spin_unlock_irq(&np->lock);
  3922. }
  3923. } else {
  3924. return -EINVAL;
  3925. }
  3926. return retcode;
  3927. }
  3928. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3929. {
  3930. struct fe_priv *np = netdev_priv(dev);
  3931. if (np->driver_data & DEV_HAS_CHECKSUM)
  3932. return ethtool_op_set_tx_hw_csum(dev, data);
  3933. else
  3934. return -EOPNOTSUPP;
  3935. }
  3936. static int nv_set_sg(struct net_device *dev, u32 data)
  3937. {
  3938. struct fe_priv *np = netdev_priv(dev);
  3939. if (np->driver_data & DEV_HAS_CHECKSUM)
  3940. return ethtool_op_set_sg(dev, data);
  3941. else
  3942. return -EOPNOTSUPP;
  3943. }
  3944. static int nv_get_sset_count(struct net_device *dev, int sset)
  3945. {
  3946. struct fe_priv *np = netdev_priv(dev);
  3947. switch (sset) {
  3948. case ETH_SS_TEST:
  3949. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3950. return NV_TEST_COUNT_EXTENDED;
  3951. else
  3952. return NV_TEST_COUNT_BASE;
  3953. case ETH_SS_STATS:
  3954. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3955. return NV_DEV_STATISTICS_V1_COUNT;
  3956. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3957. return NV_DEV_STATISTICS_V2_COUNT;
  3958. else
  3959. return 0;
  3960. default:
  3961. return -EOPNOTSUPP;
  3962. }
  3963. }
  3964. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3965. {
  3966. struct fe_priv *np = netdev_priv(dev);
  3967. /* update stats */
  3968. nv_do_stats_poll((unsigned long)dev);
  3969. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  3970. }
  3971. static int nv_link_test(struct net_device *dev)
  3972. {
  3973. struct fe_priv *np = netdev_priv(dev);
  3974. int mii_status;
  3975. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3976. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3977. /* check phy link status */
  3978. if (!(mii_status & BMSR_LSTATUS))
  3979. return 0;
  3980. else
  3981. return 1;
  3982. }
  3983. static int nv_register_test(struct net_device *dev)
  3984. {
  3985. u8 __iomem *base = get_hwbase(dev);
  3986. int i = 0;
  3987. u32 orig_read, new_read;
  3988. do {
  3989. orig_read = readl(base + nv_registers_test[i].reg);
  3990. /* xor with mask to toggle bits */
  3991. orig_read ^= nv_registers_test[i].mask;
  3992. writel(orig_read, base + nv_registers_test[i].reg);
  3993. new_read = readl(base + nv_registers_test[i].reg);
  3994. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3995. return 0;
  3996. /* restore original value */
  3997. orig_read ^= nv_registers_test[i].mask;
  3998. writel(orig_read, base + nv_registers_test[i].reg);
  3999. } while (nv_registers_test[++i].reg != 0);
  4000. return 1;
  4001. }
  4002. static int nv_interrupt_test(struct net_device *dev)
  4003. {
  4004. struct fe_priv *np = netdev_priv(dev);
  4005. u8 __iomem *base = get_hwbase(dev);
  4006. int ret = 1;
  4007. int testcnt;
  4008. u32 save_msi_flags, save_poll_interval = 0;
  4009. if (netif_running(dev)) {
  4010. /* free current irq */
  4011. nv_free_irq(dev);
  4012. save_poll_interval = readl(base+NvRegPollingInterval);
  4013. }
  4014. /* flag to test interrupt handler */
  4015. np->intr_test = 0;
  4016. /* setup test irq */
  4017. save_msi_flags = np->msi_flags;
  4018. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4019. np->msi_flags |= 0x001; /* setup 1 vector */
  4020. if (nv_request_irq(dev, 1))
  4021. return 0;
  4022. /* setup timer interrupt */
  4023. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4024. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4025. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4026. /* wait for at least one interrupt */
  4027. msleep(100);
  4028. spin_lock_irq(&np->lock);
  4029. /* flag should be set within ISR */
  4030. testcnt = np->intr_test;
  4031. if (!testcnt)
  4032. ret = 2;
  4033. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4034. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4035. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4036. else
  4037. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4038. spin_unlock_irq(&np->lock);
  4039. nv_free_irq(dev);
  4040. np->msi_flags = save_msi_flags;
  4041. if (netif_running(dev)) {
  4042. writel(save_poll_interval, base + NvRegPollingInterval);
  4043. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4044. /* restore original irq */
  4045. if (nv_request_irq(dev, 0))
  4046. return 0;
  4047. }
  4048. return ret;
  4049. }
  4050. static int nv_loopback_test(struct net_device *dev)
  4051. {
  4052. struct fe_priv *np = netdev_priv(dev);
  4053. u8 __iomem *base = get_hwbase(dev);
  4054. struct sk_buff *tx_skb, *rx_skb;
  4055. dma_addr_t test_dma_addr;
  4056. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4057. u32 flags;
  4058. int len, i, pkt_len;
  4059. u8 *pkt_data;
  4060. u32 filter_flags = 0;
  4061. u32 misc1_flags = 0;
  4062. int ret = 1;
  4063. if (netif_running(dev)) {
  4064. nv_disable_irq(dev);
  4065. filter_flags = readl(base + NvRegPacketFilterFlags);
  4066. misc1_flags = readl(base + NvRegMisc1);
  4067. } else {
  4068. nv_txrx_reset(dev);
  4069. }
  4070. /* reinit driver view of the rx queue */
  4071. set_bufsize(dev);
  4072. nv_init_ring(dev);
  4073. /* setup hardware for loopback */
  4074. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4075. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4076. /* reinit nic view of the rx queue */
  4077. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4078. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4079. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4080. base + NvRegRingSizes);
  4081. pci_push(base);
  4082. /* restart rx engine */
  4083. nv_start_rx(dev);
  4084. nv_start_tx(dev);
  4085. /* setup packet for tx */
  4086. pkt_len = ETH_DATA_LEN;
  4087. tx_skb = dev_alloc_skb(pkt_len);
  4088. if (!tx_skb) {
  4089. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4090. " of %s\n", dev->name);
  4091. ret = 0;
  4092. goto out;
  4093. }
  4094. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4095. skb_tailroom(tx_skb),
  4096. PCI_DMA_FROMDEVICE);
  4097. pkt_data = skb_put(tx_skb, pkt_len);
  4098. for (i = 0; i < pkt_len; i++)
  4099. pkt_data[i] = (u8)(i & 0xff);
  4100. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4101. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4102. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4103. } else {
  4104. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4105. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4106. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4107. }
  4108. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4109. pci_push(get_hwbase(dev));
  4110. msleep(500);
  4111. /* check for rx of the packet */
  4112. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4113. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4114. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4115. } else {
  4116. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4117. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4118. }
  4119. if (flags & NV_RX_AVAIL) {
  4120. ret = 0;
  4121. } else if (np->desc_ver == DESC_VER_1) {
  4122. if (flags & NV_RX_ERROR)
  4123. ret = 0;
  4124. } else {
  4125. if (flags & NV_RX2_ERROR) {
  4126. ret = 0;
  4127. }
  4128. }
  4129. if (ret) {
  4130. if (len != pkt_len) {
  4131. ret = 0;
  4132. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4133. dev->name, len, pkt_len);
  4134. } else {
  4135. rx_skb = np->rx_skb[0].skb;
  4136. for (i = 0; i < pkt_len; i++) {
  4137. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4138. ret = 0;
  4139. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4140. dev->name, i);
  4141. break;
  4142. }
  4143. }
  4144. }
  4145. } else {
  4146. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4147. }
  4148. pci_unmap_page(np->pci_dev, test_dma_addr,
  4149. (skb_end_pointer(tx_skb) - tx_skb->data),
  4150. PCI_DMA_TODEVICE);
  4151. dev_kfree_skb_any(tx_skb);
  4152. out:
  4153. /* stop engines */
  4154. nv_stop_rx(dev);
  4155. nv_stop_tx(dev);
  4156. nv_txrx_reset(dev);
  4157. /* drain rx queue */
  4158. nv_drain_rx(dev);
  4159. nv_drain_tx(dev);
  4160. if (netif_running(dev)) {
  4161. writel(misc1_flags, base + NvRegMisc1);
  4162. writel(filter_flags, base + NvRegPacketFilterFlags);
  4163. nv_enable_irq(dev);
  4164. }
  4165. return ret;
  4166. }
  4167. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4168. {
  4169. struct fe_priv *np = netdev_priv(dev);
  4170. u8 __iomem *base = get_hwbase(dev);
  4171. int result;
  4172. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4173. if (!nv_link_test(dev)) {
  4174. test->flags |= ETH_TEST_FL_FAILED;
  4175. buffer[0] = 1;
  4176. }
  4177. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4178. if (netif_running(dev)) {
  4179. netif_stop_queue(dev);
  4180. #ifdef CONFIG_FORCEDETH_NAPI
  4181. napi_disable(&np->napi);
  4182. #endif
  4183. netif_tx_lock_bh(dev);
  4184. spin_lock_irq(&np->lock);
  4185. nv_disable_hw_interrupts(dev, np->irqmask);
  4186. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4187. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4188. } else {
  4189. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4190. }
  4191. /* stop engines */
  4192. nv_stop_rx(dev);
  4193. nv_stop_tx(dev);
  4194. nv_txrx_reset(dev);
  4195. /* drain rx queue */
  4196. nv_drain_rx(dev);
  4197. nv_drain_tx(dev);
  4198. spin_unlock_irq(&np->lock);
  4199. netif_tx_unlock_bh(dev);
  4200. }
  4201. if (!nv_register_test(dev)) {
  4202. test->flags |= ETH_TEST_FL_FAILED;
  4203. buffer[1] = 1;
  4204. }
  4205. result = nv_interrupt_test(dev);
  4206. if (result != 1) {
  4207. test->flags |= ETH_TEST_FL_FAILED;
  4208. buffer[2] = 1;
  4209. }
  4210. if (result == 0) {
  4211. /* bail out */
  4212. return;
  4213. }
  4214. if (!nv_loopback_test(dev)) {
  4215. test->flags |= ETH_TEST_FL_FAILED;
  4216. buffer[3] = 1;
  4217. }
  4218. if (netif_running(dev)) {
  4219. /* reinit driver view of the rx queue */
  4220. set_bufsize(dev);
  4221. if (nv_init_ring(dev)) {
  4222. if (!np->in_shutdown)
  4223. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4224. }
  4225. /* reinit nic view of the rx queue */
  4226. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4227. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4228. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4229. base + NvRegRingSizes);
  4230. pci_push(base);
  4231. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4232. pci_push(base);
  4233. /* restart rx engine */
  4234. nv_start_rx(dev);
  4235. nv_start_tx(dev);
  4236. netif_start_queue(dev);
  4237. #ifdef CONFIG_FORCEDETH_NAPI
  4238. napi_enable(&np->napi);
  4239. #endif
  4240. nv_enable_hw_interrupts(dev, np->irqmask);
  4241. }
  4242. }
  4243. }
  4244. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4245. {
  4246. switch (stringset) {
  4247. case ETH_SS_STATS:
  4248. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4249. break;
  4250. case ETH_SS_TEST:
  4251. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4252. break;
  4253. }
  4254. }
  4255. static const struct ethtool_ops ops = {
  4256. .get_drvinfo = nv_get_drvinfo,
  4257. .get_link = ethtool_op_get_link,
  4258. .get_wol = nv_get_wol,
  4259. .set_wol = nv_set_wol,
  4260. .get_settings = nv_get_settings,
  4261. .set_settings = nv_set_settings,
  4262. .get_regs_len = nv_get_regs_len,
  4263. .get_regs = nv_get_regs,
  4264. .nway_reset = nv_nway_reset,
  4265. .set_tso = nv_set_tso,
  4266. .get_ringparam = nv_get_ringparam,
  4267. .set_ringparam = nv_set_ringparam,
  4268. .get_pauseparam = nv_get_pauseparam,
  4269. .set_pauseparam = nv_set_pauseparam,
  4270. .get_rx_csum = nv_get_rx_csum,
  4271. .set_rx_csum = nv_set_rx_csum,
  4272. .set_tx_csum = nv_set_tx_csum,
  4273. .set_sg = nv_set_sg,
  4274. .get_strings = nv_get_strings,
  4275. .get_ethtool_stats = nv_get_ethtool_stats,
  4276. .get_sset_count = nv_get_sset_count,
  4277. .self_test = nv_self_test,
  4278. };
  4279. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4280. {
  4281. struct fe_priv *np = get_nvpriv(dev);
  4282. spin_lock_irq(&np->lock);
  4283. /* save vlan group */
  4284. np->vlangrp = grp;
  4285. if (grp) {
  4286. /* enable vlan on MAC */
  4287. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4288. } else {
  4289. /* disable vlan on MAC */
  4290. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4291. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4292. }
  4293. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4294. spin_unlock_irq(&np->lock);
  4295. }
  4296. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4297. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4298. {
  4299. u8 __iomem *base = get_hwbase(dev);
  4300. int i;
  4301. u32 tx_ctrl, mgmt_sema;
  4302. for (i = 0; i < 10; i++) {
  4303. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4304. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4305. break;
  4306. msleep(500);
  4307. }
  4308. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4309. return 0;
  4310. for (i = 0; i < 2; i++) {
  4311. tx_ctrl = readl(base + NvRegTransmitterControl);
  4312. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4313. writel(tx_ctrl, base + NvRegTransmitterControl);
  4314. /* verify that semaphore was acquired */
  4315. tx_ctrl = readl(base + NvRegTransmitterControl);
  4316. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4317. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4318. return 1;
  4319. else
  4320. udelay(50);
  4321. }
  4322. return 0;
  4323. }
  4324. static int nv_open(struct net_device *dev)
  4325. {
  4326. struct fe_priv *np = netdev_priv(dev);
  4327. u8 __iomem *base = get_hwbase(dev);
  4328. int ret = 1;
  4329. int oom, i;
  4330. dprintk(KERN_DEBUG "nv_open: begin\n");
  4331. /* erase previous misconfiguration */
  4332. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4333. nv_mac_reset(dev);
  4334. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4335. writel(0, base + NvRegMulticastAddrB);
  4336. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4337. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4338. writel(0, base + NvRegPacketFilterFlags);
  4339. writel(0, base + NvRegTransmitterControl);
  4340. writel(0, base + NvRegReceiverControl);
  4341. writel(0, base + NvRegAdapterControl);
  4342. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4343. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4344. /* initialize descriptor rings */
  4345. set_bufsize(dev);
  4346. oom = nv_init_ring(dev);
  4347. writel(0, base + NvRegLinkSpeed);
  4348. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4349. nv_txrx_reset(dev);
  4350. writel(0, base + NvRegUnknownSetupReg6);
  4351. np->in_shutdown = 0;
  4352. /* give hw rings */
  4353. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4354. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4355. base + NvRegRingSizes);
  4356. writel(np->linkspeed, base + NvRegLinkSpeed);
  4357. if (np->desc_ver == DESC_VER_1)
  4358. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4359. else
  4360. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4361. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4362. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4363. pci_push(base);
  4364. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4365. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4366. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4367. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4368. writel(0, base + NvRegMIIMask);
  4369. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4370. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4371. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4372. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4373. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4374. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4375. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4376. get_random_bytes(&i, sizeof(i));
  4377. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4378. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4379. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4380. if (poll_interval == -1) {
  4381. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4382. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4383. else
  4384. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4385. }
  4386. else
  4387. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4388. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4389. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4390. base + NvRegAdapterControl);
  4391. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4392. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4393. if (np->wolenabled)
  4394. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4395. i = readl(base + NvRegPowerState);
  4396. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4397. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4398. pci_push(base);
  4399. udelay(10);
  4400. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4401. nv_disable_hw_interrupts(dev, np->irqmask);
  4402. pci_push(base);
  4403. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4404. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4405. pci_push(base);
  4406. if (nv_request_irq(dev, 0)) {
  4407. goto out_drain;
  4408. }
  4409. /* ask for interrupts */
  4410. nv_enable_hw_interrupts(dev, np->irqmask);
  4411. spin_lock_irq(&np->lock);
  4412. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4413. writel(0, base + NvRegMulticastAddrB);
  4414. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4415. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4416. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4417. /* One manual link speed update: Interrupts are enabled, future link
  4418. * speed changes cause interrupts and are handled by nv_link_irq().
  4419. */
  4420. {
  4421. u32 miistat;
  4422. miistat = readl(base + NvRegMIIStatus);
  4423. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4424. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4425. }
  4426. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4427. * to init hw */
  4428. np->linkspeed = 0;
  4429. ret = nv_update_linkspeed(dev);
  4430. nv_start_rx(dev);
  4431. nv_start_tx(dev);
  4432. netif_start_queue(dev);
  4433. #ifdef CONFIG_FORCEDETH_NAPI
  4434. napi_enable(&np->napi);
  4435. #endif
  4436. if (ret) {
  4437. netif_carrier_on(dev);
  4438. } else {
  4439. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4440. netif_carrier_off(dev);
  4441. }
  4442. if (oom)
  4443. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4444. /* start statistics timer */
  4445. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4446. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4447. spin_unlock_irq(&np->lock);
  4448. return 0;
  4449. out_drain:
  4450. drain_ring(dev);
  4451. return ret;
  4452. }
  4453. static int nv_close(struct net_device *dev)
  4454. {
  4455. struct fe_priv *np = netdev_priv(dev);
  4456. u8 __iomem *base;
  4457. spin_lock_irq(&np->lock);
  4458. np->in_shutdown = 1;
  4459. spin_unlock_irq(&np->lock);
  4460. #ifdef CONFIG_FORCEDETH_NAPI
  4461. napi_disable(&np->napi);
  4462. #endif
  4463. synchronize_irq(np->pci_dev->irq);
  4464. del_timer_sync(&np->oom_kick);
  4465. del_timer_sync(&np->nic_poll);
  4466. del_timer_sync(&np->stats_poll);
  4467. netif_stop_queue(dev);
  4468. spin_lock_irq(&np->lock);
  4469. nv_stop_tx(dev);
  4470. nv_stop_rx(dev);
  4471. nv_txrx_reset(dev);
  4472. /* disable interrupts on the nic or we will lock up */
  4473. base = get_hwbase(dev);
  4474. nv_disable_hw_interrupts(dev, np->irqmask);
  4475. pci_push(base);
  4476. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4477. spin_unlock_irq(&np->lock);
  4478. nv_free_irq(dev);
  4479. drain_ring(dev);
  4480. if (np->wolenabled) {
  4481. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4482. nv_start_rx(dev);
  4483. }
  4484. /* FIXME: power down nic */
  4485. return 0;
  4486. }
  4487. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4488. {
  4489. struct net_device *dev;
  4490. struct fe_priv *np;
  4491. unsigned long addr;
  4492. u8 __iomem *base;
  4493. int err, i;
  4494. u32 powerstate, txreg;
  4495. u32 phystate_orig = 0, phystate;
  4496. int phyinitialized = 0;
  4497. DECLARE_MAC_BUF(mac);
  4498. static int printed_version;
  4499. if (!printed_version++)
  4500. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4501. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4502. dev = alloc_etherdev(sizeof(struct fe_priv));
  4503. err = -ENOMEM;
  4504. if (!dev)
  4505. goto out;
  4506. np = netdev_priv(dev);
  4507. np->dev = dev;
  4508. np->pci_dev = pci_dev;
  4509. spin_lock_init(&np->lock);
  4510. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4511. init_timer(&np->oom_kick);
  4512. np->oom_kick.data = (unsigned long) dev;
  4513. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4514. init_timer(&np->nic_poll);
  4515. np->nic_poll.data = (unsigned long) dev;
  4516. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4517. init_timer(&np->stats_poll);
  4518. np->stats_poll.data = (unsigned long) dev;
  4519. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4520. err = pci_enable_device(pci_dev);
  4521. if (err)
  4522. goto out_free;
  4523. pci_set_master(pci_dev);
  4524. err = pci_request_regions(pci_dev, DRV_NAME);
  4525. if (err < 0)
  4526. goto out_disable;
  4527. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4528. np->register_size = NV_PCI_REGSZ_VER3;
  4529. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4530. np->register_size = NV_PCI_REGSZ_VER2;
  4531. else
  4532. np->register_size = NV_PCI_REGSZ_VER1;
  4533. err = -EINVAL;
  4534. addr = 0;
  4535. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4536. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4537. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4538. pci_resource_len(pci_dev, i),
  4539. pci_resource_flags(pci_dev, i));
  4540. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4541. pci_resource_len(pci_dev, i) >= np->register_size) {
  4542. addr = pci_resource_start(pci_dev, i);
  4543. break;
  4544. }
  4545. }
  4546. if (i == DEVICE_COUNT_RESOURCE) {
  4547. dev_printk(KERN_INFO, &pci_dev->dev,
  4548. "Couldn't find register window\n");
  4549. goto out_relreg;
  4550. }
  4551. /* copy of driver data */
  4552. np->driver_data = id->driver_data;
  4553. /* handle different descriptor versions */
  4554. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4555. /* packet format 3: supports 40-bit addressing */
  4556. np->desc_ver = DESC_VER_3;
  4557. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4558. if (dma_64bit) {
  4559. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4560. dev_printk(KERN_INFO, &pci_dev->dev,
  4561. "64-bit DMA failed, using 32-bit addressing\n");
  4562. else
  4563. dev->features |= NETIF_F_HIGHDMA;
  4564. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4565. dev_printk(KERN_INFO, &pci_dev->dev,
  4566. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4567. }
  4568. }
  4569. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4570. /* packet format 2: supports jumbo frames */
  4571. np->desc_ver = DESC_VER_2;
  4572. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4573. } else {
  4574. /* original packet format */
  4575. np->desc_ver = DESC_VER_1;
  4576. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4577. }
  4578. np->pkt_limit = NV_PKTLIMIT_1;
  4579. if (id->driver_data & DEV_HAS_LARGEDESC)
  4580. np->pkt_limit = NV_PKTLIMIT_2;
  4581. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4582. np->rx_csum = 1;
  4583. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4584. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4585. dev->features |= NETIF_F_TSO;
  4586. }
  4587. np->vlanctl_bits = 0;
  4588. if (id->driver_data & DEV_HAS_VLAN) {
  4589. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4590. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4591. dev->vlan_rx_register = nv_vlan_rx_register;
  4592. }
  4593. np->msi_flags = 0;
  4594. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4595. np->msi_flags |= NV_MSI_CAPABLE;
  4596. }
  4597. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4598. np->msi_flags |= NV_MSI_X_CAPABLE;
  4599. }
  4600. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4601. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4602. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4603. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4604. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4605. }
  4606. err = -ENOMEM;
  4607. np->base = ioremap(addr, np->register_size);
  4608. if (!np->base)
  4609. goto out_relreg;
  4610. dev->base_addr = (unsigned long)np->base;
  4611. dev->irq = pci_dev->irq;
  4612. np->rx_ring_size = RX_RING_DEFAULT;
  4613. np->tx_ring_size = TX_RING_DEFAULT;
  4614. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4615. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4616. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4617. &np->ring_addr);
  4618. if (!np->rx_ring.orig)
  4619. goto out_unmap;
  4620. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4621. } else {
  4622. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4623. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4624. &np->ring_addr);
  4625. if (!np->rx_ring.ex)
  4626. goto out_unmap;
  4627. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4628. }
  4629. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4630. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4631. if (!np->rx_skb || !np->tx_skb)
  4632. goto out_freering;
  4633. dev->open = nv_open;
  4634. dev->stop = nv_close;
  4635. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4636. dev->hard_start_xmit = nv_start_xmit;
  4637. else
  4638. dev->hard_start_xmit = nv_start_xmit_optimized;
  4639. dev->get_stats = nv_get_stats;
  4640. dev->change_mtu = nv_change_mtu;
  4641. dev->set_mac_address = nv_set_mac_address;
  4642. dev->set_multicast_list = nv_set_multicast;
  4643. #ifdef CONFIG_NET_POLL_CONTROLLER
  4644. dev->poll_controller = nv_poll_controller;
  4645. #endif
  4646. #ifdef CONFIG_FORCEDETH_NAPI
  4647. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4648. #endif
  4649. SET_ETHTOOL_OPS(dev, &ops);
  4650. dev->tx_timeout = nv_tx_timeout;
  4651. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4652. pci_set_drvdata(pci_dev, dev);
  4653. /* read the mac address */
  4654. base = get_hwbase(dev);
  4655. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4656. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4657. /* check the workaround bit for correct mac address order */
  4658. txreg = readl(base + NvRegTransmitPoll);
  4659. if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
  4660. (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
  4661. /* mac address is already in correct order */
  4662. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4663. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4664. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4665. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4666. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4667. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4668. } else {
  4669. /* need to reverse mac address to correct order */
  4670. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4671. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4672. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4673. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4674. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4675. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4676. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4677. }
  4678. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4679. if (!is_valid_ether_addr(dev->perm_addr)) {
  4680. /*
  4681. * Bad mac address. At least one bios sets the mac address
  4682. * to 01:23:45:67:89:ab
  4683. */
  4684. dev_printk(KERN_ERR, &pci_dev->dev,
  4685. "Invalid Mac address detected: %s\n",
  4686. print_mac(mac, dev->dev_addr));
  4687. dev_printk(KERN_ERR, &pci_dev->dev,
  4688. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4689. dev->dev_addr[0] = 0x00;
  4690. dev->dev_addr[1] = 0x00;
  4691. dev->dev_addr[2] = 0x6c;
  4692. get_random_bytes(&dev->dev_addr[3], 3);
  4693. }
  4694. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4695. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4696. /* set mac address */
  4697. nv_copy_mac_to_hw(dev);
  4698. /* disable WOL */
  4699. writel(0, base + NvRegWakeUpFlags);
  4700. np->wolenabled = 0;
  4701. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4702. /* take phy and nic out of low power mode */
  4703. powerstate = readl(base + NvRegPowerState2);
  4704. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4705. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4706. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4707. pci_dev->revision >= 0xA3)
  4708. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4709. writel(powerstate, base + NvRegPowerState2);
  4710. }
  4711. if (np->desc_ver == DESC_VER_1) {
  4712. np->tx_flags = NV_TX_VALID;
  4713. } else {
  4714. np->tx_flags = NV_TX2_VALID;
  4715. }
  4716. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4717. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4718. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4719. np->msi_flags |= 0x0003;
  4720. } else {
  4721. np->irqmask = NVREG_IRQMASK_CPU;
  4722. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4723. np->msi_flags |= 0x0001;
  4724. }
  4725. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4726. np->irqmask |= NVREG_IRQ_TIMER;
  4727. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4728. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4729. np->need_linktimer = 1;
  4730. np->link_timeout = jiffies + LINK_TIMEOUT;
  4731. } else {
  4732. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4733. np->need_linktimer = 0;
  4734. }
  4735. /* clear phy state and temporarily halt phy interrupts */
  4736. writel(0, base + NvRegMIIMask);
  4737. phystate = readl(base + NvRegAdapterControl);
  4738. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4739. phystate_orig = 1;
  4740. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4741. writel(phystate, base + NvRegAdapterControl);
  4742. }
  4743. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4744. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4745. /* management unit running on the mac? */
  4746. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4747. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4748. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4749. if (nv_mgmt_acquire_sema(dev)) {
  4750. /* management unit setup the phy already? */
  4751. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4752. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4753. /* phy is inited by mgmt unit */
  4754. phyinitialized = 1;
  4755. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4756. } else {
  4757. /* we need to init the phy */
  4758. }
  4759. }
  4760. }
  4761. }
  4762. /* find a suitable phy */
  4763. for (i = 1; i <= 32; i++) {
  4764. int id1, id2;
  4765. int phyaddr = i & 0x1F;
  4766. spin_lock_irq(&np->lock);
  4767. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4768. spin_unlock_irq(&np->lock);
  4769. if (id1 < 0 || id1 == 0xffff)
  4770. continue;
  4771. spin_lock_irq(&np->lock);
  4772. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4773. spin_unlock_irq(&np->lock);
  4774. if (id2 < 0 || id2 == 0xffff)
  4775. continue;
  4776. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4777. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4778. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4779. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4780. pci_name(pci_dev), id1, id2, phyaddr);
  4781. np->phyaddr = phyaddr;
  4782. np->phy_oui = id1 | id2;
  4783. break;
  4784. }
  4785. if (i == 33) {
  4786. dev_printk(KERN_INFO, &pci_dev->dev,
  4787. "open: Could not find a valid PHY.\n");
  4788. goto out_error;
  4789. }
  4790. if (!phyinitialized) {
  4791. /* reset it */
  4792. phy_init(dev);
  4793. } else {
  4794. /* see if it is a gigabit phy */
  4795. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4796. if (mii_status & PHY_GIGABIT) {
  4797. np->gigabit = PHY_GIGABIT;
  4798. }
  4799. }
  4800. /* set default link speed settings */
  4801. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4802. np->duplex = 0;
  4803. np->autoneg = 1;
  4804. err = register_netdev(dev);
  4805. if (err) {
  4806. dev_printk(KERN_INFO, &pci_dev->dev,
  4807. "unable to register netdev: %d\n", err);
  4808. goto out_error;
  4809. }
  4810. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4811. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4812. dev->name,
  4813. np->phy_oui,
  4814. np->phyaddr,
  4815. dev->dev_addr[0],
  4816. dev->dev_addr[1],
  4817. dev->dev_addr[2],
  4818. dev->dev_addr[3],
  4819. dev->dev_addr[4],
  4820. dev->dev_addr[5]);
  4821. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4822. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4823. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4824. "csum " : "",
  4825. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4826. "vlan " : "",
  4827. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4828. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4829. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4830. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4831. np->need_linktimer ? "lnktim " : "",
  4832. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4833. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4834. np->desc_ver);
  4835. return 0;
  4836. out_error:
  4837. if (phystate_orig)
  4838. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4839. pci_set_drvdata(pci_dev, NULL);
  4840. out_freering:
  4841. free_rings(dev);
  4842. out_unmap:
  4843. iounmap(get_hwbase(dev));
  4844. out_relreg:
  4845. pci_release_regions(pci_dev);
  4846. out_disable:
  4847. pci_disable_device(pci_dev);
  4848. out_free:
  4849. free_netdev(dev);
  4850. out:
  4851. return err;
  4852. }
  4853. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4854. {
  4855. struct net_device *dev = pci_get_drvdata(pci_dev);
  4856. struct fe_priv *np = netdev_priv(dev);
  4857. u8 __iomem *base = get_hwbase(dev);
  4858. unregister_netdev(dev);
  4859. /* special op: write back the misordered MAC address - otherwise
  4860. * the next nv_probe would see a wrong address.
  4861. */
  4862. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4863. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4864. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  4865. base + NvRegTransmitPoll);
  4866. /* free all structures */
  4867. free_rings(dev);
  4868. iounmap(get_hwbase(dev));
  4869. pci_release_regions(pci_dev);
  4870. pci_disable_device(pci_dev);
  4871. free_netdev(dev);
  4872. pci_set_drvdata(pci_dev, NULL);
  4873. }
  4874. #ifdef CONFIG_PM
  4875. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4876. {
  4877. struct net_device *dev = pci_get_drvdata(pdev);
  4878. struct fe_priv *np = netdev_priv(dev);
  4879. if (!netif_running(dev))
  4880. goto out;
  4881. netif_device_detach(dev);
  4882. // Gross.
  4883. nv_close(dev);
  4884. pci_save_state(pdev);
  4885. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4886. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4887. out:
  4888. return 0;
  4889. }
  4890. static int nv_resume(struct pci_dev *pdev)
  4891. {
  4892. struct net_device *dev = pci_get_drvdata(pdev);
  4893. int rc = 0;
  4894. if (!netif_running(dev))
  4895. goto out;
  4896. netif_device_attach(dev);
  4897. pci_set_power_state(pdev, PCI_D0);
  4898. pci_restore_state(pdev);
  4899. pci_enable_wake(pdev, PCI_D0, 0);
  4900. rc = nv_open(dev);
  4901. out:
  4902. return rc;
  4903. }
  4904. #else
  4905. #define nv_suspend NULL
  4906. #define nv_resume NULL
  4907. #endif /* CONFIG_PM */
  4908. static struct pci_device_id pci_tbl[] = {
  4909. { /* nForce Ethernet Controller */
  4910. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4911. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4912. },
  4913. { /* nForce2 Ethernet Controller */
  4914. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4915. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4916. },
  4917. { /* nForce3 Ethernet Controller */
  4918. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4919. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4920. },
  4921. { /* nForce3 Ethernet Controller */
  4922. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4923. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4924. },
  4925. { /* nForce3 Ethernet Controller */
  4926. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4927. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4928. },
  4929. { /* nForce3 Ethernet Controller */
  4930. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4931. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4932. },
  4933. { /* nForce3 Ethernet Controller */
  4934. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4935. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4936. },
  4937. { /* CK804 Ethernet Controller */
  4938. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4939. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4940. },
  4941. { /* CK804 Ethernet Controller */
  4942. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4943. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4944. },
  4945. { /* MCP04 Ethernet Controller */
  4946. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4947. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4948. },
  4949. { /* MCP04 Ethernet Controller */
  4950. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4951. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4952. },
  4953. { /* MCP51 Ethernet Controller */
  4954. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4955. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4956. },
  4957. { /* MCP51 Ethernet Controller */
  4958. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4959. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4960. },
  4961. { /* MCP55 Ethernet Controller */
  4962. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4963. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4964. },
  4965. { /* MCP55 Ethernet Controller */
  4966. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4967. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4968. },
  4969. { /* MCP61 Ethernet Controller */
  4970. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4971. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4972. },
  4973. { /* MCP61 Ethernet Controller */
  4974. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4975. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4976. },
  4977. { /* MCP61 Ethernet Controller */
  4978. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4979. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4980. },
  4981. { /* MCP61 Ethernet Controller */
  4982. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4983. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4984. },
  4985. { /* MCP65 Ethernet Controller */
  4986. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4987. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4988. },
  4989. { /* MCP65 Ethernet Controller */
  4990. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4991. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4992. },
  4993. { /* MCP65 Ethernet Controller */
  4994. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4995. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4996. },
  4997. { /* MCP65 Ethernet Controller */
  4998. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4999. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5000. },
  5001. { /* MCP67 Ethernet Controller */
  5002. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5003. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5004. },
  5005. { /* MCP67 Ethernet Controller */
  5006. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5007. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5008. },
  5009. { /* MCP67 Ethernet Controller */
  5010. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5011. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5012. },
  5013. { /* MCP67 Ethernet Controller */
  5014. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5015. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5016. },
  5017. { /* MCP73 Ethernet Controller */
  5018. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5019. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5020. },
  5021. { /* MCP73 Ethernet Controller */
  5022. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5023. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5024. },
  5025. { /* MCP73 Ethernet Controller */
  5026. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5027. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5028. },
  5029. { /* MCP73 Ethernet Controller */
  5030. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5031. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5032. },
  5033. { /* MCP77 Ethernet Controller */
  5034. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5035. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5036. },
  5037. { /* MCP77 Ethernet Controller */
  5038. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5039. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5040. },
  5041. { /* MCP77 Ethernet Controller */
  5042. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5043. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5044. },
  5045. { /* MCP77 Ethernet Controller */
  5046. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5047. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5048. },
  5049. { /* MCP79 Ethernet Controller */
  5050. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5051. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5052. },
  5053. { /* MCP79 Ethernet Controller */
  5054. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5055. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5056. },
  5057. { /* MCP79 Ethernet Controller */
  5058. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5059. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5060. },
  5061. { /* MCP79 Ethernet Controller */
  5062. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5063. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5064. },
  5065. {0,},
  5066. };
  5067. static struct pci_driver driver = {
  5068. .name = DRV_NAME,
  5069. .id_table = pci_tbl,
  5070. .probe = nv_probe,
  5071. .remove = __devexit_p(nv_remove),
  5072. .suspend = nv_suspend,
  5073. .resume = nv_resume,
  5074. };
  5075. static int __init init_nic(void)
  5076. {
  5077. return pci_register_driver(&driver);
  5078. }
  5079. static void __exit exit_nic(void)
  5080. {
  5081. pci_unregister_driver(&driver);
  5082. }
  5083. module_param(max_interrupt_work, int, 0);
  5084. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5085. module_param(optimization_mode, int, 0);
  5086. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5087. module_param(poll_interval, int, 0);
  5088. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5089. module_param(msi, int, 0);
  5090. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5091. module_param(msix, int, 0);
  5092. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5093. module_param(dma_64bit, int, 0);
  5094. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5095. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5096. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5097. MODULE_LICENSE("GPL");
  5098. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5099. module_init(init_nic);
  5100. module_exit(exit_nic);