splice.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. /*
  2. * "splice": joining two ropes together by interweaving their strands.
  3. *
  4. * This is the "extended pipe" functionality, where a pipe is used as
  5. * an arbitrary in-memory buffer. Think of a pipe as a small kernel
  6. * buffer that you can use to transfer data from one end to the other.
  7. *
  8. * The traditional unix read/write is extended with a "splice()" operation
  9. * that transfers data buffers to or from a pipe buffer.
  10. *
  11. * Named by Larry McVoy, original implementation from Linus, extended by
  12. * Jens to support splicing to files and fixing the initial implementation
  13. * bugs.
  14. *
  15. * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
  16. * Copyright (C) 2005 Linus Torvalds <torvalds@osdl.org>
  17. *
  18. */
  19. #include <linux/fs.h>
  20. #include <linux/file.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/pipe_fs_i.h>
  23. #include <linux/mm_inline.h>
  24. /*
  25. * Passed to the actors
  26. */
  27. struct splice_desc {
  28. unsigned int len, total_len; /* current and remaining length */
  29. unsigned int flags; /* splice flags */
  30. struct file *file; /* file to read/write */
  31. loff_t pos; /* file position */
  32. };
  33. static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
  34. struct pipe_buffer *buf)
  35. {
  36. page_cache_release(buf->page);
  37. buf->page = NULL;
  38. }
  39. static void *page_cache_pipe_buf_map(struct file *file,
  40. struct pipe_inode_info *info,
  41. struct pipe_buffer *buf)
  42. {
  43. struct page *page = buf->page;
  44. lock_page(page);
  45. if (!PageUptodate(page)) {
  46. unlock_page(page);
  47. return ERR_PTR(-EIO);
  48. }
  49. if (!page->mapping) {
  50. unlock_page(page);
  51. return ERR_PTR(-ENODATA);
  52. }
  53. return kmap(buf->page);
  54. }
  55. static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
  56. struct pipe_buffer *buf)
  57. {
  58. unlock_page(buf->page);
  59. kunmap(buf->page);
  60. }
  61. static struct pipe_buf_operations page_cache_pipe_buf_ops = {
  62. .can_merge = 0,
  63. .map = page_cache_pipe_buf_map,
  64. .unmap = page_cache_pipe_buf_unmap,
  65. .release = page_cache_pipe_buf_release,
  66. };
  67. static ssize_t move_to_pipe(struct inode *inode, struct page **pages,
  68. int nr_pages, unsigned long offset,
  69. unsigned long len)
  70. {
  71. struct pipe_inode_info *info;
  72. int ret, do_wakeup, i;
  73. ret = 0;
  74. do_wakeup = 0;
  75. i = 0;
  76. mutex_lock(PIPE_MUTEX(*inode));
  77. info = inode->i_pipe;
  78. for (;;) {
  79. int bufs;
  80. if (!PIPE_READERS(*inode)) {
  81. send_sig(SIGPIPE, current, 0);
  82. if (!ret)
  83. ret = -EPIPE;
  84. break;
  85. }
  86. bufs = info->nrbufs;
  87. if (bufs < PIPE_BUFFERS) {
  88. int newbuf = (info->curbuf + bufs) & (PIPE_BUFFERS - 1);
  89. struct pipe_buffer *buf = info->bufs + newbuf;
  90. struct page *page = pages[i++];
  91. unsigned long this_len;
  92. this_len = PAGE_CACHE_SIZE - offset;
  93. if (this_len > len)
  94. this_len = len;
  95. buf->page = page;
  96. buf->offset = offset;
  97. buf->len = this_len;
  98. buf->ops = &page_cache_pipe_buf_ops;
  99. info->nrbufs = ++bufs;
  100. do_wakeup = 1;
  101. ret += this_len;
  102. len -= this_len;
  103. offset = 0;
  104. if (!--nr_pages)
  105. break;
  106. if (!len)
  107. break;
  108. if (bufs < PIPE_BUFFERS)
  109. continue;
  110. break;
  111. }
  112. if (signal_pending(current)) {
  113. if (!ret)
  114. ret = -ERESTARTSYS;
  115. break;
  116. }
  117. if (do_wakeup) {
  118. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  119. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO,
  120. POLL_IN);
  121. do_wakeup = 0;
  122. }
  123. PIPE_WAITING_WRITERS(*inode)++;
  124. pipe_wait(inode);
  125. PIPE_WAITING_WRITERS(*inode)--;
  126. }
  127. mutex_unlock(PIPE_MUTEX(*inode));
  128. if (do_wakeup) {
  129. wake_up_interruptible(PIPE_WAIT(*inode));
  130. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO, POLL_IN);
  131. }
  132. while (i < nr_pages)
  133. page_cache_release(pages[i++]);
  134. return ret;
  135. }
  136. static int __generic_file_splice_read(struct file *in, struct inode *pipe,
  137. size_t len)
  138. {
  139. struct address_space *mapping = in->f_mapping;
  140. unsigned int offset, nr_pages;
  141. struct page *pages[PIPE_BUFFERS], *shadow[PIPE_BUFFERS];
  142. struct page *page;
  143. pgoff_t index, pidx;
  144. int i, j;
  145. index = in->f_pos >> PAGE_CACHE_SHIFT;
  146. offset = in->f_pos & ~PAGE_CACHE_MASK;
  147. nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  148. if (nr_pages > PIPE_BUFFERS)
  149. nr_pages = PIPE_BUFFERS;
  150. /*
  151. * initiate read-ahead on this page range
  152. */
  153. do_page_cache_readahead(mapping, in, index, nr_pages);
  154. /*
  155. * Get as many pages from the page cache as possible..
  156. * Start IO on the page cache entries we create (we
  157. * can assume that any pre-existing ones we find have
  158. * already had IO started on them).
  159. */
  160. i = find_get_pages(mapping, index, nr_pages, pages);
  161. /*
  162. * common case - we found all pages and they are contiguous,
  163. * kick them off
  164. */
  165. if (i && (pages[i - 1]->index == index + i - 1))
  166. goto splice_them;
  167. /*
  168. * fill shadow[] with pages at the right locations, so we only
  169. * have to fill holes
  170. */
  171. memset(shadow, 0, i * sizeof(struct page *));
  172. for (j = 0, pidx = index; j < i; pidx++, j++)
  173. shadow[pages[j]->index - pidx] = pages[j];
  174. /*
  175. * now fill in the holes
  176. */
  177. for (i = 0, pidx = index; i < nr_pages; pidx++, i++) {
  178. int error;
  179. if (shadow[i])
  180. continue;
  181. /*
  182. * no page there, look one up / create it
  183. */
  184. page = find_or_create_page(mapping, pidx,
  185. mapping_gfp_mask(mapping));
  186. if (!page)
  187. break;
  188. if (PageUptodate(page))
  189. unlock_page(page);
  190. else {
  191. error = mapping->a_ops->readpage(in, page);
  192. if (unlikely(error)) {
  193. page_cache_release(page);
  194. break;
  195. }
  196. }
  197. shadow[i] = page;
  198. }
  199. if (!i) {
  200. for (i = 0; i < nr_pages; i++) {
  201. if (shadow[i])
  202. page_cache_release(shadow[i]);
  203. }
  204. return 0;
  205. }
  206. memcpy(pages, shadow, i * sizeof(struct page *));
  207. /*
  208. * Now we splice them into the pipe..
  209. */
  210. splice_them:
  211. return move_to_pipe(pipe, pages, i, offset, len);
  212. }
  213. ssize_t generic_file_splice_read(struct file *in, struct inode *pipe,
  214. size_t len, unsigned int flags)
  215. {
  216. ssize_t spliced;
  217. int ret;
  218. ret = 0;
  219. spliced = 0;
  220. while (len) {
  221. ret = __generic_file_splice_read(in, pipe, len);
  222. if (ret <= 0)
  223. break;
  224. in->f_pos += ret;
  225. len -= ret;
  226. spliced += ret;
  227. }
  228. if (spliced)
  229. return spliced;
  230. return ret;
  231. }
  232. /*
  233. * Send 'len' bytes to socket from 'file' at position 'pos' using sendpage().
  234. */
  235. static int pipe_to_sendpage(struct pipe_inode_info *info,
  236. struct pipe_buffer *buf, struct splice_desc *sd)
  237. {
  238. struct file *file = sd->file;
  239. loff_t pos = sd->pos;
  240. unsigned int offset;
  241. ssize_t ret;
  242. void *ptr;
  243. /*
  244. * sub-optimal, but we are limited by the pipe ->map. we don't
  245. * need a kmap'ed buffer here, we just want to make sure we
  246. * have the page pinned if the pipe page originates from the
  247. * page cache
  248. */
  249. ptr = buf->ops->map(file, info, buf);
  250. if (IS_ERR(ptr))
  251. return PTR_ERR(ptr);
  252. offset = pos & ~PAGE_CACHE_MASK;
  253. ret = file->f_op->sendpage(file, buf->page, offset, sd->len, &pos,
  254. sd->len < sd->total_len);
  255. buf->ops->unmap(info, buf);
  256. if (ret == sd->len)
  257. return 0;
  258. return -EIO;
  259. }
  260. /*
  261. * This is a little more tricky than the file -> pipe splicing. There are
  262. * basically three cases:
  263. *
  264. * - Destination page already exists in the address space and there
  265. * are users of it. For that case we have no other option that
  266. * copying the data. Tough luck.
  267. * - Destination page already exists in the address space, but there
  268. * are no users of it. Make sure it's uptodate, then drop it. Fall
  269. * through to last case.
  270. * - Destination page does not exist, we can add the pipe page to
  271. * the page cache and avoid the copy.
  272. *
  273. * For now we just do the slower thing and always copy pages over, it's
  274. * easier than migrating pages from the pipe to the target file. For the
  275. * case of doing file | file splicing, the migrate approach had some LRU
  276. * nastiness...
  277. */
  278. static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
  279. struct splice_desc *sd)
  280. {
  281. struct file *file = sd->file;
  282. struct address_space *mapping = file->f_mapping;
  283. unsigned int offset;
  284. struct page *page;
  285. char *src, *dst;
  286. pgoff_t index;
  287. int ret;
  288. /*
  289. * after this, page will be locked and unmapped
  290. */
  291. src = buf->ops->map(file, info, buf);
  292. if (IS_ERR(src))
  293. return PTR_ERR(src);
  294. index = sd->pos >> PAGE_CACHE_SHIFT;
  295. offset = sd->pos & ~PAGE_CACHE_MASK;
  296. find_page:
  297. ret = -ENOMEM;
  298. page = find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
  299. if (!page)
  300. goto out;
  301. /*
  302. * If the page is uptodate, it is also locked. If it isn't
  303. * uptodate, we can mark it uptodate if we are filling the
  304. * full page. Otherwise we need to read it in first...
  305. */
  306. if (!PageUptodate(page)) {
  307. if (sd->len < PAGE_CACHE_SIZE) {
  308. ret = mapping->a_ops->readpage(file, page);
  309. if (unlikely(ret))
  310. goto out;
  311. lock_page(page);
  312. if (!PageUptodate(page)) {
  313. /*
  314. * page got invalidated, repeat
  315. */
  316. if (!page->mapping) {
  317. unlock_page(page);
  318. page_cache_release(page);
  319. goto find_page;
  320. }
  321. ret = -EIO;
  322. goto out;
  323. }
  324. } else {
  325. WARN_ON(!PageLocked(page));
  326. SetPageUptodate(page);
  327. }
  328. }
  329. ret = mapping->a_ops->prepare_write(file, page, 0, sd->len);
  330. if (ret)
  331. goto out;
  332. dst = kmap_atomic(page, KM_USER0);
  333. memcpy(dst + offset, src + buf->offset, sd->len);
  334. flush_dcache_page(page);
  335. kunmap_atomic(dst, KM_USER0);
  336. ret = mapping->a_ops->commit_write(file, page, 0, sd->len);
  337. if (ret < 0)
  338. goto out;
  339. set_page_dirty(page);
  340. ret = write_one_page(page, 0);
  341. out:
  342. if (ret < 0)
  343. unlock_page(page);
  344. page_cache_release(page);
  345. buf->ops->unmap(info, buf);
  346. return ret;
  347. }
  348. typedef int (splice_actor)(struct pipe_inode_info *, struct pipe_buffer *,
  349. struct splice_desc *);
  350. static ssize_t move_from_pipe(struct inode *inode, struct file *out,
  351. size_t len, unsigned int flags,
  352. splice_actor *actor)
  353. {
  354. struct pipe_inode_info *info;
  355. int ret, do_wakeup, err;
  356. struct splice_desc sd;
  357. ret = 0;
  358. do_wakeup = 0;
  359. sd.total_len = len;
  360. sd.flags = flags;
  361. sd.file = out;
  362. sd.pos = out->f_pos;
  363. mutex_lock(PIPE_MUTEX(*inode));
  364. info = inode->i_pipe;
  365. for (;;) {
  366. int bufs = info->nrbufs;
  367. if (bufs) {
  368. int curbuf = info->curbuf;
  369. struct pipe_buffer *buf = info->bufs + curbuf;
  370. struct pipe_buf_operations *ops = buf->ops;
  371. sd.len = buf->len;
  372. if (sd.len > sd.total_len)
  373. sd.len = sd.total_len;
  374. err = actor(info, buf, &sd);
  375. if (err) {
  376. if (!ret && err != -ENODATA)
  377. ret = err;
  378. break;
  379. }
  380. ret += sd.len;
  381. buf->offset += sd.len;
  382. buf->len -= sd.len;
  383. if (!buf->len) {
  384. buf->ops = NULL;
  385. ops->release(info, buf);
  386. curbuf = (curbuf + 1) & (PIPE_BUFFERS - 1);
  387. info->curbuf = curbuf;
  388. info->nrbufs = --bufs;
  389. do_wakeup = 1;
  390. }
  391. sd.pos += sd.len;
  392. sd.total_len -= sd.len;
  393. if (!sd.total_len)
  394. break;
  395. }
  396. if (bufs)
  397. continue;
  398. if (!PIPE_WRITERS(*inode))
  399. break;
  400. if (!PIPE_WAITING_WRITERS(*inode)) {
  401. if (ret)
  402. break;
  403. }
  404. if (signal_pending(current)) {
  405. if (!ret)
  406. ret = -ERESTARTSYS;
  407. break;
  408. }
  409. if (do_wakeup) {
  410. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  411. kill_fasync(PIPE_FASYNC_WRITERS(*inode),SIGIO,POLL_OUT);
  412. do_wakeup = 0;
  413. }
  414. pipe_wait(inode);
  415. }
  416. mutex_unlock(PIPE_MUTEX(*inode));
  417. if (do_wakeup) {
  418. wake_up_interruptible(PIPE_WAIT(*inode));
  419. kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
  420. }
  421. mutex_lock(&out->f_mapping->host->i_mutex);
  422. out->f_pos = sd.pos;
  423. mutex_unlock(&out->f_mapping->host->i_mutex);
  424. return ret;
  425. }
  426. ssize_t generic_file_splice_write(struct inode *inode, struct file *out,
  427. size_t len, unsigned int flags)
  428. {
  429. return move_from_pipe(inode, out, len, flags, pipe_to_file);
  430. }
  431. ssize_t generic_splice_sendpage(struct inode *inode, struct file *out,
  432. size_t len, unsigned int flags)
  433. {
  434. return move_from_pipe(inode, out, len, flags, pipe_to_sendpage);
  435. }
  436. static long do_splice_from(struct inode *pipe, struct file *out, size_t len,
  437. unsigned int flags)
  438. {
  439. loff_t pos;
  440. int ret;
  441. if (!out->f_op || !out->f_op->splice_write)
  442. return -EINVAL;
  443. if (!(out->f_mode & FMODE_WRITE))
  444. return -EBADF;
  445. pos = out->f_pos;
  446. ret = rw_verify_area(WRITE, out, &pos, len);
  447. if (unlikely(ret < 0))
  448. return ret;
  449. return out->f_op->splice_write(pipe, out, len, flags);
  450. }
  451. static long do_splice_to(struct file *in, struct inode *pipe, size_t len,
  452. unsigned int flags)
  453. {
  454. loff_t pos, isize, left;
  455. int ret;
  456. if (!in->f_op || !in->f_op->splice_read)
  457. return -EINVAL;
  458. if (!(in->f_mode & FMODE_READ))
  459. return -EBADF;
  460. pos = in->f_pos;
  461. ret = rw_verify_area(READ, in, &pos, len);
  462. if (unlikely(ret < 0))
  463. return ret;
  464. isize = i_size_read(in->f_mapping->host);
  465. if (unlikely(in->f_pos >= isize))
  466. return 0;
  467. left = isize - in->f_pos;
  468. if (left < len)
  469. len = left;
  470. return in->f_op->splice_read(in, pipe, len, flags);
  471. }
  472. static long do_splice(struct file *in, struct file *out, size_t len,
  473. unsigned int flags)
  474. {
  475. struct inode *pipe;
  476. pipe = in->f_dentry->d_inode;
  477. if (pipe->i_pipe)
  478. return do_splice_from(pipe, out, len, flags);
  479. pipe = out->f_dentry->d_inode;
  480. if (pipe->i_pipe)
  481. return do_splice_to(in, pipe, len, flags);
  482. return -EINVAL;
  483. }
  484. asmlinkage long sys_splice(int fdin, int fdout, size_t len, unsigned int flags)
  485. {
  486. long error;
  487. struct file *in, *out;
  488. int fput_in, fput_out;
  489. if (unlikely(!len))
  490. return 0;
  491. error = -EBADF;
  492. in = fget_light(fdin, &fput_in);
  493. if (in) {
  494. if (in->f_mode & FMODE_READ) {
  495. out = fget_light(fdout, &fput_out);
  496. if (out) {
  497. if (out->f_mode & FMODE_WRITE)
  498. error = do_splice(in, out, len, flags);
  499. fput_light(out, fput_out);
  500. }
  501. }
  502. fput_light(in, fput_in);
  503. }
  504. return error;
  505. }